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Abstract 

 

We study how love-for-variety, -- productivity (or utility) gains from increasing variety of 
differentiated inputs (or consumer goods) --, depends on the underlying demand structure. Under 
general symmetric homothetic demand systems, love-for-variety and the substitutability across 
different varieties can be both expressed as functions of the mass of available varieties 𝑉 only. 
Since the homotheticity alone imposes little restrictions on the properties of these two functions, 
we turn to three classes of homothetic demand systems, H.S.A., HDIA, and HIIA, which are 
pairwise disjoint with the sole exception of CES. For each of these three classes, we establish the 
three main results. First, the substitutability is increasing in 𝑉, if and only if Marshall’s 2nd law of 
demand (the price elasticity of demand for each variety is increasing in its price) holds. Second, 
increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety, but the 
converse is not true. Third, love-for-variety is constant, if and only if substitutability is constant, 
which occurs only under CES within these three classes. These three classes thus offer a tractable 
way of capturing the intuition that gains from increasing variety is diminishing, if different 
varieties are more substitutable when more varieties are available.  
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1.  Introduction 

Love-for-variety1 captures the idea that producers (or consumers) can achieve higher level of productivity 

(or utility) when they have access to a wider variety of differentiated inputs (or consumer goods). It is a natural 

consequence of the convexity of the production technologies (or preferences). It represents productivity (or 

utility) gains from increasing variety of differentiated inputs (or consumer goods) and hence forms the basis for 

willingness to pay for new inputs (or goods); e.g., Dixit and Stiglitz (1977), Krugman (1980), Ethier (1982), and 

Romer (1987). As such, love-for-variety plays a central role in many fields of economics, as Matsuyama (1995) 

pointed out, but most prominently in economic growth (Grossman and Helpman 1993, Gancia and Zilibotti 2005, 

and Acemoglu 2008), international trade (Helpman and Krugman 1985), and economic geography (Fujita, 

Krugman, and Venables 1999). 

However, little is known about how love-for-variety depends on the underlying production (or utility) 

function, and, in particular, how love-for-variety changes as more and more varieties become available. In a 

standard treatment, e.g., Matsuyama (1995, Sec.3A), the analytical expression for love-for-variety is obtained 

under the assumption of CES.2  It is equal to 1 𝜎 1⁄ , where 𝜎 1 represents both the (constant) elasticity of 

substitution across different varieties and the (constant) price elasticity of demand for each variety. Even though 

this expression exhibits the appealing property that love-for-variety is smaller when different varieties are more 

substitutable and the price elasticity of demand for each variety is higher (i.e., a larger 𝜎 , it also exhibits the 

property many find less appealing; that is, love-for-variety is constant. It seems implausible to think that 

productivity gains enjoyed by producers from additional variety of inputs are independent of how many varieties 

they have already access to.3  Of course, constant love-for-variety may be a peculiar artifact of the CES demand 

system. But, the question is then: under which non-CES demand systems should we expect love-for-variety to, 

say, decline as more and more varieties become available?  This is the question we address in this paper. 

In Section 2, we first recall some general properties of symmetric CRS production functions and 

symmetric homothetic demand systems for input varieties that they generate. Then, we show that both love-for-

variety and the substitutability across differentiated input varieties can be defined as functions of the mass of 

 
1Different authors called this concept differently; e.g., “the desirability of variety” (Dixit and Stiglitz 1977), “love of variety” 
(Helpman and Krugman 1985, sec. 6.2), “taste for variety” (Benassy 1996), etc. In the context of input variety, Ethier (1982) 
called it “gains from an increased division of labor” and Romer (1987) “increasing returns due to specialization.” We call 
“love-for-variety,” as in Parenti et.al. (2017) and Thisse and Ushchev (2020), since it seems most common in the recent 
literature. 
2CES is also assumed in most empirical assessment of love-for-variety; see e.g., Feenstra (1994), Bils and Klenow (2001), 
and Broda and Weinstein (2006). A few exceptions include Feenstra and Weinstein (2017), which use translog. 
3Perhaps due to this unappealing feature of love-for-variety under CES, some authors prefer “the ideal variety approach,” 
e.g., Helpman and Krugman (1985, sec. 6.3), in which consumers are heterogenous in taste, and each consumer buys the only 
variety closest to his/her ideal variety. Despite each consumer buys only one variety, increasing variety is beneficial in that 
each consumer finds a variety closer to the ideal variety on average as more varieties becomes available, and yet the benefit 
of adding variety is diminishing, as the product space becomes congested.   
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available varieties 𝑉 only, as ℒ 𝑉  and 𝜎 𝑉 , respectively. It turns out that the properties of these two functions, 

particularly their relation to each other, can be quite complex under general symmetric homothetic demand 

systems. Moreover, whether Marshall’s 2nd law of demand holds or not (the price elasticity of demand for each 

input is increasing in its own price or not) tells us little about the properties of these two functions. Since the 

homothetic restriction alone is not strong enough to offer much insight, we turn to three classes of CRS 

production functions: H.S.A. (Section 3), HDIA (Section 4), and HIIA (Section 5), which are pairwise disjoint 

with the sole exception of CES, as shown in Figure. 4 For each of these three classes, we establish the three main 

results. First, the substitutability, 𝜎 𝑉 , is increasing in the mass of available varieties, 𝑉, if and only if Marshall’s 

2nd law of demand holds. Second, increasing (decreasing) substitutability 𝜎 𝑉 0, implies diminishing 

(increasing) love-for-variety ℒ 𝑉 0, but the converse is not true. Third, love-for-variety is constant, 

ℒ 𝑉 0, if and only if substitutability is constant, 𝜎 𝑉 0, which occurs only under CES within these three 

classes. These three classes thus offer a tractable way of capturing the intuition that gains from increasing variety 

is diminishing, if different varieties are more substitutable when more varieties are available.5 

We conclude in Section 6.  All technical materials, including the proofs of lemmas, are in appendices. 

 

2. General symmetric homothetic demand system 

In what follows, we discuss a general symmetric homothetic demand system in the context of the 

producer’s demand for a variety of differentiated inputs.  Thus, consider a monotone, strictly quasi-concave, 

symmetric CRS production function, 𝑋 𝑋 𝐱 . Here, 𝐱 𝑥 ;𝜔 ∈ Ω  is the input quantity vector, defined over 

Ω, a continuum of all potential input varieties, which is divided into the set of available varieties, Ω ⊂ Ω, and the 

set of unavailable varieties, Ω\Ω. That is, 𝑥 0 for 𝜔 ∈ Ω\Ω. We denote the mass of available varieties by 𝑉 ≡

|Ω|. Our goal is to study the effect of changing 𝑉 on productivity. To this end, it is necessary to assume that each 

input is inessential. That is, 𝑥 0 for 𝜔 ∈ Ω\Ω does not imply 𝑋 𝐱 0, so that it is possible to produce a 

positive output, even when some potential varieties are unavailable.  

2.1 Duality Theory: A Refresher  

Let us first recall some key results from the duality theory; see, e.g., Mas-Colell et al. (1995), and Jehle and Reny 

(2012). Let 𝐩 𝑝 ;𝜔 ∈ Ω  denote the input price vector, such that 𝑝 ∞ for 𝜔 ∈ Ω\Ω and 𝑝 ∞ for 𝜔 ∈

Ω. The non-essentiality of inputs ensures that the unit cost function corresponding to this production function, 

obtained by the following cost minimization problem,  

 
4H.S.A., HDIA, and HIIA stand for Homothetic with a Single Aggregator, Homothetic Direct Implicit Additivity, and Homothetic Indirect 
Implicit Additivity. Matsuyama (2023) discusses the relation between these three and other classes of non-CES demand systems in detail. 
5As such, they can be valuable alternatives to those who find “the ideal variety approach” more appealing than the love-for-love approach 
under CES despite that the former is less tractable. We thank Jim Markusen for pointing this out. 
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𝑃 𝐩 ≡ min 𝑝 𝑥 𝑑𝜔      𝑠. 𝑡.     𝑋 𝐱 1, 

(1) 

is well-defined, even though 𝑝 ∞ for 𝜔 ∈ Ω\Ω.  Furthermore, it also satisfies the monotonicity, strict quasi-

concavity, linear homogeneity, and symmetry. From the first-order condition of this cost minimization problem, 

we obtain the inverse demand curve: 

 
𝑝 𝑃 𝐩

𝜕𝑋 𝐱
𝜕𝑥

;     𝜔 ∈ Ω, 
(2) 

from which we obtain the budget share of input 𝜔 as a function of 𝐱 as follows: 

 
𝑠 ≡

𝑝 𝑥
𝑃 𝐩 𝑋 𝐱

𝜕 ln𝑋 𝐱
𝜕 ln 𝑥

≡ 𝑠∗ 𝑥 ;  𝐱 ;   𝜔 ∈ Ω. 
(3) 

Likewise, the production function can be recovered from the unit cost function as follows: 

 
𝑋 𝐱 ≡ min 𝑝 𝑥 𝑑𝜔      𝑠. 𝑡.     𝑃 𝐩 1. 

(4) 

From the first-order condition of this minimization problem, we obtain the demand curve: 

 
𝑥

𝜕𝑃 𝐩
𝜕𝑝

𝑋 𝐱 ;     𝜔 ∈ Ω. 
(5) 

from which we obtain the budget share of input 𝜔 as a function of 𝐩 as follows: 

 
𝑠 ≡

𝑝 𝑥
𝑃 𝐩 𝑋 𝐱

𝜕 ln𝑃 𝐩
𝜕 ln𝑝

≡ 𝑠 𝑝 ;𝐩 ;  𝜔 ∈ Ω. 
(6) 

We may thus use either 𝑋 𝐱  or 𝑃 𝐩  as the primitive of the CRS production technology.  

Moreover, from either eq.(2) and eq.(5), and by using the Euler’s theorem on linear homogeneity 

functions, 

𝐩𝐱 ≡ 𝑝 𝑥 𝑑𝜔 𝑃 𝐩
𝜕𝑋 𝐱
𝜕𝑥

𝑥 𝑑𝜔 𝑋 𝐱 𝑝
𝜕𝑃 𝐩
𝜕𝑝

𝑑𝜔 𝑃 𝐩 𝑋 𝐱 . 

This identity means that the total cost of inputs is equal to the total value of output. 

 

2.2 Love-for-Variety  

 Let us denote symmetric quantity and price patterns among all the available varieties by: 

𝐱 𝑥𝟏 , 𝐩 𝑝𝟏  

where 𝑥 0 and 𝑝 0 are scalars, while the unit quantity vector, 𝟏  ≡ 1 ;𝜔 ∈ Ω  and the unit price 

vector, 𝟏  ≡ 1 ;𝜔 ∈ Ω , are defined as follows: 

1 ≡ 1 for 𝜔 ∈
0 for 𝜔 ∈

 
Ω
Ω\Ω ;           1 ≡ 1 for 𝜔 ∈

∞ for 𝜔 ∈
 
Ω
Ω\Ω  , 

which satisfies 1 𝑑𝜔 1 𝑑𝜔 |Ω| ≡ 𝑉.  
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Under symmetric price patterns, 𝐩  𝑝𝟏 , 𝑃 𝐩 𝑝𝑃 𝟏 , where 𝑃 𝟏  depends only on 𝑉, so that 

it can be rewritten as: 

𝑃 𝐩 𝑝𝑃 𝟏
𝑝

𝓏 𝑉
. 

The monotonicity of 𝑃 𝐩  implies that 𝓏 𝑉  is increasing in 𝑉. We measure love-for-variety by the rate of decline 

in the unit cost caused by a proportional increase in 𝑉, holding the price of each input 𝑝 0 constant, that is,  

ℒ 𝑉 ≡
𝑑 ln 𝓏 𝑉
𝑑 ln𝑉

0. 

Likewise, under symmetric quantity patterns, 𝐱 𝑥𝟏 , 𝑋 𝐱 𝑥𝑋 𝟏 , where 𝑋 𝟏  depends only on 𝑉, so that 

it can be written as:  

𝑋 𝐱 𝑥𝑋 𝟏
𝑥

𝓎 𝑉
𝑥𝑉

𝑉𝓎 𝑉
. 

The strict quasi-concavity of 𝑋 𝐱  implies that, holding the total amounts of inputs, 𝑥𝑉, fixed, 𝑋 𝐱  is increasing 

in 𝑉.  In other words, 𝑉𝓎 𝑉  is strictly decreasing in 𝑉. Thus, if we measure love-for-variety by the rate of 

increase in output caused by a proportional increase in 𝑉, holding 𝑥𝑉 fixed,   

ℒ 𝑉 ≡
𝑑 ln𝑉𝓎 𝑉
𝑑 ln𝑉

𝑑 ln𝓎 𝑉
𝑑 ln𝑉

1. 

This is essentially the same with the definition proposed by Benassy (1996, eq.(2)) for what he called “taste for 

variety,” even though he applied it only for CES demand systems with externalities.     

These two measures of love-for-variety are indeed identical.  To see this, inserting 𝐩 𝑝𝟏  and 𝐱

𝑥𝟏  into the identity, 𝐩𝐱 𝑃 𝐩 𝑋 𝐱 , yields 

𝑝𝑥𝑉
𝑝

𝓏 𝑉
𝑥

𝓎 𝑉
 

and hence 

𝓏 𝑉
1

𝑉𝓎 𝑉
⟹

𝑑 ln𝓏 𝑉
𝑑 ln𝑉

𝑑 ln𝓎 𝑉
𝑑 ln𝑉

1 0. 

Hence, we use them interchangeably as the love-for-variety measure. 

Definition. The love-for-variety measure is defined by: 

 
ℒ 𝑉 ≡

𝑑 ln𝓏 𝑉
𝑑 ln𝑉

𝑑 ln𝓎 𝑉
𝑑 ln𝑉

1 0. 
(7) 

 

 

2.3 Price Elasticity of Demand for each variety and Marshall’s 2nd Law of Demand  

Next, using the expressions for the budget share given in eq.(3) and eq.(6), the price elasticity  

of demand for 𝜔 can be written as: 
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𝜁 ≡
𝜕 ln 𝑥
𝜕 ln𝑝

𝜁 𝑝 ;𝐩 ≡ 1
𝜕 ln 𝑠 𝑝 ;𝐩
𝜕 ln 𝑝

𝜁∗ 𝑥 ; 𝐱 ≡ 1
𝜕 ln 𝑠∗ 𝑥 ;  𝐱

𝜕 ln 𝑥
. 

Marshall’s 2nd law states that the price elasticity for each input goes up as its price goes up (and its demand goes 

down) along its demand curve.  

Definition: Marshall’s 2nd Law holds if and only if  

𝜕𝜁 𝑝 ;𝐩 𝜕𝑝⁄ 0 ⟺ 𝜕𝜁∗ 𝑥 ; 𝐱 𝜕𝑥⁄ 0. 

 

2.4 Substitutability Across Different Varieties  

Since 𝜁 𝑝 ;𝐩  = 𝜁∗ 𝑥 ; 𝐱  are both homogenous of degree zero, the price elasticity at symmetric 

patterns, 𝐩  𝑝𝟏  or 𝐱 𝑥𝟏 , is 𝜁 1;𝟏 𝜁∗ 1;𝟏 , which is independent of 𝑝 or 𝑥, and can be written as a 

function of 𝑉 only, as 𝜎 𝑉 . Moreover, Appendix A shows that 𝜎 𝑉  is equal to the Allen-Uzawa elasticity of 

substitution between every pair of input varieties at the symmetric patterns. Thus, we use the following definition 

for the substitutability of inputs in the presence of mass 𝑉 of available input varieties:   

Definition: The substitutability measure is defined by 

 𝜎 𝑉 ≡ 𝜁 1;𝟏 𝜁∗ 1;𝟏 1. (8) 
 

In the special case of CES with gross substitutes, 

𝑋 𝑋 𝐱 𝑍 𝑥 𝑑𝜔 ⟺ 𝑃 𝑃 𝐩
1
𝑍

𝑝 𝑑𝜔 , 

where 𝜎 1 is the (constant) elasticity of substitution parameter and 𝑍 is the TFP parameter, it is easy to verify: 

𝜁 𝑝 ;𝐩 𝜁∗ 𝑥 ; 𝐱 𝜎 1 

𝜎 𝑉 𝜎 1;  

ℒ 𝑉
1

𝜎 1
0. 

Thus, under CES, the price elasticity of demand for each variety is everywhere constant and equal to 𝜎. 

Obviously, this implies that our substitutability measure, which is always equivalent to the price elasticity 

evaluated at the symmetric patterns, 𝜎 𝑉 , is also equal to 𝜎, and independent of 𝑉. Moreover, the love-for-

variety measure, ℒ 𝑉 , is also independent of 𝑉,  and depends solely on the single parameter, 𝜎, with a one-to-one 

inverse relation between the two.6 Perhaps for these reasons, some authors have claimed that 𝜎 𝑉  is constant 

 
6Benassy (1996) proposed to break the tight relation between 𝜎 𝑉  and ℒ 𝑉  under CES, by making TFP a function of 𝑉 as 𝑍 𝑉  with 
some sorts of externalities, through which 𝑉 directly affects TFP. By driving the wedge between social and private demand for additional 
variety, such modified CES yields love-for-variety from the planner’s viewpoint to be equal to ℒ 𝑉 𝜕 ln𝑍 𝑉 𝜕 ln𝑉⁄ 1 𝜎 1 .⁄   
Moreover, he assumed that 𝜕 ln𝑍 𝑉 𝜕 ln𝑉⁄ 𝜈 1 𝜎 1⁄ ,  so that ℒ 𝑉 𝜈, which can be chosen independently from 𝜎 𝑉 𝜎. If 
we assume instead 𝜕 ln𝑍 𝑉 𝜕 ln𝑉⁄  is another parameter independent of 𝜎 𝑉 𝜎,  ℒ 𝑉  is still inversely related to 𝜎 𝑉 𝜎.  However, 
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only under CES, and/or that 𝜎 𝑉  is the inverse measure of love-for-variety, even under general homothetic 

demand systems. 

It should be pointed out, however, that the relation between the price elasticity, 𝜁 𝑝 ;𝐩 𝜁∗ 𝑥 ; 𝐱 , the 

substitutability, 𝜎 𝑉 , and love-for-variety, ℒ 𝑉  can be quite complex under general homothetic demand 

systems. First, whether Marshall’s 2nd law holds or not in general tells us little about the sign of the derivative of 

𝜎 𝑉 ; This should not be surprising because the former is about how 𝜁 𝑝 ; 𝑝𝟏  or 𝜁∗ 𝑥 ; 𝑥𝟏  responds to a 

change in 𝑝  or 𝑥 , while the latter is about how 𝜁 𝑝; 𝑝𝟏 𝜁 1;𝟏  or 𝜁∗ 𝑥; 𝑥𝟏 𝜁∗ 1;𝟏  responds to 

a change in 𝑉 through its effect on 𝟏  or 𝟏 . Second, as shown in Appendix B, there exists a parametric family 

of homothetic non-CES demand systems in which 𝜎 𝑉  and ℒ 𝑉  are both independent of 𝑉, and they move in 

the same direction as one of the parameters changes. More generally, with both 𝜎 𝑉  and ℒ 𝑉  being functions of 

𝑉, one cannot expect 𝜎 𝑉  and ℒ 𝑉  to always move in the opposite direction as 𝑉 varies. 

Nevertheless, it is intuitive to think that, when input varieties are more substitutable, the price elasticity of 

demand for each variety should be larger, and the love-for-variety measure should be smaller. One need to find 

some additional restrictions to capture this intuition, since the homothetic restriction alone is not enough. In what 

follows, we investigate the properties of the substitutability and love-for-variety measures, 𝜎 𝑉  and ℒ 𝑉 , in 

three classes of symmetric CRS production functions, H.S.A.(Section 3), HDIA (Section 4), and HIIA (Section 

5). These three classes were initially proposed by Matsuyama and Ushchev (2017) and later extended to allow for 

a continuum of endogenous range of available inputs in the case of gross substitutes by Matsuyama and Ushchev 

(2020a). To our purpose, these three classes are useful for two reasons. First, they are pairwise disjoint with the 

sole exception of CES, as seen in Figure. Thus, they offer three alternative ways of departing from CES, while 

keeping CES as a special case. Second, each of the three classes generates the demand system with the property 

that the price elasticity of demand for each input can be expressed as 𝜁 𝑝 ;𝐩  𝜁 𝑝 𝒜 𝐩⁄  and 𝜁∗ 𝑥 ; 𝐱

𝜁∗ 𝑥 𝒜∗ 𝐱⁄ . That is, the price elasticity is a function of a single variable, 𝑝 𝒜 𝐩⁄  or 𝑥 𝒜∗ 𝐱⁄ , where 

𝒜 𝐩  or 𝒜∗ 𝐱  is the linear homogeneous aggregator in 𝐩 or in 𝐱, whose value serves as a sufficient statistic that 

captures the interdependence of price elasticities across varieties. Thus, in these three classes, the price elasticity 

responds to an increase in 𝑝  and to a decline in 𝒜 𝐩  in the same way, and hence also to an increase in 𝑉 in the 

symmetric price patterns.  Or equivalently, the price elasticity responds to a decline in 𝑥  and to an increase in 

𝒜∗ 𝐱  in the same way, and hence also to an increase in 𝑉 at the symmetric quantity patterns. This feature enables 

us to establish the following three results for each of the three classes. First, Marshall’s 2nd law is equivalent to 

increasing substitutability, 𝜎 𝑉 0. Second, increasing (decreasing) substitutability 𝜎 𝑉 0 is sufficient 

 
adding such externalities does not affect the willingness to pay for additional variety by atomistic producers and consumers. Furthermore, it 
does not address our question; that is, how ℒ 𝑉  depends on 𝑉 under homothetic non-CES demand systems. 
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but not necessary for diminishing (increasing) love-for-variety, ℒ 𝑉 0. Third, ℒ 𝑉  is constant if and only 

if it is CES.   

 

3.  The HSA class. 

We call a symmetric CRS technology, 𝑋 𝑋 𝐱  or 𝑃 𝑃 𝐩 , H.S.A. (Homothetic with a Single 

Aggregator) if the budget share of 𝜔, as a function of 𝐩, can be written as: 

 
𝑠

𝜕 𝑙𝑛 𝑃 𝒑
𝜕 𝑙𝑛 𝑝

 𝑠
𝑝
𝐴 𝒑

. 
(9) 

Here, 𝑠:ℝ → ℝ  is the budget share function, which is 𝐶  and strictly decreasing as long as 𝑠 𝑧 0, with 

lim → 𝑠 𝑧 ∞ and lim → ̅𝑠 𝑧 0, where 𝑧̅ ≡ inf 𝑧 0|𝑠 𝑧 0 , which can be finite or infinite, and 𝐴 𝐩  

is linear homogenous in 𝐩, defined implicitly and uniquely by the adding-up constraint, 

 
𝑠

𝑝
𝐴 𝒑

𝑑𝜔 ≡ 1, 
(10) 

which ensures, by construction, that the budget shares of all inputs are added up to one.  

CES with gross substitutes is a special case where 𝑠 𝑧 𝛾𝑧  (𝜎 1 . Translog unit cost function is 

another special case, where 𝑠 𝑧 𝛾max ln 𝑧 𝑧̅⁄ , 0 , where 𝑧̅ ∞.7   The CoPaTh family8 of H.S.A. is given 

by 𝑠 𝑧 𝛾max 𝜎 𝜎 1 𝑧 , 0  , where 0 𝜌 1, with 𝑧̅ → ∞ and 𝑠 𝑧 → 𝛾𝑧 , as 

𝜌 ↗ 1.  Symmetric H.S.A. have been recently applied to a variety of monopolistic competition models.9 

Eqs.(9)-(10) state that the budget share of an input is decreasing in its normalized price, 𝑧 ≡ 𝑝 𝐴 𝐩⁄ , 

which is defined as its own price, 𝑝 , divided by the common price aggregator, 𝐴 𝐩 .  Notice that 𝐴 𝐩  is 

independent of 𝜔. Thus, it captures “the average price” against which the prices of all inputs are measured. In 

other words, one could keep track of all the cross-price effects in the demand system by looking at a single 

aggregator, 𝐴 𝐩 , which is the key feature of H.S.A.10 The monotonicity of 𝑠 ∙ , combined with the assumptions, 

 
7For 𝑠:ℝ → ℝ , satisfying the above conditions, a class of the budget share functions, 𝑠 𝑧 ≡ 𝛾𝑠 𝑧  for 𝛾 0, generate the same 
demand system with the same common price aggregator. This can be seen by reindexing the varieties, as 𝜔 𝛾𝜔, so that 

𝑠 𝑝 𝐴 𝐩⁄ 𝑑𝜔  𝑠 𝑝 𝐴 𝐩⁄ 𝑑𝜔 1.  In this sense, 𝑠 𝑧 ≡ 𝛾𝑠 𝑧  for 𝛾 0 are all equivalent. Note also that a class of the 
budget share functions, 𝑠 𝑧 ≡ 𝑠 𝜆𝑧  for 𝜆 0, generate the same demand system, with 𝐴 𝐩 𝜆𝐴 𝐩 , because 𝑠 𝑝 𝐴 𝐩⁄
𝑠 𝜆 𝑝 𝐴 𝐩⁄ 𝑠 𝑝 𝐴 𝐩⁄ . In this sense, 𝑠 𝑧 ≡ 𝑠 𝜆𝑧  for 𝜆 0 are all equivalent. 
8CoPaTh stands for Constant Pass-Through; it is so named, since, when a monopolistic competitive firm faces the demand curve generated 
by this family, its pricing behavior features a constant pass-through rate, 0 𝜌 1, and it converges to CES, as 𝜌 ↗ 1. Matsuyama and 
Ushchev (2020b) developed the CoPaTh family of demand systems within H.S.A., HDIA, and HIIA.  
9See, e.g., Baqaee, Farhi, and Sangani (2023), Fujiwara and Matsuyama (2022), Grossman, Helpman, and Luillier (2023), Matsuyama and 
Ushchev (2020a, 2020b, 2022a, 2022b). A large literature on monopolistic competition models under translog demand systems, which 
follows Feenstra (2003), may be also added to this list, because a symmetric translog unit cost function is a special case of symmetric 
H.S.A. with gross substitutes. 
10In contrast, that 𝑠 ∙  is independent of 𝜔 is not a defining feature of H.S.A., but due to the assumption that the underlying production 
function is symmetric. Generally, the H.S.A. class of the production functions is defined by the property that the budget share of 𝜔 is given 

by 𝑠 𝑝 𝐴 𝐩⁄ , where 𝐴 𝐩  is the unique solution to 𝑠 𝑝 𝐴 𝐩⁄ 𝑑𝜔 1. Note that 𝑠 ∙  may depend on 𝜔 but 𝐴 ∙  does not. 
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lim → 𝑠 𝑧 ∞ and lim → ̅𝑠 𝑧 0, ensures that 𝐴 𝐩  is defined uniquely by eq.(10) for any 𝑉 ≡ |Ω| 0.  

Note also that we allow for the possibility of 𝑧̅ ∞, in which case 𝑧̅𝐴 𝐩  is the choke price, at which demand for 

a variety goes to zero. If 𝑧̅ ∞, the choke price does not exist and demand for each input always remains positive 

for any positive price vector. 

The price elasticity of each input can be written as a function of a single variable, 𝑧 ≡ 𝑝 𝐴 𝐩⁄ : 

𝜁 𝜁 𝑝 ;𝐩 1
𝑧 𝑠 𝑧
𝑠 𝑧

≡ 𝜁 𝑧 1, 

where 𝜁: 0, 𝑧̅ → 1,∞  is continuously differentiable for 𝑧 ∈ 0, 𝑧̅ , and lim
→ ̅
𝜁 𝑧 ∞ if 𝑧̅ ∞.  Note that the 

assumption that 𝑠 ∙  is strictly decreasing in 𝑧 𝑧̅ ensures 𝜁 𝑧 1.  That is, inputs are gross substitutes.11 In 

general, 𝜁 ∙  can be nonmonotonic. Under CES, it is constant, 𝜁 ⋅ 0.  Marshall’s 2nd law, 

𝜕𝜁 𝑝 ;𝐩 𝜕𝑝 0,⁄  holds if and only if 𝜁 ⋅ 0, the condition satisfied both by translog with 𝜁 𝑧 1

̅⁄
  and by CoPaTh with 𝜁 𝑧 ⁄ ̅⁄ ⁄ . 

The unit cost function, 𝑃 𝐩 , can be obtained by integrating eq.(9), which yields 

 
𝐴 𝒑
𝑃 𝒑

𝑐 𝑒𝑥𝑝
𝑠 𝜉
𝜉

𝑑𝜉

̅

𝒑⁄

𝑑𝜔 ≡ 𝑐 𝑒𝑥𝑝 𝑠
𝑝
𝐴 𝒑

𝛷
𝑝
𝐴 𝒑

𝑑𝜔  

(11) 

where  

Φ 𝑧 ≡
1

𝑠 𝑧
𝑠 𝜉
𝜉

d𝜉 0

̅

 

and 𝑐 is a positive constant, which is proportional to TFP. 12 The unit cost function, 𝑃 𝐩 , satisfies the linear 

homogeneity, monotonicity, and strict quasi-concavity, and so does the corresponding production function, 𝑋 𝐱 . 

This follows from Matsuyama and Ushchev (2017; Proposition 1-i)) and guarantees the integrability (in the sense 

of Hurwicz and Uzawa 1971) of the H.S.A. production function. It is important to note that, with the sole 

exception of CES, 𝐴 𝐩 𝑃 𝐩⁄  is not constant and depends on 𝐩. 13  This can be verified by differentiating eq.(10) 

to yield 

𝜕 ln𝐴 𝐩
𝜕 ln 𝑝

𝑧 𝑠 𝑧

𝑠 𝑧 𝑧 𝑑𝜔

𝜁 𝑧 1 𝑠 𝑧

𝜁 𝑧 1 𝑠 𝑧 𝑑𝜔
 

 
11Conversely, from any continuously differentiable 𝜁: 0, 𝑧̅ → 1 𝜀,∞ , satisfying lim

→ ̅
𝜁 𝑧 ∞ if 𝑧̅ ∞, one could reverse-engineer as 

𝑠 𝑧 𝛾 exp 1 𝜁 𝜉 𝑑𝜉 𝜉⁄ 0; 𝑧 , 𝑧 ∈ 0, 𝑧̅ , where 𝛾 𝑠 𝑧  is a positive constant.  Thus, we could also use 𝜁 ∙  instead of 𝑠 ∙ , 

as a primitive of symmetric H.S.A. with gross substitutes. 
12This constant term in eq.(11), which appears by integrating eq.(9), cannot be pinned down. First, 𝐴 𝐩 , the “average input price”, depends 
on the unit of measurement of inputs, but not on the unit of measurement of the final good. In contrast, 𝑃 𝐩  is the cost of producing one 
unit of the final good, when the input prices are given by 𝐩. Hence, it depends not only on the unit of measurement of inputs but also on 
that of the final good. Second, a change in TFP, though it affects 𝑃 𝐩 , leaves the budget share of each input, and hence 𝐴 𝐩 , unaffected. 
13This holds more generally, that is, for asymmetric H.S.A., as well as H.S.A. with gross complements, as shown in Matsuyama and 
Ushchev (2017; Proposition 1-iii). 
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which differs from 

𝜕 ln𝑃 𝐩
𝜕 ln 𝑝

𝑠 𝑧 , 

unless 𝜁 𝑧  is independent of 𝑧 or 𝑠 𝑧 𝛾𝑧 with 𝜁 𝑧 𝜎 1. This should not come as a surprise. After all, 

𝐴 𝐩  is the “average input price”, which captures the cross-price effects in the demand system, while 𝑃 𝐩  is the 

inverse measure of TFP, which captures the productivity (or welfare) effects of price changes. There is no reason 

to think a priori that they should move together. 

We are now ready to derive the love-for-variety measure under H.S.A.  For symmetric price patterns, 𝐩  

𝑝𝟏 , eq.(10) is simplified to  

𝑠
1

𝐴 𝟏
𝑉 1 ⟹ 𝑧

1
𝐴 𝟏

𝑠
1
𝑉

 

Hence, from eq.(11),   

𝓏 𝑉 ≡
1

𝑃 𝟏
1

𝐴 𝟏
𝐴 𝟏
𝑃 𝟏

𝑐𝑠
1
𝑉

exp Φ 𝑠
1
𝑉

, 

from which the love-for-variety measure under H.S.A. is given by 

 
ℒ 𝑉 ≡

𝑑 ln𝓏 𝑉
𝑑 ln𝑉

𝑑 ln 𝓏 𝑉
𝑑 ln 𝑠 1 𝑉⁄

⋅
𝑑 ln 𝑠 1 𝑉⁄

𝑑 ln𝑉
Φ 𝑠

1
𝑉

ln
𝐴 𝟏
𝑐𝑃 𝟏

. 
(12) 

In contrast, the substitutability measure is given by: 

 
𝜎 𝑉 𝜁 𝑠

1
𝑉

. 
(13) 

Since 𝑠 1 𝑉⁄  is increasing in 𝑉, eq.(13) implies  

𝜁 ∙ ⋛ 0 ⟺ 𝜎 ⋅ ⋛ 0. 

In particular, Marshall’s 2nd law, 𝜁 ∙ 0, is equivalent to increasing substitutability, 𝜎 ⋅ 0, under H.S.A. 

The next lemma shows the relation between the following two functions: 

𝜁 𝑧 ≡ 1
𝑧𝑠 𝑧
𝑠 𝑧

1    and  Φ 𝑧 ≡
1

𝑠 𝑧
𝑠 𝜉
𝜉

d𝜉

̅

0. 

Lemma 1:  

𝜁 𝑧 ⋛ 0,∀𝑧 ∈ 𝑧 , 𝑧  ⟹Φ 𝑧 ⋚ 0,∀𝑧 ∈ 𝑧 , 𝑧 . 

Furthermore,  

𝜁 𝑧 0 ⟺Φ 𝑧 0 ⟺ CES. 

The proof of Lemma 1 is in Appendix D.  By combining Lemma 1, eq. (12) and eq.(13), we have: 

Proposition 1 

𝜁 𝑧 ⋛ 0,∀𝑧 ∈ 𝑧 , 𝑧 ⟺ 𝜎 𝑉 ⋛ 0,∀𝑉 ∈ 1/𝑠 𝑧 ,∞  
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⟹ 

Φ 𝑧 ⋚ 0,∀𝑧 ∈ 𝑧 , 𝑧 ⟺ ℒ 𝑉 ⋚ 0,∀𝑉 ∈ 1/𝑠 𝑧 ,∞ . 

Furthermore, 

𝜁 𝑧 0 ⟺ 𝜎 𝑉 0 ⟺Φ 𝑧 0 ⟺ ℒ 𝑉 0 ⟺ CES. 

In particular, Marshall’s 2nd Law, 𝜁 ⋅ 0 for all 𝑧 𝑧, or equivalently, increasing substitutability, 𝜎 ⋅ 0 for 

all 𝑉, implies diminishing love-for-variety, ℒ ⋅ 0 for all 𝑉.14 The converse is not true. Diminishing love-for-

variety for all 𝑉 does not imply increasing substitutability or Marshall’s 2nd Law globally. However, constant 

love-for-variety, ℒ ⋅ 0 for all 𝑉, implies both constant substitutability, 𝜎 ⋅ 0 for all 𝑉, and constant price 

elasticity 𝜁 ⋅  0 for all 𝑧 𝑧 ∞. 

 Before proceeding, it should be pointed out that there exists an alternative (but equivalent) definition of 

H.S.A. For the sake of completeness, we discuss this alternative in Appendix C.   

 

4. The HDIA class 

We call a symmetric CRS technology, 𝑋 𝑋 𝐱  or 𝑃 𝑃 𝐩 , HDIA (Homothetic Direct Implicit 

Additivity) with gross substitutes if 𝑋 𝑋 𝐱 ≡ 𝑍𝑋 𝐱  can be defined implicitly by: 

 
𝜙

𝑍𝑥
𝑋 𝐱

𝑑𝜔 𝜙
𝑥

𝑋 𝐱
𝑑𝜔 ≡ 1, 

(14) 

where 𝜙 ⋅ : ℝ → ℝ  is 𝐶 , with 𝜙 𝓎 0, 𝜙 𝓎 0, 𝓎𝜙 𝓎 𝜙 𝓎⁄ 1 for ∀𝓎 ∈ 0,∞  and 𝜙 0

0 and 𝜙 ∞ ∞, and independent of 𝑍 0, TFP. Note that, unlike eq.(10), the adding-up constraint of the 

H.S.A, eq.(14) defines the production function 𝑋 𝐱  directly.15 CES with gross substitutes is a special case where 

𝜙 𝓎 𝓎 ⁄  (𝜎 1 .  The CoPaTh family of HDIA is given by 𝜙 𝓎 1 𝜉 𝑑𝜉
𝓎

, 0

𝜌 1, which converges to CES with 𝜌 ↗ 1.  Symmetric HDIA defined as above may be viewed as an extension 

of the Kimball (1995) aggregator in that the set of available varieties Ω is not fixed, and in particular, its mass, 

𝑉 ≡ |Ω|, is a variable. 

From the cost minimization problem, eq.(1), subject to eq.(14), we obtain the inverse demand curve, 

 
𝑝 𝐵 𝐩 𝜙

𝑍𝑥
𝑋 𝐱

𝐵 𝐩 𝜙
𝑥

𝑋 𝐱
, 

(15) 

where 𝐵 𝐩  is defined by: 

 
14This generalizes the case of translog, 𝑠 𝑧 𝛾max ln 𝑧 𝑧̅⁄ , 0 , where 𝜎 𝑉 1 𝛾𝑉 and ℒ 𝑉 1 2𝛾𝑉⁄ . 
15This means that, unlike H.S.A. but similar to HIIA defined in the next section, we do not need to worry about the integrability of HDIA. 
Note also that 𝑋 𝐱 𝑋 𝐱 𝑍⁄  defined by eq.(14) is invariant of TFP, 𝑍 0, by construction. Thus, an increase in 𝑍 causes a proportionate 
increase in 𝑋 𝐱 . This allows us to examine the effect of TFP without shifting 𝜙 ⋅ . Alternatively, we could have defined 𝑋 𝐱  by 

𝜙 𝑥 𝑋 𝐱⁄ 𝑑𝜔 1, as in Matsuyama and Ushchev (2017). Though mathematically equivalent, this definition requires that 𝜙 ⋅  would 
no longer be independent of TFP, which would make it harder to show that 𝜎 𝑉  and ℒ 𝑉  are independent of TFP. 
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𝜙 𝜙
𝑝
𝐵 𝐩

𝑑𝜔 ≡ 1. 

This shows that the choke price is equal to 𝐵 𝐩 𝜙 0  if 𝜙 0 ∞, and that there is no choke price if 𝜙 0

∞.  The unit cost function is: 

𝑃 𝐩
𝑃 𝐩
𝑍

≡
1
𝑍

𝑝 𝜙
𝑝
𝐵 𝐩

𝑑𝜔, 

Clearly, both 𝐵 𝐩  and 𝑃 𝐩  are linear homogenous in 𝐩, and independent of 𝑍 0. Hence, an increase in TFP, 

𝑍, causes a proportional decline in the unit cost function, 𝑃 𝐩 𝑃 𝐩 𝑍⁄ . 

The budget share is  

 𝑝 𝑥
𝑃 𝒑 𝑋 𝒙

𝑝

𝑃 𝒑
𝜙

𝑝
𝐵 𝒑

𝑥
𝐶∗ 𝒙

𝜙
𝑥

𝑋 𝒙
, 

(16) 

where  

𝐶∗ 𝐱 ≡ 𝑥 𝜙
𝑥

𝑋 𝐱
𝑑𝜔 

is linear homogenous in 𝐱 and independent of 𝑍 0, and satisfies the identity  

 𝑃 𝐩
𝐵 𝐩

𝑝
𝐵 𝐩

𝜙
𝑝
𝐵 𝐩

𝑑𝜔 𝜙
𝑥

𝑋 𝐱

𝑥

𝑋 𝐱
𝑑𝜔

𝐶∗ 𝐱

𝑋 𝐱
. 

(17) 

Eqs. (16)-(17) show that the budget share under HDIA is a function of the two relative prices, 𝑝 𝑃 𝐩⁄  and 

𝑝 𝐵 𝐩⁄ , or a function of the two relative quantities, 𝑥 𝑋 𝐱⁄  and 𝑥 𝐶∗ 𝐱⁄ , unless 𝑃 𝐩 𝐵 𝐩⁄ 𝐶∗ 𝐱 𝑋 𝐱⁄  

is a positive constant, which occurs if and only if it is CES. Thus, HDIA and H.S.A. do not overlap with the sole 

exception of CES.16 

 From the inverse demand curve, eq.(15), the price elasticity of demand can be written as a function of a 

single variable, 𝓎 ≡ 𝑥 𝑋 𝐱⁄  or 𝑝 𝐵 𝐩 𝜙 𝓎⁄ , as: 

𝜁 𝜁∗ 𝑥 ; 𝐱
𝜙 𝓎
𝓎𝜙 𝓎

≡ 𝜁 𝓎 𝜁 𝜙
𝑝
𝐵 𝐩

𝜁 𝑝 ;𝐩 1, 

where 𝜁 𝓎 1 ensures gross substitutability. Under CES, 𝜁 ⋅ 0. Marshall’s 2nd law, 

𝜕𝜁∗ 𝑥 ; 𝐱 𝜕𝑥 0,⁄  holds if and only if 𝜁 ⋅ 0, the condition satisfied by CoPaTh, with 𝜁 𝓎 1

𝜎 1 𝓎 . 

We are now ready to derive the measure of love-for-variety under HDIA.  For symmetric quantity 

patterns, 𝐱  𝑥𝟏 , eq.(14) is simplified to 

 
16This statement is a special case of Proposition 2-(ii) in Matsuyama and Ushchev (2017).  
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𝜙
1

𝑋 𝟏
𝑉 1 ⟹𝓎 𝑉 ≡

1

𝑋 𝟏
𝜙

1
𝑉

 

Hence, the measure of love-for-variety under HDIA is given by: 

 
ℒ 𝑉 ≡

𝑑 ln𝓎 𝑉
𝑑 ln𝑉

1
1

ℰ 𝜙 1 𝑉⁄
1 0 

(18) 

where  

0 ℰ 𝓎 ≡
𝓎𝜙 𝓎
𝜙 𝓎

1. 17 

In contrast, the substitutability measure is given by: 

 𝜎 𝑉  𝜁 𝜙 1 𝑉⁄ . (19) 

Since 𝜙 1 𝑉⁄  is decreasing in 𝑉, eq.(19) implies  

𝜁 ∙ ⋚ 0 ⟺ 𝜎 ⋅ ⋛ 0. 

In particular, Marshall’s 2nd law, 𝜁 ∙ 0, is equivalent to increasing substitutability, 𝜎 ⋅ 0, under HDIA. 

The next lemma shows the relation between the following two functions: 

𝜁 𝓎 ≡
𝜙 𝓎
𝓎𝜙 𝓎

1    and    0 ℰ 𝓎 ≡
𝓎𝜙 𝓎
𝜙 𝓎

1. 

Lemma 2:  

𝜁 𝓎 ⋚ 0,∀𝓎 ∈ 0,𝓎  ⟹ ℰ 𝓎 ⋚ 0,∀𝓎 ∈ 0,𝓎 . 

Furthermore, 

𝜁 𝓎 0 ⟺ ℰ 𝓎 0 ⟺ CES. 

The proof of Lemma 2 is in Appendix D. By combining Lemma 2, eq.(18), and eq.(19), 

Proposition 2: 

𝜁 𝓎 ⋚ 0 ∀𝓎 ∈ 0,𝓎 ⟺ 𝜎 𝑉 ⋛ 0,∀𝑉 ∈ 1 𝜙 𝓎⁄ ,∞  

⟹ 

ℰ 𝓎 ⋚ 0,∀𝓎 ∈ 0,𝓎 ⟺ ℒ 𝑉 ⋚ 0,∀𝑉 ∈ 1 𝜙 𝓎⁄ ,∞ . 

Furthermore, 

𝜁 𝓎 0 ⟺ 𝜎 𝑉 0 ⟺ ℰ 𝓎 0 ⟺ ℒ 𝑉 0 ⟺ CES. 

In particular, Marshall’s 2nd Law, 𝜁 ⋅ 0 for all 𝓎 0,  or equivalently, increasing substitutability, 𝜎 ⋅ 0 

for all 𝑉, implies diminishing love-for-variety, ℒ ⋅ 0 for all 𝑉. The converse is not true. Diminishing love-for-

variety for all 𝑉 does not imply increasing substitutability or Marshall’s 2nd Law globally. However, constant 

 
17Moreover, by evaluating eq.(17) at the symmetric price and quantity patterns, 

𝑃 𝟏

𝐵 𝟏
𝐶∗ 𝟏

𝑋 𝟏
ℰ

1

𝑋 𝟏
𝜙

1

𝑋 𝟏
𝑑𝜔 ℰ 𝜙

1
𝑉

⟹
𝐵 𝟏

𝑃 𝟏

𝑋 𝟏
𝐶∗ 𝟏

ℒ 𝑉 1. 
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love-for-variety, ℒ ⋅ 0 for all 𝑉, implies both constant substitutability, 𝜎 ⋅ 0 for all 𝑉, and constant price 

elasticity 𝜁 ⋅ 0 for all 𝓎 0. 

 

5.  The HIIA class.  

We call a symmetric CRS technology, 𝑋 𝑋 𝐱  or 𝑃 𝑃 𝐩 , HIIA (Homothetic Indirect Implicit 

Additivity) with gross substitutes if 𝑃 𝑃 𝐩 𝑃 𝐩 𝑍⁄ , can be defined implicitly by: 

 
𝜃

𝑝
𝑍𝑃 𝐩

𝑑𝜔 𝜃
𝑝

𝑃 𝐩
𝑑𝜔 1, 

(20) 

where 𝜃: ℝ → ℝ  is 𝐶 , with 𝜃 𝓏 0, 𝜃 𝓏 0, and 𝓏𝜃 𝓏 𝜃 𝓏⁄ 1, for 𝜃 𝓏 0 with 

lim𝓏→  𝜃 𝓏 ∞ and  lim𝓏→�̅� 𝜃 𝓏 0, where �̅� ≡ inf 𝓏 0|𝜃 𝓏 0 , and it is independent of 𝑍 0.  If 

�̅� ∞, the choke price is equal to 𝑃 𝐩 �̅� 𝑍𝑃 𝐩 �̅�, and lim
𝓏→𝓏

𝜃 𝓏 0. If �̅� ∞, the choke price does not exist 

and demand for each input always remains positive for any positive price vector. Note that, unlike eq.(10), the 

adding-up constraint of the H.S.A, eq.(20) defines the unit cost function 𝑃 𝐩  directly.18 CES with gross 

substitutes is a special case where 𝜃 𝓏 𝓏  (𝜎 1 .  The CoPaTh family of HIIA is given by 𝜃 𝓏

𝜎 𝜉 1 𝑑𝜉𝓏 �̅�⁄  for 𝓏 �̅� ;  0 𝜌 1, which converges to CES as 𝜌 ↗ 1. 

 The minimization problem, eq.(4), subject to eq.(20) leads to the demand curve 

 
𝑥 𝐵∗ 𝐱 𝜃

𝑝
𝑍𝑃 𝐩

𝐵∗ 𝐱 𝜃
𝑝

𝑃 𝐩
0  

(21) 

where 𝐵∗ 𝐱 0 is defined by 

𝜃 𝜃
𝑥

𝐵∗ 𝐱
𝑑𝜔 ≡ 1. 

This indeed shows that the choke price is 𝑃 𝐩 �̅� 𝑍𝑃 𝐩 �̅�, if �̅� ∞. The production function is 

𝑋 𝑋 𝐱 𝑍𝑋 𝐱 ≡ 𝑍 𝜃
𝑥

𝐵∗ 𝐱
𝑥 𝑑𝜔. 

Clearly, both 𝐵∗ 𝐱  and 𝑋 𝐱  are linear homogeneous in 𝐱 and independent of 𝑍 0, by construction.  Thus, an 

increase in TFP, 𝑍, causes a proportional increase in 𝑋 𝐱 𝑍𝑋 𝐱 . 

The budget share is 

 
18This means that, unlike H.S.A. but similar to HDIA defined in the previous section, we do not need to worry about the integrability of 
HIIA. Note also that 𝑃 𝐩 𝑍𝑃 𝐩  defined by eq.(20) is invariant of TFP, 𝑍 0, by construction. Thus, an increase in 𝑍 causes a 
proportionate decline in 𝑃 𝐩 . This allows us to examine the effect of TFP without shifting 𝜃 ⋅ . Alternatively, we could define 𝑃 𝐩  by 

𝜃 𝑝 𝑃 𝐩⁄ 𝑑𝜔 1, as in Matsuyama and Ushchev (2017). Though mathematically equivalent, this definition requires that 𝜃 ⋅  would 
no longer be independent of TFP, which would make it harder to show that 𝜎 𝑉  and ℒ 𝑉  are independent of TFP. 
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 𝑝 𝑥
𝑃 𝒑 𝑋 𝒙

𝜃
𝑝

𝑃 𝒑

𝑝
𝐶 𝒑

𝜃
𝑥

𝐵∗ 𝒙
𝑥

𝑋 𝒙
, 

(22) 

where 

𝐶 𝐩 ≡ 𝜃
𝑝

𝑃 𝐩
𝑝 𝑑𝜔 0 

is linear homogenous in 𝐩, and independent of 𝑍 0 and satisfies the identity, 

 𝐶 𝐩

𝑃 𝐩

𝑝

𝑃 𝐩
𝜃

𝑝

𝑃 𝐩
𝑑𝜔 𝜃

𝑥
𝐵∗ 𝐱

𝑥
𝐵∗ 𝐱

𝑑𝜔
𝑋 𝐱
𝐵∗ 𝐱

. 
(23) 

Eqs. (22)-(23) show that the budget share under HIIA is a function of the two relative prices,  𝑝 𝑃 𝐩⁄  and 

𝑝 𝐶 𝐩⁄ , or a function of the two relative quantities, 𝑥 𝑋 𝐱⁄  and 𝑥 𝐵∗ 𝐱⁄ , unless 𝐶 𝐩 𝑃 𝐩⁄ 𝑋 𝐱 𝐵∗ 𝐱⁄  

is a positive constant, which occurs if and only if it is CES. Thus, HIIA and H.S.A. do not overlap with the sole 

exception of CES.19 Furthermore, by comparing the expressions for the budget share under HDIA and the budget 

share under HIIA, one could see that HDIA and HIIA do not overlap with the sole exception of CES.20 

From the demand curve, eq.(21), the price elasticity can be expressed as a function of a single variable, 

𝓏 ≡ 𝑝 𝑃 𝐩⁄  or or 𝑥 𝐵∗ 𝐱⁄ 𝜃 𝓏 , as: 

𝜁 𝜁 𝑝 ;𝐩
𝓏 𝜃 𝓏
𝜃 𝓏

 ≡  𝜁 𝓏 𝜁 𝜃
𝑥

𝐵∗ 𝐱
𝜁∗ 𝑥 ;  𝐱 1, 

where 𝜁 𝓏 1 ensures gross substitutability. Under CES, 𝜁 ⋅ 0. Marshall’s 2nd law, 

𝜕𝜁 𝑝 ;𝐩 𝜕𝑝 0,⁄  holds if and only if 𝜁 ⋅ 0, the condition satisfied by CoPaTh with 𝜁 𝓏

𝓏 ⁄ 𝓏 �̅�⁄ ⁄ . 

We are now ready to derive the measure of love-for-variety under HIIA. For symmetric price patterns, 

𝐩  𝑝𝟏 , eq.(20) is simplified to  

𝜃
1

𝑃 𝟏
𝑉 1 ⟹ 𝓏 𝑉 ≡

1

𝑃 𝟏
𝜃 1 𝑉⁄ . 

Hence, the measure of love-for-variety under HIIA is given by:  

 
ℒ 𝑉 ≡

𝑑 ln 𝓏 𝑉
𝑑 ln𝑉

1

ℰ 𝜃 1 𝑉⁄
0. 

(24) 

where  

 
19This statement is a special case of Proposition 3-(ii) in Matsuyama and Ushchev (2017).    
20This statement is a special case of Proposition 4-(iii) in Matsuyama and Ushchev (2017). 
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ℰ 𝓏 ≡
𝓏𝜃 𝓏
𝜃 𝓏

0. 21 

In contrast, the substitutability measure is given by: 

 𝜎 𝑉  𝜁 𝜃 1 𝑉⁄ . (25) 

Since 𝜃 1 𝑉⁄  is increasing in 𝑉, eq.(25) implies  

𝜁 ∙ ⋛ 0 ⟺ 𝜎 ⋅ ⋛ 0. 

In particular, Marshall’s 2nd law, 𝜁 ∙ 0, is equivalent to increasing substitutability, 𝜎 ⋅ 0, under HIIA. 

The next lemma shows the relation between the following two functions: 

𝜁 𝓏  ≡
𝓏𝜃 𝓏
𝜃 𝓏

1     and     ℰ 𝓏 ≡
𝓏𝜃 𝓏
𝜃 𝓏

0. 

Lemma 3:  

𝜁 𝓏 ⋛ 0,∀𝓏 ∈ 𝓏 ,𝓏    ⟹    ℰ 𝓏 ⋛ 0,∀𝓏 ∈ 𝓏 ,𝓏 . 

Furthermore, 

𝜁 𝓏 0   ⟺    ℰ 𝓏 0 ⟺ CES. 

The proof of Lemma 3 is in Appendix D. By combining Lemma 3, eq.(24), and eq.(25),  

Proposition 3: 

𝜁 𝓏 ⋛ 0,∀𝓏 ∈ 𝓏 ,𝓏  ⟺ 𝜎 𝑉 ⋛ 0,∀𝑉 ∈ 1 𝜃 𝓏⁄ ,∞  

⟹  

ℰ 𝓏 ⋛ 0,∀𝓏 ∈ 𝓏 ,𝓏 ⟺ ℒ 𝑉 ⋚ 0,∀𝑉 ∈ 1 𝜃 𝓏⁄ ,∞ . 

Furthermore, 

𝜁 𝓏 0 ⟺ 𝜎 𝑉 0 ⟺ ℰ 𝓏 0 ⟺ ℒ 𝑉 0 ⟺ CES. 

In particular, Marshall’s 2nd Law, 𝜁 ⋅ 0 for all 𝓏 𝓏,  or equivalently, increasing substitutability, 𝜎 ⋅ 0 

for all 𝑉, implies diminishing love-for-variety, ℒ ⋅ 0 for all 𝑉. The converse is not true. Diminishing love-for-

variety for all 𝑉 does not imply increasing substitutability or Marshall’s 2nd Law globally. However, constant 

love-for-variety, ℒ ⋅ 0 for all 𝑉, implies both constant substitutability, 𝜎 ⋅ 0 for all 𝑉, and constant price 

elasticity 𝜁 ⋅ 0 for all 𝓏 𝓏 ∞. 

 

6. Concluding Remarks 

In this paper, we study how love-for-variety is determined by the underlying demand structure. Under 

general symmetric homothetic demand systems, both love-for-variety and the substitutability across different 

 
21Moreover, by evaluating eq.(23) at the symmetric price and quantity patterns, 

𝐶 𝟏

𝑃 𝟏

𝑋 𝟏
𝐵∗ 𝟏

ℰ
1

𝑃 𝟏
𝜃

1

𝑃 𝟏
𝑑𝜔 ℰ 𝜃

1
𝑉

⟹ ℒ 𝑉
𝑃 𝟏

𝐶 𝟏
𝐵∗ 𝟏

𝑋 𝟏
. 
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varieties can be expressed as functions of the mass of available varieties 𝑉 only, as ℒ 𝑉  and 𝜎 𝑉 . Since the 

homotheticity alone imposes little restrictions on their properties, we turn to three classes of homothetic demand 

systems, H.S.A., HDIA, and HIIA, which are pairwise disjoint with the sole exception of CES. For each of these 

three classes, we establish the three main results. First, the substitutability is increasing in 𝑉, if and only if 

Marshall’s 2nd law of demand holds. Second, increasing (decreasing) substitutability implies diminishing 

(increasing) love-for-variety, but the converse is not true. Third, love-for-variety is constant, if and only if 

substitutability is constant, which occurs only under CES within these three classes. These three classes thus offer 

a tractable way of capturing the intuition that gains from increasing variety is diminishing, if different varieties are 

more substitutable when more varieties are available.  

We would like to point out that this paper is all about the demand side for expanding variety. As such, the 

results are relevant regardless of what we assume on the supply side, that is the technology and market structure 

of innovation, which could be modelled as monopoly, oligopolistic competition, and monopolistic competition 

with or without heterogeneous firms and with or without multi-product firms. We hope that these three classes of 

demand systems will become a useful building block in many models across many different fields, where gains 

from endogenous variety are of central importance.  
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Appendix A:  Allen-Uzawa elasticity of substation at the symmetric patterns under general symmetric 
homothetic demand systems. 

The Allen-Uzawa elasticity of substitution between two varieties, 𝜔,𝜔 ∈ Ω, are given by: 

𝐴𝐸𝑆 𝑝 ,𝑝 ,𝐩
𝑃 𝐩 𝑃 𝑝 ,𝑝 ,𝐩
𝑥 𝑝 ,𝐩 𝑥 𝑝 ,𝐩

, 

where 𝑥 𝑝 ,𝐩  is the demand for input 𝜔 per unit of output, while the functions 𝑃 𝑝 ,𝑝 ,𝐩  are the 
``second cross-derivatives’’ of 𝑃 𝐩 . The second-order Taylor approximation of 𝑃 𝐩  is 

𝑃 𝐩 𝛼𝐡 𝑃 𝐩 𝛼 𝑥 𝑝 ,𝐩 ℎ 𝑑𝜔
𝛼
2

𝜕𝑥 𝑝 ,𝐩
𝜕𝑝

ℎ 𝑑𝜔

𝛼
2

𝑃 𝑝 ,𝑝 ,𝐩 ℎ ℎ 𝑑𝜔𝑑𝜔 𝑜 𝛼 , 

where 𝐡 is a function over Ω, and 𝛼 is a scalar.  The linear homogeneity of 𝑃 𝐩  implies the following identity: 

𝜕𝑥 𝑝 ,𝐩
𝜕𝑝

𝑝 𝑑𝜔 𝑃 𝑝 ,𝑝 ,𝐩 𝑝 𝑝 𝑑𝜔𝑑𝜔 0. 

By setting 𝑝 ,𝐩 1,𝟏  and 𝑝 ,𝑝 ,𝐩 1,1,𝟏  in the identity, we obtain: 

𝜕𝑥 𝑝 ,𝟏
𝜕𝑝

𝑑𝜔 𝑃 1,1,𝟏 𝑑𝜔𝑑𝜔 0. 

Using the definition of 𝜎 𝑉 , 

𝜎 𝑉 ≡ 𝜁 1;𝟏
𝜕 ln 𝑥 𝑝 ,𝑝𝟏

𝜕 ln 𝑝
  ⟹    

𝜕𝑥 𝑝 ,𝟏
𝜕𝑝

𝜎 𝑉 𝑥 1,𝟏 , 

the above identity can be further rewritten as: 

𝑃 1,1,𝟏
𝜎 𝑉
𝑉

𝑥 1,𝟏 . 

Moreover, by setting 𝐩 𝑃 𝟏  in 𝑃 𝐩 𝑥 𝑝 ,𝐩 𝑝 𝑑𝜔, 

𝑃 𝟏 𝑉𝑥 1,𝟏 . 

Thus, the Allen-Uzawa elasticity of substitution evaluated at a symmetric outcome: 

𝐴𝐸𝑆 1,1,𝟏
𝑃 𝟏 𝑃 1,1,𝟏

𝑥 1,𝟏

𝑉𝑥 1,𝟏
𝜎 𝑉
𝑉 𝑥 1,𝟏

𝑥 1,𝟏
𝜎 𝑉 . 
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Appendix B: 𝝈 𝑽  and 𝓛 𝑽  under Geometric Means of CES 

This appendix shows that there exists a class of homothetic non-CES demand systems in which 𝜎 𝑉  and 

ℒ 𝑉  are independent of 𝑉. Moreover, within this class, they exist a parametric family in which that 𝜎 𝑉  and 

ℒ 𝑉  move in the same direction as one of the parameters changes. 

Consider the symmetric CRS production function, 𝑋 𝐱 , defined by a weighted geometric mean of 

symmetric CES production functions with different 𝜎 ∈ 1,∞ : 

ln𝑋 𝐱 ≡ ln𝑋 𝐱;𝜎 𝑑𝐹 𝜎 , 

where 

𝑋 𝐱;𝜎 ≡ 𝑥 𝑑𝜔 

and 𝐹 ⋅  is a c.d.f. of 𝜎 ∈ 1,∞ ,  

𝑑𝐹 𝜎 1. 

Proposition B: Consider the homothetic demand system generated by a weighted geometric mean of symmetric 

CES production functions. Then, 

i) The substitutability measure, 𝜎 𝑉 , is independent of 𝑉 and given by:  

𝜎 𝑉
1

𝐸 1 𝜎⁄
1; 

ii) The love-for-variety measure, ℒ 𝑉 , is independent of 𝑉 and given by  

ℒ 𝑉 𝐸
1

𝜎 1
0; 

iii) The range of 𝜎 𝑉  and ℒ 𝑉  is given by:  

0
1

𝜎 𝑉 1
ℒ 𝑉 ∞, 

where the equality holds if and only if 𝐹 is degenerate. 

 

Proof.  The inverse demand for variety 𝜔 ∈ Ω is 

𝑝 𝑃 𝐩
𝜕𝑋 𝐱
𝜕𝑥

𝑃 𝐩 𝑋 𝐱
𝑥

𝑋 𝐱;𝜎
𝑑𝐹 𝜎 𝑃 𝐩 𝑋 𝐱 𝑥 𝑑𝐹∗ 𝐱;𝜎 , 

where 𝑑𝐹∗ 𝐱;𝜎 ≡ 𝑑𝐹 𝜎 𝑋 𝐱;𝜎⁄ .  Thus, the price elasticity of demand, 𝜁∗ 𝑥 ; 𝐱 , as a function of the 

quantities, satisfies 
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1
𝜁∗ 𝑥 ; 𝐱

≡
𝜕 ln 𝑝
𝜕 ln 𝑥

1
𝜎 𝑥 𝑑𝐹∗ 𝐱;𝜎

𝑥 𝑑𝐹∗ 𝐱;𝜎
1. 

By evaluating this at the symmetric quantity patterns 𝐱 𝑥𝟏 , 

1
𝜎 𝑉

≡
1

𝜁∗ 𝑥; 𝑥𝟏
≡

1
𝜎 𝑥

𝑑𝐹 𝜎

𝑋 𝑥𝟏 ;𝜎

𝑥
𝑑𝐹 𝜎

𝑋 𝑥𝟏 ;𝜎

𝑥

𝑉𝑥

𝑑𝐹 𝜎
𝜎

𝑥

𝑉𝑥
𝑑𝐹 𝜎

𝑑𝐹 𝜎
𝜎

𝐸
1
𝜎

1. 

This proves i).    

 Next, from ln𝑋 𝟏 ≡ ln𝑋 𝟏 ;𝜎 𝑑𝐹 𝜎 ln𝑉 𝑑𝐹 𝜎 𝐸 ln𝑉, 

ℒ 𝑉 ≡
𝑑 ln𝓎 𝑉
𝑑 ln𝑉

1
𝑑 ln𝑋 𝟏
𝑑 ln𝑉

1 𝐸
𝜎

𝜎 1
1 𝐸

1
𝜎 1

0. 

This proves ii).  

For iii), Jensen’s inequality implies 

ℒ 𝑉 𝐸
1 𝜎⁄

1 1 𝜎⁄
𝐸 1 𝜎⁄

1 𝐸 1 𝜎⁄
1 𝜎 𝑉⁄

1 1 𝜎 𝑉⁄
1

𝜎 𝑉 1
, 

where the lower bound is reached if and only if 𝐹 is degenerate. Next, consider the Pareto distribution of 𝜎: 

𝐹 𝜎 1
𝜎
𝜎

, 𝜎 𝜎 ≡
𝛼𝜎
𝛼 1

1, 

where 𝜎 1 and 𝛼 1 𝜎 1⁄ . The distribution and density of 𝑥 1 𝜎⁄  are given by: 

𝐺 𝑥 𝜎 𝑥 ;  𝑔 𝑥 𝛼 𝜎 𝑥 , 𝑥 ∈ 0,
1

𝜎
. 

Thus,  

1
𝜎 𝑉

𝔼
1
𝜎

𝔼 𝑥 𝛼 𝜎 𝑥
⁄

𝑑𝑥
1

𝜎
𝛼

𝛼 1
1
𝜎

1; 

ℒ 𝑉 𝔼
1

𝜎 1
𝔼

𝑥
1 𝑥

𝔼 𝑥  𝔼 𝑥 𝛼 𝜎 𝑥
⁄

𝑑𝑥 

𝛼
𝛼 𝑘

1
𝜎

𝛼
𝛼 𝑘

𝛼 1
𝛼

1
𝜎

1 1 𝛼⁄

1 𝑘 𝛼⁄
1
𝜎

 

Holding 𝜎 𝑉 𝜎  constant, ℒ 𝑉  is monotonically decreasing in 𝛼 because 
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𝑑 ln
1 1 𝛼⁄
1 𝑘 𝛼⁄
𝑑 ln𝛼

𝛼𝑘 𝑘 1
𝛼 1 𝛼 𝑘

0. 

Moreover,  

lim
→

1 1 𝛼⁄

1 𝑘 𝛼⁄
1
𝜎

1
𝜎

1
𝜎 1

1
𝜎 𝑉 1

; 

lim
→ ⁄

1 1 𝛼⁄

1 𝑘 𝛼⁄
1
𝜎

1
1 𝜎 1 𝑘

𝑑𝑧
1 𝜎 1 𝑧

ln 1 𝜎 1 𝑧
𝜎 1

∞, 

from which  

1
𝜎 𝑉 1

ℒ 𝑉 ∞. 

This completes the proof. ∎ 

We are now ready to construct a parametric family of the distribution, 𝐹 , in which 𝜎 𝑉  and ℒ 𝑉  are 

independent of 𝑉 and move in the same direction as 𝛼 varies.   

𝐹 𝜎 1
𝜎
𝜎

,
1
𝜎

1
𝜎

≡
1 𝛼
𝛼

ℎ 𝛼 1. 

Then, following the same step in the proof of Part iii) of Proposition, 

1
𝜎 𝑉

𝔼
1
𝜎

1
𝜎

𝛼
𝛼 1

ℎ 𝛼 ;  ℒ 𝑉 𝔼
1

𝜎 1
1 1 𝛼⁄

1 𝑘 𝛼⁄
ℎ 𝛼  

with 

𝑑 ln
1 1 𝛼⁄
1 𝑘 𝛼⁄ ℎ 𝛼

𝑑 ln𝛼
𝛼𝑘

ℎ 𝛼
ℎ 𝛼

𝑘 1
𝛼 1 𝛼 𝑘

. 

Fix ℎ 𝛼 , which is increasing in 𝛼, and satisfies 0 ℎ 𝛼 1, and whose derivative is bounded.  Then, for 

0 𝑐 1, consider ℎ 𝛼, 𝜀 ≡ 1 𝜀 𝑐 𝜀ℎ 𝛼 .  When 𝜀 0,𝜎 𝑉  is constant, while ℒ 𝑉  is decreasing in 𝛼. 

But, for a positive but sufficiently small 𝜀, 𝜎 𝑉  is decreasing, while ℒ 𝑉  continues to be decreasing in 𝛼 by 

continuity. 
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Appendix C. An Alternative (and Equivalent) specification of the HSA class.  

There exists an alternative (but equivalent) definition of H.S.A..  That is, 𝑋 𝑋 𝐱  or 𝑃 𝑃 𝐩  is called 

homothetic with a single aggregator (H.S.A.) if the budget share of input 𝜔, as a function of 𝐱, can be written as: 

 
𝑠

𝜕 𝑙𝑛 𝑋 𝒙
𝜕 𝑙𝑛 𝑥

𝑠∗
𝑥

𝐴∗ 𝒙
 

(26) 

Here, 𝑠∗:ℝ → ℝ  is the budget share function, which is 𝐶  with 0 ℰ ∗ 𝑦 ≡
∗

1, 𝑠∗ 0 0 and 

𝑠∗ ∞ ∞, and 𝐴∗ 𝐱  is linear homogenous in 𝐱, defined implicitly and uniquely by 

 
𝑠∗

𝑥
𝐴∗ x

𝑑𝜔 ≡ 1 
(27) 

which ensures that the budget shares of all inputs are added up to one. Thus, the budget share of input 𝜔 is a 

function of its normalized quantity, 𝑦 ≡ 𝑥 𝐴∗ 𝐱⁄ , defined as its own quantity 𝑥  divided by the common 

quantity aggregator 𝐴∗ 𝐱 .  

Furthermore, the price elasticity of each input can be written as a function of a single variable, 𝑦 ≡

𝑥 𝐴∗ 𝐱⁄ : 

𝜁 𝜁∗ 𝑥 ; 𝐱 1
𝑑 ln 𝑠∗ 𝑦  
𝑑 ln𝑦

≡ 𝜁∗ 𝑦 1, 

where 𝜁∗: 0,∞ → 1,∞  is continuously differentiable. Note that the assumption, 0 ℰ ∗ 𝑦 ≡
∗

1 

ensures 𝜁∗ 𝑦 1.  That is, inputs are gross substitutes.22 In general, 𝜁∗ ∙  can be nonmonotonic. Under CES, 

given by 𝑠∗ 𝑦 𝛾 ⁄ 𝑦 ⁄ ,  it is constant, 𝜁∗ 𝑦 𝜎 1.  Marshall’s 2nd law, 𝜕𝜁 𝑥 ; 𝐱 𝜕𝑥 0,⁄  holds if 

and only if 𝜁∗ ⋅ 0.   

Note also that the choke price exists if and only if lim
→
𝑠∗ 𝑦 ∞, which implies lim

→

∗  
1 and 

hence lim
→
𝜁∗ 𝑦 ∞.  For example, translog corresponds to 𝑠∗ 𝑦 , defined implicitly by 𝑠∗ exp 𝑠∗ γ⁄ ≡𝑧̅𝑦, for 

𝑧̅ ∞. 

The production function, 𝑋 𝐱 , can be obtained by integrating eq.(26), which yields 

 
𝑋 𝒙
𝐴∗ 𝒙

𝑐∗ 𝑒𝑥𝑝
𝑠∗ 𝜉∗

𝜉∗
𝑑𝜉∗

∗ 𝒙⁄

𝑑𝜔 𝑐∗ 𝑒𝑥𝑝 𝑠∗
𝑥

𝐴∗ 𝒙
𝛷∗ 𝑥

𝐴∗ 𝒙
𝑑𝜔  

(28) 

where 𝑐∗ is a positive constant, which is proportional to TFP and 

 
22Conversely, from any continuously differentiable 𝜁∗: 0,∞ → 1,∞ , one could reverse-engineer as 𝑠∗ 𝑦 𝛾∗ exp 1

∗ ∗

∗

∗ 0, where 𝛾∗ 𝑠∗ 𝑦  is a positive constant. Thus, we could also use 𝜁∗ ∙  instead of 𝑠∗ ∙  as a primitive of symmetric H.S.A. 

with gross substitutes.  
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Φ∗ 𝑦 ≡
1

𝑠∗ 𝑦
𝑠∗ 𝜉∗

𝜉∗
𝑑𝜉∗

𝑠∗ 𝜉∗ 𝜉∗⁄ 𝑑𝜉∗

𝑠∗ 𝑦 𝑦⁄ 𝑑𝜉∗
1, 

where the inequality follows from ℰ ∗ 𝑦 ≡
∗

1 implying that 𝑠∗ 𝑦 𝑦⁄  is decreasing in 𝑦. 

It is important to note that 𝑋 𝐱 𝐴∗ 𝐱⁄  is constant, if and only if it is CES.  To see this, differentiating eq.(27) 

yields, 

𝜕 ln𝐴∗ 𝐱
𝜕 ln 𝑥

𝑦 𝑠∗ 𝑦

𝑠∗ 𝑦 𝑦 𝑑𝜔

1
1

𝜁∗ 𝑦 𝑠∗ 𝑦

1
1

𝜁∗ 𝑦 𝑠∗ 𝑦 𝑑𝜔
, 

which differs from 
𝐱

𝑠∗ 𝑦 , unless 𝜁∗ 𝑦  is constant. 

For symmetric quantity patterns, 𝐱  𝑥𝟏 , eq.(27) is simplified to 

𝑠∗
1

𝐴∗ 𝟏
𝑉 1 ⟹ 𝑦 ≡

1 
𝐴∗ 𝟏

𝑠∗
1
𝑉

. 

Hence, from eq.(28),  

𝑋 𝐱
𝐴∗ 𝐱

𝑐∗ exp Φ∗ 𝑠∗
1
𝑉

. 

from which 

𝓎 𝑉 ≡
1

𝑋 𝟏
1

𝐴∗ 𝟏
𝐴∗ 𝟏
𝑋 𝟏

1
𝑐∗
𝑠∗

1
𝑉

exp Φ∗ 𝑠∗
1
𝑉

, 

and hence the love-for-variety measure is given by: 

 
ℒ 𝑉 ≡

𝑑 ln𝓎 𝑉
𝑑 ln𝑉

1
𝑑 ln𝓎 𝑉

𝑑 ln 𝑠∗ 1 𝑉⁄
𝑑 ln 𝑠∗ 1 𝑉⁄

𝑑 ln𝑉
1 Φ∗ 𝑠∗

1
𝑉

1

ln
𝑋 𝟏

𝑐∗𝐴∗ 𝟏
1 

(29) 

In contrast, the substitutability measure is given by: 

 
𝜎 𝑉 𝜁∗ 𝑠∗

1
𝑉

. 
(30) 

Since 𝑠∗ 1 𝑉⁄  is decreasing in 𝑉, eq.(30) implies  

𝜁∗ ∙ ⋚ 0 ⟺ 𝜎 ⋅ ⋛ 0. 

In particular, Marshall’s 2nd law, 𝜁∗ ∙ 0, is equivalent to increasing substitutability, 𝜎 ⋅ 0. 

The next lemma shows the relation between the following two functions:  

𝜁∗ 𝑦 ≡ 1
𝑑 ln 𝑠∗ 𝑦  
𝑑 ln 𝑦

1 and  Φ∗ 𝑦 ≡
1

𝑠∗ 𝑦
𝑠∗ 𝜉∗

𝜉∗
𝑑𝜉∗ 1. 
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Lemma 1* 

𝜁∗ 𝑦 ⋚ 0,∀𝑦 ∈ 0, 𝑦 ⟹ Φ∗ 𝑦 ⋛ 0,∀𝑦 ∈ 0, 𝑦 . 

Furthermore, 

𝜁∗ 𝑦 0 ⟺Φ∗ 𝑦 0 ⟺ CES. 

The proof of Lemma 1* is in Appendix D. By combining Lemma 1*, eq.(29), and eq.(30), 

Proposition 1* 

𝜁∗ 𝑦 ⋚ 0,∀𝑦 ∈ 0,𝑦 ⟺ 𝜎 𝑉 ⋛ 0,∀𝑉 ∈ 1 𝑠∗ 𝑦⁄ ,∞  

⟹ 

Φ∗ 𝑦 ⋛ 0,∀𝑦 ∈ 0,𝑦 ⟺ ℒ 𝑉 ⋚ 0,∀𝑉 ∈ 1 𝑠∗ 𝑦⁄ ,∞  

and 

𝜁∗ 𝑦 0 ⟺ 𝜎 𝑉 0 ⟺Φ∗ 𝑦 0 ⟺ ℒ 𝑉 0 ⟺ CES. 

In particular, Marshall’s 2nd Law, 𝜁∗ ⋅ 0 for all 𝑦 0,  or equivalently, increasing substitutability, 𝜎 ⋅ 0 

for all 𝑉, implies diminishing love-for-variety, ℒ ⋅ 0 for all 𝑉. The converse is not true. Diminishing love-for-

variety for all 𝑉 does not imply increasing substitutability or Marshall’s 2nd Law globally. However, constant 

love-for-variety, ℒ ⋅ 0 for all 𝑉, implies both constant substitutability, 𝜎 ⋅ 0 for all 𝑉, and constant price 

elasticity 𝜁∗ ⋅ 0 for all 𝑦 0. 

Indeed, these two alternative definitions of H.S.A. are equivalent. 23  The isomorphism between the two is 

given by the one-to-one mapping between 𝑠 𝑧 ⟷ 𝑠∗ 𝑦 , defined by:  

𝑠∗ 𝑦 𝑠
𝑠∗ 𝑦
𝑦

;          𝑠 𝑧 𝑠∗
𝑠 𝑧
𝑧

. 

Differentiating either of these two equalities yields the identity, 

𝜁∗ 𝑦 ≡ 1
𝑑 ln 𝑠∗ 𝑦
𝑑 ln𝑦

𝜁 𝑧 ≡ 1
𝑑 ln 𝑠 𝑧
𝑑 ln 𝑧

1, 

which shows that the condition, 0 ℰ ∗ 𝑦 ≡
∗

1, is equivalent to ℰ 𝑧 ≡ 0.  Furthermore, 

the normalized quantity, 𝑦 ≡ 𝑥 𝐴∗ 𝐱⁄ , and the normalized price, 𝑧 ≡ 𝑝 𝐴 𝐩⁄ , are negatively related as  

𝑧
𝑠∗ 𝑦
𝑦

⟺ 𝑦
𝑠 𝑧
𝑧

, 

𝑑𝑦
𝑦

𝜁 𝑧
𝑑𝑧
𝑧

⟺
𝑑𝑧
𝑧

 
1

𝜁∗ 𝑦
𝑑𝑦
𝑦

 

and 

 
23This isomorphism has been shown for the broader class of H.S.A., which allows for asymmetry as well as gross complements; see 
Matsuyama and Ushchev (2017, sec. 3, Remark 3).  
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𝑧 𝜁 𝑧

𝑦 𝜁∗ 𝑦
𝜁 𝑧 𝜁∗ 𝑦 0. 

In addition, if lim
→
𝑠∗ 𝑦 ∞, then lim

→
𝜁∗ 𝑦 ∞ and 

lim
→

𝑠∗ 𝑦
𝑦

lim
→
𝑠∗ 𝑦 𝑧̅ ≡ inf 𝑧 0|𝑠 𝑧 0 ∞ 

is the (normalized) choke price. 

Moreover,  

𝑝 𝑥
𝐴 𝐩 𝐴∗ 𝐱

𝑦 𝑧 𝑠 𝑧 𝑠∗ 𝑦
𝑝 𝑥

𝑃 𝐩 𝑋 𝐱
 

hence we have the identity, 

𝑐 exp 𝑠 𝑧 Φ 𝑧 𝑑𝜔
𝐴 𝐩
𝑃 𝐩

𝑋 𝐱
𝐴∗ 𝐱

𝑐∗ exp 𝑠∗ 𝑦 Φ∗ 𝑦 𝑑𝜔  

which is a positive constant if and only if it is CES.   

Furthermore, using 

𝑠 𝜉 𝑠∗ 𝜉∗ 𝜉𝜉∗ →  
𝑑𝜉∗

𝜉∗
𝜉𝑠 𝜉  
𝑠 𝜉

1
𝑑𝜉
𝜉
→ 𝑠∗ 𝜉∗

𝑑𝜉∗

𝜉∗
𝑠 𝜉

𝑠 𝜉
𝜉

𝑑𝜉 

𝜉 𝑧 ⟷ 𝜉∗ 𝑦;  𝜉 𝑧 ⟷ 𝜉∗ 0, 

we have 

Φ∗ 𝑦 Φ 𝑧 ≡
1

𝑠∗ 𝑦
𝑠∗ 𝜉∗

𝜉∗
𝑑𝜉∗

1
𝑠 𝑧

𝑠 𝜉
𝜉

𝑑𝜉
1

𝑠 𝑧
𝑠 𝜉

𝑠 𝜉
𝜉

𝑑𝜉
1

𝑠 𝑧
𝑠 𝜉
𝜉

𝑑𝜉 1. 

Since 𝑤 𝜉 ≡
⁄

⁄
⟺ 𝑠 𝑧 Φ 𝑧 𝑤 𝜉  and 𝑤∗ 𝜉∗ ≡

∗ ∗ ∗⁄
∗ ∗ ∗ ∗

⟺ 𝑠∗ 𝑦 Φ∗ 𝑦 𝑤∗ 𝜉∗

∗ ∗

∗ , this implies 

𝜉𝑤 𝜉
𝜉∗𝑤∗ 𝜉∗

Φ∗ 𝑦
Φ 𝑧

1
1

Φ 𝑧
Φ∗ 𝑦

Φ∗ 𝑦 1
, 

𝑐
𝑐∗

exp 𝑠∗ 𝑦 Φ∗ 𝑦 𝑠 𝑧 Φ 𝑧 𝑑𝜔 exp 𝑠 𝑧 𝑑𝜔 𝑒. 

and  

ℒ 𝑉 Φ 𝑠 1 𝑉⁄ Φ∗ 𝑠∗ 1 𝑉⁄ 1. 
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Appendix D. Proofs of Lemmas 

Proof of Lemma 1: Log-differentiating 𝑠 𝑧 Φ 𝑧 ≡ 𝑑𝜉 yields 

𝑧𝑠 𝑧
𝑠 𝑧

𝑧Φ 𝑧
Φ 𝑧

𝑠 𝑧

𝑠 𝜉 𝜉⁄ 𝑑𝜉

𝑠 𝑧 𝑠 𝑧

𝑠 𝜉 𝜉⁄ 𝑑𝜉

𝑠 𝜉 𝑑𝜉

𝑠 𝜉 𝜉⁄ 𝑑𝜉

𝜉𝑠 𝜉
𝑠 𝜉

𝑠 𝜉
𝜉 𝑑𝜉

𝑠 𝜉 𝜉⁄ 𝑑𝜉

1 𝜁 𝜉 𝑤 𝜉 𝑑𝜉 1 𝜁 𝜉 𝑤 𝜉 𝑑𝜉 

where 𝑤 𝜉 ≡
⁄

⁄
 satisfies  𝑤 𝜉 𝑑𝜉 1.  Thus, 𝜁 ⋅ ⋛ 0,∀𝑧 ∈ 𝑧 , 𝑧   implies 

𝑧Φ 𝑧
Φ 𝑧

1 𝜁 𝜉 𝑤 𝜉 𝑑𝜉
𝑧𝑠 𝑧
𝑠 𝑧

𝜁 𝑧 𝜁 𝜉 𝑤 𝜉 𝑑𝜉 ⋚ 0. 

Moreover, Φ 𝑧 0,∀𝑧 ∈ 0,∞  implies 𝜁 𝑧 𝜁 𝜉 𝑤 𝜉 𝑑𝜉, ∀𝑧 ∈ 0,∞ , which implies 𝜁 𝑧 0, ∀𝑧 ∈

0,∞ . This completes the proof. ∎ 

Proof of Lemma 2.   First, from 𝜙 0 0 and 0 𝓎𝜙 𝓎 𝜙 𝓎  for all 𝓎 0, lim
𝓎→

𝓎𝜙 𝓎 0.  Thus, 

𝜁 𝓎 ⋛ 0,∀𝓎 ∈ 0,𝓎  implies 

1
1

𝜁 𝓎
𝜙 𝓎 1

1
𝜁 𝓎

𝜙 𝜉 𝑑𝜉
𝓎

 
⋛ 1

1
𝜁 𝜉

𝜙 𝜉 𝑑𝜉
𝓎

 
𝜙 𝜉 𝜉𝜙 𝜉 𝑑𝜉

𝓎

𝑑 𝜉𝜙 𝜉
𝓎

 
𝓎𝜙 𝓎 . 

which in turn implies 

𝓎ℰ 𝓎

ℰ 𝓎
𝜙 𝓎
𝜙 𝓎

𝑑
𝑑𝓎

𝓎𝜙 𝓎
𝜙 𝓎

𝜙 𝓎 𝓎𝜙 𝓎 𝜙 𝓎 𝓎 𝜙 𝓎
𝜙 𝓎 𝜙 𝓎

1
1

𝜁 𝓎
ℰ 𝓎 ⋛ 0. 

Furthermore, from the above equation, ℰ ⋅ 0 implies 

1
1

𝜁 𝓎
ℰ 𝓎 , 

which is constant and hence 𝜁 ⋅ 0. This completes the proof. ∎ 

Proof of Lemma 3: First, we show 𝓏𝜃 𝓏 0. For 𝓏 ∞, this follows from 𝜃 𝓏 0. For 𝓏 ∞, 
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𝜃 𝓏 𝜃 𝜉 𝑑𝜉
𝓏

𝜉𝜃 𝜉
𝜉

𝑑𝜉
𝓏

lim
→

𝜉𝜃 𝜉
𝜉

𝑑𝜉
𝓏

 

Suppose that there is 𝓏 0 such that, for all 𝓏 𝓏 ,  𝓏𝜃 𝓏 𝑐 0.  Then, 

𝜃 𝓏 lim
→

𝜉𝜃 𝜉
𝜉

𝑑𝜉
𝓏

lim
→

𝑐
𝜉
𝑑𝜉

𝓏
∞, 

a contradiction.  Hence,  𝓏𝜃 𝓏 lim
𝓏→

𝓏𝜃 𝓏 0.  Then, 𝜁 ⋅ ⋛ 0,∀𝓏 ∈ 𝓏 ,𝓏   implies 

𝜁 𝓏 1 𝜃 𝓏 𝜁 𝓏 1 𝜃 𝜉 𝑑𝜉
𝓏

𝓏 
𝜁 𝓏 1 𝜃 𝜉 𝑑𝜉

𝓏

𝓏 
⋚ 

𝜁 𝜉 1 𝜃 𝜉 𝑑𝜉
𝓏

𝓏 
𝜉𝜃 𝜉 𝜃 𝜉 𝑑𝜉

𝓏

𝓏 
𝑑 𝜉𝜃 𝜉
𝓏

𝓏 
𝓏𝜃 𝓏 , 

which in turn implies 

 
𝓏ℰ 𝓏
ℰ 𝓏

 
𝜃 𝓏
𝜃 𝓏

𝑑
𝑑𝓏

𝓏𝜃 𝓏
𝜃 𝓏

𝓏𝜃 𝓏 𝜃 𝓏 𝜃 𝓏 𝓏 𝜃 𝓏
𝜃 𝓏 𝜃 𝓏

ℰ 𝓏 1 𝜁 𝓏 ⋛ 0. 

Furthermore, from the above equation, ℰ ⋅ 0 implies 𝜁 𝓏 1 ℰ 𝓏 , which is constant and hence 

𝜁 ⋅ 0. This completes the proof. ∎ 

Proof of Lemma 1*: Log-differentiating 𝑠∗ 𝑦 Φ∗ 𝑦 ≡
∗ ∗

∗ 𝑑𝜉∗ yields    

𝑦𝑠∗ 𝑦
𝑠∗ 𝑦

𝑦Φ∗ 𝑦
Φ∗ 𝑦

𝑠∗ 𝑦

𝑠∗ 𝜉∗ 𝜉∗⁄ 𝑑𝜉∗
𝑠∗ 𝜉∗ 𝑑𝜉∗

𝑠∗ 𝜉∗ 𝜉∗⁄ 𝑑𝜉∗

𝜉𝑠∗ 𝜉∗

𝑠∗ 𝜉∗
𝑠∗ 𝜉∗
𝜉∗ 𝑑𝜉∗

𝑠∗ 𝜉∗ 𝜉∗⁄ 𝑑𝜉∗

1
1

𝜁∗ 𝜉∗
𝑤∗ 𝜉∗ 𝑑𝜉∗, 

where 𝑤∗ 𝜉∗ ≡
∗ ∗ ∗⁄

∗ ∗ ∗ ∗
  satisfies 𝑤∗ 𝜉∗ 𝑑𝜉∗ 1. Thus, 𝜁∗ 𝑦 ⋚ 0,∀𝑦 ∈ 0,𝑦  implies 

𝑦Φ∗ 𝑦
Φ∗ 𝑦

1
1

𝜁∗ 𝜉∗
𝑤∗ 𝜉∗ 𝑑𝜉∗

𝑦𝑠∗ 𝑦
𝑠∗ 𝑦

1
𝜁∗ 𝑦

1
𝜁∗ 𝜉∗

𝑤∗ 𝜉∗ 𝑑𝜉∗ ⋛ 0. 

Moreover, Φ∗ 𝑦 0,∀𝑦 ∈ 0,∞  implies ∗

∗ ∗

∗ ∗ 𝑑𝜉∗ ,∀𝑦 ∈ 0,∞ ,which implies 𝜁∗ 𝑦 0, ,∀𝑦 ∈

0,∞ .  This completes the proof. ∎  
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Figure: Three Classes of Homothetic Symmetric Demand Systems with Gross Substitutes. 

 


