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Abstract

When both prices and wages are subject to nominal frictions, an increase in input prices
such as energy can initiate a wage-price dynamics, as both nominal wages and prices adjust
slowly. High inflation in prices and wages reduces welfare as it generates distributional effects
and affects aggregate demand. To analyze optimal policy in this environment, we consider a
heterogeneous-agent model, with both wage and price stickiness. We derive joint optimal
fiscal-monetary policy, using a rich set of fiscal tools. We first identify the set of fiscal tools,
which implements nominal price and wage stability as an optimal outcome. Starting from this
equivalence result, we identify the key instrument for implementing price and wage stability,
which appears to be a time-varying wage subsidy. We call this policy a non-Keynesian
stabilization policy, as it does not directly channel through aggregate demand. We finally
compare our results to those obtained in a representative-agent environment

Keywords: Heterogeneous agents, wage-price spiral, inflation, monetary policy, fiscal
policy.
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1 Introduction

Energy price shocks, like in the 70s and in the current conjuncture, have generated different
dynamics in wages and prices. Indeed, on the one hand, workers bargain over nominal wages
and their bargaining power depend on various institutional designs and market properties. On
the other hand, firms facing price-adjustment costs may vary their prices at their own pace.
This two-sided price and wage setting may generate heterogeneous dynamics in real wages and
markups, and as a consequence, imply different price and wage inflation levels. The management
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of this joint wage-price dynamics, which can be the source of large adverse economic effects
on output, inequality and welfare, is a topical economic question. Indeed, inflation generates
distributional effects due to heterogeneous nominal exposures and other indirect channels (Doepke
and Schneider, 2006, Kaplan et al., 2018, or Auclert, 2019, among others). These distributional
effects are affected by fiscal policy, which can thus change the incentives of monetary policy to
mitigate inflation (LeGrand et al., 2022). In particular, certain fiscal tools have recently been
used to directly change inflation. Such tools belong to the so-called unconventional fiscal policy
(D’Acunto et al., 2018), which is still a lively question (Dao et al., 2023). Designing a joint
optimal monetary and fiscal policy is thus a relevant and salient economic question.

The goal of this paper is to derive fiscal and monetary policy in heterogeneous-agent (HA)
models, with both price and wage nominal rigidities, generating both a price and a wage Phillips
curve. Considering an HA model allows us to account for the distributional issues we mentioned
above. We introduce energy in the production sector, and study optimal policy after an energy
price shock, which is akin to a negative TFP shock in our economy. The fiscal policy we consider
features a rich set of tools that include five fiscal instruments: a linear income tax, capital tax,
a labor tax, employer social contributions and public debt – the reason for this choice will be
clarified below. We derive three sets of results.

First, we first study the model with a standard monetary Taylor rules and standard fiscal
rules à la Bohn (1998). We do not focus here on optimal policy and aim to identify the model
responses in the context of standard non-optimal monetary-fiscal policy. Following an energy
price shock, both price and wage inflation increase, which generates a drop in the real wage as
price inflation is higher than the wage inflation. Such joint wage and price dynamics is often
called a wage-price spiral in the literature (Lorenzoni and Werning, 2023). Compared to the
representative-agent (RA) economy (see Erceg et al., 2000, Galí, 2015, chapter 6, and Lorenzoni
and Werning, 2023 for additional results), the HA economy exhibits higher inflation responses,
and hence a more pronounced wage-price spiral. This comes from the heterogeneity in the
consumption drop after the shock.

Second, we prove that if the planner can optimally set the five fiscal instruments, then optimal
price and wage inflation levels are always zero and the planner implements the flexible-price
allocation. We have chosen these instruments as the minimal set (in the sense of the smallest
cardinal) of fiscal tools that allows us to derive this equivalence result. This result is in the same
vein as the ones of Correia et al. (2008), who consider a RA economy and of LeGrand et al.
(2022), who consider a HANK model with a unique nominal friction – as in the majority of the
HANK literature (see Kaplan et al., 2018 or Auclert et al., 2021 for a discussion). Including
two types of nominal frictions is not a minor change. Indeed, nominal wage rigidity generates
suboptimal real wage frictions and implies that households are out of their labor supply. A
consequence is that introducing one nominal friction in addition to the one in LeGrand et al.
(2022) requires two additional fiscal tools to restore the price-wage stability. These tools allow
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us to identify the channels through which inflation in wages or prices can be welfare improving
when one or several fiscal are missing. When deriving the first-order conditions of the Ramsey
planner, we make some effort to connect these conditions to the public finance approach (e.g.,
Saez and Stantcheva, 2016) to improve our understanding of policy tradeoffs in HA economies.

Third, we remove some of the five fiscal tools to identify economically and quantitatively the
most important contributors to inflation stabilization. Our results indicate that the time-varying
employer social contribution is the key instrument. Indeed, this tax allows the planner to modify
the labor cost paid by the firm while letting the nominal wage of workers unchanged. So, even if
nominal wages are sticky, decreasing this tax after a negative TFP shock allows the planner to
reduce the labor cost and make it closer to the the marginal productivity of labor. In consequence,
this reduces the room for monetary policy to decrease the real wage (and increase employment)
through inflation. Removing this fiscal tool implies sizable wage and price inflation response to
compensate for the missing instrument. It is noteworthy that these tools were massively used in
Europe during the Covid-19 crisis to stabilize employment. In Germany, this was called kurzarbeit,
while this was activité partielle policy in France for instance.1 Hence, although additional work
is indeed to complement our findings, time-varying automatic employment stabilizers (instead of
automative stabilizers increasing directly aggregate demand) appear to be promising instruments
to stabilize inflation and employment over the business cycle.2

Related literature. This paper belongs to the literature on optimal policy in heterogeneous
agent model on one side, and on wage-price spirals on the other side. Deriving optimal policy in
heterogeneous-agent models with aggregate shocks is a difficult theoretical and computational
task. Some papers consider numerical methods to solve for optimal path of the instruments
(Dyrda and Pedroni, 2022). Other papers rely on continuous-time techniques for the theoretical
derivation of the first-order conditions of the planner (Nuño and Thomas, 2022 among others).
Acharya et al. (2022) solve for optimal monetary policy using the tractability of the CARA-normal
environment without capital. Bhandari et al. (2021) quantitatively solve for optimal policies in
a new-Keynesian model with aggregate shocks. Yang (2022) solves for the optimal monetary
policy by optimizing on the coefficients of a Taylor rule. McKay and Wolf (2022) derive a general
quadratic-linear formulation to solve for optimal policy rules. In this paper, we use the tools of
LeGrand and Ragot (2022a) and the improvements of LeGrand and Ragot (2022c) to solve for
optimal fiscal and monetary policy with aggregate shocks. The gain of this approach is to allows
to easily solve for optimal policy with many tools and with various nominal frictions. On the

1Note that any fiscal instrument affecting real labor cost would generate the same desirable outcome, but we
consider the time-varying social contribution for its close connection to recent mechnisms.

2McKay and Reis (2021) study optimal automatic stabilizers in the context of optimal replacement rate. Their
main focus is the trade-off between insurance and incentives in the presence of an aggregate demand effect. The
mechanism we identify is different as it directly affects the gap between the real wage and the marginal productivity
of labor.
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theoretical side, the Lagrangian approach pioneered in Marcet and Marimon (2019) enables us
to derive the first-order conditions of the Ramsey planner in an environment with both wage
and price rigidities.

Regarding the literature on wage-price spirals, models including both price and wage stickiness
have been studied in RA economies (Blanchard, 1986, Galí, 2015, chapter - chapter 6, or
Blanchard and Gali, 2007 among others). Erceg et al. (2000) study optimal monetary policy in
this environment. Recently, Lorenzoni and Werning (2023) analyze more deeply optimal policy
and the real wage dynamics in this environment.

2 The environment

We consider a discrete-time economy populated by a continuum of size one of ex-ante identical
agents. These agents are assumed to be distributed along a set J , with the non-atomic measure
`: `(J) = 1.3

2.1 Risk

We assume that the agents face an idiosyncratic productivity risk. The productivity process,
denoted y, is assumed to take value in a finite set Y and to follow a first-order Markov chain with
transition matrix π = (πyy′)y,y′ . With wage w and labor supply l, an agent with productivity
y earns the labor income wyl. In each period, the fraction of agents with productivity y is
constant and denoted by ny. We normalize average productivity to 1, i.e., such that

∑
y nyy = 1.

The history of idiosyncratic productivity shocks up to date t for an agent i is denoted by
yti = {yi,0, . . . , yi,t} ∈ Yt+1, where yi,τ is the date-τ productivity. The measure of idiosyncratic
histories up-to-date t, denoted by θt, can be computed using the initial distribution and the
transition matrix.

In addition to the previous idiosyncratic risk, agents face an aggregate risk z affecting the
economic TFP, denoted by Z. We show in Section 2.9 that the aggregate risk can be interpreted
as a shock on energy price.

2.2 Preferences

Households are expected-utility maximizers endowed with time-separable preferences and a
constant discount factor β ∈ (0, 1). In each period, households enjoy utility U(c, l) from the
consumption c of the unique consumption good of the economy and suffer from the disutility of
providing the labor supply l. We further assume that in each period, the instantaneous utility
is separable in consumption and labor: U(c, l) = u(c) − v(l), where u, v : R+ → R are twice

3We follow Green (1994) and assume that the law of large numbers holds.
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continuously differentiable and increasing. Furthermore, u is concave, with u′(0) =∞, and v is
convex.

2.3 Labor taxes

For the sake of generality, and for a theoretical reason which we develop in Section 2.8 below, we
introduce a rich set of linear labor tax, to have realistic wage bargaining process. First, we assume
that unions bargain over the nominal wage rate, denoted by Ŵt. Workers pay a linear labor tax
τLt on this income such that their post-tax income is (1− τLt )Ŵt. Second, firms pay an additional
labor tax, τSt , which implies a wedge between the labor cost per unit of labor, W̃t, paid by firms
and the wage Ŵt bargained by workers. This additional tax can be thought of as an employer
social contribution that does not appear on the payroll of workers. Formally, the labor cost W̃t,
the bargained wage Ŵt and the tax τS verify the following relationship: Ŵt = (1− τSt )W̃t. The
tax τSt will have an effect on labor demand that will be internalized by unions in their bargaining
strategy. Similarly, the tax τLt will have an effect on labor income that will also be internalized.
The difference between the two taxes is that τSt has a direct effect on employment for a given
bargained wage Ŵt but not on the hourly wage income, whereas τLt has a direct effect on hourly
wage Wt for a given wage Ŵt, but no direct effect on employment.4

2.4 Production

The specification of the production sector follows the New-Keynesian literature on price stickiness,
adapted to the previous tax structure. The consumption good Yt is produced by a unique profit-
maximizing representative firm that combines intermediate goods (yfj,t)j from different sectors
indexed by j ∈ [0, 1] using a standard Dixit-Stiglitz aggregator with an elasticity of substitution,
denoted εP :

Yt =
[ˆ 1

0
yfj,t

εP−1
εP dj

] εP
εP−1

.

For any intermediate good j ∈ [0, 1], the production yfj,t is realized by a monopolistic firm and
sold at price pj,t. The profit maximization for the firm producing the final good implies:

yfj,t =
(
pj,t
Pt

)−εP
Yt, where Pt =

(ˆ 1

0
p1−εP
j,t dj

) 1
1−εP

.

The quantity Pt is the price index of the consumption good. Intermediary firms are endowed
with a Cobb-Douglas production technology and use only labor. The production technology
involves that l̃j,t units of labor are transformed into yfj,t = Zt l̃j,t units of intermediate good. Since

4We denote direct effect the partial equilibrium effect of each variable. In general equilibrium (with endogenous
income), these taxes affect all variables.
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intermediate firms have market power, the firm’s objective is to minimize production costs, subject
to producing the demand yfj,t. The cost function Cj,t of firm j is therefore Cj,t = minl̃j,t{w̃t l̃j,t},
subject to yfj,t = Zt l̃j,t, where w̃t = W̃t/Pt is the real overall wage rate. The maximization implies
the following mark-up:

mt = 1
Zt
w̃t. (1)

In addition to the production cost, intermediate firms face a quadratic price adjustment cost
à la Rotemberg when setting their price. Following the literature, the price adjustment cost is
proportional to the magnitude of the firm’s relative price change and equal to ψp

2

(
pj,t
pj,t−1

− 1
)2
.

We can thus deduce the real profit, denoted Ωt at date t of firm j:

Ωj.t =
(pj,t
Pt
−mt(1− τYt )

)(pj,t
Pt

)−ε
Yt −

ψP
2

(
pj,t
pj,t−1

− 1
)2

Yt − tYt ,

where tYt is a lump-sum tax financing the subsidy τY . Computing the firm j’s intertemporal
profit requires to define the firm’s pricing kernel. We follow Bhandari et al. (2021) and assume
a constant pricing kernel.5 The firm j’s thus sets its price schedule (pj,t)t≥0 to maximize its
intertemporal profit at date 0: max(pj,t)t≥0 E0[

∑∞
t=0 β

tΩj,t]. The solution is independent of the
firm type j and all firms in the symmetric equilibrium charge the same price: pj,t = Pt. Denoting
the price inflation rate as πPt = Pt

Pt−1
− 1 and setting τY = 1

εP
to obtain an efficient steady state,

we obtain the standard equation characterizing the Phillips curve in our environment:

πPt (1 + πPt ) = εP − 1
ψP

(mt − 1) + βEt
[
πPt+1(1 + πPt+1)Yt+1

Yt

]
, (2)

where:

Yt =ZtLt (3)

The real profit is independent of the firm’s type and can be expressed as follows:

Ωt =
(
1− ψP

2 (πPt )2
)
Yt − w̃tLt. (4)

2.5 Labor market: Labor supply and Union wage decision

Following the New Keynesian sticky-wage literature, labor hours are supplied monopolistically
by unions (Auclert et al., 2022). There is a continuum of unions of size 1 indexed by k and
each union k supplies Lkt hours of labor at date t with nominal wage Ŵkt. Union-specific labor
supplies are then aggregated into aggregate labor supply by a competitive technology featuring a

5Our own computations also show us that the quantitative impact of the pricing kernel is limited.
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constant elasticity of substitution εW :

Lt =
(ˆ

k
L
εW−1
εW

kt dk

) εW
εW−1

. (5)

The competitive aggregator demands the union labor supplies (Lkt)k that minimize the total
labor cost

´
k ŴktLk,tdk subject to the aggregation constraint (5), where Ŵkt is the bargained

nominal wage of the members of union k. The demand for labor of union k depends on the total
labor cost paid by the firm W̃kt: Lkt =

(
W̃kt

W̃t

)−εW , where W̃t =
(´

k W̃
1−εW
kt dk

) 1
1−εW is the total

nominal wage index. As the labor demand depends on relative wages, and W̃kt

W̃t
= Ŵkt

Ŵt

1−τSt
1−τSt

= Ŵkt

Ŵt
,

total labor demand can be written as:

Lkt =
(
Ŵkt

Ŵt

)−εW
Lt, (6)

where Ŵt =
(´

k Ŵ
1−εW
kt dk

) 1
1−εW is the bargained nominal wage index. Each union k sets its wage

Ŵkt so as to maximize the intertemporal welfare of its members subject to fulfilling the demand
of equation (6). We assume the presence of quadratic utility costs related to the adjustment of
the nominal wage and equal to ψW

2 (Ŵkt/Ŵkt−1 − 1)2dk. The objective of union k is thus:

max
(Ŵks)s

Et
∞∑
s=t

βs
ˆ
i

(
u(ci,s)− v(li,s)−

ψW
2

(
Ŵks

Ŵks−1
− 1

)2)
`(di),

subject to (6) and where ci,t and li,t are the consumption and labor supply of agent i. The
first-order condition with respect to Wkt thus writes as:

πWt (πWt + 1) = Ŵkt

ψW

ˆ
i

(
u′(ci,t)

∂ci,t

∂Ŵkt

− v′(li,t)
∂li,t

∂Ŵkt

)
`(di) + βEt

[
πWt+1(πWt+1 + 1)

]
, (7)

where the wage inflation rate is denoted by:

πWt = Ŵk,t

Ŵk,t−1
− 1.

The labor supply lit of agent i is the sum of her hours likt supplied to union k, summed over
all unions: lit =

´
k liktdk. Each union is assumed to request its members to supply an uniform

number of hours, such that: likt = Lkt. We thus deduce from (6):

Ŵkt
∂li,t

∂Ŵkt

= Ŵkt

∂
(´
k

(Ŵkt

Ŵt

)−εWLtdk)
∂Ŵkt

= −εWLkt. (8)

To compute the derivative of consumption ∂ci,t
∂Ŵkt

, it should observed that it is equal to the
derivative of its net total income. The net total income of agent i writes as (1− τLt )Ŵktyi,tli,t/Pt,
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where τLt is the labor tax. Formally:

1
ci,t

∂ci,t

∂Ŵkt

= 1
Ŵkt

+ 1
li,t

∂li,t

∂Ŵkt

= 1
Ŵkt

− εW

Ŵkt

Lkt
li,t

Ŵkt
∂ci,t

∂Ŵkt

= (1− εW )(1− τLt )Ŵktyi,tli,t/Pt (9)

We focus on the symmetric equilibrium where all unions choose to set the same wage Ŵkt = Ŵt,
hence all households work the same number of hours, equal to lit = Lt. Combining (7) with the
partial derivatives (8) and (9), we deduce the following Phillips curve for wage inflation:

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

(1− τLt )ŵt
ˆ
i
yi,tu

′(ci,t)`(di)︸ ︷︷ ︸
labor gap

)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

(10)
where ŵt = Ŵt/Pt is the real pre-tax wage.

2.6 Assets

The only asset is nominal public debt, whose supply size is denoted by Bt at date t, and which
pays off the pre-determined before-tax nominal interest rate it−1. Public debt is issued by the
government and assumed to be default free. The financial market clearing implies that the net
total savings of households, denoted At, must equal public debt:

At = Bt. (11)

The corresponding real before-tax (net) interest rate for public debt, denoted by r̃t, is defined by:

r̃t = 1 + it
1 + πPt

− 1. (12)

2.7 Agents’ program, resource constraints, and equilibrium definition

Each agent enters the economy with an initial endowment of public debt ai,−1 and an initial
productivity level yi,0. The joint initial distribution over public debt and productivity levels is
denoted Λ0. In later periods, each agent learns her productivity level yi,t, supplies labor, and
earns her savings payoffs. Since the labor supply Lt is chosen by unions, the labor income is
(1− τLt )ŵtyi,tLt. The before-tax real financial payoff amounts to r̃tai,t−1.

We assume that agents pay two other taxes. First, a capital tax τ̂Kt is levied on interest
payment and implies a net asset payoff (1−τ̂Kt )r̃tai,t−1. Second, an income tax τEt is levied on total
income, which implies a post-tax total income equal to (1−τEt )

(
(1−τLt )ŵtyi,tLt+(1−τ̂Kt )r̃tai,t−1

)
.
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We assume that the latter income tax τEt is not internalized by the unions, as the latter cannot
observe total income.6

Agents earn this net total income and use it together with their past savings to consume ci,t
and save ai,t. Their budget constraint can be expressed as follows:

ci,t + ai,t = ai,t−1 + (1− τEt )
(
(1− τ̂Kt )r̃tai,t−1 + (1− τLt )ŵtyi,tLt

)
. (13)

To simplify the previous notation, we define the post-tax real interest and wage rates as:

rt = (1− τEt )(1− τ̂Kt )r̃t, (14)

wt = (1− τEt )(1− τLt )ŵt = (1− τEt )(1− τLt )(1− τSt )w̃t. (15)

The agent’s program can be finally be written as:

max
{ci,t,ai,t}∞t=0

E0

∞∑
t=0

βt (u(ci,t)− v(Lt)) , (16)

ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt, ai,t, (17)

and subject to the credit constraint ai,t ≥ −a, and the consumption positivity constraint ci,t > 0.
The notation E0 is an expectation operator over both idiosyncratic and aggregate risks. The
solution of the agent’s program is a sequence of functions, defined over ([−ā; +∞)×Y)×Yt×Rt

and denoted by (ct, at)t≥0, such that:7

ci,t = ct((ai,−1, yi,0), yti , zt), ai,t = at((ai,−1, yi,0), yti , zt). (18)

For the sake of simplicity, we will keep using the notation with the i-index. Denoting by νi,t the
discounted Lagrange multipliers of the credit constraint, the Euler equation corresponding to the
agent’s program (16) is:

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t. (19)

2.8 Government and market clearing

The government has to finance an exogenous public good expenditure Gt, by raising a quite large
number of taxes and by issuing one-period riskless public debt. First, the government raises
three kinds of labor taxes: (i) a tax τSt based on labor cost w̃t and paid by employers, (ii) a
tax τLt based on bargained wage ŵt and paid by workers, and finally (iii) a tax τEt based on
total income and paid by workers. Importantly, the three labor instruments are independent and

6The justification of this tax is presented in the next section. Although playing a major theoretical role, it has
a modest quantitative impact, as we illustrate below.

7See e.g. Miao (2006), Cheridito and Sagredo (2016), and Açikgöz (2018) for a proof of the existence of such
functions.
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not redundant. Indeed, on the one hand, τSt creates a wedge between the labor cost and the
bargained wage, while τLt and τEt create wedges between the bargained wedge and the net wage.
On the other hand, τLt is internalized by unions, while τEt is not. These three taxes will play on
different margins and will allow us derive our equivalence result below. Hence, they should be
understood as theoretical tools needed to generate price and wage stability. Each tax will be
removed in turn to consider more realistic fiscal settings and to assess how each fiscal instrument
contributes to inflation volatility.

In addition to capital and labor taxes and to public debt, the government also fully taxes
the firms’ profits, Ωt, which limits the distortions implied by profit distribution. We can now
express the government budget constraint. The government has to finance public spending and
the repayment of past public debt. Its resources consist of all labor taxes, capital taxes, corporate
profits, and newly issued public debt. We obtain:

Gt + 1 + it
1 + πPt

Bt−1 ≤ Ωt +Bt + τEt
(
(1− τ̂Kt )r̃t

ˆ
i
ai,t−1`(di) + (1− τLt )ŵtLt

)
+ τ̂Kt r̃t

ˆ
i
ai,t−1`(di) + τLt ŵtLt + τSt w̃tLt.

We can simplify the previous government budget constraint using the financial market clearing
(11), the post-tax interest rate r̃t (12), and the profit definition (4):

Gt +
(
1 + (1− τEt )(1− τ̂Kt )

)
Bt−1 + (1− τLt )(1− τEt )ŵtLt ≤

(
1− ψP

2 (πPt )2
)
Yt +Bt,

which using post-tax rate definitions (14) implies:

Gt + rtBt−1 + wtLt ≤
(
1− ψP

2 (πPt )2
)
Yt +Bt −Bt−1, (20)

We finally express the financial market clearing condition and the economy resource constraints:
ˆ
i
ai,t`(di) = At = Bt, (21)

ˆ
i
ci,t`(di) +Gt =

(
1− ψP

2 (πPt )2
)
ZtLt. (22)

Equilibrium definition. We can finally formulate our definition of competitive equilibrium.

Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection
of individual functions (ci,t, ai,t, νi,t)t≥0,i∈I , of aggregate quantities (Lt, At, Yt,Ωt,mt)t≥0, of price
processes (wt, rt, r̃t, ŵt, w̃t, it)t≥0, of fiscal policies (τLt , τSt , τEt , τ̂Kt , Bt)t≥0, and inflation dynamics
(πWt , πPt )t≥0 such that, for an initial wealth and productivity distribution (ai,−1, yi,0)i∈I , and
for an initial value of public debt verifying B−1 =

´
i ai,−1`(di), and for an initial value of the

aggregate shock z0, we have:
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1. given prices, the functions (ci,t, ai,t, νi,t)t≥0,i∈I solve the agent’s optimization program
(16)–(17);

2. financial, and goods markets clear at all dates: for any t ≥ 0, equations (21) and (22) hold;

3. the government budget is balanced at all dates: equation (20) holds for all t ≥ 0;

4. firms’ profits Ωt and the mark-up mt are consistent with equations (1) and (4);

5. the price inflation path (πPt )t≥0 is consistent with the price Phillips curve (2), while the
wage inflation path (πWt )t≥0 is consistent with the wage Phillips curve (10);

6. the nominal and real rates (r̃t, it)t≥0 verify (12);

7. post tax rates (wt, rt, r̃t, ŵt, w̃t)t≥0 are defined in equations (14)–(15).

2.9 Interpretation the TFP shock as an energy price shock

We explain how the TFP shock can be interpreted as an energy price shock. We do so in a
general case featuring capital. We consider a CRS production function F̃ using capital, labor,
and energy. Energy is denoted E and its price is denoted by q̃. We thus have:

F̃ (K,L,E) = Z̃KαKLαLE1−αK−αL ,

where αK and αL are capital and labor shares respectively. We can easily generalize the
construction of Section 2.4. The markup of equation (1) is denoted with a tilde and becomes:
m̃t = 1

Z̃t

(
r̃Kt +δ
αK

)αK ( w̃t
αL

)αL ( q̃t
1−αK−αL

)1−αK−αL , while factor prices are defined as follows:

r̃Kt + δ = m̃tαKZ̃tK
αK−1
t−1 LαLt E1−αK−αL

t , (23)

w̃t = m̃tαLZ̃tK
αK−1
t−1 LαL−1E1−αK−αL

t , (24)

q̃t = m̃t(1− αK − αL)Z̃tKαK
t−1L

αL
t E−αK−αLt (25)

Using the expression (25) of q̃t, we obtain:

Et =
(
m̃t(1− αK − αL)Z̃t

q̃t

) 1
αK+αL

K
αK

αK+αL
t L

αL
αK+αL
t . (26)

We introduce the following notation:

Zt = Z̃
1

αK+αL
t

(
q̃t

1− αK − αL

)1− 1
αK+αL

, (27)

α = αK
αK + αL

, (28)

mt = (αK + αL)m̃
1

αK+αL
t . (29)
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Substituting for the expression (26) of Et into factor prices (23), we obtain:

r̃Kt + δ = mtαZtK
α−1
t L1−α

t , (30)

where the second equality comes from rearrangement and the last from the definitions (27)–(29).
Similarly for (24):

w̃t = mt(1− α)ZtKα
t−1L

−α
t . (31)

We have been able to rewrite factor prices r̃t and w̃t consistently with factor price definition. We
now have to find a consistent definition of the production function. Adapting (3), we have:

F̃ (Kt−1, Lt, Et) = (r̃Kt + δ)Kt−1 + w̃tLt + q̃tEt
m̃t

,

or after substituting the expressions of F̃ and Et and

(r̃Kt + δ)Kt−1 + w̃tLt
m̃t

= Zt(αK + αL)m̃
1

αK+αL
−1

t Kα
t−1L

1−α
t ,

where we have used the definitions (27) of Ztand (28) of α. Using the definition (29) of m̃t, we
finally obtain:

ZtK
α
t−1L

1−α
t = (r̃Kt + δ)Kt−1 + w̃tLt

mt
,

which is thus similar to (3). The function F (K,L) = ZKαL1−α with Z and α defined in (27)
and (28) is thus consistent with the new definitions of factor prices (30) and (31), the markup
(29), as well as with the equation (3) connection output, factor prices and markups.

Interestingly, the TFP expression is Zt = Z̃
1

αK+αL
t

(
q̃t

1−αK−αL

)1− 1
αK+αL with 0 < αK+αL < 1:

an increase in energy prices (a higher q̃t) can thus be interpreted as a drop in TFP Zt. We will
use this analogy in our quantitative exercise of Section 6.

Alternatively to a Cobb Douglas production function, one would consider a production
function with Constant Elasticity of Substitution (CES) of the following form:

F (Kt−1, Lt, Et) = Zt
[
(1− ε)

1
η

(
Kα
t−1L

1−α
t

) η−1
η + ε

1
η
(
Et
) η−1

η

] η
η−1

where ε is the energy share and η and the elasticity of substitution between energy inputs and
value-added Vt = Kα

t−1L
1−α
t . When the elasticity of substitution is close to zero, small fluctuation

in quantity of energy supplied can cause large spike in energy prices and marginal costs for firms.
This ordering of the nests between energy, labor and capital is suggested by empirical evidence
that the energy share in the economy follows closely the fluctuation in energy prices. Such CES
expression is well suited for matching such patterns, as suggested in Hassler et al. (2021). We
cover this production function in a forthcoming extension of this work.
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3 Understanding the mechanisms in a simpler RA environment

Before solving for optimal fiscal and monetary policy in the general model, we consider here
simpler environments, in which instruments follow simple rules. This will allow us to identify the
key mechanisms at stake in this two-friction economy. We assume that the labor tax follows a
rule à la Bohn (1998) that aims to stabilize public debt:

τLt = τLss − cB(Bt −Bss), (32)

where τLss and Bss are the steady-state values of labor tax and public debt and cB > 0 is the
rule parameter. The higher cB, the stronger the reaction of the labor tax τL top an increase in
public debt. The other fiscal instruments are set to 0: τSt = τEt = τ̂Kt = 0, what is the standard
assumption in the literature.

The monetary policy follows a standard Taylor rule:

it = rss + φπEtπPt+1, (33)

where rss is the steady real interest rate and φπ > 1. Finally, we assume that the log of TFP
follows an AR(1) process: Zt = eut , with:

ut = ρuut−1 + εut ,

where ρu ∈ (0, 1) is the persistence and εut is the TFP shock.
We further consider an economy featuring a representative agent – which corresponds to a

unique productivity level, equal to y = 1 for all agents. We further take advantage of simplifying
assumptions to derive analytical solutions and identify key mechanisms at stake. We later verify
that the mechanisms we identify still hold in a more general representative-agent economy.

Our main assumption for analytical tractability is to consider a log-linearized version of the
model in the case of myopic price setters (i.e., β = 0). In this case, the two Phillips curves (2)
and (10) simplify as follows.

πWt = εW
ψW

(
v′(Lt)−

εW − 1
εW

(1− τLt )ŵt
ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt,

πPt = εP − 1
ψP

(mt − 1).

Removing the expectation term reduces the dimensionality of the dynamic system, without
changing the nature of the mechanisms, as we will check using numerical simulations. Our first
result, presented in the next proposition, considers monetary policy without fiscal policy.

Proposition 1 (Representative agent) We assume χ = φ = γ = 1 and no fiscal policy
Gss = Bss = cB = 0. Then, the dynamics of the real wage is wt = d1wt−1 + d2ut, where d2 has
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the sign of: (
εP − 1
ψP

− εW − 1
ψW

)
(1− ρu) + 2εP − 1

ψP

εW − 1
ψW

(φπ − 1)ρu. (34)

The proof is in Appendix A.1. The previous propositions characterizes the reaction of the real
wage to a technology shock ut. The direction of this reaction crucially depends on the persistence
of the aggregate shock. When the TFP shock is very persistent (ρu close to 1), the term in
(34) becomes approximately equal to 2 εP−1

ψP
εW−1
ψW

(φπ − 1), which is always positive since φπ > 1.
In other words, in the absence of fiscal response, when the TFP shock is persistent, the real
wage increases in booms. When the TFP shock is transitory, the effect is not univocal any more.
Indeed, when the TFP shock is transitory (ρu close to 0), the sign of (34) is given by the sign of
εP−1
ψP
− εW

ψW
, i.e., to the sign of the difference between the slopes of the price and wage Phillips

curves. When the slope of the price Phillips curve is higher than the wage one, the real wage
will increase after a positive TFP shock. Oppositely, when the slope of the wage Phillips curve is
higher, the real wage will decrease at impact. In general (when 0 < ρu < 1), the response of the
real wage to the TFP shock will result from the combination of the two previous effects.

Our second result concerns the response of wage to a TFP shock in the presence of fiscal
policy.

Proposition 2 (Representative agent) We assume χ = φ = γ = 1 and a fiscal policy given
by rule (32). We further assume that the slopes of the Philipps curves and the fiscal response cB

are small. Then, the dynamics of the real wage is wt = d1wt−1 + d3bt−1 + d2ut, where d2 has the
sign of (

εP − 1
ψP

− εW − 1
ψW

)
(1− ρu) + εP − 1

ψP

(
2εW − 1

ψW
(φπ − 1)− cB

)
ρu (35)

The proof is in Appendix A.2. The two state variables are wt−1and bt−1. The fiscal coefficient
now enters the response of the real wage, as it affects the wage bargaining process. The fiscal
response tends to decrease the response of the real wage to the TFP shock, especially when the
shock is persistent. Indeed, the fiscal response implies an increase in labor tax, which tends
to decrease the real net wage. Similarly, the fiscal response also affects both price and wage
inflation rates, which becomes:

πPt = εP − 1
ψP

wt −
εP − 1
ψP

ut + εP − 1
ψP

cBbt−1,

πWt = wt − wt−1 + πPt .

4 The Ramsey problem

We now solve for the optimal policy in the general model, featuring heterogeneous agents and
the full fiscal system. Following LeGrand et al. (2022), we assume that the planner maximizes a
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generalized social welfare function, where the weights on each period utility can depend on the
current productivity of the agent. The objective of the planner is:

W0 = E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit)− v(lit)

)
`(di)− ψW

2 (πWt )2
]
. (36)

This expression embeds the utilitarian case, where ω(y) = 1 for all y, and the motivation for this
generalization is explained in the quantitative section below. The Ramsey planner’s program can
be written as:

max
(τLt ,τSt ,τEt ,πPt ,πWt ,wt,rt,it,Lt,(ci,t,ai,t,νi,t)i)t≥0

W0, (37)

Gt + (1 + rt)
ˆ
i
ai,t−1`(di) + wtLt ≤

(
1− ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,t`(di), (38)

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt, (39)

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0, (40)

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t, (41)

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wt
1− τLt

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

(42)

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1− τLt )(1− τSt )(1− τEt )

− 1) + βEt
[
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

]
,

(43)

(1 + πWt ) wt−1
1− τLt−1

= wt
1− τLt

(1 + πPt ), (44)

Et[1 + rt+1] = Et

[
1 + it

1 + πPt+1

]
. (45)

and subject to the positivity of consumption choices, and initial conditions.
The constraints in the Ramsey program include: the governmental and individual budget

constraints (38) and (39), the individual credit constraint (and related constraints on νi,t) (40),
the individual Euler equations (41), the Phillips curves (42) and (43), the relationship (44)
between price and wage inflation rates, and the relationship (45) between real and nominal rates.

This economy faces different frictions, which are worth summarizing. The monetary econ-
omy features two sets of market imperfections. The first set is related to the goods market.
Intermediary firms enjoy a monopoly power, which implies a price markup mt that can differ
from one. There is also a Rotemberg cost for price adjustment, which prevents firms from freely
setting their price. Note that the good market imperfections are complementary: one vanishes
when the other is absent, as can be seen from the price Phillips curve (2). The second set of
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imperfections is related to the labor market. The union implies that the labor supply of agents is
not set optimally, while the Rotemberg cost for wages prevents unions from freely setting wages.
Note that in the absence of Rotemberg cost, the labor supply still remains sub-optimal, as it
remains set at the union level. Without Rotemberg cost, the equation characterizing the choice
of the labor supply (common to all agents) would be v′(Lt) = wt

´
i yi,tu

′(ci,t)`(di), while it would
be v′(li,t) = wtyi,tu

′(ci,t), if agents were able to choose their individual labor supply li,t. This
sub-optimal common labor choice will play a major role in our equivalence results below.

Roadmap. To decompose and identify the mechanisms at stake, we decompose the analysis
in several steps. In all cases, we will assume that the economy starts in period 0 from the
steady-state distribution and is then hit once by a negative persistent productivity shock. We
hence focus on so-called MIT shocks. Moreover, we focus on the case where Gt = 0 for the
theoretical results – so as to stress out the impact of the TFP shock and not of the financing
of public spending. We will relax the latter assumption and allow Gt > 0 in the quantitative
section below.

We will consider various economies, corresponding to different sets of instruments available
for the planner.

1. We first characterize the flexible-price allocation, where all instruments (τEt , τLt , τSt ) are
available a,d where all agents are constrained to supply the same hours (li,t = Lt) but
without union market power.

2. We then characterize the optimal allocation, where all fiscal (τEt , τLt , τSt ) and monetary
instruments (it) are available and where unions are present. We show that the planner
reproduces the previous allocation, and implements price and wage stability. This our main
equivalence result.8

3. We then characterize the optimal allocation, where unions are present but where only two
fiscal instruments (τLt , τSt ) and monetary instruments (it) are available. We show that the
planner implements price stability (πPt = 0), but not nominal wage stability (πWt 6= 0).

4. We finally characterize the optimal allocation with only one fiscal (τLt ) instrument. The
planner then deviates from both price and wage stability: πPt , πWt 6= 0.

Finally, the previous analysis is performed both for the heterogeneous-agent and the representative-
agent economies. This will allow us to understand in each case the contribution of market
incompleteness.

To simplify the derivation of first-order conditions, we use some aspects of the methodology
of Marcet and Marimon (2019) used in LeGrand et al. (2022), which is sometimes called the

8We ensure that the steady state is the same for the cases 2-5 analyzed below.
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Lagrangian method (Golosov et al., 2016), applied to incomplete-market environments. This
methodology connects to the public finance literature – that we further explain in the different
environments listed above.

The summary is provided in Table 1 in Section 4.2. Section 6 provides a quantification of the
different mechanisms.

4.1 The flexible-price economy

The flexible-price economy features no price- and no wage-adjustment cost. In this economy, all
workers are assumed to work the same number of hours and the planner is assumed to be able to
directly choose this common labor supply.9 The firms make no profit and we thus have mt = 1.
In addition, monetary policy has no role has price are fully flexible, and the real interest rate is
determined in equilibrium.

To save some space, we provide the program in Appendix B.1, and focus here on the
methodology and the main results. First, we denote by βtλi,t the Lagrange multipliers of the
Euler equations (41) of agent i at date t. The Lagrange multiplier of the government budget
constraint is βtµt. (38) with πPt = 0. We can then express the intertemporal Lagrangian of the
program, denoted by L. From this Lagrangian, we can define ψFPi,t as:

ψFPi,t := ∂L
∂ci,t

,

which is the value for the planner to transfer one extra unit of consumption good to agent i
in period t.10 To some extent, this quantity can be understood as the planner’s version of the
agent’s marginal utility of consumption. We call this amount, the social valuation of liquidity for
agent i. The expression of ψFPi,t is:

ψFPi,t := ωitu
′(ci,t)︸ ︷︷ ︸

direct effet

− (λi,t − (1 + rt)λi,t−1)u′′(ci,t)︸ ︷︷ ︸
effect on savings

. (46)

We add the upper-script FP to refer to flexible price, as the nature of the friction will change
the expression of the valuation of liquidity for agents i. As can be seen in equation (46), this
valuation consists of two terms. The first is the marginal utility of consumption ωitu′(ci,t), which
is the private valuation of liquidity for agent i multiplied by the current weight of agent i. The
second term in (46) takes into consideration the impact of the extra consumption unit on saving
incentives from periods t − 1 to t and from periods t to t + 1. An extra consumption unit
makes the agent more willing to smooth out her consumption between periods t and t+ 1, and

9It is also possible to solve the model where the planner can différentiate hours across agents. The allocation is
very different from the market one, and it it thus a useless benchmark.

10To simplify the notation, we keep the index i, but the sequential representation (referring to histories and not
the identity of agent i) can be derived along the lines of equation (18).
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thus makes her Euler equation (either nominal or real) more “binding”. This more “binding”
constraint reduces the utility by the algebraic quantity u′′(ci,t)λi,t. The extra consumption unit
at t also makes the agent less willing to smooth her consumption between periods t− 1 and t
and therefore “relaxes” the constraint of date t− 1. This is reflected in the quantity λi,t−1.

This marginal valuation ψFPi,t has the same economic meaning as the Generalized Social
Marginal Welfare Weights (GSMWW) introduced by Saez and Stantcheva (2016), which they
denote as gi. It is the marginal valuation, which allows one to assess the welfare effect of a
marginal change in tax systems.11 This quantity appears in planner’s first-order conditions. For
instance, the FOC with respect to the labor supply Lt is:

ˆ
i
ωi,t`(di)v′(Lt) = Zt

ˆ
i
yi,tψ

FP
i,t `(di), (47)

which has to be compared to v′(li,t) = wtyi,tu
′(ci,t) when agents individually decide of their labor

supply. As in the individual FOC, the planner equalizes the marginal cost of one extra unit of
labor to the marginal benefit, but there are three differences. First, since the labor supply is
common to all agents, the planner has to take into account all individual situations, and hence
needs to aggregate over the whole population. Second, the planner does not value marginal
consumption through marginal utility as agents but through the marginal valuation of liquidity
ψFPi,t . Finally, the planner does not value the marginal benefit of labor supply with the net wage
wt but but the marginal productivity Zt.

In addition to ψFPi,t , another key quantity is the Lagrange multiplier, µt, on the governmental
budget constraint. The quantity µt represents the marginal cost in period t of transferring one
extra unit of consumption to households. Therefore, the quantity ψi,t − µt can be interpreted as
the “net” valuation of liquidity. This is from the planner’s perspective, the benefit of transferring
one extra unit of consumption to agent i, net of the governmental cost. We thus define:

ψ̂FPi,t := ψFPi,t − µt. (48)

The interpretation of first-order conditions is greatly clarified by expressing them using ψ̂i,t rather
than the multiplier on Euler equations, λi,t. For instance, the first-order condition with respect
to the post-tax wage rate wt, is: ˆ

i
ψ̂FPi,t yi,t`(di) = 0. (49)

The planner sets the labor tax (and thus the real wage) so as to tradeoff on the one hand the
resources obtained from raising taxes (equal to the shadow price multiplied by labor supply µtLt)

11The corresponding expression, following Saez and Stantcheva (2016) notation, in a static environment would
thus be

´
t
giyi`(di) = µ. In a dynamic setting, it appears that ψi,t is not a sufficient statistics for agents i, and

that the knowledge of the marginal utility of agent i is necessary to determine optimal policy (see equation (55) for
instance). Note that compared to Saez and Stantcheva (2016), the elasticity of labor supply does not appear in the
formula for taxation, because labour supply is determined by demand (as agents are not on their labor supply).
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and on the other hand benefits of higher taxes, which depends on the productivity yi for agent i,
and on the marginal valuation ψ̂i,t.

The heterogeneous-agent model provides (with some obvious restrictions) some additional
dynamic constraints on these valuation for the planner. For instance, we show that dynamics of
this valuation for unconstrained agents is:

ψ̂FPi,t = βEt
[
(1 + rt+1)ψ̂FPi,t+1

]
,

which can be seen as a generalized consumption Euler equation for the planner and not for
agents. We derive all first-order conditions in Appendix B.1. We use this allocation to derive our
equivalence results in the next section.

4.2 The sticky price economy with all instruments

We now solve for optimal policy in an economy plagued with two nominal frictions, where the
planner has use all fiscal and monetary instruments. The Ramsey planner can be written as:

max
(τLt ,τSt ,τKt ,Bt,Tt,πPt ,πWt ,wt,rt,Ωt,it,Lt,(ci,t,ai,t,νi,t)i)t≥0

W0, (50)

subject to equations (36)–(44). We can state our main equivalence result.

Proposition 3 (An equivalence result) – In the HA economy, when all instruments
(τEt , τSt , τLt , τKt , Bt, it) are optimally chosen, the planner exactly reproduces the flexible-
price allocation and the inflation on prices and wages is null in all periods.

– In the RA economy, when all instruments (τEt , τSt , τLt , τKt , Bt, it) are optimally chosen, the
planner implements the first-best allocation.

Proposition 2 generalizes the equivalence result of Correia et al. (2008) and Correia et al.
(2013) for representative agent economies and LeGrand et al. (2022) for heterogeneous-agent
economy to the case where there are both sticky prices and sticky wages. Interestingly, compared
to LeGrand et al. (2022), we need two additional instruments (τEt , τSt ), whereas we introduce one
additional nominal constraint. Indeed, we need one instrument to prevent wage inflation (which
destroys resources) and another one to reproduce the flexible price labor supply and neutralize
the market power of unions. In the presence of a sufficiently large fiscal system, monetary policy
has no role but price stability. Importantly, the result requires the presence of two labor taxes.
The first labor tax τS (internalized by the planner) enables the planner to “isolate” the pre-tax
rate w̃t that is determined by the allocation (with a zero price inflation) from the union wage
ŵt that is determined by the inflation path (πWt )t. Removing τS as an independent instrument
imposes a constraint between the factor price w̃t and the wage inflation path. In other words,
the planner would have to balance the effects of price inflation (determining w̃t) and of wage
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inflation (determining ŵt). The second labor tax τEt enables the planner to simultaneously set
the labor supply optimally (as in equation (47)) and close the wage gap in the wage Phillips
curve. Removing τEt would imply that the planner would need to tradeoff two inefficiencies: (i)
the sub-optimal labor supply due the market power of unions and (ii) the cost of wage inflation.
Should one of these two instruments be removed, Proposition 3 would not hold anymore and the
economy would feature positive inflation on wages or on prices.

Overall, the equivalence results of Proposition 3 rationalize our tax system, which is the
minimal tax system for which price stability is optimal.12

4.3 The model with missing instruments in the HA economy

We now remove some instruments to assess their contribution to price and wage stability. The
following proposition summarizes our results, which are derived in Appendices B.3–B.4.

Proposition 4 (Result τE) In the HA economy:

– When τEt = 0, and the other instruments (τSt , τLt , τKt , Bt, it) are optimally chosen, the
planner implements πPt = 0 but πWt 6= 0.

– When τEt = τSt = 0 and the other instruments (τLt , τKt , Bt, it) are optimally chosen, the
planner implements πPt 6= 0 and πWt 6= 0.

Proposition 4 characterizes the impact of removing τE and then τS as independent instruments
for the planner. First, when we remove the income tax τEt , the planner still implements price
stability, but now wage inflation is not constant after a TFP shock. This comes from the fact
that the planner cannot close the wage gap of the wage Phillips curve and optimally set the
common labor supply. Due to union labor market power, closing the wage gap would imply
an inefficient labor supply. The planner chooses to change the number of worked hours along
the business cycle by allowing an non-zero wage inflation. The planner thus trades off a more
efficient labor supply at the cost of quadratic wage adjustment.

Second, when we remove both τEt and τSt , both price and wage inflation move along the
business cycles. Indeed, on addition to the previous mechanism for τEt , removing τS prevents the
planner from closing the price gap and to set the labor cost to marginal productivity of labor.
The planner chooses to let price inflation optimally vary so as to change the cost of labor.

The expression of the social value of liquidity actually depends on the instruments of the
planner. For instance, in the case where τEt = τSt = 0, such that the only instruments are

12More precisely, other tax systems could correspond to price and wage stability. For instance, it could be
possible to consider time-varying consumption tax as in Correia et al. (2008). However, the number of independent
instruments would not be smaller. We consider our tax system to be not unrealistic, at least in some countries.
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(τLt , τKt , Bt, it), the expression of the social valuation of liquidity for agent i is:

ψESi,t := ωitu
′(ci,t)︸ ︷︷ ︸

direct effet

− (λi,t − (1 + rt)λi,t−1)u′′(ci,t)︸ ︷︷ ︸
effect on savings

(51)

− εW − 1
ψW

γW,twtLtyi,tu
′′(ci,t)︸ ︷︷ ︸ .

effect on wage inflation

Compared to the expression (46) of ψFPi,t in the flexible price economy, the expression of ψESi,t
features a third effect that comes from the fact that the wage Phillips curve is constraint for the
planner. Indeed, in this case, the planner does not close the gap and the wage Phillips curve is a
constraint for the planner, which implies the presence of the corresponding Lagrange multiplier
γW,t. If the planner increases the consumption of agents i in period t, this will change the
incentives to work and thus the union incentives to affect the wage dynamics. This is captured in
the third term of equation (46). Furthermore, this new expression of ψFPi,t still verifies Euler-like
equation for unconstrained agents: ψ̂ESi,t = βEt

[
(1 + rt+1)ψ̂ESi,t+1

]
, where ψ̂ESi,t = ψESi,t − µESt .

Finally, these deviations to price or wage stability still need to be quantified in the quantitative
section, so as to assess the economic relevance of the various instruments at play.

4.4 Comparing with the representative agent

Before providing quantitative results, it is worth providing similar results for the representative
agent. In this case, the unions do not generate distortions by imposing the same labor supply
to agents endowed with heterogeneous productivity levels. This implies that removing fiscal
instruments will have different conclusions in the RA economy than in the HA economy. We
summarize our findings in the next proposition. The proofs are provided in Appendix C.

Proposition 5 (An equivalence result) In the RA economy:

– When all instruments (τEt , τSt , τLt , τKt , Bt, it) are optimally chosen, the planner implements
the first-best allocation.

– When τEt = τESS and (τSt , τLt , τKt , Bt, it) are optimally chosen, the planner implements the
first-best allocation.

Proposition 5 shows that when all instruments are available to the planner, the latter can
implement not only price and wage stability, but also the first-best allocation. In particular, the
income tax may not be time-varying to implement this allocation (second item of the proposition),
because its role is only to compensate for the steady-state market power of the union.

Table 1 summarizes the effect of missing instruments from Propositions 3–5.
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Time-varying labor taxes RA HA

τL + τS + τE πP = 0 and πW = 0
(first-best alloc.)

πP = 0 and πW =
0(flexible-price alloc.)

τL + τS πP = 0 and πW =
0(first-best alloc.)

πP = 0 and πW 6= 0

τL πP 6= 0 and πW 6= 0 πP 6= 0 and πW 6= 0

Table 1: Price and wage inflation for different instruments, Representative Agent economy (RA)
and Heterogeneous-agent economy (HA).

5 Simulating the dynamics of the economy

To investigate the optimal dynamics of the model, we perform the following experiment – which
is standard in the New Keynesian RA literature, but which must be adapted to the HA case.
We first solve for the optimal policy for a given set of instruments and consider the steady-state
allocation – which is the long run allocation in the absence of any aggregate shock. We then
initialize the model with this allocation and implement a period-0 transitory negative TFP shock.
This procedure ensures that the transition is not affected by initial conditions. However, it raises
two difficulties: (i) how can we find the optimal instruments at the steady state? and (ii) how
can we simulate the HA model with aggregate shocks? We tackle these two issues in Sections 5.1
and 5.2, respectively.

5.1 Internally consistent Social Weights

The steady state crucially depends on the Social Welfare Function used in the Ramsey program.
In addition, the steady state can also differ with the set of instruments under consideration.
To overcome this difficulty and to start from the same steady state in all cases, we use the
inverse optimal taxation approach, as in Heathcote and Tsujiyama (2021) and LeGrand and
Ragot (2023). More precisely, we consider the same steady-state fiscal instruments, defined by
τS = τK = 0, and τL > 0, and estimate the weights of the SWF for each set of fiscal tools to
ensure that this steady state is optimal. More formally, each instrument of the planner generates
a first-order condition, which imposes one restriction on the SWF.13We then choose the SWF
satisfying these restrictions, which is the closest one to the utilitarian SWF (where all weights
are equal). We also verify that the SWF does not quantitatively affect the dynamics of the
allocation at the first order.

13As in standard New Keynesian models, optimal steady-state price and wage inflation is 0, whatever the social
welfare function. As a consequence, steady-state price stability does not impose any restriction on the SWF.
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5.2 Truncation

The Ramsey problem in HA models cannot be solved with simple simulation techniques. Indeed,
the Ramsey equilibrium is now a joint distribution across wealth and Lagrange multipliers,
which is a high-dimensional object. While the steady-state values of Lagrange multipliers is
already difficult to compute, the Ramsey solution actually requires the dynamics of this joint
distribution. For this reason, we use the truncation method of LeGrand and Ragot (2022a) to
determine the joint distribution of individual wealth and Lagrange multipliers.14 The accuracy of
optimal policies has been analyzed in LeGrand and Ragot (2022b) for both the steady state and
the dynamics. In addition, an improvement to efficiently reduce the state space is provided in
LeGrand and Ragot (2022c). We detail the calculations in Appendix, and refer to these papers
for details about the method.

To find the steady-state values of the Lagrange multipliers and SWF for a given fiscal policy,
we use the following algorithm:

1. Set a truncation structure (a maximum truncation length N) and set instrument values.

2. Solve the steady-state allocation of the full-fledged Bewley model with the given instrument
values, using standard techniques.

3. Consider the truncated representation of the economy, i.e., aggregate over truncated
histories.

4. Compute the steady-state Ramsey solution in truncated economy

(a) Derive first-order conditions of the planner for each instrument in the truncated
representation.

(b) Compute the SWF weights that are the closest to 1, for which all the planner’s FOCs
hold.

(c) Compute associated Lagrange multipliers.

(d) The truncated representation, together with the fiscal instruments, the estimated
SWF, and Lagrange multipliers is a steady-state optimal Ramsey allocation for the
truncated representation.

5. Compute the optimal dynamics of instruments and allocation in the truncated economy
using the first order conditions of the planner – as is standard in any finite state space
model.

We check that the dynamics does not depend on the truncation length.
14Optimizing on simple rules in the spirit of Krusell and Smith (1998) is also hard to implement as their are

many independent instruments.
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6 Quantitative assessment

This section quantifies the inflation dynamics under various assumptions concerning the set of
instruments available to the planner. The objective is to identify the most relevant instruments
to stabilize inflation in HA models, among the ones presented in Table 1. The calibration is
described in Section 6.1. Section 6.2 presents the inflation dynamics with exogenous fiscal and
monetary rules, and compares HA and RA economies. Section 6.3 finally contrasts the outcomes
of economies allowing for different sets of optimally chosen instruments.

6.1 The calibration and steady-state distribution

Preferences. The period is a quarter. The discount factor is β = 0.99, and the period utility
function is: c1−σ−1

1−σ − χ−1 l1+1/ϕ

1+1/ϕ . The Frisch elasticity of labor supply is set to ϕ = 0.5, which
is the value recommended by Chetty et al. (2011) for the intensive margin in HA models. The
scaling parameter is χ = 0.01, which implies an aggregate labor supply of roughly 1/3.

Technology and TFP shock. The production function is: Y = ZL. The TFP process is a
standard AR(1) process, with Zt = exp(zt) and zt = ρzzt−1, for t ≥ 1, and z0 < 0 is the period 0
negative TFP shock. We set ρz = 0.95,which the standard quarterly persistence.

Idiosyncratic risk. We use a standard productivity process: log yt = ρy log yt−1 + εyt , with
εyt

iid∼ N (0, σ2
y). We calibrate a persistence of the productivity process ρy = 0.994 and a standard

deviation of σy = 0.06. These values are consistent with empirical estimates (Krueger et al.,
2018), and generates a steady-state Gini of wealth of 0.78, which is again in line with the data.15

Finally, we use the Rouwenhorst (1995) procedure to discretize the productivity process into 10
idiosyncratic states with a constant transition matrix.

Steady state taxes and public debt. We first solve the model with constant exogenous
taxes and explain below the choice of the Social Welfare Function (SWF). We first assume that
steady-state taxes are 0, except for the labor tax τL: τE = τS = 0 and τL = 16%. This last
value (together with the value of public debt explained below) implies that public spending over
GDP is 15, which is close to the US value in 2007. The amount of public debt (which is the only
asset here) is set to the annual value of 1.28. As public debt is the only asset in our economy, we
target this amount to obtain an average Marginal Propensity to Consume (MPC) of 0.3.16

Monetary parameters. Following the literature and in particular Schmitt-Grohé and Uribe
(2005), we assume that the elasticity of substitution is εP = 6 across goods and εW = 21 across

15The Gini of wealth is 0.78 using the SCF data in 2007, before the 2008 Great Recession.
16We thus adopt a liquid one-asset liquid wealth calibration to match a realistic MPC (Kaplan and Violante,

2022).
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labor types. The price adjustment cost is set to ψP = 100, such that the slope of the price
Phillips curve is εP−1

ψP
= 5% (see Bilbiie and Ragot, 2021, for a discussion and references). The

wage adjustment cost is set to ψW = 2100, such that the slope of the wage Phillips curve is 1%,
assuming wages to be stickier than prices.17 Finally, as there is no inflation on prices or wages at
the steady state: πP = πW = 0, these coefficients only matter in the dynamics.

Table 2 provides a summary of the model parameters.

Parameter Description Value Target

Preference and technology

β Discount factor 0.99 Quarterly calibration
σ Curvature utility 2
ā Credit limit 0
χ Scaling param. labor supply 0.01 L = 1/3
ϕ Frisch elasticity labor supply 0.5 Chetty et al. (2011)

Shock process

ρy Autocorrelation idio. income 0.993 Krueger et al., 2018
σy Standard dev. idio. income 6% Gini = 0.78
ρz Autocorrelation TFP shock 0.95

Tax system

τL Labor tax 16% G/Y = 15
τS ,τE ,τK Other tax 0%
B/Y Public debt over yearly GDP 128% MPC = 0.3
G/Y Public spending over yearly GDP 15% Targeted

Monetary parameters

εp Elasticity of sub. between goods 6 Schmitt-Grohé and Uribe (2005)
ψp Price adjustment cost 100 Price PC 5%
εw Elasticity of sub. labor inputs 21 Schmitt-Grohé and Uribe (2005)
ψw Wage adjustment cost 2100 Wage PC 1%

Table 2: Parameter values in the baseline calibration. See text for descriptions and targets.

Truncation period. We now construct the truncated model. We use the refined truncation
approach, with a number of length for the refinement equals to N = 8. We check that the
results do not depend on the choice of the truncation length. As in LeGrand and Ragot (2022a),
the truncation provides accurate results, thanks to the introduction of the ξs parameters, as

17We have performed sensitivity analysis regarding these coefficients. Our qualitative results appear not to be
sensitive to these values, even if inflation and wage volatility increases with the slopes of Phillips curves.
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explained in Section 5.

Calibration of the representative agent economy. In the next section, we will compare
the dynamics of the HA economy to the one of the RA economy. The calibration of the RA
economy considers the same preference parameters as in the HA economy. We denote with upper-
script RA (HA) the allocation in the RA (HA) economy. In the RA economy, the steady-state
labor supply LRA (with πW = 0 ) is determined by v′(LRA) = εW−1

εW
(1 − τL)u′(cRA). Due to

consumption inequality and the convexity of marginal utility, the average marginal utility in
the RA economy is lower than the one in the HA economy. As a consequence, for the same
parameters LHA > LRA. To consider comparable economies, we set public debt (BRA) and public
spending (GRA), in the RA economy such that public-debt-to GDP and public-spending-to-GDP
are identical in the two economies: BRA/Y RA = BHA/Y HA and GRA/Y RA = GHA/Y HA.

6.2 Dynamics with fiscal and monetary rules

We first simulate the model with ad-hoc fiscal and monetary rules to understand the mechanisms
at stake in the two-friction economy. We compare the dynamics along two dimensions: (i) HA
vs. RA and (ii) ad-hoc rules vs. optimal instruments. Concerning monetary policy, we introduce
a standard Taylor rule, which depends on price inflation:

it = i∗ + φππ
P
t , (52)

where it is the nominal interest rate between period t and period t+ 1. The constant i∗ = 1% is
the steady-state nominal rate, which is equal to the real interest rate, as steady-state inflation is
0. The parameter φπ is the coefficient of the Taylor rule. As noted by Erceg et al. (2000) and
Galí (2015), price determinacy generally requires the sum of the Taylor rule coefficients on both
price and wage inflation to be larger than 1. In our case, φπ > 1 ensures price stability. We
consider two values for this parameter: φπ = 1.1 and φπ = 1.5 to show the sensitivity of the
dynamics to this coefficient.

Considering fiscal rules, we assume that tax rates are constant and set to their steady-state
values. We only introduce an adjustment in the transfers related to the debt level à la Bohn
(1998) to ensure debt sustainability. The fiscal rules thus involve τKt = τSt = τEt = 0 and:

τLt = τL∗ + ρB(Bt −B∗), (53)

where we set ρB = 0.08, and then ρB = 0.8 to investigate the sensitivity of the economy dynamics
to the fiscal rule. The value B∗is the steady-state level of public debt in either the RA or HA
economy, while τL∗ = 16% is the steady-state value of this labor tax.

Figure 1 plots the Impulse Response Functions (IRFs) for the main variables in an economy
with the previous rules, after a 1% negative TFP shock. Labor tax τL and wage and price
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inflation are reported in level deviations, while all other variables are reported in percent deviation
from their steady-state values.

Figure 1: Impulse response functions of main variables after a negative TFP shock, for the model
with a Taylor rule and simple fiscal rule. The labor tax and price and wage inflation are reported
in level deviation (in percent), while all other ones are in proportional percentage deviations
from steady state values. HA is the heterogeneous agent economy, RA is the representative agent
economy.

The shock is a negative supply shock, akin a energy price shock. Two results are worth
mentioning.

1. HA and RA models generate qualitatively similar results, but the HA model exhibits a
stronger fall in consumption. Indeed, as the MPC is higher in the HA model than in the
RA model, the fall in consumption and output is higher in HA model, due to both direct
and indirect effect (Kaplan et al., 2018).

2. Both HA and RA models generate a price-wage spiral that corresponds to an increase
in both price and wage inflation, associated to a decrease in the real wage. This “spiral”
is of a larger magnitude in the HA model than in the RA one. Indeed, both price and
wage inflation responses are of larger magnitude: twice larger for the wage inflation and
50% larger for price inflation. Since wage inflation is much larger, this also translates to a
smaller drop in the real wage in the HA economy than in the RA one. The reason is quite
subtle and relates to the heterogeneity of the drop in consumption. Although the average
consumption drop is higher in HA than in RA economy, the HA consumption drop is more
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severe (both in absolute and relative terms) for high-wealth agents than for low-wealth
(credit-constrained) agents. In our simulation, credit-constrained agents suffer from a 0.1%
consumption drop (which is roughly the real wage drop), whereas wealthy agents experience
of 0.8% consumption drop. For the sake of comparison, note that the consumption drop in
the RA economy amounts to 0.6%. This stronger drop in consumption for wealthy (and
hence high-consumption) agents than for poor (and hence low-consumption) agents is due
to the drop in real interest rate that adds to the drop in real wage. As a consequence, the
average marginal utility increases less in the HA economy than in the RA economy. Hence,
the labor gap increases more in the HA economy and so does wage inflation.

We now investigate the sensitivity of these results, changing both the monetary and fiscal rules,
plotting the same variables. In addition to the baseline environments (φπ = 1.1 and ρB = 0.08)
in black solid line, we consider alternative economies. In the second economy (blue dashed line),
the Taylor rule is more sensitive to inflation (φπ = 1.5 and ρB = 0.08). In the third economy
(red dotted line), the fiscal rule is more sensitive to public debt (φπ = 1.1 and ρB = 0.8).

Figure 2: Impulse response functions of main variables after a negative TFP shock, for the model
with a Taylor rule and simple fiscal rule. The labor tax and price and wage inflation are reported
in level deviation (in percent), while all other ones are in proportional percentage deviations
from steady state values. the HA economy for different monetary and fiscal rules.

We first observe that the monetary policy rule affects both the the allocation and the inflation
dynamics. A more aggressive monetary policy (higher φπ) generates a larger drop in consumption
and a much smaller inflation reaction. The change in the fiscal rule translates to a more volatile
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response of the labor tax and a smoother public debt variation. The real wage drops much more
but inflation and output reactions are barely affected.18

The sensitivity of both real allocation and inflation to monetary and fiscal rules obviously
raises the question of the optimal monetary and fiscal policy after a TFP shock, which is the
subject of the following sections.

6.3 Optimal fiscal and monetary policy

We next simulate the dynamics of the economy, when the both fiscal and monetary policy are
optimally chosen. We simulate the economy with two sets of fiscal instruments, always assuming
optimal monetary policy. These two economies correspond to the two last lines of Table 1. In the
first economy, (τSt , τLt )t are optimally chosen, while in the second economy τSt = 0 and only (τLt )t
is optimally chosen. These two economies feature τEt = 0. Indeed, as we will see, whereas the
instrument τEt is theoretically necessary to reproduce the flexible price allocation, its quantitative
relevance is small.19 We also report a third economy, where both monetary and fiscal tools follow
the simple rules of equations (52) and (53), with φπ = 1.5 and ρB = 0.08. Figure 3 represents
the outcomes of these three economies.

We describe the main lessons we can draw from Figure 3. We start with the economy featuring
τEt = 0 and (τSt , τLt )t optimally chosen (black solid line).

1. This economy almost implements price and wage stability (panels 8 and 9). Wage inflation
decreases, the magnitude is small. This reflects that the cost of wage inflation is too
high compared to market power of unions. The planner barely uses the wage inflation to
manipulate the labor supply

2. The real wage drops (panel 2) and almost parallels the drop in the marginal productivity
of labor – equal to TFP (panel 1) in this economy.

3. Labor tax (τLt ) increases on impact (panel 7), whereas employer social contribution (τSt )
decreases (panel 6). As a consequence, the planner taxes households to subsidize labor.
Public debt increases moderately (panel 5).

4. As a consequence, the number of hours worked increases (panel 4), while consumption
decreases less than TFP (panel 3).

We now turn to the economy with τEt = τSt = 0 and (τLt )t optimally chosen (blue dotted line).
18The small effect of fiscal policy on output is due to the fact than we use the linear labor tax as a fiscal

instrument to be consistent with the analysis. A fiscal rule based on a lumpsum transfer would generate a higher
variation in output due to the higher MPC in the HA economy.

19The economy with optimal (τSt , τEt , τLt ) is very close to the one with optimal (τSt , τLt ) and τEt = 0, as shown
below. As a consequence, we only plot the latter to save some space.
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Figure 3: Impulse response functions of main variables after a negative TFP shock, for the
model with optimal monetary and fiscal policy. Variable are reported in percentage proportional
deviations from steady state. Labor taxes and inflation rates (Panels 6 to 9) are reported in
percentage level deviations from steady state. The black solid lien corresponds to τEt = 0 and
(τSt , τLt )t optimally chosen; the blue dashed line to τEt = τSt = 0 and (τLt )t optimally chosen; the
red dotted line to monetary and fiscal rules (52) and (53), with φπ = 1.5 and ρB = 0.08.

1. The real allocation in this economy is very close to the previous one, with τEt = 0 and
optimal (τSt , τLt )t (panels 2, 3, and 4).

2. However, the allocation is reached with a different fiscal-monetary policy mix.

3. By construction, employed social contribution is now constant (panel 6). Labor tax (τLt )t
increases less than in the previous allocation (panel 7), but implements a similar path for
public debt (panel 5).

4. The drop in real wage (panel 2) is very similar in both economies. However, this drop is
not only generated by higher (τLt )t. Indeed, both wage and price inflation rates (panels
8 and 9) markedly increase on impact but in a way that contributes to a drop in the
real wage.Overall, the departure from price-wage stability is much larger in this economy
compared to the one where τEt = 0 and optimal (τSt , τLt )t.

We conclude from this experiment that the time-varying employer social contribution (τSt )t is a
key instrument to ensure price stability.

Finally, we consider the economy with the standard monetary and fiscal rules of equations
(52)–(53) (red dashed line).
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1. This economy generates a very different real allocation. The real wage falls with a delay
(panel 2), generating a smaller increase in the number of worked hours (panel 4) and a
larger fall in consumption (panel 3).

2. Labor tax increases more progressively, which generates a larger increase in public debt
(panel 5).

3. Finally, the fall in the real wage is the result of a wage inflation (panel 8), and an even
bigger price inflation (Panel 9), that we previously qualified of inflation spiral.

6.4 Dynamic of gaps

To better understand the dynamics of inflation, we now focus on the economies with τEt = 0 and
optimal (τSt , τLt ) on the one hand and with τEt = τSt = 0 an optimal (τLt )t on the other. Figure
3 reports the dynamic of the labor gap defined in Equation (10) and of the price gap defined
in Equation (2), together with the Lagrange multiplier on the budget of the State µ, and the
Lagrange multiplier on the price Phillips curve γP and on the wage Phillips curve γW .

Figure 4: Dynamics of TFP, labor gap, price gap, and Lagrange multipliers for two economies
(τEt = 0 and τEt = τSt = 0). TFP and µ are in percentage proportional deviation, while other
variables are in percentage level deviations, as their steady-state value is 0.

We derive four observations. First, the labor gap slightly increases in the economy τEt = 0,
whereas it decreases in the economy τEt = τSt = 0. The planner uses the time varying τSt

to almost close the labor gap and reduce the market power of unions. Second, the price gap
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increases sharply in the economy τEt = τSt = 0, whereas it is null in economy τEt = 0, as the
instrument τSt allows the planner to close the price gap by equalizing the labor cost paid by the
firm and the marginal productivity of labor. Third, the Lagrange multiplier on the governmental
budget constraint, µ, is very similar in the two economies, reflecting that in spite of very different
inflation dynamics, the governmental marginal willingness to raise taxes is the same in the two
economies. Finally, the price Phillips curve is only a constraint in the economy τEt = τSt = 0
(panel 5), whereas the wage Phillips curve is a constraint in both economies.

7 Conclusion

We derive joint optimal monetary-and-fiscal policy in an HA model with both sticky prices and
sticky wages, after an energy price shock. Our main finding is that a sufficiently rich fiscal
policy can efficiently stabilize both inflation and activity. The key instrument appears to be a
time-varying wage subsidy, which stabilizes employment over the business cycle. Its primary
goal is to reduce the gap between marginal labor productivity and the sticky labor cost, even
though indirect effects on aggregate demand and inflation are also present. It is noteworthy that
these tools have been recently been used in Europe to stabilize employment. In Germany, the
so-called kurzarbeit device played this role, while in France, the activité partielle policy was a
wage subsidy to reduce layoffs during the Covid-19 crisis. More quantitative work is needed to
further investigate the role of these non-Keynesian automatic stabilizers.
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Appendix

A RA model with fiscal and Taylor Rules

A.1 With a Taylor rules and no fiscal rule

The model is characterized by the following set of equations:

G+ (1 + rt)Bt−1 + wtLt ≤
(
1− ψP

2 (πPt )2
)
ZtLt +Bt−1,

Ct +Bt = (1 + rt)Bt−1 + wtLt,

u′(Ct) = βEt
[
(1 + rt+1)u′(Ct+1)

]
,

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wtu
′(Ct)

)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1− τLt )

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
.

Etrt+1 =
(
1− τKt+1

)( R̃Nt
1 + πPt+1

− 1
)
,

together with wt = (1− τLt )ŵt = (1− τLt )w̃t and
(
1 + πWt

)
wt−1(1− τLt ) = (1 + πPt )wt(1− τLt−1).

Steady State

We assume π = 0 = τLss = Bss = 0, Z = 1,Y = L. So G+ C = L and the main equation is:

v′(L) = εW − 1
εW

u′ (L−G) .

We focus on the CRRA case u(c) = c1−σ−1
1−σ and v(l) = χ−1 l1+1/ϕ

1+1/ϕ . We then have L1/ϕ+γ
ss = εW−1

εW
χ,

1 + rss = 1
β and wss = 1. Further assuming χ = φ = γ = 1, and myopic price setters, the linear

system is defined by the following equations:

Ct = Lt + ut,

Ct = EtCt+1 − (φπ − 1)EtπPt+1,

πWt =
(
Ct − ut − wt + Ct

)
εW
ψW

(
LSS

)2
,

πPt = εP − 1
ψP

(wt − ut),

wt = πWt + wt−1 − πPt .
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Defining A := εW−1
ψW

, B := 1
γ (φπ − 1), and D := εP−1

ψP
, we obtain that the solution is wt =

d1wt−1 + d2ut, with:

d1 =
(A+D + 2)−

√
(A+D)2 + 8ABD

2 (A+D + 1− 2ABD) ,

d2 = (D −A) (1− ρu) + 2ABDρu
A+D + 2− (A+D + 1− 2ABD) (d1 + ρu) ,

where we can check that |d1| < 1. The coefficient d2 has the sign of:(
εP − 1
ψP

− εW − 1
ψW

)
(1− ρu) + 2εP − 1

ψP

εW − 1
ψW

(φπ − 1) ρu,

which completes the proof of Proposition 1.

A.2 RA model with a Taylor rule a fiscal rule

We consider a steady state where B = τL = T = G = 0 that we linearize for small values of τL.
The system characterizing the economy is:

Ct =
(
1− ψP

2 (πPt )2
)
ZtLt −G,

u′(Ct) = βEt
[ 1 + it

1 + πPt+1
u′(Ct+1)

]
,

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wtu
′(Ct)

)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
1− τLt

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

where we also add a linearized Bohn rule (recall the steady state debt BSS is 0, and τLSS = 0):
τLt = cBBt−1. We thus have iSS = 1/β−1 > 1 and close to 1. Defining bt = Bt/C

ss, and
cb = cBCSS and introducing myopic price setters, we have τLt = cbbt and:

Ct = Lt + ut,

Ct = EtCt+1 −
1
γ

(
it − EtπPt+1

)
πWt =

( 1
φ
Lt − wt + γCt

)
εW
ψW

1
χ

(
LSS

) 1
φ

+1
+ βEtπWt+1,

πPt = εP − 1
ψP

(wt − ut + cbbt−1) + βEtπPt+1

wt = πWt + wt−1 − πPt
Ct + bt = (1 + rss) bt−1 + wt + Lt,

it = φπEtπPt+1
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Further assuming γ = φ = χ = 1, and defining A := εW−1
ψW

, B := φπ − 1, and D := εP−1
ψP

, we get:

Ct = EtCt+1 −BEtπPt+1,

πWt = 2ACt −Aut −Awt,

πPt = Dwt −Dut +Dcbbt−1,

wt = πWt − πPt + wt−1,

bt = (1 + rss) bt−1 + wt − ut,

ut = ρuut−1 + εt.

Combining the fourth and fifth equation and iterating one period, we obtain

0 =
(
1−Dcb

)
wt + 2ACt+1 − (A+D + 1)wt+1 +

(
D −A+Dcb

)
ρuut −Dcb (1 + rss) bt−1.

Using 2ACt − 2AEtCt+1 = −2ABEtπPt+1 (first equation), we deduce:

0 = wt−1 + 2ACt − (A+D + 1)wt + (D −A)ut −Dcbbt−1

0−
(
1−Dcb

)
wt − 2ACt+1 + (A+D + 1)wt+1 −

(
D
(
1 + cb

)
−A

)
ρuut +Dcb (1 + rss) bt−1,

which becomes after some manipulations:

0 = wt−1 − 2ABD (1 + rss) cbbt−1 +Dcbrssbt−1 (54)

+ (A+D + 1− 2ABD)wt+1

−
(
2 +A+D + 2ABDcb

)
wt

+
(
(D −A) (1− ρu)−Dcbρu + 2ABD

(
ρu + cb

))
ut.

We solve the system using a guess-and-verify approach and assumes that:

wt = d1wt−1 + d2ut + d3bt−1,

which implies after some manipulations:

Etwt+1 = (d1 + d3) d1wt−1 + d3 (d1 + d3 + 1) bt−1 + (d2 (ρu + d1 + d3)− d3)ut.

Plugging these two equations into (54) yields:

0 = wt−1 − 2ABD (1 + rss) cbbt−1 +Dcbrssbt−1

−
(
2 +A+D + 2ABDcb

)
(d1wt−1 + d2ut + d3bt−1)

+ (A+D + 1− 2ABD) ((d1 + d3) d1wt−1 + d3 (d1 + d3 + 1) bt−1 + (d2 (ρu + d1 + d3)− d3)ut)

+
(
(D −A) (1− ρu)−Dcbρu + 2ABD

(
ρu + cb

))
ut.
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We obtain by identification the following system:

0 = 1− (2 +A+D + 2ABDcb)d1 + (A+D + 1− 2ABD) (d1 + d3) d1,

0 = (A+D + 1− 2ABD) (d2 (ρu + d1 + d3)− d3) + (D −A) (1− ρu)

−Dcbρu + 2ABD
(
ρu + cb

)
− (2 +A+D + 2ABDcb)d2,

0 = (A+D + 1− 2ABD) d3 (d1 + d3 + 1)− 2ABD (1 + rss) cb +Dcbrss

− (2 +A+D + 2ABDcb)d3.

Assuming that |ABDcb| � 1 and |Dcbrss| � 1, we then obtain that d3 ' 0, d1 = 1
A+D+1 , as well

as: d2 = (D−A)(1−ρu)+D(2AB−cb)ρu
(1+A+D)(1−ρu)+2ABD( 1

A+D+1 +1)ρu
.

The dynamics of inflation. We obtain the following system:

πPt = Dwt −Dut +Dcbbt−1 = D (d2 − 1)ut,

πWt = πPt + wt = (D (d2 − 1) + d2)ut.

Price inflation is likely to increase on impact, while wage inflation can increase or decrease.

B Ramsey program for HA models

B.1 Flexible-price equilibrium

We here assume here that the planner must choose a common labor supply for all agents, in a
flexible price economy: πPt = πWt = 0. The program is:

max
(τLt ,τSt ,τKt ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit)− v(Lt)

)
`(di)

]
,

Gt + (1 + rt)
ˆ
i
ai,t−1`(di) + wtLt + Tt ≤ ZtLt +

ˆ
i
ai,t`(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t.

The Lagrangian can be written as:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t)− v(Lt))`(di)− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)`(di)

+ E0

∞∑
t=0

βtµt

(
ZtLt +

ˆ
i
ai,t`(di)−Gt − (1 + rt)

ˆ
i
ai,t−1`(di)− wtLt − Tt

)
.
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We recall that ψi,t = ωitu
′(ci,t)− (λi,c,t − (1 + rt)λi,c,t−1)u′′(ci,t). Compared to (46), we drop the

FP subscript for the sake of simplicity. We compute the FOCs wrt four independent instruments:
rt, wt, Lt and (ai,t)i. The other instruments can be recovered from the constraints.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,t`(di) +

ˆ
i
λi,c,t−1u

′(ci,t)`(di) = 0. (55)

FOC wrt wt. ˆ
i
yi,tψ̂i,t`(di) = 0.

FOC wrt Lt. Using the FOC on wt:
ˆ
i
ωi,t`(di)v′(Lt) = µtZt = Zt

ˆ
i
yi,tψi,t`(di).

FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.

B.2 The HA economy with all instruments

The program is:

max
(τLt ,τSt ,τEt ,τKt ,πPt ,πWt ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit)− v(Lt)

)
`(di)− ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1`(di) + wtLt ≤

(
1− ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,t`(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wt
1− τEt

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1− τLt )(1− τSt )(1− τEt )

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt ) wt−1
1− τLt−1

= wt
1− τLt

(1 + πPt ).

We can set:
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– τSt such that 1− τSt = 1
Zt

wt
(1−τLt )(1−τEt ) , hence

1
Zt

wt
(1−τLt )(1−τSt )(1−τEt ) − 1 and πPt = 0.

– τEt is a free parameter that can be deduced from πWt and the allocation. Hence, the wage
Phillips curve is not a constraint.

– πWt only reduces utility and is an independent parameter that can be set through τL, hence
πWt = 0

The program then reduces to the same one as in the flexible-price economy without union:

max
(τLt ,τSt ,τEt ,τKt ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit)− v(Lt)

)
`(di)

]
,

Gt + (1 + rt)
ˆ
i
ai,t−1`(di) + wtLt + Tt ≤ ZtLt +

ˆ
i
ai,t`(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t.

B.3 The HA economy without τEt

We impose τEt = 0. The program is otherwise the same as in Section B.2. In particular, τSt
only appears in the price Phillips curve. As consequence, this equation is not a constraint and
τSt is set, such that πPt = 0. Inflation indeed only destroys resources here. We then obtain the
following program:

max
(τLt ,Bt,Tt,πPt ,πWt ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit)− v(Lt)

)
`(di)− ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1`(di) + wtLt + Tt ≤ ZtLt +

ˆ
i
ai,t`(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + yi,twtLt + Tt,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wt

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

Because of τEt = 0, we cannot have simultaneously optimal labor supply and πWt = 0: the planner
has to balance the relative costs of wage inflation with the suboptimal provision of labor supply.
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The Lagrangian is:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t)− v(Lt))`(di)−

ψW
2 (πWt )2

− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)`(di)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t

(
v′(Lt)−

εW − 1
εW

wt

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt

+ E0

∞∑
t=0

βtµt

(
ZtLt +

ˆ
i
ai,t`(di)−Gt − (1 + rt)

ˆ
i
ai,t−1`(di)− wtLt − Tt

)
.

We recall that in this economy, we have ψi,t = ωitu
′(ci,t) − (λi,c,t − (1 + rt)λi,c,t−1)u′′(ci,t) −

εW−1
ψW

γW,twtyi,tu
′′(ci,t)Lt, where compared to (51), we laso drop the superscript.

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) = 0.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,t`(di) +

ˆ
i
λi,c,t−1u

′(ci,t)`(di) = 0.

FOC wrt wt. ˆ
i
yi,tψ̂i,t`(di) = γW,t

εW − 1
ψW

ˆ
i
yi,tu

′(ci,t)`(di).

FOC wrt Lt. Using the FOC wrt wt:

−
ˆ
i
ωi,t`(di)v′(Lt) + µtZt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
= 0.

FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.

B.4 The HA economy without τEt and τSt

In this case, there is no obvious simplification and the program is:
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max
(τLt ,τSt ,τKt ,Bt,Tt,πPt ,πWt ,wt,rt,Ωt,R̃Nt ,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit)− v(Lt)

)
`(di)− ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1`(di) + wtLt + Tt ≤

(
1− ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,t`(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wt

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1− τLt )

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt ) wt−1
1− τLt−1

= wt
1− τLt

(1 + πPt ),

while the corresponding Lagrangian becomes:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t)− v(Lt))`(di)−

ψW
2 (πWt )2

− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)`(di)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t

(
v′(Lt)−

εW − 1
εW

wt

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt

− E0

∞∑
t=0

βt(γP,t − γP,t−1)πPt (1 + πPt )ZtLt + εP − 1
ψP

E0

∞∑
t=0

βtγP,t

(
wt

(1− τLt )
− Zt

)
Lt

+ E0

∞∑
t=0

βtµt

(
(1− ψP

2 (πPt )2)ZtLt +
ˆ
i
ai,t`(di)−Gt − (1 + rt)

ˆ
i
ai,t−1`(di)− wtLt

)

+ E0

∞∑
t=0

βtΛt

(
(1 + πWt ) wt−1

1− τLt−1
− wt

1− τLt
(1 + πPt )

)

We now turn to the computation of the FOCs.

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λt

wt−1
1− τLt−1

= 0.
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FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1)− µtψPπPt −

Λt
ZtLt

wt
1− τLt

= 0.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,t`(di) +

ˆ
i
λi,c,t−1u

′(ci,t)`(di) = 0.

FOC wrt wt. Using the FOC wrt to τL, we have:

0 =
ˆ
i
yi,tψ̂i,t`(di)− γW,t

εW − 1
ψW

ˆ
i
yi,tu

′(ci,t)`(di).

FOC wrt Lt. Using the FOC wrt wt:

0 = −
ˆ
i
ωi,t`(di)v′(Lt) + µt

(
1− ψP

2 (πPt )2
)
Zt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1

ψP
γP,t

(
wt

(1− τLt )
− Zt

)
.

FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.

FOC wrt τLt . We derive wrt 1
1−τLt

and obtain:

0 = εP − 1
ψP

γP,tLt − Λt(1 + πPt ) + βEt
[
Λt+1(1 + πWt+1)

]
.

C The Ramsey program for the RA models

C.1 RA economy with all instruments

The first best is characterized by v′(Lt) = Ztu
′(Ct) and Ct = ZtLt.

The situation is similar though simpler than in the HA economy. Indeed, if πWt = 0, we have
v′(Lt) = εW−1

εW
wt

1−τEt
u′(Ct). We thus set τEt = εW

εW−1 , which gives v′(Lt) = εW−1
εW

wt
1−τEt

u′(Ct). If
πPt = 0, we set 1 = (1 − τEt )(1 − τSt ) and τLt = 0. This gives Zt = wt, Gt + wtLt = ZtLt and
Ct = ZtLt. We can thus decentralize the first-best allocation.
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C.2 Representative agents without time-varying τEt

We set τEt = εW−1
εW

and the program is:

max
(πPt ,πWt ,wt,rt,R̃Nt ,Lt,(ai,t)i,τLt ,τKt )

t≥0

W0,

(1 + rt)Bt−1 + wtLt =
(
1− ψP

2 (πPt )2
)
ZtLt +Bt,

Ct =
(
1− ψP

2 (πPt )2
)
ZtLt −Gt,

u′(Ct) = βEt
[
1 +

(
1− τKt+1

)( R̃Nt
1 + πPt+1

− 1
)]
u′(Ct+1),

πWt (πWt + 1) = εW
ψW

(
v′(Lt)− wtu′(Ct)`(di)

)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt )ZtLt = εP − 1
ψP

( 1
Zt

wt
(1− τLt )(1− τSt )

− 1)ZtLt + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

)
,

rt =
(
1− τKt

)( R̃Nt−1
1 + πPt

− 1
)
,(

1 + πWt

)
wt−1(1− τLt ) = (1 + πPt )wt(1− τLt−1).

Thus rt =
(
1− τKt

)(
R̃Nt−1
1+πPt

− 1
)

and the Euler equations are not a constraint. As in the

HA case, the instrument τSt ensures πPt = 0. In addition letting Bt = 0, we get wt = Zt. The
program simplifies into:

max
(πWt ,wt,τLt ,Lt)t≥0

W0,

πWt (πWt + 1) = εW
ψW

(
v′(Lt)− wtu′(Ct)`(di)

)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,(

1 + πWt

)
wt−1(1− τLt ) = (1 + πPt )wt(1− τLt−1).

Setting πWt = 0 and setting Zt−1(1− τLt ) = Zt(1− τLt−1) implements the first best again.

C.3 The HA economy without time-varying τEt and τSt

We impose τEt = τESS and τSt = τSSS . The Phillips curves expressions are:

πWt (πWt + 1) = εW
ψW

(
v′(Lt)−

εW − 1
εW

wt
1− τESS

ˆ
i
yi,tu

′(ci,t)`(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1− τLt )(1− τSSS)(1− τESS)

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

with further more (1 + πWt ) wt−1
1−τLt−1

= wt
1−τLt

(1 + πPt ). This shows that neither the price gap nor
the wage gap can be closed. This economy features non-zero inflation for wages and prices.

45


