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Abstract

How should optimal tax be affected by sources of income inequality? To answer this
question, we extend the Pareto efficient tax analysis in Mirrlees’ model by incorpo-
rating endogenous wage determination that can capture various sources of income
inequality— return to skill, return to education, and return to effective labor supply.
We show that when an inequality factor is introduced, not only earnings distribution
but also earnings elasticities change, and the impact on optimal tax rates can be in the
opposite directions depending on the sources of inequality. To figure out which forces
dominate, we investigate structural model, and show that effects boil down to effective
efficiency cost of tax distortion canceling out the counterbalancing forces. Our anal-
ysis also provides two important cautions for the sufficient statistics approach. First,
when sufficient statistics approach is used for a future comparative static, estimated
elasticities should be adjusted according to the expected sources of inequality. Second,
when testing the current tax schedule given earnings distribution, elasticities should
be estimated under the current inequality factor.
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1 Introduction

In the recent decades, the US has experienced substantial growth in income inequality, and

there has been development of a huge literature that explains the rise in income inequality.

Compared to the positive analysis, however, there is relatively small normative literature that

studies how optimal taxes should respond to income inequality. Even those small normative

studies mostly take one or two channels of generating wage inequality and investigate how

optimal taxes are affected by a specific channel of inequality (e.g., Ales, Kurnaz, and Sleet

(2015), Scheuer and Werning (2017), Heathcote, Storesletten, and Violante (2020)), and they

have very different implications.1 Despite the different role of each channel of inequality, we

still have limited understanding on what are the key differences of these models that lead

to contrasting policy suggestions. This paper tires to provide better understanding on the

fundamental reason of different results so that we can have a better policy suggestion by

applying a suitable analysis.

When inequality increases, the value of redistribution increases regardless of its sources,

but elasticities of earnings with respect to tax rate—the efficiency cost of redistributive

taxation—are also endogenous to inequality factors. Moreover, the change in elasticities

does depend on different inequality factors, which can lead to the opposite implications for

optimal tax rates depending on the sources. Thus we answer the following main questions in

this paper. How do earnings elasticities respond to the change in different inequaltiy factors,

and as a result how does the efficient tax schedule respond? The fact that elasticities are

endogenous to different sources of inequality provide important cautions for using the suffi-

cient statistic for the optimal tax analysis.What cautions should be taken for the sufficient

statistics approach?

1For example, Ales, Kurnaz, and Sleet (2015) focus on the technical change and provide an important
mechanism of shaping optimal taxation. Scheuer and Werning (2017) study optimal tax in the presence of
superstar effects, where better assignment of superstars provides a force for lower marginal tax with higher
responsiveness of individual earnings. Heathcote, Storesletten, and Violante (2020) is an exception which
investigates the implications of two different factors of income inequality—rise in skill premium due to skill
biased technical change and growth in residual wage dispersion due to increased increased labor market
uncertainty—on the optimal tax progressivity, but the counterbalancing forces for optimal schedule are still
very specific to the model.
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To answer these questions, this paper studies the set of Pareto efficient tax schedules in an

extension of Mirrlees (1971)’ model.2 Workers with exogenous skills make a decision of human

capital investment and working hours to provide effective labor supply, and are paid earnings

according to a wage schedule.3 With a model that can encompass various factors—return to

skill, return to human capital, and return to effective labor supply—of generating realistic

earnings inequality, we investigate the Pareto efficiency test of a tax schedule as in Werning

(2007).4 We do this in a simplest possible framework. We consider a redistributive taxation

that only depends on earnings, which does not depend on skill, human capital, and working

hours separately. To focus on the first order effects of inequality factors on the equity-

efficiency trade-off, we abstract from “Stiglitz effects”—general equilibrium effects through

aggregate complementarity in production (Stiglitz (1982))—and other indirect channels such

as profit spillover effects and assignment change due to the general equilibrium effects.

The main results from our analysis can be best explained by the top income tax rate

example. When the skill distribution at the top exhibits Pareto distribution, under some

assumptions, the Pareto efficiency test formula of the top income tax rate is simply:

τtop ≤ 1
1 + ϵω × atop

ω
,

where ϵω is the earnings elasticity with respect to marginal tax rate and atop
ω is the Pareto

parameter of earnings distribution at the top. Higher inequality implies lower Pareto pa-

rameter atop
ω regardless of its sources providing forces for higher tax rates. What is more

important is that the earnings elasticity ϵω also changes, and its direction depends on the

sources of inequality. The effects of inequality on top income tax rate τtop thus depends on

how the earnings elasticity responds to each inequality factor and which effect dominates

between the changes in distribution and elasticities.

2We take the Pareto efficient tax analysis rather than welfare maximizing optimal tax analysis. Since the
change in value of redistribution is too sensitive to the social welfare, we intentionally take Pareto efficiency
criterion which does not depend on social welfare weight.

3In the benchmark model, the effective labor supply of skill type θ is y(θ) = p(θ, e)·n with productivity of
skill type θ and human capital level e p(θ, e) and working hours n. This effective labor supply y(θ) generates
earnings ω(θ) = W (y(θ)), where W (·) is the wage schedule.

4Pareto efficiency test was first developed by Werning (2007) and has been extended to a model with su-
perstars (Scheuer and Werning (2017)) and a life-cycle model with bequest (Hosseini and Shourideh (2019)).
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Our structural investigation for a comparative static shows that after canceling out the

counterbalancing forces, the effect of rising inequality given a skill distribution boils down

to a change in the effective efficiency cost (hereafter EEC) of tax distortion. The effective

efficiency cost is obviously increasing in elasticity of effective labor supply. The EEC also

depends on the differential of effective labor supply across skill types.5 Higher differential

of effective labor supply across skill type decreases the EEC as it tightens the incentive

constraint by making higher types easy to mimic lower types which increases the effectiveness

of tax for relaxing the incentive constraint. Thus an inequality factor leading to higher

elasticity of effective labor supply leads to higher EEC and thus providing force for a lower

tax rate τtop, while an inequality factor leading to higher labor supply differential implies

lower EEC which increases the upper bound of τtop.

When rise in inequality is driven by higher return to unobserved (and exogenous) skill,

higher differential of effective labor supply across skills reduces the EEC of tax distortion as it

tightens the incentive constraints, which provides a force for higher tax rate τtop. When higher

return to human capital raises inequality, however, both differential of effective labor supply

and the elasticity of effective labor supply increase, which have the opposite implications on

the EEC. If the return to unobserved skill is relatively big (compared to the return to human

capital), the elasticity channel dominates, and thus it leads to higher EEC and lower top

income tax rate, which is the opposite direction from the case of rising return to skill. On

the other hand, when return to effective labor supply increases, there is no impact on the

EEC and Pareto efficient tax rates, as the counterbalancing forces to the distribution and

earnings elasticity exactly cancel out.

Our analysis uncovers common conditions for the efficiency of a tax schedule. The Pareto

efficiency test formula expressed in terms of earnings distribution is equivalent to the test for-

mula in the standard Mirrlees model despite the endogenous wage structure with inequality

factors. This implies that the neutrality result of the efficiency test of Scheuer and Werning

(2017), which is obtained in a model with superstar effects, is extended to a more general

5The expression of EEC is simply product of the elasticity of effective labor supply and the inverse of the
differential of effective labor supply across skill types when the Hicksian complementarity between education
and skill is one.
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framework that can capture various factors of income inequality. More precisely, the test

formula is expressed in terms of common sufficient statistics—the earnings distribution and

the elasticities of earnings with respect to marginal tax rate—regardless of the underlying

sources of generating inequality. Even in the models with imperfect substitution between

working hours and Human capital investment effort, the elasticities of effective unit of labor

supply are sufficient statistics as long as the government does not regulate working hours

and effort separately.

How does the EEC respond to different sources of inequality? When rise in inequality is

driven by increasing return to (unobserved) skill, higher labor supply differential across skill

type (with no change in elasticities) implies lower EEC and higher τtop. When the increase

in inequality is generated by higher return to human capital (education), however, it can

have the opposite implication—higher EEC and lower τtop. Both elasticity of effective labor

supply and labor supply differential increases, and the elasticity effects will be larger when

return to skill is relatively higher than the return to human capital, implying higher EEC.

On the other hand, increase in inequality driven by return to effective labor supply has no

effects on the EEC, which coincides with the result in Scheuer and Werning (2017).

The key observation from the structural investigation is that earnings elasticities are en-

dogenous to sources of inequality. This observation also provides us important cautions for

using the sufficient statistic approach for a policy suggestion at a time when inequality is

changing significantly. First caution is for the application of the sufficient statistic approach

for the future comparative static when rise in income inequality is expected. Suppose that

one tries to use the top income tax formula discussed above for the future policy suggestion.

Typical sufficient statistic approach would evaluate the formula with predicted lower level of

Pareto parameter atop
ω and earnings elasticity estimated from current (or past) data assuming

the elasticities do not change in the future. We show that this approach does not cause any

problem only if higher return to unobserved skill is the reason for rise in inequality. For

example, in our benchmark model, with 10% decrease in Pareto parameter, typical sufficient

statistic approach would predict 6.1% increase in the upper bound of top income tax rate.

The upper bound of top income tax rate evaluated with correct prediction of earnings elas-

ticities, however, would be expected to decrease by 1.3% when return to human capital is

5



the source of inequality, and there will be no change if higher return to effective labor supply

is the source.

The second caution is for using the sufficient statistic approach for testing the current tax

schedule. Now the Pareto efficiency formula discussed above should be evaluated using the

Pareto parameter of current earnings distribution and current earnings elasticity. Given the

observed earnings distribution, as long as the earnings elasticities are estimated correctly,

the sufficient statistic approach works well and sources of inequality does not matter. The

problem is that, however, economists usually estimate the elasticities using the tax reform

event in the past to minimize endogeneity issues in estimation. Then there is time gap

between the point of estimation and the point of testing tax schedule. If the inequality

gap between the two periods have been driven by rise in return to skill, we have the right

estimated elasticities. However, if it was driven by the rise in return to either human capital

or effective labor supply, then the estimated elasticites should be adjusted upward.

As we discussed above, there are few recent papers studying how an optimal tax schedule

should respond to rise in income inequality. Heathcote, Storesletten, and Violante (2020)

answers this question focusing on the response of optimal progressivity restricting the tool of

the government to the parametric functional form of tax schedule—this log-linear function

with two parameters is referred to as HSV tax function in the literature. They consider two

factors of rising income inequality—skill premium due to the skill-biased technical change

and growth in residual wage dispersion—and quantitatively show that overall optimal pro-

gressivity does not change that much (with modest decline in progressivity) as the two factors

provide the opposite forces on the optimal progressivity. Wu (2021) also quantitatively in-

vestigates this issue under the same HSV tax function but with more inequality factors, and

provides similar argument that rising inequality implies declining optimal progressivity.6 Our

analysis complements these Ramsey tax studies by extending analysis to the fully nonlinear

tax schedule and by generalizing the model to a broader class of Mirrlees’ tax model.

There is a literature on optimal Mirrlees tax analysis with a richer labor market by in-

corporating more realistic features of labor markets. Although the studies in this literature
6The decomposition results of Wu (2021) shows more emphasis on the role of aging population which

has fiscal pressure.
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does not directly address the main question of this paper—response of optimal tax to ris-

ing inequality, the various features of the labor market considered in this literature are the

factors that can generate the realistic high inequality. The model with superstar effects

considered in Scheuer and Werning (2017) is one special example of our analysis (which

belongs to the first class of model) and assignment model of Ales, Kurnaz, and Sleet (2015)

is another special example, but with the opposite implications on the optimal tax when

earnings inequality increases. Our analysis provides a better understanding of these results

in the previous literature by identifying how different sources of inequality differently affect

behavioral response.

We take the Pareto efficient tax analysis rather than welfare maximizing optimal tax anal-

ysis. Werning (2007) is the first paper which developed tests for the Pareto efficiency of a tax

schedule with a test formula that can be expressed in terms of sufficient statistics including

current income distribution.7 We extend this test to incorporate a broad class of model that

can capture various sources of inequality. Since the observed income distribution is the result

of multiple factors that generate earnings inequality, identifying the key factors that have

different implications on the efficient tax schedule is important. We closely follow the anal-

ysis of Scheuer and Werning (2017) by showing the role of elasticities despite the neutrality

result of the test formula. With a general framework that can encompass this superstar

effect, we identify what is key feature of their model that is leading to different implications

on optimal taxation relative to other models with different inequality factors. Our analysis

clarifies that the fundamental difference is whether the inequality factor increases earnings

differential through the effective labor supply channel or not.

[List of papers that need to be discussed:]

• Badel, Huggett, and Luo (2020), Ales and Sleet (2016), Scheuer and Slemrod (2020)

• Gruber and Saez (2002), Saez, Slemrod, and Giertz (2012), Blomquist and Selin (2010)

• Lochner, Park, Shin, and Ninth (2018)
7Bierbrauer, Boyer, and Hansen (2022) provides better understanding of this test formula, showing that

this test is essentially equivalent to the condition that the revenue function associated with an elementary
tax reform at each income level must be non-increasing.
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2 Simple Framework

We describe a framework which extends the standard Mirrlees’ optimal tax model. We

provide the simplest possible static framework that can still incorporate various factors in

the labor market so that we can generate realistic earnings inequality. In this section, we

set up the planner’s problem in this general framework. In the next section, we derive and

analyze the Pareto efficiency test formula.

2.1 Environment

Standard Mirrlees’ model assumes that the final production function is linear in the efficiency

unit of labor supply—product of worker’s skill and effort—and thus wage rate of each worker

is simply worker’s level of skill.8 We generalize this canonical model to capture more realistic

features of wage schedule and inequality. To focus on the first-order effects of inequality

factors on the equity-efficiency trade-off, we intentionally abstract from “Stiglitz effects”—

the general equilibrium effects through aggregate complementarity in production.

Preferences and Types We consider a model with continuous skill type and a continuum

of workers. Workers have identical preferences represented by a utility function: u(c, ẽ, n),

where c is consumption, ẽ is effort for the human capital investment, and n is working hours.

The utility function u(·) is increasing in c and decreasing in ẽ and n, and it is concave, twice

continuously differentiable, where the domain is R+ × [0, ē] × [0, n̄]. u(·) satisfies the Inada

conditions: for all c > 0, lime→0ue = limh→0uh = 0 and lime→ēue = limh→n̄un = −∞.

The effort ẽ can capture general effort to increase working productivity, we will focus on the

human capital investment interpretation.

We can capture two different types of human capital models with different forms of effort

function ẽ(e, θ), where e is the level of human capital investment and and θ is skill type of

workers described below. If the effective effort ẽ(e, θ) is decreasing in θ, then the cost of

investing for the human capital level e is decreasing in skill type θ. We only consider two

8Alternative interpretation is that workers of different skill types are perfect substitutes in production
and output is sum of worker’s effort weighted by worker’s skill level.
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special cases: (a) ẽ(e, θ) = e and (b) ẽ(e, θ) = e
θ
. In the first case, the cost of human capital

investment is independent of skill type, although the return to human capital investment

can still depend on the skill type as we describe below.

Workers are heterogeneous in their exogenously given skill types and skill types are dis-

tributed across an interval [θ, θ̄] according to a distribution function F (θ) with strictly pos-

itive and continuously differentiable density f(θ).9 Following the Mirrlees’ spirit, θ can be

interpreted as comprehensive income generating ability.

Wage Structure We denote effective unit of labor supply by y(θ) = p(θ, e(θ)) · n(θ),

where p(θ, e) is effective productivity and n(θ) is working hours. Workers can increase the

effective labor supply either by by increasing individual productivity p(θ, e(θ)) with human

capital investment or by increasing labor supply n(θ). Workers who provide effective labor

supply y(θ) are paid earnings ω(θ) = W (y(θ)) according to a wage schedule W (·). If W (·)

is convex at the top, it captures the superstar effects at the top income as in Scheuer and

Werning (2017)—return to effective labor supply is increasing at the top.

With this simple earnings function in a static model, we can still capture various sources

of inequality. Given skill distribution, we can consider rise in return to each of three factors

as the sources of inequality—(i) return to skill θ (pθ·θ
p

), (ii) return to human capital e (pe·e
p

),

and (iii) return to effective labor supply y (W ′(y)·y
W (y) ). In this simple structural model, we

can isolate the role of each source in determining optimal tax schedule. We do this by

investigating how the earnings elasticities respond to change in each inequality factor and

analyzing their impact on the Pareto efficient tax schedule. and this is because the response

of earnings elasticities to each inequality factor is not the same. Although we mostly focus

on these three sources in the benchmark analysis, in an extension, we also consider increase

in variance of skill distribution as another source of inequality.

For later use, we also define the Hicksian coefficient of complementarity between skill θ

and human capital e by ρ(θ, e) = pθe·p
pθ·pe

. For example, if the productivity function takes a

form of Cobb-Douglas, p(θ, e) = θγ × eν , then ρ(θ, e) = 1. With the CES form of production

9In the dynamic extension of the model, θ can be stochastic, but it is going to be still exogenous shock.
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function p(θ, e) =
(
(1 − α) · θγ(1−ρ) + α · eν(1−ρ)

) 1
1−ρ , the Hicksian coefficient is ρ(θ, e) = ρ.10

Worker’s Problem Note that each worker with skill type θ provides labor supply y(θ)

considering that they are paid according to a wage schedule W (·). The wage schedule

W (y) can be endogenously determined in equilibrium, but each worker takes it as given. In

the benchmark, we assume that workers’ productivity function p(θ, e) is exogenously given.

p(θ, e) can be also endogenized in an extended model, but even then workers make a decision

of e given p(θ, ·). That is, a worker with skill level θ solves the the following problem given

wage schedule W (·), productivity function p(θ, ·), and income tax schedule T (·):

max
c,e,n

u(c, ẽ, n) s.t. c ≤ W (p(θ, e) · n) − T (W (p(θ, e) · n)) , (1)

where ẽ = ẽ(e, θ).

To make this worker’s problem comparable to the one in the standard Mirrlees’ model,

we rewrite the workers’ problem as a two-step decision—1. choose (c, ω), and 2. choose

(e, n) given (c, ω). Solving backwards, given consumption c and efficiency unit labor supply

y = W −1(ω), workers choose effort level e and working hours n:

U(c, y, θ) = max
e,n

u (c, ẽ(e, θ), n) s.t. y ≤ w(θ, e) · n, (2)

where U(c, y, θ) is the associated value function. Workers then optimally choose c and ω to

maximize the value function U :

max
c,ω

U(c, W −1(ω), θ) s.t. c ≤ ω − T (ω). (3)

Note that although we allow separate choice of human capital investment and working hours,

as long as the tax function does not depend on e and n separately, the worker’s problem

boils down to the problem of choosing consumption and earnings in the standard Mirrlees

model given value function U . As in the standard Mirrlees, we need single crossing condition

to set up the planner’s problem, but what is different is we need this condition in terms of

the value function U not just in terms of primitive preferences. Thus we define the marginal

rate of substitution by

MRS(c, y, θ) ≡ −Uy(c, y, θ)
Uc(c, y, θ) ,

10More simpler CES functional for with costant Hicksian coefficient is possible with γ = ν = 1, but in
this case, return to θ and return to e is always negatively correlated.
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and we assume the following Spence-Mirrleess single crossing property.

Assumption 1. MRS(c, y, θ) is decreasing in θ.

That is, for more skilled workers, it is less costly to provide effective labor supply y.

Technology and Firm’s Problem By modeling a suitable technology and assuming (pos-

itive) sorting between firms and workers, we can endogenize either wage schedule W (y) or

productivity function p(θ, e). In this benchmark, we take a model that can endogenize the

wage schedule W (y)—as in Scheuer and Werning (2017), and later discuss alternative mod-

eling and the implication of each choice. Note that the modeling choice does not matter for

the main results when we think of a change in return to each factor as an exogenous shock,

which we take in the benchmark analysis.

Suppose that there is a continuum of unit measure of firms with heterogeneous productivity

x, and firm’s productivity is drawn from a distribution Γ (x). We assume that a firm and a

worker is matched according to the perfectly positive sorting based on the complementarity

between firm’s productivity x and worker’s effective labor supply y. Then the assortative

matching function σ̃(y) = x is such that F (y−1(y)) = Γ (σ̃(y)), which essentially leads to

a matching function σ(θ) = σ̃(y(θ)). A firm with productivity x which is matched with a

worker providing effective labor supply y produces final output G(x, y), and we assume that

there is complementarity between firm’s productivity and worker’s labor supply: Gxy > 0.

Given wage schedule W (y), a firm with productivity x solves

max
y

G(x, y) − W (y), (4)

whose first order condition is

Gy(x, y) = W ′(y). (5)

As Scheuer and Werning (2017) have shown, Gxy > 0 provides a force for a convex wage

schedule W (y). We can see this from

W ′′(y) = Gxy(σ̃(y), y)σ̃′(y) + Gyy(σ̃(y), y).
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We want to remark that we don’t have to assume that the whole wage schedule W (y) is

convex for our analysis.

We also remark that our model does not allow aggregate complementarity by assuming

a technology with non-complementarity across y(θ)’s.11 This implies that we abstract from

the general equilibrium effects (“Stiglitz effects”). We intentionally do not consider this

additional channel to focus on the first order channels associated with rise in inequality.

Equilibrium An equilibrium consists of a tax schedule T (ω), an earning schedule W (y),

an allocation {c(θ), y(θ), e(θ), n(θ), ω(θ)} and matching function σ(θ) such that (i) for each

θ, (c(θ), e(θ), n(θ)) solves (1) given W (·), with the associated effective unit of labor supply

y(θ) = p(θ, e(θ)) · n(θ) and earnings ω(θ) = W (y(θ)); (ii) for each x, Y (x) solves Gy(x, Y ) =

W ′(Y ); (iii) the goods market clearing condition (6) holds:
∫

c(θ)dF (θ) ≥
∫

G(σ(θ), y(θ))dF (θ); (6)

and (iv) the labor market clearing condition holds: Y (σ(θ)) = y(θ), F (θ) = Γ (σ(θ)).

2.2 Planning Problem

In this section, we set up the planning problem and derive the conditions for Pareto optimal-

ity. This condition will be expressed in terms of elasticities, which will be used as a Pareto

efficiency test formula. By investigating how this test formula responds to the introduction of

each inequality factor, we analyze how Pareto efficient taxes are affected by different sources

of inequality.

We assume that the planner does not regulate effort e(θ) and working hours n(θ) separately

but only regulates earnings ω(θ)—or equivalently, the planner regulates the effective units

of labor y(θ) as there is one to one relationship between y and ω given wage schedule W (y).

This is either because the government cannot observe e(θ) and n(θ) separately, or because

the tax policy only depends on earnings ω(θ) = W (y(θ)) due to other reasons (even though

the government can observe e(θ) and n(θ)). Then, given the optimal allocation (c(θ), y(θ))

11That is, different levels of effective unit of labor supply y(θ) are not complement each other in production.
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chosen by the government, the allocation of (e(θ), n(θ)) solves (2), and the relevant worker’s

utility function is the value function U(c(θ), y(θ), θ).

For any allocation (c(θ), y(θ)), we denote the utility delivered this allocation by

v(θ) = U(c(θ), y(θ), θ).

An allocation is incentive compatible if

v(θ) = max
θ′

U(c(θ′), y(θ′), θ) ∀θ. (7)

To characterize Pareto efficient tax, we follow the conventional mechanism design approach

of solving the set of optimal allocation and find the tax schedule that can implement optimal

allocation as an equilibrium. As in standard Mirrlees (1971), an allocation (c(θ), y(θ)) can be

implemented as an equilibrium for some tax schedule if and only if it satisfies resource feasi-

bility (6) and incentive compatibility (7). By single crossing assumption, we can use the first

order approach because the global incentive constraints are equivalent to (i) monotonicity

condition: y′(θ) ≥ 0; and (ii) the envelope conditions:

v′(θ) = Uθ(c(θ), y(θ), θ) ∀θ. (8)

Thus, we can replace the incentive-compatibility constraint by the envelope condition (8),

and drop the monotonicity condition, and check the monotonicity condition ex post after

solving the mechanism problem.

Planning Problem We denote a Pareto weight to workers of skill θ by λ(θ), and any

Pareto weight should satisfy
∫

λ(θ)f(θ)dθ = 1. Let C(v, y, θ) be the inverse function of

U(c, y, θ), defined according to v = U(C[v, y], y, θ). We also denote the production function

by Q(θ, y(θ)) = G(σ(θ), y(θ)). Then the planner’s problem writes:

max
v(θ),y(θ)

=
∫

λ(θ)v(θ)dF (θ) (9)

(µ(θ)) s.t. v′(θ) = Uθ(c(θ), y(θ), θ) ∀θ, (10)

(η)
∫

(Q(θ, y(θ)) − C(v(θ), y(θ), θ)) dF (θ) ≥ 0, (11)

for some given Pareto weight λ(θ).
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The planning problem (9) itself is not different from a standard Mirrleesian problem despite

the extension of of the model. First, this is because the planner does not regulate the

choice of effort e(θ) and working hours n(θ) separately, and thus the planner’s problem

boils down to solving optimal allocation of choosing consumption c(θ) and effective units

of labor y(θ) (given the value function U(c, y, θ)) as in the standard Mirrleesian problem.

More important, endogenous wage structures are captured in a simplified reduced form:

W ′(y(θ)) = Gy(σ(θ), y(θ)) = Qy(θ, y(θ)). Depending on the shape of production technology

G and the functional form (and its parameter values) of productivity function p(θ, e) hidden

in the effective units of labor y(θ) = p(θ, e(θ)) · n(θ), we can capture various return to each

factor in an equilibrium. Also, the value function of the worker U(c, y, θ) also depends on the

shape of productivity function p(θ, e). The planning problem (9), however, can be written

in a general form without specific assumptions on G, p(θ, e) and U(c, y, θ), and thus the

planning problem boils down to the standard problem except for the general expression of

production Q in the resource constraint and the value function U in the incentive constraint.

However, when we express the Pareto efficiency test in terms of sufficient statistics, the

level of the elasticity of earnings with respect to marginal tax rate—one important sufficient

statistic, does depend on the detailed assumption on the wage structure. Moreover, each

factor of generating rise in inequality will have different implication on the worker’s wage,

and thus on the elasticities. In the next section, we investigate the relationship between the

Pareto efficient taxes and sources of Inequality in detail.

Optimality Conditions: General Form We derive the optimality conditions of allocation

from the first order conditions of the planning problem. These common optimality conditions

expressed in a general form will be used to derive the Pareto efficiency test formula in various

cases.

The first order conditions of the planning problem with respect v(θ) and y(θ) are as follows,

respectively:

λ(θ)f(θ) − ηev(θ)f(θ) − µ(θ)UθcCv(θ) − µ′(θ) = 0 (12)

η(Qy(θ) − Cy(θ))f(θ) = µ(θ) [Uθc(θ)Cy(θ) + Uθy(θ)] . (13)
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These conditions can be rewritten in terms of marginal rate of substitutions:

−µ̂′(θ) − µ̂(θ) · MRSc · y′(θ) = f(θ) − λ(θ)Uc(θ)
η

(14)

µ̂(θ) = T ′(ω(θ))
1 − T ′(ω(θ))θf(θ)

(
−MRSθ · θ

MRS(θ)

)−1

. (15)

See the appendix for the detailed derivation.

We say that a tax schedule is Pareto efficient if the allocation associated with a tax schedule

solves the planning problem (9) for some nonnegative Pareto weight λ(θ). Thus an allocation

implemented by a Pareto tax schedule should satisfy these optimality conditions (14) and

(15) for some Pareto weight. By combining λ(θ) ≥ 0 with (14), we get the inequality

condition, then we can use (15) to derive a Pareto efficiency test formula for earnings taxes

T (ω).

3 Pareto Efficienct Tax and Sources of Inequality

In this section, we investigate Pareto efficiency test formulas. The formulas are expressed in

terms of relevant elasticities and these elasticiteis are endogenous to the change in inequality

factors. We then proceed to the comparative static analysis to show how the Pareto efficient

tax rates respond to the sources of inequality.

3.1 Pareto Effiociency Test Formulas

We begin by deriving the Pareto efficiency test formulas. The formulas can be expressed

either in terms of skill distribution or in terms of earnings distribution. The (structural)

formula expressed in terms of skill distribution is useful for a future comparative statics

when earnings distribution is expected to changed by rise in income inequality. On the other

hand, the formula expressed in terms of earnings distribution can be used for a sufficient

statistics approach. This sufficient statistics formula can be used either for testing current

tax schedule given observed current earnings distribution or for a comparative statics for the

future by predicting change in earnings distribution.
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Easticities Depending on whether we express the formulas in terms of earning distri-

bution or in terms of skill distribution, the relevant elasticites required in the formulas is

different. We define both elasticities of earnings and elasticities of effective labor supply.

First, we define the elasticities of earnings with respect to change in marginal tax rate,

which are required sufficient statistics for the test formula in terms of earnings distribution.

Recall that given tax schedule T (ω), workers’ problem boils down to the problem of choosing

optimal (c(θ), ω(θ)) which solves (3). That is, given value function U(c, y, θ), wage schedule

W (·) and tax schedule T (·), the earnings function is defined by

ω(1 − τ, I) ∈ arg max
ω

U((1 − τ)ω − T (ω) + I, W −1(ω), θ).

Then the uncompensated earnings elasticity, income effects on earnings, and the compensated

elasticity are defined respectively:

ϵu
ω(ω) = ∂ω

∂(1 − τ)

∣∣∣∣∣
τ=I=0

·1 − T ′(ω)
ω

, ηω(ω) = − ∂ω

∂I

∣∣∣∣∣
τ=I=0

·(1−T ′(ω)), ϵc
ω(ω) = ϵu

ω(ω)+ηω(ω)

This elasticity measures the response of earnings to the change in marginal tax rate con-

sidering the (potentially convex) wage schedule W (·) and nonlinear tax schedule T (·) as

in Scheuer and Werning (2017). Different from Scheuer and Werning (2017), however, the

earnings elasticities depend on the value function, which is essentially determined by the

elasticity of human capital investment, elasticity of working hours, and return to θ and e

captured in productivity function p(θ, e). This elasticity of earnings is, in principle, the one

we can estimate using the taxable income data.

Next, we also define the elasticities of effective units of labor y with respect to marginal tax

rate change along the linear wage schedule and linear budget constraint, which are relevant

elasticities in the tax formula in terms of skill distribution. By definition, these elasticities

are equivalent to the elasticities of earnings assuming W (y) = y and T ′′(ω) = 0. Under

this assumption, the function of effective units of labor supply is defined by y(1 − τ, I) ∈

arg maxy U((1 − τ)y − T (y) + I, y, θ), which solves the following first order condition given

constant marginal tax rate T̂ ′ = T ′(y):

MRS((1 − τ)y − T (y) + I, y, θ) = 1 − τ − T̂ ′.
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Then the elasticities of y along the linear wage schedule and linear budget constraint are

defined by

ϵ̃u(y) = ∂y

∂(1 − τ)

∣∣∣∣∣
τ=I=0

· 1 − T ′(y)
y

, η̃(y) = − ∂y

∂I

∣∣∣∣∣
τ=I=0

· (1 − T ′(y)), ϵ̃c(y) = ϵ̃u(y) + η̃(y).

Different from the earnings elasticities in the standard models with exogenous wage rate, our

elasticities of effective labor supply y also depend on the value function. Thus, this elastic-

ity is again the combination of elasticities of working hours and human capital investment

considering the return to θ and e. As the actual taxable income data is generated under the

nonlinear wage and tax schedules, this (hypothetical) elasticity cannot be directly estimated

from the data.

Efficiency Test Formulas We now express the test formulas with the elasticites we defined

above. We first show the Pareto efficiency test formula in terms of earnings distribution in

the next proposition.

Proposition 2. Given any Pareto efficient tax function T (ω) inducing an earnings distribu-

tion H(ω) with its density h(ω) satisfies

d

dω

[
1 − H(ω) − T ′(ω)

1 − T ′(ω) × ωh(ω) × ϵc
ω(ω) +

∫ ω̄

ω

T ′(ω̃)
1 − T ′(ω̃)ηω(ω̃)h(ω̃)dω̃

]
︸ ︷︷ ︸

≡Rω(ω)

≤ 0. (16)

As long as the government does not regulate effort e(θ) and working hours h(θ) separately,

the test only requires earnings elasticities.

Proof See the appendix. ■

The test formula (16) is essentially checking whether the revenue incidence associated with

a tax reform of increasing marginal tax rate at ω is nonincreasing in ω.12 If this revenue

function is increasing in ω, Bierbrauer, Boyer and Hansen(2022) show that there can be a

Pareto improving two-bracket tax reform of decreasing marginal tax rate at a lower bracket

of income and increasing marginal tax rate at a higher bracket of income.

12Note that the equation inside the bracket in (16), Rω(ω) is exactly the revenue incidence function
associated with elementary tax reform of increasing marginal tax rate at earnings level ω.
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This test formula in terms of earnings distribution is the same as in the the test formula

used in the standard Mirrlees tax model (e.g. Werning (2007)), which is consistent with the

neutrality result in Scheuer and Werning (2017). That is, the test formula (16) is expressed

just in terms the same sufficient statistics—earnings elasticity and earnings distribution, and

thus the expression of the formula itself does not depend on the value function U(c, y, θ), the

shape of wage schedule W (y), and production function p(θ, e). We only need earnings elas-

ticities as the government does not regulate human capital and working hours separately.13

However, this does mean that the set of Pareto efficient tax rates is independent of sources

of inequality, as the sufficient statistics in the formula depend on inequality factor. When

income inequality is increasing, not only earnings distribution but also earnings elasticities

change and the response of elasticity does depend on different sources of inequality. After

canceling out the counterbalancing forces of changing distribution and elasticities, in which

direction the net force will change the tax rate? To show this, we now express the Pareto

efficiency test formula in terms of skill distribution in the next proposition.

Proposition 3. Given exogenous skill distribution F (θ) with its density f(θ), any Pareto

efficient tax function T (ω(θ)) satisfies

d

dθ

 1 − F (θ) − T ′(ω(θ))
1−T ′(ω(θ))) × θf(θ) × EEC(θ)

+
∫ θ̄

θ
T ′(ω(θ̃))

1−T ′(ω(θ̃))EEC(θ̃) η̃(θ̃)
ϵ̃c(θ̃)

y′(θ̃)θ̃
y(θ̃) f(θ̃)dθ̃


︸ ︷︷ ︸

≡R(θ)

≤ 0, where (17)

EEC(θ) = ϵc
ω(ω(θ)) × 1

ω′(θ)·θ
ω(θ)

. (18)

Proof See the appendix. ■

13We also remark that the neutrality result of Pareto efficiency test holds in the absence of general equi-
librium effects. If there is complementarity between different levels of y(θ) or compelementarity between
different levels of human capital e(θ), then there will be additional terms in the test formula capturing
“Stiglitz effects.” We abstract from this type of general equilibrium effect by assuming no aggregate comple-
mentarity in production. Another type of general equilibrium effects we do not consider is profit-spillover
effects considered in Ales and Sleet (2016). We abstract from this effect by assuming that the government
can levy optimal tax on profit (which is 100 percent tax in this economy).
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From the formula (17), ignoring the income effects, we can see that the effects of rise in

inequality boils down to its effects on EEC(θ) in the formula which captures the effective

efficiency cost (EEC) of tax distortion. Note that the earnings distribution is given by

ωh(ω) = θf(θ) × 1
ω′(θ)·θ

ω(θ)
. Equation (18) in Proposition 3 shows that ϵc

ω(ω(θ)) = EEC(θ) ×
ω′(θ)·θ

ω(θ) . Thus, when inequality is increasing, by canceling out the counterbalancing forces of

change in earnings distribution and earnings elasticities, the effects boil down to the change

in EEC(θ) given skill distribution:

ωh(ω) × ϵc
ω = θf(θ) × EEC(θ).

The fact that the effect of rising inequality boils down to the EEC is best explained by the

simple top income tax rate example.

Example 4. (Top Income Tax) Assume no income effects in labor supply (ηω = η̃ = 0) and

thus ϵc
ω(ω) = ϵu

ω(ω) ≡ ϵω(ω). Suppose that the top skill distribution follows Pareto(ϕ) and

these top skill types face constant top income tax rate τtop. If the earnings elasticity ϵω(ω) and

earnings differential across skill ω′(θ)·θ
ω(θ) are locally constant at the top, then the top earnings

distribution also follows Pareto(atop
ω ) with a Pareto parameter atop

ω = ϕ × 1
ω′(θ)·θ

ω(θ)
and EEC(θ)

is also locally constant.

Under these assumptions, the Pareto efficiency test formula boils down to

τtop ≤ τub = 1
1 + ϵω × atop

ω
= 1

1 + EEC × ϕ
, (19)

where τub represents the upper bound of top income tax rate. The first equality in (19)

shows the formula in terms of income distribution, and the second equality in (19) shows

the formula in terms of skill distribution.

In this top income example, when income inequality increases, both Pareto parameter atop
ω

of the earnings distribution and the earnings elasticities ϵω change. Rise in inequality lowers

Pareto parameter atop
ω and thus provides forces for higher top income tax rate τtop regardless

of the sources of inequality. On the other hand, the responses of earnings elasticities ϵω

depend on different sources of inequality.
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Canceling out the couterbalancing forces through atop
ω and ϵω, what is the net effect of rise in

inequality on the top income tax rate? Note that atop
ω = ϕ× 1

ω′(θ)·θ
ω(θ)

and ϵomega = EEC× ω′(θ)·θ
ω(θ) .

Thus, the rise in earnings differential ω′(θ)·θ
ω(θ) lowers Pareto parameter atop

ω and raises earnings

elasticity ϵω, theses two effects exactly cancel out. Thus, the effects boil down to the response

of the effective efficiency cost of tax distortion (EEC), which depends on the sources of

inequality. In the next section, we analyze how the EEC responds to each factor of inequality

in detail.

3.2 The Effects on the Effective Efficiency Cost (EEC)

Going back to the main question of the paper, we are interested in how Pareto efficient tax

schedules are affected by the sources of income inequality. Our derivation of tax formula (17)

in Proposition 3 and the top income tax formula (19) in the simple example show that the

question boils down to figuring out how the effective efficiency cost of tax distortion responds

to different sources of inequality. In this section, we analyze the effects of each inequality

factor on the EEC and the the implications on the Pareto efficient tax rates.

Next proposition rewrites the EEC so that it can show the mechanisms clearly.

Proposition 5. The effective efficiency cost of tax distortion EEC(θ) in the Pareto efficiency

tax formula (17) satisfies

EEC(θ) =
( ϵ̃c(θ)

1 + ϵ̃u(θ)

)−1

×
(

pθ · θ

p
+ pe · e

p
· 1{ẽ= e

θ
}

)
+ Ω(ρθe)

−1

. (20)

If the Hicksian coefficient of complementarity ρθe is 1, then Ω(ρθe) = 0.

Proof See the appendix. ■

Equation (20) shows the expression for the EEC. For expositional simplicity, we focus on

the case when the Hicksian coefficient of complementarity ρθe is 1 and there no income effects

in effective labor supply (ϵ̃c = ϵ̃u ≡ ϵ̃). Then we have simpler expression for the EEC:

EEC(θ) = ϵ̃(θ)
1 + ϵ̃(θ) × 1

pθ·θ
p

+ pe·e
p

· 1{ẽ= e
θ

}
. (21)
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Different from the standard Mirreesian model, the efficiency cost of tax distortion is de-

termined by two factors. First one is the elasticity of effective labor supply ϵ̃, which is is

standard factor. When responsiveness of labor supply is higher, increase in marginal tax

rate leads to larger decrease in labor supply, which creates higher efficiency cost. The sec-

ond factor is the differential of effective labor supply y(θ) across skill type θ. With higher

differential of y(θ), it is easier for the high skilled type to mimic the low skilled type, which

tightens the incentive constraint. Since the tax distortion at the lower skilled type can relax

the incentive constraint, the efficiency cost of tax distortion is lowered when the differential

of y(θ) is higher. Higher return to skill type (i.e. higher pθ·θ
p

) leads to higher differential

which lowers EEC, but higher return to human capital (i.e. higher pe·e
p

) leads to higher

differential of y(θ) only when the cost of human capital decreases in skill type (ẽ(e, θ) = e
θ
).

Responses of EEC to Different Inequality Factors We now investigate how the EEC

depends on each factor of inequality and its implications on the Pareto efficient tax rates.

Since it is best explained by the simple top income tax rate example—Example 4—with

ρθe = 1, we focus on this example.

When rise in inequality is driven by an increase in return to skill, higher pθ·θ
p

lowers the

effective efficiency cost of tax distortion through the labor supply differential channel. Since

higher skilled types gets higher return, this makes them easier to shirk by mimicking lower

types, then more tax distortion helps the higher types self select their labor supply, which

lower the EEC. As a result higher return to skill provides a force to increase the top income

tax rate τtop.

On the contrary, rise in inequality driven by an increase in return to human capital can

have the opposite implications relative to the effects of higher return to skill depending on

the type of human capital model and the size of the return to each factor. Consider a model

where the cost of human capital investment is decreasing in skill type: ẽ(e, θ) = e
θ
. Increase

in return to human capital changes the EEC via two channels. First, the labor supply

differential channel lowers the EEC as in the case of higher return to skill. Higher return to

human capital increases human capital investment more for the higher skilled type, and thus

raises the labor supply differential across skills, leading to lower the EEC. Second, different
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from higher return to skill, higher return to education also increases the elasticity of effective

labor supply, which raises the EEC. Thus, whether EEC increases or decreases depend on

which channel dominates. If the size of return to human capital is smaller compared to the

size of the return to skill, the elasticity channel dominates, thus higher return to human

capital raises the EEC and lower τtop. We get the same result if the human capital cost does

not depend on skill because only the elasticity channel survives.

On the other hand, when the rise in return to effective labor supply is the source of higher

inequality, the EEC does not change, and thus it has no effects on the Pareto efficient top

income tax. This is because the counterbalancing forces on the earnings distribution and

the earnings elasticity cancel out. Higher return to effective labor supply ω′(θ)·θ
ω(θ) decreases

the Pareto parameter of earnings distribution atop
ω and increases the earnings elasticity ϵω,

and the two effects exactly offset. This result is consistent with the result of the superstar

effects in Scheuer and Werning (2017).

General Complementarity between Skill and Human Capital

[to be filled in]

4 Cautions for the Sufficient Statistic Approach

One important message from the structural investigation so far is that when earnings in-

equality changes, not only earnings distribution but also earnings elasticities change, and

the direction of the change in earnings elasticities depends on the sources of inequality. This

endogeneity of the earnings elasticity can cause an issue when using a sufficient statistics ap-

proach for the optimal policy suggestion. In this section, we investigate what cautions should

be taken for the sufficient statistics approach when inequality is changing significantly. We

provide cautions for (i) the future comparative static and (ii) the testing Pareto efficiency of

the current tax schedule.
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4.1 Caution 1: Sufficient Statistics for the Future Compartive Static

The first caution is for the application of the sufficient statistic approach for the future

comparative static when rise in income inequality is expected. Income inequality has been

changed over time, and we expect that in the future, there will be change in technology and

labor market that will increase earnings inequality in general. When this change in inequality

is expected, can we apply the sufficient statistic approach to make a policy suggestion for

the future? In our structural investigation, we have learned that earnings elasticities can

be changed and we need to predict the sources of rise in inequality in the future to make

a right prediction of the earnings elasticities. In this section, we show a typical application

of sufficient statistic approach for the future ignoring the sources of inequality can lead to a

wrong policy suggestion.

We use the simple top income tax rate example—Example 4—for expositional simplicity.

We also assume that the Hicksian coefficient of complementarity ρθe is 1. Suppose that

we expect 10% decrease in Pareto parameter in earnings distribution due to the rise in

inequality. Suppose that we want to make a policy suggestion for the future using a sufficient

statistics formula (19). The usual application of the sufficient statistic approach would

evaluate the formula with the predicted Pareto parameter aF
ω = 0.9 × aUS

ω where the aUS
ω

is the current Pareto parameter of the observed earnings distribution. For the earnings

elasticity ϵω, however, without knowing how the elasticity will change, a typical approach

would be to use the estimated earnings elasticities from the current or past taxable income

data. How wrong can it be with this typical approach?

One immediate answer is that this approach is not problematic if the elasticities of earnings

do not change despite the increase in earnings inequality. Our structural investigation this

can be the case when the expected rise in inequality is driven by the increase in return to

skill. Next corollary shows this.

Corollary 6. Suppose that there is no income effect in effective labor supply with ηω = η̃ = 0

and the Hicksian coefficient of complementarity ρθe is 1. Then the earnings elasticity ϵω(ω(θ))
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satisfies following:

ϵω(ω(θ)) = ϵ̃(θ) × 1
y′(θ)·θ

y(θ)

× ω′(θ) · θ

ω(θ) = ϵ̃(θ) × W ′(y(θ)) · y(θ)
W (y(θ)) . (22)

From this corollary, we can see that return to skill does not show up in the earnings

elasticity expression (22), and thus there is no direct effect of return to skill on the earnings

elasticity. Of course, if the elasticity of labor supply ϵ̃(θ) and the return to effective labor

supply W ′(y)y
W (y) depends on where they are evaluated, there can be indirect change in ϵω due to

the change in level of effective labor supply y(θ). Below, we show the example where return

to skill has no effects on the earnings elasticity.

On the other hand, if the expected rise in inequality is because of the rise in either return

to human capital or return to effective labor supply, then they have direct effects on the

earnings elasticities. In the expression of earnings elasticity in (22), the rise in return to

human capital increases the elasticity of effective labor supply ϵ̃(θ) and the rise in return to

effective labor supply directly raises W ′(y)y
W (y) . Below we have a numerical investigation to show

how wrong can the typical sufficient statistic approach be when ignoring these changes.

4.1.1 Numerical Example: Calibration

We now investigate a numerical example to show the relationship between the Pareto efficient

top income tax rate and sources of inequality. To capture the return to each inequality factor

with one parameter each, we consider simple functional forms for the wage schedule and

productivity function. The wage schedule has a power functional form W (y) = yκ, where

the return to effective labor supply W ′(y)·y
W (y) is simply determined by a parameter κ.14 We

assume that the productivity function takes a form of p(θ, e) = θγ · eν . With this Cobb-

Douglas functional form, the Hicksian coefficient of complementarity is one. Note also that

the return to skill pθ·θ
p

is equal to a parameter γ and the return to human capital pe·e
p

is equal

to a parameter ν. Then a rise inequality can be generated by an increase in κ, γ, or ν, which

represents each inequality factor.
14In section 2, we have endogenized W (y) with a firm’s problem given technology function G(x, y). Here,

we directly assume the functional form of W (y), but we can invert out the technology G that can induce
W (y) = yκ.
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We assume the following preferences with no income effects in effective labor supply:

u(c, ẽ, n) = c − ζ · ẽ
1
ζ − σ · n·

1
σ , (23)

where ζ controls the elasticity of human capital investment and σ controls the elasticity of

working hours. We consider the following two types of human capital models:

ẽ(e, θ) =

e, HK-A
e
θ
, HK-B.

In the benchmark, we assume that the cost of human capital investment is decreasing in skill

by taking the HK-B model.

Although we will focus on the Pareto efficiency of the top income tax rate, to calibrate all

the necessary parameters, we need to set the distribution of the entire skill types. We assume

that log skills are drawn from an exponentially modified Gaussian (EMG) distribution in the

bottom 90% and the top 10% skill distribution follows Pareto distribution. More precisely,

we assume that log of the unobservable skill has two components: log θ = ϵN + ϵE, where

ϵN ∼ N(µϵ, σ2
ϵ ) and ϵE ∼ exp(λϵ) so that log θ ∼ EMG(µϵ, σ2

ϵ , λϵ). Then the level skill

distribution is Pareto log normal. We then modify the top 10% skill distribution so that

θ ∼ Pareto(ϕ) for θ ≥ θ̂, where θ̂ is the top ten percentile skill level.

For a calibration purposes, we also need to set the current US tax schedule. We approx-

imate the current tax schedule using the parametric tax function adopted in Heathcote,

Storesletten, and Violante (2017) (hereafter HSV), where taxes net of transfers are given by

the following function of earnings: T (ω) = ω − λUS · ω1−τUS . We assume that at the top

earnings distribution, top income tax rate is constant.

Under these functional form assumptions, we have a closed for solution for human capital,

effective labor supply, and earnings (in the HK-B case):

e(θ) =
[
λUS · (1 − τUS) · κ

] ζ

1−(1−τUS)κ(σ+νζ) × θ
1−(1−τUS)κ(σ−γζ)
1−(1−τUS)κ(σ+νζ) × ν

ζ(1−(1−τUS)κσ)
1−(1−τUS)κ(σ+νζ) , (24)

y(θ) =
[
λUS · (1 − τUS) · κ

] σ+νζ

1−(1−τUS)κ(σ+νζ) × θ
γ+ν

1−(1−τUS)κ(σ+νζ) × ν
νζ

1−(1−τUS)κ(σ+νζ) , (25)

ω(θ) =
[
λUS · (1 − τUS) · κ

] κ(σ+νζ)
1−(1−τUS)κ(σ+νζ) × θ

κ(γ+ν)
1−(1−τUS)κ(σ+νζ) × ν

κνζ

1−(1−τUS)κ(σ+νζ) . (26)
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The closed form expression for the earnings shows that if log θ is drawn from an EMG

distribution for θ < θ̂, log ω(θ) also follows the EMG distribution for ω < ω(θ̂). It also

shows that if distribution of θ is Pareto for θ ≥ θ̂, then distribution of ω(θ) is also Pareto

for ω ≥ ω(θ̂).

In the benchmark calibration, we choose σ = 0.2 so that the Frisch elasticity ( σ
1−σ

) is

0.25. The progressivity parameter τUS of the HSV tax function is set 0.181 adopting the

estimation of Heathcote, Storesletten, and Violante (2017).

For the calibration of the skill distribution, we take the strategy similar to the one in

Heathcote and Tsujiyama (2021). We calibrate the parameters of the skill distributions to

match the empirical earnings distribution. In our model, the distribution of log earnings is

EMG(µω, σ2
ω, λω) distribution with

σ2
ω =

(
κ(γ + ν)

1 − (1 − τUS)κ(σ + νζ)

)2

× σ2
ϵ , λω =

(
κ(σ + νζ)

1 − (1 − τUS)κ(σ + νζ)

)−1

× λϵ.

Thus, given the parameters for the preferences (σ, ζ) and the parameters for the wage struc-

ture (γ, ν, κ) we can infer the parameters (σ2
ϵ , λϵ) which matches the estimated parame-

ters (σ2
ω, λω). We use the estimates of Heathcote and Tsujiyama (2021): σ2

ω = 0.412 and

λω = 2.2.15 Similarly, the distribution of top earnings under the constant top income tax

rate is Pareto(atop
ω ) distribution with

atop
ω =

(
κ(γ + ν)

1 − κ(σ + νζ)

)−1

× ϕ.

We infer Pareto parameter of the skill distribution ϕ to match atop
ω = 1.7 in the benchmark.

This benchmark atop
ω is somewhat larger than the numbers measured by the Adjusted Gross

Income (AGI) data. Since the AGI includes capital gains which are not relevant for our

earning tax, we use 1.7, which is calculated by Badel, Huggett, and Luo (2020) by exclud-

ing dividends and long-term capital gain. We do sensitivity analysis for lower atop
ω in the

appendix.

We calibrate the return to skill parameter γ using the Mincerian wage regression. In the

benchmark calibration, we assume that the proxy of the skill variable θ in our model is the
15Heathcote and Tsujiyama (2021) estimates these parameters using the Survey of Consumer Finances

data to include enough high income households.
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cognitive skill, and use the regression coefficient of AFQT test score from the NSLY data.

In the benchmark use the result from the estimation without controlling for schooling to

avoid the endogeneity issue related to the schooling variable, and we set γ = 0.76. More

detail is explained in the appendix. In the empirical studies, how to estimate the return to

unobserved skill is very controversial. I discuss this in more detail below, and provide some

sensitivity analysis.

We then jointly calibratethe remaining parameters (ζ, ν, κ) to match (i) the change in

average education in response to increase in return to education, (ii) college wage premium,

and (iii) Pareto parameter of earnings distribution. Given (ν, κ), the elasticity of human

capital investment ζ is calibrated to match average schooling response. Note that from

equation (24) E[et] = Ψt · ν
At(ζ)
t , where At(ζ) = ζ(1−(1−τUS

t )κtσ)
1−(1−τUS

t )κt(σ+νtζ) . If Ψt and At are constant

over time, A(ζ) should satisfy

A(ζ) = log (E[e2016]/E[e1980])
log (ν2016/ν1980)

We compute A(ζ) using the calculation in Heathcote, Storesletten, and Violante (2020)

who measure e as years of education above mandatory schooling.16 We then infer ζ given

(ν, κ, τUS).

Given κ, the return to human capital prameter ν is determined to mainly match the

college premium 1.9. We use the calculation of Heathcote, Perri, Violante, and Zhang (2023)

who define the average hourly wage of workers with at least 16 years of schooling (also in

Heathcote, Perri, and Violante (2010)). Since we do not have years of schooling in our model,

we redefine the college graduates as the workers with top 37.7% of human capital following

the empirical fraction of college graduates (defined as more that 16 years of schooling) in

Heathcote, Perri, Violante, and Zhang (2023). Then the parameter for the return to effective

labor supply κ is determined to mainly match the top income inequality measured by the

Pareto parameter atop
ω = 1.7. The resulting parameters are ζ = 0.46, ν = 0.20, and κ = 1.52.

16νt can be obtained from a Mincerian regression coefficient rt for each year. (νt = d log wt

det
et).
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Table 1: Benchmark: Pareto Efficient Top Income Tax Rate
aUS

ω = 1.7 aF
ω = 1.53 (−10%)

τUS
ub = 1

1+aUS
ω ×ϵUS

ω
τ suff

ub = 1
1+aF

ω ×ϵUS
ω

τF
ub = 1

1+aF
ω ×ϵF

ω
ϵF

ω

0.425 0.451
(+6.1%)

γ ↑ 0.451
(+6.1%)

0.80
(=ϵUS

ω )

ν ↑ 0.419
(−1.3%)

0.90
(+13.7%)

κ ↑ 0.425
(+0.0%)

0.88
(+11.1%)

4.1.2 Numerical Result: Benchmark

In this calibrated economy, how wrong can the typical sufficient statistic approach be if we

ignore the sources of inequality? To answer this we consider a situation where we expect rise

in income inequality in the future, as a result, we expect that the Pareto parameter of top

earnings distribution aUS
ω will decrease by 10%. This 10% decrease in Pareto parameter can

be generated by three different sources: (i) increase in return to skill γ, (ii) increase in return

to human capital ν, and (iii) in crease in return to effective labor supply κ. We denote the

upper bound of the Pareto efficient top tax rate for the future by

τF
ub = 1

1 + ϵF
ω × aF

ω

, where aF
ω = 0.9 × aUS

ω .

The future elasticity ϵF
ω depends on the sources inequality, and thus the upper bound of top

income tax rate is different for each source.

On the other hand, we denote the upper bound of the Pareto efficient top income tax rate

following the usual sufficient statistic approach by τ suff
ub , which is computed by

τ suff
ub = 1

1 + ϵUS
ω × aF

ω

.

In this typical application, although the distribution parameter is evaluated with the pre-

dicted value for the future, the the earnings elasticity estimated from the current data is use

ignoring the exact sources of inequality for the rise in inequality.

The typical sufficient statistic approach suggest that the upper bound τ suff
ub should increase

relative to the current upper bound of Pareto efficient top income tax rate, as we only take
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into account decrease in the Pareto parameter atop
ω when income inequality rises. The first

two columns of Table 1 shows that the upper bound τ suff
ub based on the sufficient statistic

increases by 6.1% relative to the current upper bound tax rate τUS
ub ignoring where the source

is coming from. The third column of Table 1 presents the correct prediction of upper bound

tax rate τF
ub based on each source of inequality. As we already discussed above, the sufficient

statistic approach is correct only when the return to skill—rise in γ—is the source of rise in

inequality.

When the higher return to human capital—higher ν—is the only source of rise in inequality,

however, Table 1 shows that the correct prediction of upper bound tax rate τF
ub should

decrease by 1.3%, implying that the suggestion based on a typical sufficient approach is not

only incorrect but also leads to the wrong direction. This decrease in top income tax rate

is because the elasticity channel dominates. As the fourth column of Table 1 shows, when

with higher return to human capital, the earnings elasticity increases ϵF
ω by 13.7% and this

dominates the earnings distribution channel (10% decrease of aF
ω ). As the typical sufficient

statistic ignores this dominant forces, the policy suggestion goes to the wrong direction.

Another way of understanding the case with higher ν is to look at the formula in terms of

skill distribution (τ top ≤ 1
1+EEC×ϕ

) after canceling out the counterbalancing forces through

aF
ω and through ϵF

ω . Our numerical result shows that the effective efficiency cost of tax

distortion (EEC) increases with higher ν. Recall that as we discussed in section 3.2, the

expression of EEC in (21) shows two channels of changing the EEC—elasticity channel and

labor supply differential channel. When ν increases, the elasticity channel dominates if the

role of return to human capital ν is relatively smaller than the role of return to skill γ in

the labor supply differential. Our calibration of γ in the benchmark is relatively high, and

thus EEC increases in ν. We discuss this in more detail in the sensitivity analysis in Section

4.1.3.

On the other hand, when the higher return to effective labor supply—higher κ—is the only

source of rise in inequality, Table 1 shows that the correct prediction of upper bound tax

rate τF
ub is equal to current upper bound tax rate τUS

ub , which is different from the prediction

of 6.1% increase in tax rate based on the wrong application of the sufficient static approach.
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Figure 1: Pareto efficient upper bound
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Figure 2: Earnings Elasticity
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This no change in Pareto efficient tax rate is because the 10% decrease in Pareto parameter

ϵF
ω is exactly offset by the 11.1% (= ( 1

0.9 −1)×100%) increase in earnings elasticity, confirming

the result from the structural investigation in section 3. As a result, there is no change in

the EEC, and upper bound tax rate does not change.

Figure 1 shows how wrong the typical application of sufficient statistic approach could be

for each level of future inequality represented by the Pareto parameter aF
ω . As the change

in inequality is larger, there will be even stronger errors in the predictions if the sources of

inequality is not return to skill. Figure 1 shows that the difference between τ suff
ub and τF

ub can

be more than 10% point. This misleading policy suggestion is because significant increase

in earnings elasticity driven by change in ν or κ is ignored in the usual sufficient statistic

approach, which is clearly observed in Figure fig:elasticity1.

4.1.3 Numerical Result: Sensitivity

In this section, we carry out sensitivity analysis for the numerical investigation we provided

in Section 4.1.2. Here we investigate alternative calibration of return to skill γ and alterna-

tive human capital model (HK-A). In the appendix, we provide further sensitivity analysis

with respect to calibration of elasticity of human capital investment ζ, Pareto parameter of

earnings distribution aUS
ω , and value of the elasticity of working hours σ.
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Alternative Calibration for γ We first consider alternative calibration of return to skill

γ. From the analysis so far, we have learned that the change in return to skill γ does not

cause any problem of using sufficient statistics approach, but the level of γ is important for

the effects of change in return to skill ν on the Pareto efficient tax rate. This is because

when EEC is changed by the rise in ν, the level of γ is crucial for determining which channel

dominates between the elasticity channel and and labor supply differential channel. In the

next proposition, we show this more formally.

Proposition 7. Consider an economy in Example 4. Suppose that preferences of worker has

the form of (23) and productivity of worker has the form: p(θ, e) = θγ · eν.

1. If γ > σ
ζ
, then the EEC is increasing in ν.

2. If γ < σ
ζ
, then the EEC is decreasing in ν.

In the benchmark numerical investigation, our calibration of γ satisfies the first case in

Proposition 7, and thus higher return to human capital ν has led to higher EEC and lower

Pareto efficient tax rate. As we have already discussed in Section 4.1.1, measuring the return

to unobserved skill is very difficult task in the empirical literature. In the benchmark, we

used the Mincerian wage regression without controlling schooling variables to get the return

to skill, but in this regression, the coefficient of the cognitive skill tends to be over-estimated

because it includes both direct effect of skill and indirect effect of skill through education.

We now consider an alternative calibration of γ by using the Mincerian wage regression

controlling schooling variables. In this alternative calibration, γ = 0.243, and it satisfoes the

second case in Proposition 7.

Figure 3 shows that with this alternative calibration which leads to lower level of return

to skill γ, the implication of higher ν is changed from the result in benchmark (Figure 1).

When rise in income inequality is driven by higher return to human capital, the upper bound

of Pareto efficient top income tax rate τF
ub increases as the decrease in Pareto parameter aF

ω

dominates the increase in earnings elasticity ϵF
ω . Thus, in this alternative calibration, the

policy suggestion based on the typical sufficient statistics has the same directional implication

with the correct suggestion implied by τF
ub. Figure 3, however, shows that the difference
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Figure 3: Pareto efficient upper bound: low γ
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Figure 4: Earnings Elasticity: low γ
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between τ suff
ub and τF

ub can be still very large because the increase in earnings elasticity (in

Figure 4) is completely ignored in the sufficient statistics.

[More discussion on the calibration of γ: to be filled]

Alternative Human Capital Model We now consider an alternative human capital model.

In the benchmark, we took a version of human capital model (HK-B) where the cost of

human capital investment is decreasing in skill type by setting ẽ(e, θ) = e
θ
. We now take

an alternative human capital model (HK-A) where the cost of human capital investment is

independent of skill type with ẽ(e, θ) = e.

With the special form of preferences and productivity function we took, the elasticity of

earnings does not depend on the type of human capital model:

ϵω(ω(θ)) = EEC × ω′(θ) · θ

ω(θ) = σ + νζ

γ + ν × 1HK−B

× κ × (γ + ν × 1HK−B)
1 − κ(σ + νζ) = κ(σ + νζ)

1 − κ(σ + νζ) .

As a result, both types of human capital models have the same current level of the earnings

elasticities ϵUS
ω . This implies that both economies have the same upper bound of current

top income tax τUS
ub , upper bound based on the suffciennt statistic τ suff

ub . Since we know

that future upper bound associated with γ is τF
ub = τ suff

ub and the one associated with κ is

τF
ub = τUS

ub , they are the same in both economies. Thus we only need to look at the case when

the source of inequality if ν.
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Table 2: Human Capital Model Comparison: Pareto Efficient Top Tax
aUS

ω = 1.7 aF
ω = 1.53 (ν ↑)

τUS
ub = 1

1+aUS
ω ×ϵUS

ω
τ suff

ub = 1
1+aF

ω ×ϵUS
ω

τF
ub = 1

1+aF
ω ×ϵF

ω
ϵF

ω

0.425 0.451
(+6.1%)

HK-A 0.397
(−6.7%)

0.99
(+25.1%)

HK-B 0.419
(−1.3%)

0.90
(+13.7%)

Table 2 shows that the in an alternative human capital model (HK-A) where the cost of

human capital investment does not depend on skill type, higher return to human capital ν

leads to even more significant decrease of top income tax rate compared to the decrease in the

benchmark case. That is, the error of the typical sufficient statistics approach can be even

more severe in an alternative human capital model economy. As we discussed above, among

the two channels of higher ν affecting the effective efficiency cost (EEC) of tax distortion,

the labor supply differential channel does not exist in the HK-A model, and thus higher

elasticity of labor supply always increases the EEC.

5 Caution 2: Sufficient Statistics for Testing the Current Tax

We now provide cautions for the application of the sufficient statistics approach for testing the

Pareto efficiency of the current tax schedule given earnings distribution. Recall the formula

(16) in Section 3.1. The formula is expressed in terms of current marginal tax rate, observed

earnings distribution, and current elasticities of earning. Thus, as long as we measure the

current earnings elasticities correctly, there is no problem of using the sufficient statistic

approach for the Pareto efficiency test. Given the right measure of earnings elasticities, we

don’t have to know the sources of inequality. In that sense, the sources of inequality are

neutral for this Pareto efficiency test formula.

The lesson from the structural investigation, however, gives us an important caution mes-

sage that the estimation of earnings elasticities should be carried out under the factors

generating current income inequality. Since the earnings ealsticities are endogenous to each

inequality factor, if the inequality factors during the period of the elasticity estimation are
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Table 3: Change in Sources of Inequality and Adjustment
ϵe

ω ϵtrue
ω τ suff

ub τ true
ub

0.80
γ ↑ (+10%) 0.80

0.425
γ ↑ 0.425

ν ↑ (+10%) 0.84 ν ↑ 0.411

κ ↑ (+10%) 0.95 κ ↑ 0.382

not consistent with the factors generating current earnings distribution, the test results can

be misleading.

Thus, the essential caution message is very similar to the caution in Section 4. We need

to be careful about whether the estimated earnings elasticity is the right sufficient statistic

that can be used to evaluate the Pareto efficiency test formula. If there has been change in

inequality between the estimation period and current, then adjustment of estimated elastic-

ities are required. What is slightly different from the case of the future comparative static

is that for testing the current tax, (i) whether the adjustment is needed or not depends on

when exactly the earnings elasticity was estimated, and (ii) the adjustment can be made at

least based on the data by comparing the data of the past and current to infer change in

sources of inequality. For the future, however, we need prediction of the future elasticities

in any case because the future is not observed, and the adjustment of elasticities can only

be made based on the prediction of change in sources of inequality.

To show how much adjustment of elasticity we need when there is inequality gap between

the estimation period and current, we do the following hypothetical exercise. Suppose that

we have estimated the elasticity in the past, and compared to the period of estimation

there has been change in sources of inequality. For 10% increase of each return, how much

adjustment do we need make? we use the same numerical example and the benchmark

calibration as in Section 4.

Table 3 shows the numerical adjustment required in the benchmark calibration. It confirms

that when the return to skill has been increased from the estimation period, we do not have

to make any adjustment for the earnings elasticities. We can use the estimated elasticity
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with no problem despite change in inequality. Since the observed earnings distribution is

already given, the typical sufficient statistic approach works well without any adjustment of

sufficient statistics.

When either return to human capital ν or return to effective labor supply κ increases, the

earnings elasticity should be adjusted upward. The degree of adjustment depends on each

source. Table 3 shows that for the same 10% increase of the return, the adjustment is much

larger in case of rise in return to effective labor supply κ. Return to effective labor supply

essentially increase return to total labor combining the human capital and working hour

together, and thus both human capital investment and working hours do respond to rise in

κ, and thus it has stronger effects on the earnings elasticities.

6 Conclusion

In this paper, we have investigated the role of the sources of inequality on the Pareto efficient

tax schedule. The key message from our paper is that the earnings elasticity is endogenous

to the sources of inequality and its direction of change does depend on each source. Thus

higher inequality can lead to either higher or lower tax rates depending on its sources. This

endogenous elasticity also provide cautions for the application of sufficient static approach

during the period inequality is significantly changing. We need to make proper adjust of

of earnings elasticities if the estimated elasticity is not estimated under the factors that

generate the earnings distribution.
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Appendix (For Online Publication)

A Proofs of Equations in Section 2

We first derive the first order conditions of the planning problem in a genera framework

provided in section 2. We present the planning problem (9) of a general framework and

Lagrangian of this planning problem is given by

L =
∫

λ(θ)v(θ)dF (θ) + η
∫

(G(θ, y(θ)) − C(v(θ), y(θ), θ)) dF (θ)

+
∫

µ(θ)v′(θ)dθ −
∫

µ(θ)Uθ (C(v(θ), y(θ), θ)) dθ

=
∫

λ(θ)v(θ)dF (θ) + η
∫

(G(θ, y(θ)) − C(v(θ), y(θ), θ)) dF (θ)

−
∫

µ′(θ)v(θ)dθ −
∫

µ(θ)Uθ (C(v(θ), y(θ), θ)) dθ,

where the second equality is by integral by parts and using µ(θ̄) = µ(θ) = 0. The first order

conditions of this Lagrangian with respect to v(θ) and y(θ) yields (12) and (13) in the main

text.

We now express the optimality conditions in terms of marginal rate of substitution. First

of all, we obtain the optimality condition from a workers’ problem. Given the value function

U(c, y, θ) associated with sub-problem (2), workers with skill level θ chooses the optimal level

of earnings ω by solving

max
ω

U(ω − T (ω), W −1(ω), θ)

The first order condition of this worker’s problem yields:

MRS(c(θ), y(θ), θ) = (1 − T ′(ω))W ′(y(θ)), (27)

where MRS(c, y, θ) = −Uy(c,y,θ)
Uc(c,y,θ) .

From now on, when it does not cause confusion, we will omit the explicit arguments (c, y, θ)

and simply write the functions as function of θ. Define µ̂(θ) = µ(θ)Uc(θ)
η

. Then the first order

condition of the planning problem (13) can be rewritten as

Gy(θ) − Cy(θ)
MRS(θ) = µ̂(θ) · Uθc(θ)Cy(θ) + Uθy(θ)

Uc(θ)MRS(θ) .
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Note that the derivative of expenditure function C with respect to y is:

Cy(θ) = −Uy(θ)
Uc(θ) = MRS(θ) = W ′(y(θ)) (1 − T ′(ω(θ))) .

Then by combining this with firm’s optimality condition (5), we obtain

T ′(ω)
1 − T ′(ω) = Gy(θ) − Cy(θ)(θ)

MRS(θ) .

Also,
Uθc(θ)Cy(θ) + Uθy(θ)

Uc(θ)MRS(θ) =
−Uθc(θ) Uy(θ)

Uc(θ)2 + Uθy(θ)
Uc(θ)

MRS(θ) = −
∂MRS

∂θ

MRS(θ) ,

so the first-order condition with respect to y becomes

µ̂(θ) = T ′(ω(θ))
1 − T ′(ω(θ))θf(θ)

(
−MRSθ · θ

MRS(θ)

)−1

. (28)

The first-order condition of the planning problem with respect to v(θ) (12) is rewritten as

(using Cv(θ) = 1
Uc(θ))

−µ′(θ)Uc(θ)
η

− µ(θ)Uθc(θ)
η

= f(θ) − λ(θ)Uc(θ)
η

.

Note that µ̂′(θ) = µ′(θ)Uc(θ)
η

+ µ(θ)
η

[Ucθ(θ) + Ucc(θ)c′(θ) + Ucyy′(θ)].

−µ′(θ)Uc(θ)
η

− µ(θ)Ucθ(θ)
η

= −µ̂′(θ) + µ̂(θ) [Ucc(θ)MRS(θ) + Ucy(θ)] y′(θ)
Uc(θ)

= −µ̂′(θ) + µ̂(θ) · (−MRCc) · y′(θ),

where the second inequality uses −∂MRS
∂c

= ∂
Uy
Uc

∂c
= Ucc(− Uy

Uc
)+Ucy

Uc
= UccMRS+Ucy

Uc
. By replacing

the left-hand side of the first-order condition with respect to v, we obtain

−µ̂′(θ) − µ̂(θ) · MRSc · y′(θ) = f(θ) − λ(θ)Uc(θ)
η

. (29)

B Proof of Propositions in Section 3 and Section ??

Test Formula in terms of Skill Distribution and MRS First, we obtain the Pareto efficiency

test formula in terms of skill distribution and marginal rate of substitutions. This formula

will be used to derive the formulas in Section 3 and Section ??.
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Combining (14) with λ(θ) ≥ 0 yields

− µ̂′(θ)θ
µ̂(θ) − MRSc · y′(θ) · θ ≤ θf(θ)

µ̂(θ)

We then replace θf(θ)
µ̂(θ) using (15) to obtain

T ′(ω(θ))
1 − T ′(ω(θ))

(
−MRSθ · θ

MRS(θ)

)−1 [
−d log µ̂(θ)

d log θ
− MRCc(θ) · y′(θ) · θ

]
≤ 1.

Once again, using (15), we replace d log µ̂(θ)
d log θ

to yield

T ′(ω(θ))
1 − T ′(ω(θ))

(
−MRSθ · θ

MRS(θ)

)−1
 − d

d log θ
log

(
T ′(ω(θ))

1−T ′(ω(θ))θf(θ)
(
− MRSθ·θ

MRS(θ)

)−1
)

−MRCc(θ) · y′(θ) · θ

 ≤ 1, (30)

which is the test formula in terms of skill distribution and marginal rate of substitution. We

can also rewrite (30) to express the equivalent formula in an alternative way:

(30)

⇔ −θ · 1
θf(θ) · d

dθ

 T ′(ω(θ))
1 − T ′(ω(θ))θf(θ)

(
−MRSθ · θ

MRS(θ)

)−1


− T ′(ω(θ))
1 − T ′(ω(θ))

(
−MRSθ · θ

MRS(θ)

)−1

· MRSc(θ) · y′(θ) · θ ≤ 1

⇔ −f(θ) − d

dθ

 T ′(ω(θ))
1 − T ′(ω(θ))θf(θ)

(
−MRSθ · θ

MRS(θ)

)−1


− T ′(ω(θ))
1 − T ′(ω(θ))

(
−MRSθ · θ

MRS(θ)

)−1

· MRSc(θ) · y′(θ) · θf(θ) ≤ 0

⇔ d

dθ

 1 − F (θ) − T ′(ω(θ))
1−T ′(ω(θ))θf(θ)

(
− MRSθ·θ

MRS(θ)

)−1

+
∫ θ

θ
T ′(ω(θ̃))

1−T ′(ω(θ̃))

(
− MRSθ·θ̃

MRS(θ̃)

)−1
· MRSc(θ̃) · y′(θ̃) · θ̃f(θ̃)dθ̃

 ≤ 0.

This alternative condition can be stated as
d

dθ
R(θ) ≤ 0, ∀θ, (31)

where

R(θ) = 1 − F (θ) − T ′(ω(θ))
1 − T ′(ω(θ))θf(θ)

(
− MRSθθ

MRS(θ)

)−1

+
∫ θ

θ

T ′(ω(θ̃))
1 − T ′(ω(θ̃))

(
− MRSθθ̃

MRS(θ̃)

)−1

MRSc(θ̃)y′(θ̃)θ̃dF θ̃.

40



B.1 Test Formulas in terms of Earnings Distribution

In this section, we derive the test formulas in terms of earnings distribution (16) in Propo-

sition 2 and alternative representation (17). Proof of Proposition ??—expression of the

earnings elasticities in two classes of models—is provided after deriving the formulas in

terms of skill distribution.

Derivation of Earnings Elasticities In the main text, we defined the elasticities of earn-

ings along nonlinear budget constraint and considering convex wage schedule W (·). These

elasticities are derived here. The earnings function ω(1 − τ, I) which solves the worker’s

problem should satisfy the following first order condition:

G = MRS
(
(1 − τ)ω − T (ω) + I, W −1(ω), θ

)
− (1 − τ − T ′(ω))W ′(W −1(ω)) = 0.

Using the implicit function theorem, we obtain

∂ω(1 − τ, I)
∂(1 − τ)

∣∣∣∣∣
τ=I=0

= −
∂G

∂(1−τ)

∣∣∣
τ=I=0

∂G
∂ω

∣∣∣
τ=I=0

= − MRSc · ω − W ′

MRSc(1 − T ′) + MRSy
1

W ′ − W ′′

W ′ (1 − T ′) + T ′′W ′ ,

and

∂ω(1 − τ, I)
∂I

∣∣∣∣∣
τ=I=0

= −
∂G
∂I

∣∣∣
τ=I=0

∂G
∂ω

∣∣∣
τ=I=0

= − MRSc

MRSc(1 − T ′) + MRSy
1

W ′ − W ′′

W ′ (1 − T ′) + T ′′W ′ .

Thus the elasticities are

ϵu
ω ≡ ∂ω

∂(1 − τ)

∣∣∣∣∣
τ=I=0

1 − T ′

ω
=

W ′

ω
− MRSc

MRSc + MRSy

MRS
− W ′′

W ′ + T ′′

1−T ′ W ′
(32)

ηω ≡ −(1 − T ′) ∂ω

∂I

∣∣∣∣∣
τ=I=0

= MRSc

MRSc + MRSy

MRS
− W ′′

W ′ + T ′′

1−T ′ W ′
(33)

ϵc
ω ≡ ϵu

ω + ηω =
W ′

ω

MRSc + MRSy

MRS
− W ′′

W ′ + T ′′

1−T ′ W ′
. (34)

For later use, the ratio between ηω and ϵc
ω is

ηω

ϵc
ω

= MRSc
ω

W ′(y) = MRSc · y · 1
W ′(y)y
W (y)

. (35)

Proof of Proposition 2 We now derive the Pareto efficiency test formulas in terms of

earnings distribution. To relate the test formulas (30) and (31) to the earnings distribution,
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note that earnings of skill type θ is determined by ω(θ) = W (y(θ)) in equilibrium, and the

earnings distribution and the skill distribution have the relationship H(ω(θ)) = F (θ). Thus

the associated density functions satisfy

f(θ) = h(ω(θ))ω′(θ). (36)

Next, earnings differential across skill ω′(θ) is derived from the workers’ optimality condi-

tion. Workers’ choice of earnings ω(θ) should satisfy the following first order condition:

G = MRS
(
ω − T (ω), W −1(ω), θ

)
− (1 − T ′(ω)) W ′(W −1(ω)) = 0.

Then the earnings differential yields

ω′(θ) = −
∂G
∂θ
∂G
∂ω

= − MRSθ

MRSc(1 − T ′) + MRSy
1

W ′ − W ′′

W ′ (1 − T ′) + T ′′W ′

=
−MRSθθ

MRS
W ′

MRSc + MRSy

MRS
− W ′′

W ′ + T ′′

1−T ′ W ′
· 1

θ

=
W ′

ω

MRSc + MRSy

MRS
− W ′′

W ′ + T ′′

1−T ′ W ′
· ω

θ
·
(

−MRSθθ

MRS

)

= ϵc
ω · ω

θ
·
(

−MRSθθ

MRS

)
.

That is, the relationship between the derivative of marginal rate of substitution and elasticity

of earnings is (
−MRSθθ

MRS

)−1
ω′(θ)θ
ω(θ) = ϵc

ω(ω) (37)

Also, note that from (35)

MRSc(θ)y′(θ)θ = ηω(ω)
ϵc

ω(ω) · y′(θ)θ
y(θ) · W ′(y(θ))y(θ)

W (y(θ)) = ηω(ω)
ϵc

ω(ω) · ω′(θ)θ
ω(θ) . (38)

Using (36), (37), and (38), we can rewrite (30) as

T ′(ω)
1 − T ′(ω)ϵc

ω(ω)
[
− d

d log ω
log

(
T ′(ω)

1 − T ′(ω)ωh(ω)ϵc
ω(ω)

)
− ηω(ω)

ϵc
ω(ω)

]
.

We represent the the revenue incidence of a tax reform of increasing tax rate at earn-

ings level ω by Rω(ω). Note that the revenue incidence function represented in terms
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of skill distribution R(θ) is related to Rω(ω) by Rω(ω(θ)) = R(θ), and this implies that
dR(θ)

dθ
= dRω(ω)

dω
ω′(θ). Since ω′(θ) = W ′(y(θ))y′(θ) ≥ 0, we can also rewrite the alternative

representation of the formula (31). Using(
−MRSθ(θ)θ

MRS(θ)

)−1

MRSc(θ)y′(θ)θ = ϵc
ω(ω)ηω(ω)

ϵc
ω(ω) = ηω(ω),

we obtain the test formula (2) in Proposition 2: dRω(ω)
dω

≤ 0, where

Rω(ω) = 1 − H(ω) − T ′(ω)
1 − T ′(ω) × ωh(ω) × ϵc

ω(ω) +
∫ ω̄

ω

T ′(ω̃)
1 − T ′(ω̃)ηω(ω̃)h(ω̃)dω̃.

B.2 Test Formulas in terms of Skill Distribution and Elasticities

In this section, we derive the test formulas in terms of skill distribution and elasticities.

We have already expressed the formulas in terms of skill distribution and marginal rate of

substitutions above, thus we only need to relate the marginal rate of substitutions to the

elasticities.

Derivation of Labor Supply Elasticities In the main text, we defined the elasticities of

effective units of labor supply y along the linear budget constraint (T ′′ = 0) and assuming

linear wage schedule (W ′′ = 0). We now derive these elasticities. Recall that under the

assumption sof T ′′ = 0 and W ′′ = 0, the effective labor supply function y(1 − τ, I) should

satisfy the following first-order condition given a constant marginal tax rate T̂ ′ = T ′(y):

G = MRS ((1 − τ)y − T (y) + I, y, θ) − (1 − τ − T̂ ′) = 0.

Using the implicit function theorem, we obtain

G = MRS
(
(1 − τ)ω − T (ω) + I, W −1(ω), θ

)
− (1 − τ − T ′(ω))W ′(W −1(ω)) = 0.

Using the implicit function theorem, we obtain

∂y(1 − τ, I)
∂(1 − τ)

∣∣∣∣∣
τ=I=0

= −
∂G

∂(1−τ)

∣∣∣
τ=I=0

∂G
∂y

∣∣∣
τ=I=0

= − MRSc · y − 1
MRSc(1 − T ′) + MRSy

,

and
∂y(1 − τ, I)

∂I

∣∣∣∣∣
τ=I=0

= −
∂G
∂I

∣∣∣
τ=I=0

∂G
∂y

∣∣∣
τ=I=0

= − MRSc

MRSc(1 − T ′) + MRSy

.
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Thus the elasticities are

ϵ̃u ≡ ∂y

∂(1 − τ)

∣∣∣∣∣
τ=I=0

1 − T ′

y
=

1
y

− MRSc

MRSc + MRSy

MRS

(39)

η̃ ≡ −(1 − T ′) ∂ω

∂I

∣∣∣∣∣
τ=I=0

= MRSc

MRSc + MRSy

MRS

(40)

ϵ̃c ≡ ϵ̃u + η̃ =
1
y

MRSc + MRSy

MRS

. (41)

Fro later use, we also note that

ϵ̃c

1 + ϵ̃u
=

1
y

1
y

+ MRSy

MRS

=
(

1 + MRSy · y

MRS

)−1
(42)

η̃

ϵ̃c
= MRSc · y (43)

Note that although the wage rate structure w(θ, e) and specific utility form over (e, h) mat-

ters for the schedule of marginal rate of substitution (MRS), but given MRS schedule, the

expression of the elasticities of y is equivalent to those in standard Mirrlees model.

Proof of Proposition ?? and Proposition ?? We now derive the test formulas in terms

of skill distribution in two classes of models that we considered in the main text. Given

the formulas (30) and (31) in terms of skill distribution and MRS, we relate the derivatives

of MRS to the function of elasticities. This relationship between the MRS and elasticities

depend on the types of models we consider.

Given that the elasticities are expressed in terms of MRSy but that the formulas (30)

and (31) include MRSθ terms, we identify the relationship between MRSθ and MRSy. This

relationship does depend on the wage structure w(θ, e) and primitive utility ũ(c, e, h). Recall

that workers choose (e, h) given (c, y, θ):

U(c, y, θ) = max
e,h

ũ(c, e, h) s.t. w(θ, e)l(e, h) = y

= max
e

ũ

(
c, e, l−1

(
e,

y

w(θ, e)

))

Then MRS(c, y, θ) = −Uy

Uc
= − ũh

ũcwlh
, where the second equality is from the envelope theorem.

44



Differentiating the MRS with respect to θ yields

∂MRS

∂θ
= − ũhhwθlũc − ũh [−ũchwθl + ũcwθlh − ũclhhwθl]

ũ2
cw

2l2
h

, and

−MRSθθ = − ũh

ũcwlh
· wθθ

w
+
[
− ũhh

ũcw2l2
h

+ ũhũch

ũ2
cw

2l2
h

+ ũhlhh

ũcwl3
h

]
· wθθl

= MRS · wθθ

w
+
[
− ũhh

ũcw2l2
h

+ ũhũch

ũ2
cw

2l2
h

+ ũhlhh

ũcwl3
h

]
· y · wθθ

w

= MRS · wθθ

w
+ ∂MRS

∂y
· y · wθθ

w
.

This implies

−MRSθθ

MRS
=
[
1 + MRSy · y

MRS

]
wθθ

w
.

Using (42), we obtain the following relationship between MRSθ and elasticities:

−MRSθθ

MRS
=
(

ϵ̃c(θ)
1 + ϵ̃u(θ)

)−1
wθθ

w
(44)

Note that this relationship holds regardless of specific form of W (·). Using (43) and (44),

(30) and (31) are rewritten in terms of skill distribution and elasticities. Proposition ??

assumes that w(θ, e) = θ, and thus wθθ
w

= 1, then we obtain the formula (??). On the other

hand, Proposition ?? assumes that w(θ, e) ̸= θ, then the term of wθθ
w

does not disappear, and

this yields the formula (??).

Proof of Proposition ??

In the first class of model with W ′′(·) > 0 and w(θ, e) = θ, comparing the compensated

earnings elasticity considering the convex wage schedule ϵc
ω derived in (34) to the compen-

sated elasticity of effective units of labor supply along the linear budget and wage schedule ϵ̃c

derived in (41) yields the first equality in (??). Also, combining (35) and (44) with wθθ
w

= 1

yields the second equality in (??).

In the second class of model with W ′′(·) = 0 and w(θ, e) ̸= θ, once again, we combine

(35) and (44), but in this case the term of wθθ
w

does not disappear, and thus we obtain the

relationship in (??).
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