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Abstract

In discrete choice models, whether the model makes a unique prediction or not is
often tied to important features of the underlying model such as the interdependence
of agents’ preferences in models of social interaction or the endogeneity of treatment
assignments in triangular systems of binary outcome and treatment variables. We
provide a novel test of model incompleteness using a score-based statistic. Our test
statistic remains computationally tractable even with a moderate number of nuisance
parameters because they have to be estimated only in the restricted complete model. A
Monte Carlo experiment shows the proposed test outperforms existing tests in terms
of local power. An empirical application to a model of entry in the airline industry
illustrates the computational feasibility of the method.
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1 Introduction

Models of discrete choice are used widely. Commonly used models combine a theory of
choice (e.g. utility maximization) that predicts a unique outcome value with distributional
assumptions on latent variables to describe the conditional distribution of the outcome given
observable covariates. When the researcher is willing to work only with weak assumptions or
has limited knowledge of the data generating process, however, these models often end up
predicting multiple outcome values, which we call an incomplete prediction. We consider a
form of incompleteness summarized as follows; an observable discrete outcome variable Y is
known to satisfy

Y ∈ G(u|X; θ), (1.1)

where G collects all outcome values that are compatible with the model given the unobserved
and observed variables (u,X) and a structural parameter θ. This type of incompleteness
arises in a variety of contexts. In single-agent discrete choice models, multiple outcomes are
predicted when the agent’s choice set is unobservable and consistent with a wide range of
choice set formation processes (Barseghyan et al., 2021). In discrete games such as firms’
market entry or household’s labor supply decisions, multiple equilibria may exist but one may
not know how an equilibrium outcome gets selected (Bresnahan and Reiss, 1991a; Ciliberto
and Tamer, 2009). In panel dynamic discrete choice models, one’s theory may be silent about
how an initial observation is generated (Heckman, 1978; Honoré and Tamer, 2006). Recent
empirical studies have fruitfully applied econometric methods for such incomplete models
in different areas; they include English auctions (Haile and Tamer, 2003), strategic voting
(Kawai and Watanabe, 2013), product offerings (Eizenberg, 2014; Wollmann, 2018), network
formation (de Paula et al., 2018; Sheng, 2020), school choice (Fack et al., 2019), and major
choice (Henry et al., 2020).

Whether a model needs to allow incompleteness to be consistent with data is a natural
and important empirical question. Furthermore, whether a model is complete or not is often
tied to key features of the underlying structural model. In a commonly used model of market
entry, multiple equilibria exist only when the players interact strategically. Testing the
presence of the strategic interaction effects and making inference on their signs can provide
important information for policymaking (de Paula and Tang, 2012). In a binary choice model
with a binary treatment assignment, taking a control function approach yields an incomplete
model only if the treatment assignment is endogenous. When instrumental variables are
available, one can test the potential endogeneity of the treatment assignment through the
test of the model incompleteness.

This paper’s goal is to develop a procedure for testing the model completeness against
incompleteness. In leading examples, the null hypothesis of model completeness can be
formulated as restrictions on a subvector of structural parameters. We, therefore, consider
testing the presence of incompleteness by testing a hypothesis on a subvector. Inference on
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subvectors of parameters has attracted considerable attention in the recent econometrics
literature on incomplete models (see Bugni et al., 2017; Kaido et al., 2019, and references
therein). A key challenge surrounding subvector inference is the computational cost for
implementing existing methods (Molinari, 2020, sec. 6). As we discuss below, progress
has been made recently within a class of models having a particular structure. However,
computational challenges remain for models outside such a class especially when there are
multiple nuisance components, which is common in applications.

This paper develops a test that can be implemented easily even in the presence of nuisance
parameters. We achieve this by focusing on a class of models that are complete when the
subvector (called β) of interest is set to its null value. We then propose a novel score-based
test statistic. Advantages of this approach are (i) the score statistic only requires estimation of
nuisance parameters in the restricted model, which is complete; (ii) the nuisance parameters
can be estimated by standard point estimators (e.g. restricted MLE) using package software;
and (iii) the statistic’s null distribution can be simulated easily.

The basic idea behind our tests is as follows. The model incompleteness, in general,
implies multiple (typically infinitely many) likelihood functions, which makes challenging to
apply standard likelihood-based tests. However, the class of models we consider has properties
that make score-based inference tractable. First, under any value of structural parameter
θ0 +h violating the null hypothesis locally, there is a “least favorable” data generating density
qθ0+h that is most difficult to distinguish from the density qθ0 under the null hypothesis. We
may then view the mapping θ 7→ qθ as a “least favorable parametric model”, along which
detecting the deviation from θ0 is most difficult. Second, one may consider a test that
maximizes a measure of local discrimination (between θ0 and θ0 + h) based on the least
favorable parametric model. This leads to a robust test based on our score function. The
test is designed to detect any local deviation from the null hypothesis no matter what the
unknown selection mechanism is.

The score function typically depends on the nuisance components δ of the parameter
vector. Exploiting the property that the model is complete under the null hypothesis, we show
that a

√
n-consistent point estimator of δ can be constructed and plugged into the score. This

procedure avoids evaluating the test statistic over a grid of nuisance parameters and makes
our procedure computationally tractable. When the restricted maximum likelihood estimator
of δ is used, the score-based statistic has a limiting distribution that can be easily simulated.
When other estimators are used, we construct our test statistic using an orthogonalized
version of the score following the insights of Neyman’s C(α)-test (Neyman, 1959, 1979). This
makes the distribution of the statistic insensitive to the effects of the estimated nuisance
parameters.

In sum, we address key issues surrounding tests of incompleteness and subvector inference
by combining (i) the score function associated with the least favorable parametric model
and (ii) a point estimator of the nuisance components. To our knowledge, this type of test
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for incomplete models is new. The key structure we exploit is that the model is complete
under the null hypothesis, which can be restrictive in some settings. However, there are more
general tests that can be applied to settings outside the scope of our paper with a higher
computational cost (Bugni et al., 2017; Kaido et al., 2019). Our test hence complements
them in a particular class of testing problems.

While this paper focuses on testing the model completeness, estimating some or all
components of θ may be the ultimate goal of the researcher in some applications. In such a
case, our restricted maximum likelihood estimator provides a consistent estimator of δ if the
null hypothesis is true, whereas robust inference methods for subcomponents of the structural
parameter in the literature can be used in case the alternative hypothesis is true. Our test,
therefore, can be viewed as a specification test, which naturally raises a question regarding
its impact on any post-model selection inference. While we defer a formal analysis to another
work, we propose a hybrid procedure that aims at controlling the potential distortion of
the model selection step using a shrinkage method borrowing the insights from the moment
selection literature (Andrews and Soares, 2010; Romano et al., 2014).

1.1 Relation to the literature

Our paper belongs to the literature on identification and inference in incomplete models. The
seminal work of Tamer (2003) showed an incomplete model induces multiple distributions and
implies partially identifying restrictions on parameters. Recent developments in the literature
(Galichon and Henry, 2011; Beresteanu et al., 2011; Chesher and Rosen, 2017) provided tools
to systematically derive so-called sharp identifying restrictions (SIRs), which convert all model
information into a set of equality and inequality restrictions on the conditional moments of
the observables. Inference methods based on the sample analogs of such moment restrictions
are extensively studied (see Canay and Shaikh, 2017, and references therein). Instead of using
the sample moment restrictions, we use the original sharp identifying restrictions to derive
the least favorable parametric model. Our test statistics are then constructed using the score
function associated with the least favorable parametric model. This is akin to deriving a
score function using a parametric specification in a complete model.

Hypothesis testing in incomplete models is studied extensively. As discussed earlier, many
of them are based on the sample analogs of conditional or unconditional moment restrictions.
There are attempts to improve the computational tractability of the moment-based inference
methods within a special class of models. They include Andrews et al. (2019); Cox and
Shi (2020) who assume that moment inequality restrictions implied by the model are linear
conditional on some observable variables. This paper focuses on another special class, in
which the model becomes complete under the null hypothesis. There are recent developments
on inference methods based on likelihood-ratios (Chen et al., 2018; Kaido and Zhang, 2019)
as well. Our approach builds on Kaido and Zhang (2019) (KZ19, henceforth) who used the
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least favorable pairs (LFPs) of distributions studied in the robust statistics literature to
conduct likelihood-ratio (LR) tests in incomplete models. We use score functions derived
from the LFPs and construct a statistic tailored to our testing problem.

This paper’s framework can be used to test the presence of strategic interaction effects
and of multiple equilibria in complete information games. Related problems are studied
in other classes of models. For incomplete information games, de Paula and Tang (2012)
introduced a semiparametric inference procedure on the signs of strategic interaction effects.
For finite-state Markov games, Otsu et al. (2016) provide procedures to test whether the
conditional choice probabilities, state transition and other features of games are homogeneous
across cross-sectional units. Rejection of their null hypothesis could occur when multiple
equilibria are present. In the context of network formation with a large number of agents,
Pelican and Graham (2021) develop a procedure to test whether agents’ preferences over
networks are interdependent. Using a Logit specification, they propose conditional tests and
introduce an MCMC algorithm to implement their test.

Finally, our framework can be applied to triangular systems involving a binary outcome
and a binary endogenous variable. We show that taking a control function approach in such
a setting leads to a model with an incomplete prediction. Namely, the model involves a
set-valued control function. Our framework can be used to conduct a test of the endogeneity
of the treatment assignment with weak assumptions. To our knowledge, this test is new to
the literature and provides an alternative to the existing proposal by Wooldridge (2014) who
makes additional high-level assumptions.

2 Set-up

Let Y be a discrete outcome taking values in a finite set Y. Let X ∈ X ⊆ RdX be a vector
of observable covariates and let u ∈ U ⊆ RdU be a vector of unobservable variables. Let
θ ∈ Θ ⊂ Rdθ be a finite dimensional parameter.

The prediction of a structural model is summarized by a weakly measurable set-valued
map G : U × X × Θ  Y. We assume that Y takes one of the values in G(u|X; θ) with
probability 1. The map G describes how the observable and unobservable characteristics of
individuals and/or economic environments translate into a set of possible outcome values. It
reflects restrictions imposed by theory such as the functional form of utility/profit functions,
forms of strategic interaction, and any equilibrium or optimality concepts. It is important to
note that G can be set-valued. This allows encoding the researcher’s lack of understanding
of some part of the structural model. Specifically, it does not require the knowledge of the
selection mechanism according to which the observed outcome s is selected from G(u|x; θ).
This formulation nests the classic setting in which the model is characterized by a reduced
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form equation:

Y = g(u|X; θ), (2.1)

for a function g : U × X × Θ → Y. This corresponds to the setting in which G is almost
surely singleton-valued, i.e. G(u|x; θ) = {g(u|x; θ)}, a.s. If this is the case, we say the model
makes a complete prediction.

Throughout, we assume that u’s law belongs to a parametric family F = {Fθ, θ ∈ Θ},
where, for each θ, Fθ is a probability distribution on U . To keep notation concise, we use the
same θ for parameters that show up in G and that index Fθ. Also, we focus on settings in
which u is independent of X. However, the framework can be easily extended to settings
where u is correlated with X, and the researcher specifies its conditional distribution Fθ(u|x).
Furthermore, we note that our framework does accommodate settings in which some of the
observable covariates are endogenous but one can construct a set-valued control function (See
Example 3 below).

2.1 Motivating examples

Below, we illustrate the objects introduced above with examples studied in the literature.
Our first two examples are discrete games of complete information (Bresnahan and Reiss,
1991a; Ciliberto and Tamer, 2009).

Example 1 (Discrete Games of Strategic Substitution). There are two players (e.g. firms).
Each player may either choose y(j) = 0 or y(j) = 1. The payoff of player j is

π(j) = y(j)
(
x(j)′δ(j) + β(j)y(−j) + u(j)

)
, (2.2)

where y(−j) ∈ {0, 1} denotes the other player’s action, x(j) is player j’s observable character-
istics of player j, and u(j) is an unobservable payoff shifter. The payoff is summarized below
and is assumed to belong to the players’ common knowledge.

Player 2

y(2) = 0 y(2) = 1

Player 1
y(1) = 0 0, 0 0, x(2)′δ(2) + u(2)

y(1) = 1 x(1)′δ(1) + u(1), 0 x(1)′δ(1) + β(1) + u(1), x(2)′δ(2) + β(2) + u(2)

The key parameter is the strategic interaction effect β(j) which captures the impact of
the opponent’s taking y(−j) = 1 on player j’s payoff. Suppose that β(j) ≤ 0 for both players.
For example, if the outcome represents each firm’s market entry, β(j) measures the effect of
the other firm’s entry on firm j’s profit. Let θ = (β, δ). Suppose that the players play a
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pure strategy Nash equilibrium (PSNE). Then, the set of PSNEs predicted by this model is
summarized by the following map:

G(u|x; θ) =



{(0, 0)} u(1) < −x(1)′δ(1), u(2) < −x(2)′δ(2),

{(0, 1)} u ∈ U2,

{(1, 0)} u ∈ U1,

{(1, 1)} u(1) > −x(1)′δ(1) − β(1), u(2) > −x(2)′δ(2) − β(2),

{(1, 0), (0, 1)} −x(j)′δ(j) < u(j) < −x(j)′δ(j) − β(j), j = 1, 2.

(2.3)

where U1 = {u(1) > −x(1)′δ(1)−β(1), u(2) < −x(2)′δ(2)−β(2)}∪{−x(1)′δ(1) < u(1) < −x(1)′δ(1)−
β(1), u(2) < −x(2)′δ(2)} and U2 = {u(1) < −x(1)′δ(1), u(2) > −x(2)′δ(2)} ∪ {−x(1)′δ(1) < u(1) <

−x(1)′δ(1) − β(1), u(2) > x(2)′δ(2) − β(2)}.

Figure 1 shows the level sets of u 7→ G(u|x, θ) for a given (x, θ). When β(j) < 0 for both
players, the model admits multiple equilibria {(0, 1), (1, 0)} when each u(j) is between the
two thresholds x(j)′δ(j) and x(j)′δ(j) − β(j) (the blue region in Figure 1). When β(j) = 0 for
either of the players, the model predicts a unique equilibrium for any value of u = (u(1), u(2)′

(see left panel of Figure 1, in which β(j) = 0, j = 1, 2).

Figure 1: Level sets of u 7→ G(u|x; θ)

u1

u2

A

{(1, 1)}

{(1, 0)}

{(0, 1)}

{(0, 0)}

u1

u2

A

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

{(1, 0),

(0, 1)}

Note: A = (−x(1)′δ(1),−x(2)′δ(2)); B = (−x(1)′δ(1) − β(1),−x(2)′δ(2) − β(2)).
Left Panel: β(1) = β(2) = 0 and the model is complete. Right panel: β(1) < 0 and
β(2) < 0 and the model is incomplete. U1 in (2.3) corresponds to the region in green,
and similarly U2 is the region in red. Multiple equiribria {(1, 0), (0, 1)} are predicted in
the blue region.

Example 2 (Discrete Games of Strategic Complementarity). Consider the payoff functions
in (2.2) again but assume that β(j) ≥ 0. This setting can be used to analyze households’
labor supply or retirement decisions, in which household members’ labor force participation
can be strategically complementary (Bresnahan and Reiss, 1991a).
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For each (x, u), the predicted set of PSNE’s is given by

G(u|x; θ) =



{(0, 0)} u ∈ U1,

{(0, 1)} u(1) < −x(1)′δ(1) − β(1), u(2) ≥ −x(2)′δ(2)

{(1, 0)} u(1) ≥ −x(1)′δ(1), u(2) < −x(2)′δ(2) − β(2)

{(1, 1)} u ∈ U2,

{(0, 0), (1, 1)} −x(j)′δ(j) − β(j) ≤ u(j) < −x(j)′δ(j), j = 1, 2,

(2.4)

where U1 = {u(1) < −x(1)′δ(1) − β(1), u(2) < −x(2)′δ(2)} ∪ {−x(1)′δ(1) − β(1) ≤ u(1) <

−x(1)′δ(1), u(2) < −x(2)′δ(2)}, and U2 = {u(1) ≥ −x(1)′δ(1) − β(1), u(2) ≥ −x(2)′δ(2)} ∪ {u(1) ≥
−x(1)′δ(1),−x(2)′δ(2) − β(2) ≤ u(2) < −x(2)′δ(2)}.

When β(j) = 0 for one of the players, the model makes a complete prediction for almost
all u. In contrast, if β(j) > 0 for both members, both (0, 0) and (1, 1) can arise as equilibrium
outcomes for some value of u.

Figure 2: Level sets of u 7→ G(u|x; θ)

u1

u2

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

u1

u2

A

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

{(0, 0),

(1, 1)}

Note: A = (−x(1)′δ(1) − β(1),−x(2)′δ(2) − β(2)); B = (−x(1)′δ(1),−x(2)′δ(2)).
Left Panel: β(1) = β(2) = 0 and the model is complete. Right panel: β(1) > 0 and
β(2) > 0 and the model is incomplete. U1 in (2.4) corresponds to the region in green,
and similarly U2 is the region in red. Multiple equiribria {(0, 0), (1, 1)} are predicted in
the blue region.

The next example is a parametric version of the triangular system of nonseparable equations
(Chesher, 2003; Shaikh and Vytlacil, 2011). We consider a control function approach to this
model.

Example 3 (Triangular model with an incomplete control function). Consider a triangular
model, in which a binary outcome yi is determined by a binary treatment di, a vector w of
exogenous covariates, and an unobserved variable εi; the treatment indicator di is determined
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by a vector of instrumental variables zi and an unobserved variable vi:

yi = 1{αdi + w′iη + εi ≥ 0}, (2.5)

di = 1{z′iγ + vi ≥ 0}. (2.6)

Suppose that (wi, zi) is independent of (εi, vi). The unobserved characteristics εi and vi may
be dependent, making di potentially endogenous.

If one could recover the unobservable characteristic vi from the observables (which would
be possible with a continuous di), conditioning on vi would make εi independent of di. This
control function approach would allow us to recover key model parameters (Imbens and
Newey, 2009; Wooldridge, 2015). In the current setting, we may not uniquely recover vi
due to the discreteness of di, which makes it difficult to apply the control function approach
without further assumptions.1 However, the model restricts vi to the following set:

H(di, zi; γ) ≡
{
v ∈ R : di = 1{z′iγ + v ≥ 0}

}
=

{
[−z′iγ,∞) if di = 1

(−∞,−z′iγ) if di = 0.
(2.7)

Suppose that εi’s conditional distribution given vi belongs to a location family and the
location parameter is βvi. Then, one may write εi = βvi + ui for some ui independent of di.
Substituting this expression into (2.5) and noting that vi ∈ H(di, zi; γ), the set of outcome
values compatible with the model is

G(ui|xi; θ) =
{
yi ∈ {0, 1} : yi = 1{αdi + w′iη + βvi + ui ≥ 0}, for some vi ∈ H(di, zi; γ)

}
,

(2.8)

where xi = (di, w
′
i, z
′
i)
′ and θ = (β, δ′)′ with δ = (α, η′, γ′)′. One of the benefits of the control

function approach that one can test the endogeneity of di (Wooldridge, 2015). As we show
below, this is also the case even if the control function cannot be uniquely recovered.2

The next example is a panel dynamic discrete choice model (Heckman, 1978; Hyslop,
1999).

1Wooldridge (2014) uses the generalized residual ri = diλ(z′iγ)− (1− di)λ(−z′iγ) from the first stage MLE,
where λ is the inverse Mills ratio. He makes additional high-level assumptions so that ri serves as a sufficient
statistic for capturing the endogeneity of di and proposes an estimator of the average structural function.
Instead of taking this approach, we explore what can be learned from the set-valued control function.

2We take a control function approach that conditions on vi, which only requires specification of the
conditional distribution of εi given vi. Alternatively, one could specify the joint distribution of (εi, vi). This
alternative but stronger assumption would imply a complete model; there is a unique value of (yi, di) for a
given (εi, vi) and exogenous covariates due to the triangular structure (Lewbel, 2007).
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Example 4 (Panel Dynamic Discrete Choice Models). An individual makes binary decisions
across multiple periods according to

yit = 1{x′itλ+ yit−1β + αi + εit ≥ 0}, i = 1, . . . , n, t = 1, . . . , T, (2.9)

where yit is a binary outcome for individual i in period t, xit is a vector of observable covariates,
αi is an unobservable individual specific effect, and εit is an unobserved idiosyncratic error.
If β is nonzero, the individual’s choice in period t depends on her past choice, rendering the
decision state dependent.

Suppose the researcher observes (yit, xit) for i = 1, . . . , n and t = 1, . . . , T . Since yi0
is not observable, this leaves the value of yi1, . . . , yiT not fully determined and makes the
model incomplete (Heckman, 1978, 1987; Honoré and Tamer, 2006).3 For example, consider
T = 2. Suppose for the moment yi0 = 0. For a given (xi, αi, εi1, εi2), the observed outcome
yi = (yi1, yi2) must satisfy

yi1 = 1{x′i1λ+ αi + εi1 ≥ 0} (2.10)

yi2 = 1{x′i2λ+ yi1β + αi + εi2 ≥ 0}. (2.11)

Similarly, if yi0 = 1, the outcome must satisfy

yi1 = 1{x′i1λ+ β + αi + εi1 ≥ 0} (2.12)

yi2 = 1{x′i2λ+ yi1β + αi + εi2 ≥ 0}. (2.13)

Without further assumptions, the model permits both possibilities. Letting ui = (ui1, ui2)′

with uit = αi + εit, the model prediction can therefore be summarized by the following
correspondence

G(ui|xi; θ) =
{
yi = (yi1, yi2) ∈ {0, 1}2 : yi satisfies either (2.10)-(2.11) or (2.12)-(2.13)

}
.

(2.14)

If β ≥ 0, this map can be expressed as follows:4

G(ui|xi; θ) =



{(0, 0)} ui1 < −x′i1λ− β, ui2 < −x′i2λ,
{(0, 1)} ui1 < −x′i1λ− β, ui2 ≥ −x′i2λ,
{(1, 0)} ui1 ≥ −x′i1λ, ui2 < −x′i2λ− β,
{(1, 1)} ui1 ≥ −x′i1λ, ui2 ≥ −x′i2λ− β,
{(0, 0), (1, 0)} −x′i1λ− β ≤ ui1 < −x′i1λ, ui2 ≤ −x′i2λ− β,
{(0, 0), (1, 1)} −x′i1λ− β ≤ ui1 < −x′i1λ, − x′i2λ− β ≤ ui2 < −x′i2λ,
{(0, 1), (1, 1)} −x′i1λ− β ≤ ui1 < −x′i1λ, ui2 ≥ −x′i2λ.

(2.15)
3As an alternative, one could work with the likelihood function conditional on the initial observation.

However, this approach can be problematic if one wants to be internally consistent across a different number
of periods (Honoré and Tamer, 2006; Wooldridge, 2005).

4Appendix B.3 provides details and a graphical illustration of G.
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Similar to the previous examples, the model makes a complete prediction when β = 0 (see
Figure 6 in the Appendix).

3 Testing Hypotheses

Let β ∈ Θβ ⊂ Rdβ denote the subvector of θ whose value determines whether the model is
complete or not. Let δ ∈ Θδ ⊂ Rdδ collect the remaining components of θ. Given a sample of
data (Yi, Xi), i = 1, . . . , n, consider testing a hypothesis on β. Let the null and alternative
hypotheses be

H0 : β = β0, v.s. H1 : β ∈ B1, (3.1)

where B1 ⊂ Θβ is a set not containing β0. For instance, in entry games (i.e. Example 1),
the presence of strategic substitution effects can be tested by letting β0 = 0 and B1 = {β :

β(j) < 0, j = 1, 2}. Similarly, we may test the potential endogeneity of treatment assignments
(Example 3) and the presence of state dependence (Example 4) by setting β0 = 0 and choosing
suitable alternative hypotheses. In what follows, we let Θ0 = {β0} ×Θδ and Θ1 = B1 ×Θδ

denote the sets of null and alternative parameter values respectively.

Let ∆Y |X denote the set of conditional distributions (or probability kernels) of Y given
X = x. For each θ = (β′, δ′)′, an incomplete model admits the following set of conditional
distributions:

Qθ =
{
Q ∈ ∆Y |X : Q(A|x) =

∫
U

p(A|x, u)dFθ(u), ∀A ⊆ Y ,

for some p ∈ ∆Y |X,u such that p(G(u|x; θ)|x, u) = 1, a.s.
}
. (3.2)

Here, the conditional distribution p(·|x, u) represents the unknown selection mechanism
according to which an outcome gets selected from the set of predicted outcome values. Since
the model is silent about its specification, we allow any law supported on G(u|x; θ). This
means that the model can admit (infinitely) many likelihood functions for a given θ. Let µ
be the counting measure on Y . For each θ, define

qθ = {qy|x : qy|x = dQ(·|x)/dµ,Q ∈ Qθ}. (3.3)

This set collects all (conditional) densities that are compatible with a given θ. In the case of
discrete games (Examples 1 and 2), this set collects all densities of equilibrium outcomes that
are compatible with the description of the game. Similarly, in the context of panel discrete
choice (Example 4), this set collects all densities of individual choices compatible with arbitrary
specifications of the initial condition. The multiplicity of the densities is due to the model
incompleteness that admits any selection mechanism p(·|u, x). In this sense, we may think of
elements in qθ being implicitly indexed by the unknown selection mechanisms. Observe that
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qθ reduces to a singleton set {qθ} if the model is complete, i.e. G(u|x; θ) = {g(u|x; θ)} for
some function g, in which case qθ = dQθ/dµ with Qθ(A|x) =

∫
1{g(u|x; θ) ∈ A}dFθ(u).

While the multiplicity of likelihood functions may appear challenging, qθ can be simplified,
and this property enables us to conduct robust tests in a tractable manner. By Artstein’s
inequality (see e.g. Galichon and Henry, 2011; Molinari, 2020), qθ can be written as the
following set of densities satisfying a finite number of linear inequalities :

qθ =
{
qy|x :

∑
y∈A

qy|x(y|x) ≥ νθ(A|x), A ⊆ Y
}
, (3.4)

where

νθ(·|x) = Fθ(G(u|x; θ) ⊆ ·|x) (3.5)

is the conditional containment functional (or belief function) associated with the random set
G(u|x; θ). This functional gives the sharp lower bound for the conditional probability Q(A|x)

across all Q’s belonging to Qθ.5 Theoretical properties of νθ(·|x) and numerical methods for
computing it are well studied in the literature (Ciliberto and Tamer, 2009; Galichon and
Henry, 2011).6 For us, the fact that qθ is characterized by a system of linear inequalities is
important. Together with an extended Neyman-Pearson lemma reviewed below, this allows
us to construct a computationally tractable score-based test. In the next subsection, we
briefly review the existing results we will rely on.

3.1 Preliminaries

Let p0(y|x) denote the true conditional distribution of the outcome given the covariates. Let
us start with a problem of distinguishing θ = θ0 from another value θ = θ1 with θ0 6= θ1. In a
parametrically specified complete model {pθ, θ ∈ Θ}, this amounts to testing p0 = pθ0 against
p0 = pθ1 . It is well known that the most powerful test for such a problem is a likelihood-
ratio test, which is the consequence of the Neyman-Pearson lemma. In incomplete models,
corresponding null and alternative hypotheses would be p0 ∈ qθ0 and p0 ∈ qθ1 rendering
both hypotheses composite. KZ19 show that it is possible to extend the Neyman-Pearson
lemma to such settings, building on a general result established by Huber and Strassen (1973).
Their key observation is that there is a least favorable pair (LFP) (qθ0 , qθ1) ∈ qθ0 × qθ1 of
densities. This pair is such that qθ0 is consistent with θ0 and is least favorable for controlling
the size of a test among all densities belonging to qθ0 , whereas qθ1 is consistent with θ1 and
is least favorable for maximizing a measure of power among the densities belonging to qθ1 .7

5The upper bound for Q(A|x) is given by the capacity functional ν∗(A|X) = Fθ(G(u|x; θ) ∩ A 6= ∅|x)

(Molinari, 2020). It is sufficient to use either of the lower or upper bounds in (3.4) because the bounds are
related to each other through the conjugate relationship ν(A|x) = 1− ν∗(Ac|x).

6We provide a brief review on these in Appendix A.
7They consider the lower envelope of power over Qθ.
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Furthermore, they show that an LR-test based on this pair constitutes a minmax test, which
maximizes a robust measure of power among a class of level-α tests (see KZ19 Section 3).

There is a simple way to compute the LFP through a convex program. For each x ∈ X ,
the LFP (qθ0 , qθ1) is characterized as

(qθ0 , qθ1) = arg min
(q0,q1)

∑
y∈Y

ln
(q0(y|x) + q1(y|x)

q0(y|x)

)
(q0(y|x) + q1(y|x)) (3.6)

s.t.
∑
y∈A

q0(y|x) ≥ νθ0(A|x), A ⊆ Y (3.7)∑
y∈A

q1(y|x) ≥ νθ1(A|x), A ⊆ Y . (3.8)

The constraints in (3.7) and (3.8) are the sharp identifying restrictions.8 In view of (3.4),
they are equivalent to saying that q0 belongs to qθ0 and q1 belongs to qθ1 respectively. For us,
these restrictions are useful for computing the LFP because they are linear in (q0, q1). The
convex problem can be solved numerically in general. In some of the leading examples, it is
also possible to compute it analytically.

To illustrate, let us consider Example 1. Suppose that the latent payoff shifters (u(1), u(2))

follow a bivariate standard normal distribution. We may then compute νθ(A|x) for each
event. Let us take A = {(1, 0)} as an example. Using (2.3) and (3.5), we obtain

νθ({(1, 0)}|x) = Fθ(G(u|x; θ) ⊆ {(1, 0)}|x)

= Fθ(u ∈ U1) = (1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]. (3.9)

This corresponds to the probability assigned to the green region in Figure 1 (right panel) and
is the sharp lower bound for the probability of A = {(1, 0)}.

Now consider two parameter values θ0 = (0′2, δ
′)′ and θ1 = (β′, δ′)′, where β = (β(1), β(2))′

with β(j) < 0 for j = 1, 2. As we discuss in more detail below, the model is complete when
β = 0. One can show that the restrictions in (3.7) reduce to the following equality restrictions:

q0((0, 0)|x) = (1− Φ(x(1)′δ(1)))(1− Φ(x(2)′δ(2))) (3.10)

q0((0, 1)|x) = (1− Φ(x(1)′δ(1)))Φ(x(2)′δ(2)) (3.11)

q0((1, 0)|x) = Φ(x(1)′δ(1))(1− Φ(x(2)′δ(2))) (3.12)

q0((1, 1)|x) = Φ(x(1)′δ(1))Φ(x(2)′δ(2)). (3.13)

8A common way to use them for identification analysis is to define the sharp identified set as ΘI = {θ :

P (A|x) ≥ νθ(A|x), a.s.}. That is, given the conditional probability P (·|x) identified from data, one collects
all values of θ satisfying the sharp identifying restrictions. For hypothesis testing, we instead fix θ and ask
what would be a distribution among all distributions satisfying the sharp identifying restrictions that is least
favorable for controlling the size or maximizing the power.
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These restrictions uniquely determine the least-favorable null density qθ0 . Hence, we may
write

qθ0(y|x) = [(1− Φ1)(1− Φ2)]1{y=(0,0)}[(1− Φ1)Φ2]1{y=(0,1)}

× [Φ1(1− Φ2)]1{y=(1,0)}[Φ1Φ2]1{y=(1,1)}, (3.14)

where, to ease notation, we use Φ1 and Φ2 to denote Φ(x(1)′δ(1)) and Φ(x(2)′δ(2)).

When β(j) < 0, j = 1, 2, there are multiple densities satisfying (3.8). The least favorable
alternative density qθ1 can be found by minimizing (3.6) with respect to q1 subject to (3.8).
The solution can be expressed analytically. For example, when player 1’s strategic interaction
effect on player 2 is relatively high, it is given by the following form:9

qθ1(y|x) = [(1− Φ1)(1− Φ2)]1{y=(0,0)}[(1− Φ(x(1)′δ(1) + β(1)))Φ2]1{y=(0,1)}

× [(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))(Φ2 − Φ(x(2)′δ(2) + β(2)))]1{y=(1,0)}

× [Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))]1{y=(1,1)}. (3.15)

Comparing (3.14) and (3.15), one can see that qθ1 tends to qθ0 as β approaches its null
value (i.e. 0). Hence, one may view θ 7→ qθ a “parametric” model, and we will indeed take
this view below. Here is a way to interpret this parametric model. For each θ1, the density
qθ1 corresponds to the data generating process that is least favorable in terms of detecting
β’s deviation from its null value among all densities compatible with θ1. Behind qθ1 , there is
a selection mechanism that induced the least favorable DGP. For our purposes, however, we
do not need to know the precise form of this selection mechanism. When we solve the convex
program, we are “profiling out” the selection mechanism and directly obtaining the induced
density qθ1 . This is why qθ1 no longer involves any selection mechanism.

By varying θ1, we may trace out a family of such densities and form a parametric model.
We therefore call the map θ → qθ the least favorable (LF) parametric model. Equation (3.15)
suggests that we may pretend as if data were generated by a parametric discrete choice
model with the given density. This is indeed the case if one is interested in maximizing a
measure of discrimination between θ0 and θ1 based on qθ. Thanks to this property, most of
our analysis below will resemble that of standard discrete choice models, which helps us keep
our framework tractable.

3.2 Model completeness under the null

The following assumption imposes a key structure on the model.

Assumption 1. (i) For any null parameter value θ0 = (β′0, δ
′)′ with δ ∈ Θδ, the set of

conditional densities of outcome is a singleton qθ0 = {qθ0}; (ii) For any pair of parameters
θ0 = (β′0, δ

′)′ and θ1 = (β′, δ′)′ with β ∈ B1 and δ ∈ Θδ, we have qθ0 ∩ qθ1 = ∅.
9See Appendix B.1 for details.
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By Assumption 1 (i), we require the model is complete under the null hypothesis in
the sense that qθ0 contains a unique density when β = β0. As discussed earlier, this holds
whenever the model makes a complete prediction under the null hypothesis and is satisfied in
the examples discussed in Section 2.1.

The model can be complete or incomplete under the alternative hypothesis. Assumption
1 (ii) requires that the sets qθ0 and qθ1 are disjoint. If this is the case, it is possible to detect
θ1’s local deviation from θ0 regardless of the unknown selection mechanism. In KZ19, such
an alternative hypothesis is called robustly testable, and we focus on settings in which this
assumption is satisfied.10

Let us now revisit the examples.

Example 1 (Binary Response Game of Complete Information). Consider testing the presence
of strategic substitution effects by testing H0 : β(1) = β(2) = 0 against H0 : β(1) < 0, β(2) < 0.
Under the null hypothesis, there is no strategic interaction between the players, which leads
to the following complete prediction:

G(u|x; θ0) =


{(0, 0)} u(1) < −x(1)′δ(1), u(2) < −x(2)′δ(2),

{(1, 1)} u(1) > −x(1)′δ(1), u(2) > −x(2)′δ(2),

{(1, 0)} u(1) > −x(1)′δ(1), u(2) ≤ −x(2)′δ(2),

{(0, 1)} u(1) ≤ −x(1)′δ(1), u(2) > −x(2)′δ(2).

(3.16)

Hence, for any value of the observed and unobserved variables, G(u|x; θ0) contains a unique
equilibrium outcome. This corresponds to the left panel of Figure 1. A similar analysis
applies to Example 2.

Example 3 (Triangular Model with an Incomplete Control Function). Consider testing the
endogeneity of the treatment by testing the hypothesis that the coefficient β on the control
function v is 0. When the null hypothesis is true, the model’s prediction reduces to

yi = 1{αdi + w′iη + ui ≥ 0}. (3.17)

Hence, for a given (xi, ui), the value of yi is uniquely determined regardless of the value of
the control function. Indeed, there is no need to control for vi because ui is independent of
(di, wi). Hence, this is a model of binary choice with exogenous covariates whose analysis is
standard.

Example 4 (Panel Dynamic Discrete Choice Models). Consider testing the presence of state
dependence. This can be done by testing whether the coefficient β on the lagged dependent

10KZ19 analyze a general case in which this assumption may fail to hold by extending the notion of local
alternatives. We conjecture that we may extend our framework similarly. Since our leading examples satisfy
Assumption 1 (ii) (see Appendix B), we leave this extension elsewhere.
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variable yit−1 is 0 or not. When β = 0 in (2.9), the model reduces to the static panel binary
choice model

yit = 1{x′itλ+ αi + εit ≥ 0}, i = 1, . . . , n, t = 1, . . . , T, (3.18)

which makes (2.10)-(2.11) and (2.12)-(2.13) equivalent. Hence, under the null hypothesis,
G(ui|xi; θ0) contains the unique outcome satisfying (3.18).

3.3 Score-based Tests

Score based tests such as Rao’s score (or Lagrange multiplier) test and Neyman’s C(α)

test are widely used. These tests require estimation of the restricted model only, which is
attractive in our setting. The restricted model is complete and hence typically admits point
estimation of nuisance parameters under fairly weak conditions. We take advantage of this
property to carry out a score-based test. Below, we briefly review key ideas behind the
classic score tests and discuss extensions to handle potential model incompleteness under the
alternative. For expositional purposes, we assume that qθ is differentiable with respect to θ
for now and will weaken this assumption later.

Consider testing the null parameter value θ0 = (β′0, δ
′)′ against a local alternative hy-

pothesis θh = (β′0 + h′, δ′)′, where h ∈ Rdβ . The most powerful test for this problem is the
likelihood-ratio test, which compares qθh to qθ0 and rejects H0 when the ratio of the two is high
(KZ19). The test is also robust in the sense that, under Assumption 1 (ii), the log-likelihood
ratio can detect any deviation from the null hypothesis with non-trivial power no matter
what the selection mechanism is. The log-likelihood ratio can be locally approximated by∑n

i=1 h
′sβ(Yi|Xi; β0, δ), where sβ(y|x; β, δ) = ∂

∂β
ln qθ(y|x)|θ=(β,δ) is the score function. Let

Σβ0 = Var(
∑n

i=1 sβ(Yi|Xi; β0, δ)). For a fixed h, the normalized quantity

(
∑n

i=1 h
′sβ(Yi|Xi; β0, δ))

2

h′Σβh
, (3.19)

serves as a measure of discrimination between β0 and β0 + h. This is a robust measure of
local discrimination between β0 and β0 + h because it approximates how the log-likelihood
ln qθh changes from ln qθ0 , which is shown to be the robust and optimal way to detect the
local deviation from the null hypothesis (KZ19).

For i.i.d. data, Σβ0 = nIβ0 where Iβ0 = E[sβ(Yi|Xi; β0, δ)sβ(Yi|Xi; β0, δ)
′]. If one seeks for

a direction h that maximizes (3.19), it is given by h∗ = I−1
β0

1√
n

∑n
i=1 sβ(Yi|Xi; β0, δ), which

motivates Rao’s score statistic:11

Tn = sup
h∈Rdβ

∑n
i=1 h

′sβ(Yi|Xi; β0, δ))
2

nh′Iβ0h
=

1√
n

n∑
i=1

sβ(Yi|Xi; β0, δ)
′I−1
β0

1√
n

n∑
i=1

sβ(Yi|Xi; β0, δ).

(3.20)
11See Bera and Bilias (2001) for a more detailed argument for complete models. The same argument can

be applied to incomplete models by replacing the standard likelihood function with the LF density qθ.
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This statistic depends on the unknown nuisance parameter δ. Suppose that the nuisance
parameter δ can be estimated by a point estimator δ̂n. Evaluating the sample mean of the
score at δ = δ̂n and imposing the null hypothesis yields

gn(β0) =
1√
n

n∑
i=1

sβ(Yi|Xi; β0, δ̂n). (3.21)

A feasible version of (3.20) is

T̂n = gn(β0)′V̂ −1
n gn(β0), (3.22)

where V̂n = n−1
∑n

i=1 sβ(Yi|Xi; β0, δ̂n)sβ(Yi|Xi; β0, δ̂n)′ is a consistent estimator of the asymp-
totic variance V0 ≡ Iβ0 . The sampling distribution of the score generally depends on δ̂n.
However, if one uses the restricted MLE (discussed in the next section) to estimate δ, which
we recommend, T̂n converges in distribution to a χ2-distribution with dβ degrees of freedom
under the null hypothesis. It is also possible to use point estimators other than the restricted
MLE, in which case we recommend using an orthogonalized version of the score in the spirit
of Neyman’s C(α) test (see Remark 1 below).

The analysis so far presumed that qθ was differentiable and h ∈ Rdβ was unrestricted.
These assumptions may be too restrictive in some settings. For example, in discrete games
of complete information, the least favorable parametric model h 7→ qθh and its score take
different functional forms depending on whether the alternative hypothesis admits strategic
substitution (i.e. h < 0 as in Example 1) or strategic complementarity (i.e. h > 0 as in
Example 2). It is then natural to analyze these two cases separately. Below, we, therefore,
weaken differentiability requirements to accommodate these features and also allow restrictions
on the alternative hypothesis.

Let C(0, ε) denote an open cube centered at the origin with edges of length 2ε. A set
Γ ⊆ Rd is said to be locally equal to set Υ ⊆ Rd if Γ ∩ C(0, ε) = Υ ∩ C(0, ε) for some ε > 0

(Andrews, 1999).

Assumption 2 (L2-directional differentiability). (i) B1 − β0 is locally equal to a convex
cone V1; (ii) For any ζ ∈ V1 × Rdδ , there exists a square integrable function sθ = (s′β, s

′
δ)
′ :

Y × X → Rd such that∥∥∥q1/2
θ0+τζ − q

1/2
θ0

(1 +
1

2
τζ ′sθ(·|·; β0, δ))

∥∥∥
L2
µ

= o(τ), (3.23)

as τ ↓ 0.

Assumption 2 (i) requires the set of deviations from β0 can be locally approximated by a
convex cone. In Example 1, consider testing H0 : β = (0, 0)′ against H1 : β(1) < 0, β(2) < 0.
Then, B1 − β0 is locally equal to

V1 = {h = (h(1), h(2)) : h(1) < 0, h(2) < 0}. (3.24)
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Assumption 2 (ii) is a version of the differentiability in quadratic mean commonly used in
the literature (see e.g van der Vaart, 2000). It only requires that a unique score, in the
sense of the L2-derivative of the square-root density, exists for the set V1 of local deviations
from the null hypothesis, but it does not restrict the likelihood function otherwise. This
weaker assumption is appropriate for incomplete models, and sθ can be derived from the
least favorable parametric model similar to the standard parametric models.12

Following Silvapulle and Silvapulle (1995), we now define a test statistic for H0 : β = β0

v.s. H1 : β ∈ B1 by

Ŝn = gn(β0)′V̂ −1
n gn(β0)− inf

h∈V1
(gn(β0)− h)′V̂ −1

n (gn(β0)− h). (3.25)

This test statistic is a slight modification of (3.22). It requires the same functions of data
as Tn, but it is designed to direct power against the local alternatives in V1. While the
asymptotic distribution of the statistic is no longer a χ2 distribution, its critical value is easy
to compute using simulations. Let

cα = inf{x ∈ R : Pr(S ≤ x) ≥ 1− α}, (3.26)

where

S ≡ Z ′V −1
0 Z − inf

h∈V1
(Z − h)′V −1

0 (Z − h), Z ∼ N(0, V0), (3.27)

which can be simulated by drawing Z repeatedly from a zero mean multivariate normal
distribution with estimated variance V̂n.

Remark 1. If one uses δ̂n other than the restricted MLE, ĝn(β0)’s limiting distribution may
depend on that of δ̂n in general. Neyman’s C(α) statistic addresses this issue by making the
statistic insensitive to the estimation error associated with δ̂n. This is achieved by projecting
sβ to sδ and replacing gn with the “orthogonalized” (or “residualized”) score:

gn(β0) =
1√
n

n∑
i=1

sβ(Yi|Xi; β0, δ̂n)− Iβ,δI−1
δ

1√
n

n∑
i=1

sδ(Yi|Xi; β0, δ̂n), (3.28)

where Iβ,δ and Iδ are submatrices of

Iθ =

[
Iβ Iβ,δ
Iδ,β Iδ

]
= Eqθ

[
sθ(Yi|Xi)sθ(Yi|Xi)

′], (3.29)

which can be estimated by their sample analogs. The orthogonalized score gn(β0) constructed
this way is robust to the estimation error of δ, and its asymptotic distribution coincides with
a version of the statistic which replaces δ̂n with the true value δ0. The asymptotic variance
of gn(β0) is V0 = Iβ − Iβ,δI−1

δ Iδ,β. The test statistic in (3.25) can be constructed in the same
way using gn in (3.28) and a consistent estimator V̂n of V0. The way to calculate the critical
value remains the same.13

12Appendix B derives sθ for some of the examples.
13When δ̂n is the restricted maximum likelihood estimator, the second term on the right hand side of (3.28)

becomes asymptotically negligible making Ŝn asymptotically equivalent to the version without the Neyman
orthogonalization (Kocherlakota and Kocherlakota, 1991).
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3.4 Estimation of nuisance parameters

Our tests require an estimator δ̂n of the nuisance parameter. A natural estimator of δ is the
restricted maximum likelihood estimator (MLE) δ̂n, which is a maximizer of

Mn(δ) ≡ 1

n

n∑
i=1

ln qβ0,δ(Yi|Xi), (3.30)

where qβ0,δ is the conditional density of Yi when β = β0. Under our assumptions, this density
also coincides with the least favorable parametric model evaluated at β = β0. We therefore
call the map δ 7→ ln qβ0,δ the restricted log-likelihood function. The complete model (under
H0) is often a standard discrete choice problem. As such, existing package software can be
used to compute δ̂n.

Example 1 (Binary Response Game (continued)). Under H0 : β(1) = β(2) = 0, the model
has a unique likelihood function as discussed in Section 3.1. The (restricted) maximum
likelihood estimator δ̂n maximizes

Mn(δ) =
n∑
i=1

(
ln 1{yi = (0, 0)}(1− Φ1)(1− Φ2) + ln 1{yi = (0, 1)}(1− Φ1)Φ2

+ ln 1{yi = (1, 0)}Φ1(1− Φ2) + ln 1{yi = (1, 1)}Φ1Φ2

)
,

where Φj = Φ(x(j)′δ(j)), j = 1, 2. Alternatively, one can estimate δ by only using features of
the model that are uniquely predicted. This strategy used earlier in the literature would
maximize a likelihood function based on the empirical frequency of no entry (yi = (0, 0)),
monopoly (yi = (0, 1) or (1, 0)), and duopoly (yi = (1, 1)) (Bresnahan and Reiss, 1991b;
Berry, 1992).14 If this estimator is used, we recommend using the orthogonalized score to
construct the test statistic.

Example 3 (Triangular Model with an Incomplete Control Function). Recall that, when
β = 0, the model reduces to a binary choice model with exogenous covariates. If we assume
ui ∼ N(0, 1), the conditional probability of yi = 1 is

qθ0(1|di, wi, zi) = Φ(αdi + w′iη), (3.31)

which can be used to estimate δ = (α, η) by the restricted MLE. This can be done by any
software that may estimate probit models.

Example 4. A random effects probit model assumes αi is independent of xi and follows
N(0, γ2), and εi1, . . . , εiT are independent standard normal random variables. This yields the
following conditional density function for each i:

qβ0,δ(yi|xi) =

∫ T∏
t=1

Φ
[
(2yit − 1)(x′itλ+ γa)

]
φ(a)da, (3.32)

14If this alternative estimator is used, Tn is not asymptotically equivalent to Rao’s score statistic in general.
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which can be used to estimate δ = (λ, γ) using, for example, a simulated maximum likelihood
estimator (Train, 2009).

3.5 Asymptotic Properties

We collect results on the asymptotic properties of our test. Throughout, we assume that
un = (u1, . . . , un) is an independent and identically distributed (i.i.d.) sample drawn from
Fθ, and Xn = (X1, . . . , Xn) is also an i.i.d. sample drawn from a distribution qnX . The joint
distribution of the outcome sequence Y n = (Y1, . . . , Yn) ∈ Yn conditional on xn = (x1, . . . , xn)

belongs to the following set:

Qnθ =
{
Q : Q(A|xn) =

∫
Un
p(A|un, xn)dF n

θ (u), ∀A ⊆ Yn,

for some p ∈ ∆Y n|Xn,un such that p(Gn(un|xn; θ)|un, xn) = 1, a.s.
}
, (3.33)

where F n
θ denotes the joint law of un, and Gn(un|xn; θ) =

∏n
i=1G(ui|xi; θ) is the Cartesian

product of the set-valued predictions.15 We then let Pnθ collect joint laws of (Y n, Xn); each
element P n of Pnθ is such that the conditional law of Y n given Xn belongs to Qnθ , and the
law of Xn is qnX .

We start with conditions that ensure the
√
n-consistency of δ̂n. They are mainly regularity

conditions on the restricted log-likelihood function. Fixing β to its null value, one can view
qβ0,δ as the conditional density of y in a regular parametric model, in which δ is the only
unknown parameter. As such, the conditions below parallel the ones in the literature.

Below, let δ0 ∈ Θδ denote the true value of the nuisance component vector. For each
δ ∈ Θδ, let M(δ) ≡ E[ln qβ0,δ], where expectation is taken with respect to the conditional
density qβ0,δ0 and the distribution of X. Let Mn(δ) ≡ n−1

∑n
i=1 ln qβ0,δ(si) be the sample

counterpart of M and let Gn(δ) ≡
√
n(Mn(δ)−M(δ)) be an empirical process indexed by δ.

Assumption 3. (i-a) There is a continuous function M : Θδ → R+ such that

sup
(y,x)∈Y×X

| ln qβ0,δ(y|x)| ≤M(δ);

(i-b) δ 7→ ln qβ0,δ(y|x) is Lipschitz continuous uniformly in (y, x). That is,

sup
(y,x)∈Y×X

∣∣ ln qβ0,δ(y|x)− ln qβ0,δ′(y|x)
∣∣ . ‖δ − δ′‖ ∀δ, δ′ ∈ Θδ. (3.34)

15Assuming un and Xn are i.i.d. does not imply Y n is i.i.d. The set Qnθ in general contains dependent and
heterogeneous laws because the behavior of the selection mechanism across experiments is unrestricted (see
Epstein et al., 2016). This does not create an issue for size properties of our test because Qnθ reduces to a
single i.i.d. law under the null hypothesis.
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(i-c) δ 6= δ0 ⇒ qβ0,δ(y|x) 6= qβ0,δ0(y|x) with positive probability;

(ii) Θδ is a nonempty compact set; (iii) δ̂n is such that Mn(δ̂n) ≥ infδ∈Θδ Mn(δ) + rn,
where, for any h and ε > 0, supPn∈Pn

θ0+h/
√
n
P n(|rn| > ε)→ 0.

We also assume Fθ belongs a smooth parametric family in the following sense.

Assumption 4. For each θ ∈ Θ, Fθ is absolutely continuous with respect to a σ-finite
measure ζ on U . The Radon-Nikodym density fθ = dFθ/dζ satisfies

‖fθ − fθ′‖L1
ζ
≤ C‖θ − θ′‖, ∀θ, θ′ ∈ Θ, (3.35)

for some C > 0.

Finally, the following condition requires that the population objective function is locally
well behaved so that its value is informative about δ0, and the supremum of an empirical
log-likelihood process can be controlled over a neighborhood of δ0 (see van der Vaart and
Wellner, 1996, Sec. 3.2.2).

Assumption 5. For every δ in a neighborhood of δ0,

M(δ)−M(δ0) . −‖δ − δ0‖2. (3.36)

Furthermore,

sup
Pn∈Pn

θ0+h/
√
n

E∗Pn sup
δ∈Bζ(δ0)

|Gn(δ)−Gn(δ0)| . ζ, (3.37)

where Bζ(δ0) = {δ : ‖δ − δ0‖ < ζ}.

Under thse assumptions, the restricted MLE δ̂n is
√
n-consistent.

Proposition 3.1. Suppose Assumptions 1-5 hold. Then,
√
n‖δ̂n − δ0‖ = OPn(1), (3.38)

uniformly in P n ∈ Pn
θ0+h/

√
n
.

Below, let P n
0 ∈ Pnθ0 be the unique joint law of (Y n, Xn) under the null hypothesis. Let

sθ,j be the j-th component of sθ. Define

Ξ =
{
ξ : Y × X → R|ξ(y, x) = sθ,j(y|x; β0, δ)sθ,k(y|x; β0, δ), 1 ≤ j, k ≤ d, δ ∈ Θδ

}
. (3.39)

We assume the elements of Ξ obey a uniform law of large numbers, i.e. Ξ is a Glivenko-Cantelli
class.
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Assumption 6.

sup
ξ∈Ξ

∣∣ 1
n

n∑
i=1

ξ(Yi, Xi)− EP0 [ξ(Yi, Xi)]
∣∣ = oPn0 (1). (3.40)

Suppose Ŝn as defined in (3.25) or it is constructed from the orthogonalized score using
an
√
n-consistent estimator that is not necessarily the restricted MLE. The following theorem

shows that the test controls its size.

Theorem 3.1. Suppose Assumptions 1-6 hold. Let cα be defined by (3.26). Then, for any
α ∈ (0, 1),

lim
n→∞

P n
0 (Ŝn > cα) = α. (3.41)

3.6 Inference on parameters

In some applications, the ultimate goal may be to make inference on the underlying parameter,
for example, to construct confidence intervals for components of θ. While this is not our
focus, we discuss a possible way to achieve this and leave its formal analysis to future work.

Consider constructing confidence intervals for a component or linear combination p′δ0 of
δ0.16 According to Proposition 3.1, δ̂n is a

√
n-consistent estimator of δ0 as long as the true

value of β is in a neighborhood of β0 whose radius is of order n−1/2. It would be natural to use
such an estimator to construct a confidence interval for δ0 if the complete model is selected.
A well-known challenge for such post-model selection inference is that a naive asymptotic
approximation that disregards the model selection step may not be valid uniformly over a
large class of data generating processes. Given this, we consider the following hybrid method.

Step 1: Compute Sn and cn = (κn ∧ 1)cα, where κn is a sequence that tends to 0 slowly, e.g.
κn = (lnn)−1/2;

Step 2:

• Reject H0 : β = β0 if Sn > cn. Construct a robust confidence interval by Kaido et al.
(2019) for p′δ;

• Do not reject H0 : β = β0 if Sn ≤ cn. Construct the Wald confidence interval
[p′δ̂n − zα/2SE(p′δ̂n), p′δ̂n + zα/2SE(p′δ̂n)], where SE(·) is the (estimated) standard
error of its argument, and zα is the 1− α quantile of the standard normal distribution.

16Since β’s value is pinned down by the null hypothesis, it is natural to consider inference on the parameters
that are estimated under both hypotheses.
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The heuristic behind this procedure is as follows. First, we compare Sn to a critical value
cn that tends to 0 slowly. For DGPs with β well separated from its null value’s neighborhood,
we cannot ensure the asymptotic validity of the Wald confidence interval. In such a case,
the pre-test that rejects H0 with a high probability should prescribe a robust confidence
interval, which controls the asymptotic coverage probability regardless of β’s value. Since the
critical value cn is shrunk toward 0, we use the Wald confidence interval only if β is in a small
local neighborhood of β0 against which the score test has little power. The shrinkage factor
κn, therefore, introduces a conservative distortion, which is expected to make the resulting
confidence interval’s coverage probability above its nominal over a wide range of β values
and other features of the DGP.

4 An Empirical Illustration

To show that our inference approach can handle a moderate number of nuisance parameters,
we consider an application to the two-player entry game as in Kline and Tamer (2016).

The data come from the second quarter of the 2010 Airline Origin and Destination Survey
(DB1B)17 and contain 7882 markets, formally defined as trips between airports regardless of
intermediate stops. There are two types of firms in each market: LCC (low cost carriers) and
OA (other airlines). The binary variable y`,i takes value 1 if airline ` ∈ {LCC, OA} serves
the market i. Airline i’s payoff in market i equals

y`,i(δ
cons
` + δsize` Xi,size + δpres` X`,i,pres + β`y−`,i + ε`,i),

where β` captures the impact of competitor’s entry decision, y−`,i. The empirical question of
interest is “whether the LCCs and other airlines compete in a strategic way”, which can be
considered as a one–sided testing question. The null hypothesis is βLCC = βOA = 0 and the
alternative is existence of substitution effects, i.e., β` < 0.

Regarding observable covariates, in addition to airline–specific intercepts, there are two
explanatory variables: market size Xi,size and market presence X`,i,pres. The market-specific
variable Xi,size is defined as the population at the endpoints of each trip. The second
explanatory variable X`,i,pres is airline– and market-specific, and it is defined as the average
of the ratios between the number of markets that airline i serves from a given airport and
the total number of markets served from that airport by any airline from the two endpoints.
It is an excluded variable because presence for airline ` only enters `’s payoff. In one of our
specifications, we treat Xm,size and Xi,m,pres as continuous variables normalized to the unit
interval.18 In another specification, we let Xm,size and Xi,m,pres take value 1 if they are above
their respective medians and 0 otherwise following the discretization approach in Kline and

17The data are available on Brendan Kline’s website.
18The scale of the two variables without discretization differ significantly, and thus we rescale each variable

to be between 0 and 1.
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Tamer (2016). The coefficients on the covariates and intercepts are nuisance parameters. In
total, we have 6 such parameters.

The results of the analysis are reported in Table 1. When the covariates are discretized,
the test rejects the null hypothesis at the 5% level, which is consistent with the finding of
Kline and Tamer (2016) whose credible sets for β`, ` = 1, 2 do not contain the origin. For
comparison, we also consider a specification without discretization since the robust score test
can accommodate continuous regressors as well. Under this specification, the result changes
drastically; we do not reject the presence of strategic substitution even at the 10% level. This
suggests that a model without any strategic interaction effects can potentially explain the
observed pattern of market entry once we properly take into account the variation of the
continuous covariates.

p-value
Discretized 0.0002
Not discretized 0.6262

Table 1: p-values of the score test

δ̂presLCC δ̂sizeLCC δ̂consLCC δ̂presOA δ̂sizeOA δ̂consOA

Discretized 1.643 0.795 -2.084 0.388 0.440 0.338
Not discretized 7.102 0.453 -4.111 4.690 1.224 -2.656

Table 2: Estimated values of δ under H0

Note: X`,size and X`,i,pres are treated as continuous variables on the unit interval when they are not
discretized; X`,size and X`,i,pres are binary indicators of whether the original variables are above their median
or not when they are discretized.

5 Monte Carlo Experiments

5.1 Size and Power of the Score Test

We examine the size and power properties of the score test through simulations. The data
generating process is based on Example 1 and is motivated by the empirical illustration in
the previous section. There are player-specific covariates xi = (x

(1)
i , x

(2)
i )′, each of which is

generated as an independent Rademacher random variable taking values on {−1, 1}. We
then generate ui = (u

(1)
i , u

(2)
i ) from the bivariate standard normal distribution. For each ui

and xi, we determine the predicted set of outcomes G(ui|xi; θ) based on the payoff functions
with δ0 = (δ

(1)
0 , δ

(2)
0 ) = (2, 1.5)′. We then test

H0 : β(1) = β(2) = 0, v.s. H1 : β(1) < 0, β(2) < 0. (5.1)
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As discussed earlier, the model is complete under H0. We estimate δ0 using the restricted
MLE. The sample size is set to 2500, 5000, or 7500. This choice is motivated by the sample
size used in the empirical application.

The size of the score test is reported in Table 3. The size of the test is controlled properly
with n = 7500, but there are small size distortions when the sample size is smaller possibly
due to estimation errors associated with components of the estimated information matrix.

Sample size 2500 5000 7500
Size 0.065 0.057 0.048

Table 3: Size of the score test

Under alternative hypotheses, multiple equilibria may be predicted. If this is the case, we
select an outcome according to one of the following selection mechanisms. The first design
uses a selection mechanism, which selects (1, 0) out of G(ui|xi; θ) = {(1, 0), (0, 1)} if an i.i.d.
Bernoulli random variable νi takes 1. In the second design, we generate data from the least
favorable distribution, which draws an independent outcome sequence from the least favorable
distribution Qθ1 ∈ Qθ1 .

The power of the score test is calculated against local alternatives with β(j)
1 = −h/

√
n, h >

0 for j = 1, 2. For this exercise, we introduce a grid of values for h and generate data
described as above. We then compare the rejection frequency of our test to that of the
moment-based testing procedure by Bugni et al. (2017). Their test checks if a hypothesized
value (β(1), β(2))′ = (0, 0)′ is compatible with a set of moment restrictions. Their statistic
and bootstrap critical value are calculated using a sample analog of the following moment
inequality and equality restrictions

P (Y = (1, 0)|X = x) ≥ (1− Φ2)Φ1 + Φ(x(1)′δ1 + β(1))[Φ2 − Φ(x(2)′δ2 + β(2))]

P (Y = (1, 0)|X = x) ≤ (1− Φ(x(2)′δ2 + β(2)))Φ1

P (Y = (0, 0)|X = x) = (1− Φ1)(1− Φ2)

P (Y = (1, 1)|X = x) = Φ(x(1)′δ1 + β(1))Φ(x(2)′δ2 + β(2)),

which are the sharp identifying restrictions that characterize qθ in (3.4).19

Figure 3 shows the rejection frequency of our test under the i.i.d. selection mechanism. It
shows that our test outperforms that of the moment-based test by a large margin.

19Since the example resembles the specification used in their Monte Carlo experiments, we added minimal
changes to their replication code posted on the repository of Quantitative Economics to implement their
procedure.
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Figure 3: Power of the Score and BCS Tests (Design 1)

-0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Score Test
BCS Test

Figure 4: Power of the Score and BCS Tests (Design 2)
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6 Concluding remarks

This paper proposes a novel score-based test of model completeness against incompleteness.
Our test is attractive in settings where the model involves nuisance parameters, which is
common in applications. The score test only requires estimation of nuisance parameters
within the restricted model, which is complete. We utilize a point estimator of the nuisance
parameters whereby avoiding evaluations of the test statistic over a large number of parameter
values. The results of Monte Carlo experiments suggest the score test has an advantage in
terms of power over an existing method. An avenue for future research includes a unified
theory for the uniform validity of inference for post-model selection procedures that are based
on our score test.
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A Notation and Preliminaries

For ease of reference, the following list includes notation and definitions that will be used throughout
the Appendices:

a . b a ≤Mb for some constant M .
‖ · ‖op the operator norm for linear mappings.
‖ · ‖F the supremum norm over F .

N(ε,F , ‖ · ‖) covering number of size ε for F under norm ‖ · ‖.
N[](ε,F , ‖ · ‖) bracketing number of size ε for F under norm ‖ · ‖.

Xn
Pn
 X Xn weakly converges to X under {P n}

Table 4: Notation and definitions

Let Ω be a compact metric space and let ΣΩ denote its Borel σ-algebra. Let K(Ω) be the set
of compact subsets of Ω endowed with the Hausdorff metric. Let C(Ω) be the set of continuous
functions on Ω. Let ∆(Ω) be the set of Borel probability measures on Ω endowed with the weak
topology.

A set function ν∗ is said to be a capacity if ν∗ satisfies the following conditions:

(i) ν∗(∅) = 0, ν∗(Ω) = 1,

(ii) A ⊂ B ⇒ ν∗(A) ≤ ν∗(B), for all A,B ∈ ΣΩ.

(iii) An ↑ A⇒ ν∗(An) ↑ ν∗(A), for all {An, n ≥ 1} ⊂ ΣΩ and A ∈ ΣΩ.

(iv) Fn ↓ F, Fn closed ⇒ ν∗(Fn) ↓ ν∗(F ).

One may define integral operations with respect to capacities as follows. Let f : Ω → R be a
measurable function. The Choquet integral of f with respect to ν is defined by∫

fdν ≡
∫ 0

−∞
(ν({ω : f(ω) ≥ t})− ν(Ω))dt+

∫ ∞
0

ν({ω : f(ω) ≥ t})dt, (A.1)

where the integrals on the right hand side are Riemann integrals. A capacity ν is said to be monotone
of order k or, for short, k-monotone if for any Ai ⊂ S, i = 1 · · · , k,

ν
(
∪ki=1 Ai

)
≥

∑
I⊆{1,··· ,k},I 6=∅

(−1)|I|+1ν
(
∩i∈I Ai

)
. (A.2)

Conjugate ν∗(A) = 1− ν(Ac) is then called a k-alternating capacity. A capacity that satisfies (A.2)
is called an infinitely monotone capacity or a belief function. Capacities are used in various areas of
statistics (Dempster, 1967; Shafer, 1976; Wasserman, 1990) and economics (Gilboa and Schmeidler,
1989).

The following result, known as Choquet’s theorem, states that a random closed set K following a
distribution M induces a belief function, and it follows from Theorems 1-3 in Philippe et al. (1999).

Lemma A.1. Let Ω be a Polish space. Let M be a probability measure on K(Ω). Let P = {P ∈
∆(Ω) : P =

∫
PKdM(K), PK ∈ ∆(K)}. Then, ν(·) = infP∈P P (·) is a belief function and satisfies

ν(A) = M({K ⊂ A}). (A.3)

33



In our setting, we apply the lemma above with a random subset of Y × X . Namely, we take
K = G(u|X; θ)× {X}, and M is the law of K induced by u’s conditional distribution Fθ and X’s
marginal distribution qx. We then denote the induced belief function by νθ and its conjugate ν∗θ (see
(C.6)-(C.7) below).

B Details on the Examples

B.1 Discrete Games of Complete Information

We focus on Example 1 below, but the analysis of Example 2 is similar.

Model restrictions and Assumption 1

The upper and lower probabilities of all singleton events are tabulated in Table 5. In this example,
they constitute the sharp identifying restrictions (Galichon and Henry, 2011).

Table 5: Upper and Lower Probability Bounds in Game with Nuisance Parameters

Event A νθ(A) = minP (A) ν∗θ (A) = maxP (A)

{(0, 0)} (1− Φ1)(1− Φ2) (1− Φ1)(1− Φ2)

{(1, 1)} Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2)) Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))

{(1, 0)} (1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))] (1− Φ(x(2)′δ(2) + β(2)))Φ1

{(0, 1)} (1− Φ1)Φ2 + Φ(x(2)′δ(2) + β(2))[Φ1 − Φ(x(1)′δ(1) + β(1))] (1− Φ(x(1)′δ(1) + β(1)))Φ2

As argued in Section 3.2, the model’s prediction reduces to (3.16) when β(1) = β(2) = 0, which
implies a unique density in (3.14). Therefore, Assumption 1 (i) holds. For Assumption 1 (ii), it
suffices to show that Qθ0 and Qθ1 are disjoint. For this, consider the event {(1, 1)}. Table 5 suggests

νθ0({(1, 1)}|x) = Φ(x(1)′δ(1))Φ(x(2)′δ(2)), (B.1)

whereas

ν∗θ1({(1, 1)}|x) = Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2)). (B.2)

This means ν∗θ1({(1, 1)}|x) < νθ0({(1, 1)}|x) whenever β(j) < 0, j = 1, 2. Hence, Qθ0 and Qθ1 are
disjoint.

Computing the LFP

The LF density qθ is given by

qθ(0, 0|x) = (1− Φ1)(1− Φ2) (B.3)

qθ(1, 1|x) = Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2)) (B.4)

qθ(1, 0|x) =


Φ1(1− Φ2) + Φ1Φ2−Φ(x(1)′δ(1)+β(1))Φ(x(2)′δ(2)+β(2))

Φ1+Φ2−2Φ1Φ2
θ ∈ Θ1(x)

Φ1(1− Φ2) + Φ(x(1)′δ1 + β(1))[Φ2 − Φ(x(2)′δ2 + β(2))] θ ∈ Θ2(x)

Φ1(1− Φ(x(2)′δ(2) + β(2))) θ ∈ Θ3(x)

, (B.5)
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where Θj(x), j = 1, 2, 3 are given by

Θ1(x) =
{
θ :Φ1(1− Φ(x(2)′δ(2) + β(2))) ≥ z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
(B.6)

z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
≥ Φ1(1− Φ2) + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]

}
Θ2(x) =

{
θ :
z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
< Φ1(1− Φ2) + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]

}
(B.7)

Θ3(x) =
{
θ :Φ1(1− Φ(x(2)′δ(2) + β(2))) <

z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2

}
, (B.8)

where

z1 = Φ1(1− Φ2)

z2 = Φ2(1− Φ1) + Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2)).

Below, we outline how to obtain this density from the convex program in (3.6)-(3.8).

As discussed in the text, qθ0 is determined by the four equality restrictions (3.10)-(3.13). Therefore,
it remains to solve the convex program in (3.6)-(3.8) for q1. For this, we can reduce the number of
control variables. First, Table 5 implies

qθ1(0, 0|x) = (1− Φ1)(1− Φ2) (B.9)

qθ1(1, 1|x) = Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2)). (B.10)

Hence, the remaining free components of q1 are q1(1, 0|x) and q1(0, 1|x). Let ω = q1(1, 0|x). We may
then express the other component as

q1(0, 1|x) = 1−q1(0, 0|x)−q1(1, 1|x)−ω = Φ1 +Φ2−Φ1Φ2−Φ(x(1)′δ(1) +β(1))Φ(x(2)′δ(2) +β(2))−ω.

Hence, to solve(3.6)-(3.8), it suffices to choose ω = q1(1, 0|x) optimally in the following problem:

min
ω∈[0,1]

− ln
( z1

z1 + ω

)
(z1 + ω)− ln

((1− Φ1)Φ2

z2 − ω

)
(z2 − ω) (B.11)

s.t.ω − (1− Φ(x(2)′δ(2) + β(2)))Φ1 ≤ 0 (B.12)

(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]− ω ≤ 0. (B.13)

Let the Lagrangian be

L(ω, λ) = − ln
( z1

z1 + ω

)
(z1 + ω)− ln

((1− Φ1)Φ2

z2 − ω

)
(z2 − ω)− λ1((1− Φ(x(2)′δ(2) + β(2)))Φ1 − ω)

− λ2(ω − (1− Φ2)Φ1 − Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]).

The Karush-Kuhn-Tucker (KKT) conditions are

− ln

(
z1

z1 + ω

)
+ ln

(
Φ2(1− Φ1)

z2 − ω

)
+ λ1 − λ2 = 0 (B.14)

λ1

(
Φ1(1− Φ(x(2)′δ(2) + β(2)))− ω

)
≥ 0 (B.15)

λ2

(
ω − (1− Φ2)Φ1 − Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]

)
≥ 0 (B.16)

λ1, λ2 ≥ 0. (B.17)
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Below, we consider three subcases depending on the value of the Lagrange multipliers.

Case 1 (λ1 = λ2 = 0) The FOC in (B.14) with λ1 = λ2 = 0 identifies the solution qθ1(1, 0|x) as
follows:

ω = qθ1(1, 0|x) =
z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2

=
Φ1(1− Φ2)[Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))]

Φ2 + Φ1 − 2Φ1Φ2
. (B.18)

This implies

qθ1(0, 1|x) = Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))− ω (B.19)

=
Φ2(1− Φ1)[Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))]

Φ2 + Φ1 − 2Φ1Φ2
. (B.20)

Substituting the value of ω into its bounds, we obtain the following restrictions:

Φ1(1− Φ(x(2)′δ(2) + β(2)))− z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
≥ 0 (B.21)

z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
− Φ1(1− Φ2)− Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))] ≥ 0. (B.22)

We let Θ1(x) denote the set of parameter values that satisfy (B.21)-(B.22).

Case 2 (λ1 = 0, λ2 > 0). By λ2 > 0 and (B.16), we obtain

ω = qθ1(1, 0|x) = (1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ2 + β(2))],

and qθ1(0, 1|x) = (1− Φ(x(1)′δ(1) + β(1)))Φ2. Note that λ2 > 0 iff

z1

z1 + ω
<

Φ2(1− Φ1)

z2 − ω
,

which is equivalent to

(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ2 + β(2))] >
z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
. (B.23)

We let Θ2(x) denote the set of parameter values that satisfy (B.23).

Case 3 (λ1 > 0, λ2 = 0). By λ1 > 0 and (B.15), we obtain

ω = qθ1(1, 0|x) = (1− Φ(x(2)′δ2 + β(2)))Φ1,

and hence qθ1(0, 1|x) = (1− Φ1)Φ2 + Φ(x(2)′δ2 + β(2))[Φ1 − Φ(x(1)′δ1 + β(1))]. Note that λ1 > 0 iff

z1

z1 + ω
>

Φ2(1− Φ1)

z2 − ω
,

which is equivalent to

(1− Φ(x(2)′δ2 + β(2)))Φ1 <
z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
. (B.24)

We let Θ3(x) denote the set of parameter values that satisfy (B.24).
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Score:

We let sθ = (sβ(1) , sβ(2) , sδ(1) , sδ(2))
′. Each component will be of the form

sϑ(y|x) =
∑
ȳ∈Y

1{y = ȳ}zϑ(ȳ|x), ϑ ∈ {β(1), β(2), δ(1), δ(2)}, (B.25)

where zϑ(ȳ|x) is the partial derivative of ln pθ(ȳ|x) with respect to ϑ, which is well-defined if θ is in
Θ2(x), Θ3(x), or in the interior of Θ1(x). Let

rh(y, x) ≡ (
√
qθ+h(y|x)−

√
qθ(y|x)− 1

2
h′sθ(y|x)

√
qθ(y|x))2. (B.26)

Suppose θ ∈ Θ2(x). By (B.7), θ + h ∈ Θ2(x) for ‖h‖ small enough. Then, pointwise, rh(y, x) =

o(‖h2‖) because sθ(y|x) = 2 1√
qθ(y|x)

∂
∂θ

√
qθ(y|x) = ∂

∂θ ln qθ(y|x). The same argument applies when

θ ∈ Θ3(x) or θ ∈ int(Θ1(x)). The only case this argument does not apply is when θ is on the
boundary between Θ2(x) and Θ1(x) (or between Θ3(x) and Θ1(x)). For example, suppose θ is on
the boundary between Θ2(x) and Θ1(x). Then, we may have θ + h ∈ Θ2(x) for all h with ‖h‖ > 0
but θ ∈ Θ1. Then, the pointwise argument above does not apply. However, θ being on the boundary
between the two sets means

z1z2 − Φ2(1− Φ1)z1

Φ2 + Φ1 − 2Φ1Φ2
= Φ1(1− Φ2) + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))].

If x contains a continuous component (e.g. distance from headquarters/distribution center), the set
of x’s satisfying above has measure 0, rh(y, x) is bounded on the set, and hence it does not affect
the integral in Assumption 2. Hence, Assumption 2 holds.

For completeness, the functional form of zϑ(ȳ|x) is derived below for each ȳ ∈ Y and ϑ ∈
{β(1), β(2), δ(1), δ(2)}. Across all subcases analyzed in the previous section, the form of qθ(0, 0|x) and
qθ(1, 1|x) remains the same. We calculate score functions first by taking the pointwise derivative of
ln qθ(0, 0|x) and ln qθ(1, 1|x). This yields

zβ(1)(0, 0|x) = 0, zβ(2)(0, 0|x) = 0, zδ(1)(0, 0|x) = −φ1x
(1)′/(1− Φ1), zδ(2)(0, 0|x) = −φ2x

(2)′/(1− Φ2)

zβ(1)(1, 1|x) =
φ(x(1)′δ(1) + β(1))

Φ(x(1)′δ(1) + β(1))
, zβ(2)(1, 1|x) =

φ(x(2)′δ(2) + β(2))

Φ(x(2)′δ(2) + β(2))

zδ(1)(1, 1|x) =
φ(x(1)′δ(1) + β(1))x(1)

Φ(x(1)′δ(1) + β(1))
, zδ(2)(1, 1|x) =

φ(x(2)′δ(2) + β(2))x(2)

Φ(x(2)′δ(2) + β(2))
,

where φj = φ(x(j)′δ(j)), j = 1, 2.

Next, we derive zϑ(1, 0|x) and zϑ(0, 1|x).
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Case 1: Suppose θ ∈ Θ1(x). By taking the pointwise derivative of ln qθ in (B.5), one can obtain

zδ(1)(1, 0|x) =
φ1x

(1)

Φ1
+
φ1x

(1) − φ1Φ2x
(1) − φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))x(1)

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))
− φ1x

(1)(1− 2Φ2)

Φ1 + Φ2 − 2Φ1Φ2

zδ(2)(1, 0|x) =
−φ2x

(2)

1− Φ2
+
φ2x

(2) − φ2Φ1x
(2) − φ(x(2)′δ(2) + β(2))Φ(x(1)′δ(1) + β(1))x(2)

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))
− φ2x

(2)(1− 2Φ1)

Φ1 + Φ2 − 2Φ1Φ2

zβ(1)(1, 0|x) =
−φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))

zβ(2)(1, 0|x) =
−φ(x(2)′δ(2) + β(2))Φ(x(1)′δ(1) + β(1))

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))
.

Similarly,

zδ(1)(0, 1|x) =
−φ1x

(1)

1− Φ1
+
φ1x

(1) − φ1Φ2x
(1) − φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))x(1)

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))
− φ1x

(1)(1− 2Φ2)

Φ1 + Φ2 − 2Φ1Φ2

zδ(2)(0, 1|x) =
φ2x

(2)

Φ2
+
φ2x

(2) − φ2Φ1x
(2) − φ(x(2)′δ(2) + β(2))Φ(x(1)′δ(1) + β(1))x(2)

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))
− φ2x

(2)(1− 2Φ1)

Φ1 + Φ2 − 2Φ1Φ2

zβ(1)(0, 1|x) =
−φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))

zβ(2)(0, 1|x) =
−φ(x(2)′δ(2) + β(2))Φ(x(1)′δ(1) + β(1))

Φ1 + Φ2 − Φ1Φ2 − Φ(x(1)′δ(1) + β(1))Φ(x(2)′δ(2) + β(2))
.

Case 2: Suppose θ ∈ Θ2(x). Similarly to the analysis in Case 1, we may obtain

zδ(1)(1, 0|x) =
x(1)(1− Φ2)φ1 + x(1)Φ2φ(x(1)′δ(1) + β1)− x(1)Φ(x(2)′δ(2) + β2)φ(x(1)′δ(1) + β1)

(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]

zδ(2)(1, 0|x) =
−x(2)Φ1φ2 + x(2)φ2Φ(x(1)′δ(1) + β1)− x(2)Φ(x(1)′δ(1) + β1)φ(x(2)′δ(2) + β2)

(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]

zβ(1)(1, 0|x) =
(Φ2 − Φ(x(2)′δ(2) + β(2)))φ(x(1)′δ(1) + β(1))

(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]

zβ(2)(1, 0|x) =
Φ(x(1)′δ(1) + β(1))φ(x(2)′δ(2) + β(2))

(1− Φ2)Φ1 + Φ(x(1)′δ(1) + β(1))[Φ2 − Φ(x(2)′δ(2) + β(2))]
,

and

zδ(1)(0, 1|x) = − x
(1)φ(x(1)′δ(1) + β(1))

1− Φ(x(1)′δ(1) + β(1))
, zδ(2)(0, 1|x) =

x(2)φ2

Φ2

zβ(1)(0, 1|x) = − φ(x(1)′δ(1) + β(1))

1− Φ(x(1)′δ(1) + β(1))
, zβ(2)(0, 1|x) = 0.
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Case 3: Suppose θ ∈ Θ3(x). Similarly to the previous two cases, we may obtain

zδ(1)(1, 0|x) = x(1)φ1/Φ1, zδ(2)(1, 0|x) =
−x(2)φ(x(2)′δ(2) + β(2))

1− Φ(x(2)′δ(2) + β(2))

zβ(1)(1, 0|x) = 0, zβ(2)(1, 0|x) =
−φ(x(2)′δ(2) + β(2))

1− Φ(x(2)′δ(2) + β(2))
,

and

zδ(1)(0, 1|x) =
−x(1)Φ2φ1 + Φ(x(2)′ + δ(2))x(1)(φ1 − φ(x(1)′δ(1) + δ(1)))

(1− Φ1)Φ2 + Φ(x(2)′δ(2) + β(2))[Φ1 − Φ(x(1)′δ(1) + β(1))]

zδ(2)(0, 1|x) =
x(2)(1− Φ1)φ2 + x(2)(Φ1 − Φ(x(1)′δ1 + β1))φ(x(2)′δ2 + β2)

(1− Φ1)Φ2 + Φ(x(2)′δ(2) + β(2))[Φ1 − Φ(x(1)′δ(1) + β(1))]

zβ(1)(0, 1|x) =
−Φ(x(2)′δ(2) + β(2))φ(x(1)′δ(1) + β(1))

(1− Φ1)Φ2 + Φ(x(2)′δ(2) + β(2))[Φ1 − Φ(x(1)′δ(1) + β(1))]

zβ(2)(0, 1|x) =
(Φ1 − Φ(x(1)′δ(1) + β(1)))φ(x(2)′δ(2) + β(2))

(1− Φ1)Φ2 + Φ(x(2)′δ(2) + β(2))[Φ1 − Φ(x(1)′δ(1) + β(1))]
.

B.2 Triangular Model with an Incomplete Control Function

We derive an explicit form of G below. Suppose di = 1 first. By (2.5)-(2.6), yi = 0 if

ui < −α− w′iη − βvi, for some vi ∈ [−z′iγ,∞). (B.27)

Suppose β > 0. Then, this event is equivalent to ui ∈ (−∞,−α− w′iη + βz′iγ).

On the other hand, yi = 1 if

ui ≥ −α− w′iη − βvi, for some vi ∈ [−z′iγ,∞). (B.28)

Again assuming β > 0, this means that yi = 0 is consistent with the model whenever ui > −∞. Let
xi = (di, wi, zi). These predictions can be summarized as

G(ui|1, wi, zi; θ) =

{
{1} ui ≥ −α− w′iη + βz′iγ

{0, 1} ui < −α− w′iη + βz′iγ.
(B.29)

Now suppose di = 0 implying vi ∈ (−∞,−z′iγ). Repeating a similar analysis yields the following
correspondence

G(ui|0, wi, zi; θ) =

{
{0} ui ≤ −w′iη + βz′iγ

{0, 1} ui > −w′iη + βz′iγ.
(B.30)

These predictions are summarized in Figure 5.
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ui

−α− w′iη + βz′iγ

{1}

{0, 1}

di = 0

ui

−w′iη + βz′iγ

{0}

{0, 1}

di = 1

Figure 5: The set of predicted outcomes G(u|x; θ) of the model when β > 0

Model restrictions and Assumption 1

Assumption 1 (i) holds because, as argued in Section 3.2, the model’s prediction under the null
hypothesis becomes

g(ui|di, wi, zi; θ) = 1{αdi + w′iη + ui ≥ 0}, (B.31)

which induces a unique conditional density for yi. Suppose ui ∼ N(0, 1).20 Assumption 1 (ii) holds as
long as zi’s support is rich enough so that z′iγ < 0 with positive probability. For this, we demonstrate
that there exists an event A such that νθ1(A|x) > ν∗θ0(A|x) for some value of x = (d,w, z). For this,
take A = {1} and suppose di = 0. Under the null hypothesis, the conditional probability of yi = 1 is
uniquely determined as ν∗θ0(1|di = 0, wi, zi) = Φ(w′iη). When β > 0, (B.29) implies

νθ1({1}|di = 0, wi, zi) = Φ(w′iη − βz′iγ), (B.32)

which is greater than ν∗θ0(1|di = 0, wi, zi) for values of zi such that z′iγ < 0. Hence, qθ0 and qθ1 are
disjoint.

Computing LFP and score

For any θ = (β, δ) with β > 0, the set qθ of densities compatible with θ is then characterized by the
following inequalities

q(0|d = 0, w, z) ≥ Φ(−w′iη + βz′iγ) (B.33)
q(1|d = 0, w, z) ≥ 0, (B.34)

and

q(0|d = 1, w, z) ≥ 0 (B.35)
q(1|d = 1, w, z) ≥ 1− Φ(−α− w′iη + βz′iγ). (B.36)

20Here, we normalize the scale by setting the variance of ui to 1. Other choices of normalization are also
possible.
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Suppose d = 0. Let z = q1(0|d = 0, w, z). Then, the convex program in (3.6)-(3.8) can be written
as

min
(q0,q1)

ln
(q0(0|x) + z

q0(0|x)

)
(q0(0|x) + z) +

(1− q0(0|x) + 1− z
1− q0(0|x)

)
(q0(1|x) + 1− z) (B.37)

s.t. q0(y|x) = 1− Φ(w′η) (B.38)
z ≥ Φ(−w′η + βz′γ) (B.39)
1− z ≥ 0, (B.40)

where (B.38) is due to the completeness of the model under the null hypothesis (see (3.31)) and
d = 0. Note that (B.40) is redundant since q1 being in the probability simplex is implicitly assumed.
The KKT conditions associated with the program is therefore

ln
q0(0|x) + z

q0(0|x)
− ln

2− q0(0|x)− z
1− q0(0|x)

− λ = 0 (B.41)

λ(Φ(−w′η + βz′γ)− z) (B.42)
λ ≥ 0 (B.43)

where q0(y|x) = 1− Φ(w′η). There are two cases to consider.

Case 1 (λ = 0): When λ = 0, (B.41) implies z = q0(y|x) = 1 − Φ(w′η). This holds when
z = 1− Φ(w′η) ≥ Φ(−w′η + βz′γ).

Case 2 (λ > 0): When λ > 0, z = Φ(−w′η + βz′γ) by (B.39). This occurs when

λ = ln
q0(0|x) + z

q0(0|x)
− ln

2− q0(0|x)− z
1− q0(0|x)

> 0, (B.44)

which is equivalent to

Φ(−w′η + βz′γ) > q0(y|x) = 1− Φ(w′η). (B.45)

In sum, we have

qθ1(0|d = 0, w, z) =

{
1− Φ(w′η) if Φ(−w′η + βz′γ) ≤ 1− Φ(w′η),

Φ(−w′η + βz′γ) if Φ(−w′η + βz′γ) > 1− Φ(w′η),
(B.46)

and qθ1(1|d = 0, w, z) = 1− qθ1(0|d = 0, w, z).

Repeating a similar analysis for d = 1 yields

qθ1(1|d = 1, w, z) =

{
Φ(α+ w′η) if 1− Φ(−α− w′η + βz′γ) ≤ Φ(α+ w′η),

1− Φ(−α− w′η + βz′γ) if 1− Φ(−α− w′η + βz′γ) > Φ(α+ w′η),

(B.47)

and qθ1(0|d = 1, w, z) = 1− qθ1(1|d = 1, w, z).

Recalling β > 0 and Φ is strictly increasing, we may summarize (B.46)-(B.47) as follows

qθ1(0|d = 0, w, z) =

{
Φ(−w′η) if z′γ ≤ 0,

Φ(−w′η + βz′γ) if z′γ > 0,
(B.48)

qθ1(1|d = 0, w, z) =

{
1− Φ(−w′η) if z′γ ≤ 0,

1− Φ(−w′η + βz′γ) if z′γ > 0,
(B.49)
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and

qθ1(0|d = 1, w, z) =

{
Φ(−α− w′η) if z′γ ≥ 0,

Φ(−α− w′η + βz′γ) if z′γ < 0,
(B.50)

qθ1(1|d = 1, w, z) =

{
1− Φ(−α− w′η) if z′γ ≥ 0,

1− Φ(−α− w′η + βz′γ) if z′γ < 0.
(B.51)

The corresponding score function with respect to β is

sβ(0|d = 0, w, z) =

{
0 if z′γ ≤ 0,
φ(−w′η+βz′γ)
Φ(−w′η+βz′γ)z

′γ if z′γ > 0,
(B.52)

sβ(1|d = 0, w, z) =

{
0 if z′γ ≤ 0,

− φ(−w′η+βz′γ)
Φ(−w′η+βz′γ)z

′γ if z′γ > 0,
(B.53)

and

sβ(0|d = 1, w, z) =

{
0 if z′γ ≥ 0,
φ(−α−w′η+βz′γ)

1−Φ(−α−w′η+βz′γ)z
′γ if z′γ < 0,

(B.54)

sβ(1|d = 1, w, z) =

{
0 if z′γ ≥ 0,

− φ(−α−w′η+βz′γ)
1−Φ(−α−w′η+βz′γ)z

′γ if z′γ < 0.
(B.55)

B.3 Panel Dynamic Discrete Choice Models

For each t, let uit = αi+εit. We explicitly derive a form of G below. Note that, yi = (yi1, yi2) = (0, 0)
occurs if

ui1 < −x′i1λ, ui2 < −x′i2λ, (B.56)

which follows from (2.10)-(2.11) or

ui1 < −x′i1λ− β, ui2 < −x′i2λ, (B.57)

which follows from (2.12)-(2.13). When β ≥ 0, the union of the two events reduces to (B.56).

Similarly, y = (0, 1) occurs if

ui1 < −x′i1λ, ui2 ≥ −x′i2λ, (B.58)

or

ui1 < −x′i1λ− β, ui2 ≥ −x′i2λ. (B.59)

When β ≥ 0, the union of the two events reduces (B.58).

The outcome y = (1, 0) occurs if

ui1 ≥ −x′i1λ, ui2 < −x′i2λ− β, (B.60)

or

ui1 ≥ −x′i1λ− β, ui2 < −x′i2λ− β, (B.61)

42



When β ≥ 0, the union of the two events reduces to (B.61).

The outcome y = (1, 1) occurs if

ui1 ≥ −x′i1λ, ui2 ≥ −x′i2λ− β, (B.62)

or

ui1 ≥ −x′i1λ− β, ui2 ≥ −x′i2λ− β, (B.63)

When β ≥ 0, the union of the two events reduces to (B.63). These predictions are summarized in
Figure 6.

Figure 6: Level sets of u 7→ G(u|x; θ) when β ≥ 0

u1

u2

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

u1

u2

A

B

{(0, 0)}

{(1, 1)}{(0, 1)}

{(1, 0)}

{(0, 0),

(1, 1)}

{(0, 1),

(1, 1)}

{(0, 0),

(1, 0)}

Note: The level sets of G when β = 0 (left) and β > 0 (right). A =
(−xi1′λ− β,−xi2′λ− β); B = (−xi1′λ,−xi2′λ).
Multiple outcome values are predicted in each of the red, blue, and green
regions.

The correspondence can therefore be written as

G(ui|xi; θ) =



{(0, 0)} ui1 < −x′i1λ− β, ui2 < −x′i2λ,
{(0, 1)} ui1 < −x′i1λ− β, ui2 ≥ −x′i2λ,
{(1, 0)} ui1 ≥ −x′i1λ, ui2 < −x′i2λ− β,
{(1, 1)} ui1 ≥ −x′i1λ, ui2 ≥ −x′i2λ− β,
{(0, 0), (1, 0)} −x′i1λ− β ≤ ui1 < −x′i1λ, ui2 ≤ −x′i2λ− β,
{(0, 0), (1, 1)} −x′i1λ− β ≤ ui1 < −x′i1λ, − x′i2λ− β ≤ ui2 < −x′i2λ,
{(0, 1), (1, 1)} −x′i1λ− β ≤ ui1 < −x′i1λ, ui2 ≥ −x′i2λ.

(B.64)

A similar analysis can be done for the setting with β ≤ 0, which we omit for brevity.

Model restrictions and Assumption 1

Assumption 1 (i) holds because, as argued in (3.18), the model makes a complete prediction with
the following reduced-form function when β = 0:

g(ui|xi; θ) =

[
1{x′i1λ+ αi + εi1 ≥ 0}
1{x′i2λ+ αi + εi2 ≥ 0}

]
. (B.65)
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Assumption 1 (ii) holds if u follows a distribution F that is absolutely continuous with respect
to the Lebesgue measure on R2. We show below, when β > 0, there exists an event A such that
νθ1(A) > ν∗θ0(A) for all θ1 ∈ Θ1. For example, take A = {(1, 1)}. As shown on the left panel of
Figure 6, the probability of {(1, 1)} is uniquely determined when β = 0. Therefore, the upper bound
on the probability of {(1, 1)} is

ν∗θ0({(1, 1)}|x) = F (ui1 ≥ −x′i1λ, ui2 ≥ −x′i2λ). (B.66)

When β > 0, the lower bound on the probability of the same event is

νθ1({(1, 1)}|x) = F (ui1 ≥ −x′i1λ, ui2 ≥ −x′i2λ− β), (B.67)

which exceeds ν∗θ0({(1, 1)}|x) as long as F is absolutely continuous. This means qθ1 and qθ0 are
disjoint.

The analysis of the LFP and score is similar to that of discrete games. For brevity, we omit
details.

C Lemmas and Proofs

This section is organized as follows. In Section C.1, we show
√
n-consistency of δ̂n by extending

standard arguments for extremum estimators to locally incomplete models. In Section C.2, we use
the results in C.1 to show results on the asymptotic size of our score test.

C.1
√
n-consistency of δ̂n

Lemma C.1. Suppose Assumption 4 holds. Then for any bounded function g : Y × X → R,∣∣ ∫ gdν∗θ −
∫
gdν∗θ′

∣∣ ≤ C ′‖θ − θ′‖, ∀θ, θ′ ∈ Θ, (C.1)

and ∣∣ ∫ gdνθ −
∫
gdνθ′

∣∣ ≤ C ′‖θ − θ′‖, ∀θ, θ′ ∈ Θ, (C.2)

for some C ′ > 0.

Proof. Note that ∫
gdν∗θ =

∫
max

(y,x)∈G(u|x;θ)×{x}
g(y, x)dFθ(u)

=

∫
ḡ(u)fθ(u)du, (C.3)

where ḡ(u) = max(y,x)∈G(u|x;θ)×{x} g(y, x). This, boundedness of g, and Assumption 4 imply∣∣∣ ∫ gdν∗θ −
∫
gdν∗θ′

∣∣∣ =
∣∣∣ ∫ ḡ(u)(fθ(u)− fθ′(u))du

∣∣∣
. ‖fθ − fθ′‖L1

ζ
. ‖θ − θ′‖. (C.4)

This ensures (C.1). Showing (C.2) is analogous and is omitted.
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The following proposition shows that the sample log-likelihood converges to its population
counterpart uniformly over a set of distributions that are consistent with the null or local alternative
hypotheses.

Proposition C.1 (ULLN). Suppose Assumptions 1-3 hold. Let h ∈ V1. Then, for any θ0 ∈ Θ0 and
ε > 0, there exists Nε ∈ N that does not depend on δ such that

sup
Pn∈Qn

θ0+h/
√
n

Pn
(

sup
δ∈Θδ

∣∣n−1
n∑
i=1

ln qβ0,δ(si)− EQ0 [ln qβ0,δ]
∣∣ ≥ ε) < ε, ∀n ≥ Nε. (C.5)

Proof. Below, let νθ and ν∗θ be a belief function and its conjugate induced by the correspondence
(u, x) 7→ G(u|x; θ)× {x} on Y × X . That is, they are set functions such that

νθ(A) =

∫
X

∫
U

1{G(u|x; θ))× {x} ⊆ A}dFθ(u)dqx(x), A ⊂ Y × X (C.6)

ν∗θ (A) =

∫
X

∫
U

1{G(u|x; θ))× {x} ∩A 6= ∅}dFθ(u)dqx(x). A ⊂ Y × X . (C.7)

A key observation is that, for any θ0 ∈ Θ0,∫
ln qβ0,δdνθ0 = EQθ0 [ln qβ0,δ] =

∫
ln qβ0,δ(y|x)dν∗θ0 . (C.8)

This is because the model is complete under H0 by Assumption 1 and the fact that the Choquet
integrals with respect to νθ0 and ν∗θ0 coincide with each other in such a setting.

Note that one may write the event (i.e. the argument of Pn) in (C.5) as the union of the following
two events:

AUn =
{
sn : sup

δ∈Θδ

(
n−1

n∑
i=1

ln qβ0,δ(si)−
∫

ln qβ0,δdν
∗
θ0

)
≥ ε
}

(C.9)

ALn =
{
sn : inf

δ∈Θδ

(
n−1

n∑
i=1

ln qβ0,δ(si)−
∫

ln qβ0,δdνθ0

)
≤ −ε

}
. (C.10)

Let Kn =
∏n
i=1Ki be a random set whose distribution follows the law induced by mθ0+h/

√
n. Below,

we simply write Kn ∼ mθ0+h/
√
n. Note that

sup
Pn∈Qn

θ0+h/
√
n

Pn(AUn ∩ALn) = Fθ0+h/
√
n

(
Kn ∩ (AUn ∪ALn) 6= ∅

)
(C.11)

≤ Fθ0+h/
√
n

(
Kn ∩AUn 6= ∅

)
+ Fθ0+h/

√
n

(
Kn ∩ALn 6= ∅

)
(C.12)

= ν∗θ0+h/
√
n

(
sup
δ∈Θδ

[
n−1

n∑
i=1

ln qβ0,δ(si)−
∫

ln qβ0,δdν
∗
θ0

]
≥ ε
)

(C.13)

+ ν∗θ0+h/
√
n

(
inf
δ∈Θδ

[
n−1

n∑
i=1

ln qβ0,δ(si)−
∫

ln qβ0,δdνθ0
]
≤ −ε

)
.

(C.14)

By Assumption 3 and Lemma C.1,∣∣∣ ∫ ln qβ0,δdν
∗
θ0+h/

√
n −

∫
ln qβ0,δdν

∗
θ0

∣∣∣ ≤ C ′|h|√
n
, (C.15)
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implying there exists η̄ > 0 and Nη̄ such that
√
n supδ∈Θδ

( ∫
ln qβ0,δdν

∗
θ0+h/

√
n
−
∫

ln qβ0,δdν
∗
θ0

)
< η̄

for all n ≥ Nη̄. Hence, for all n ≥ Nη̄, (C.13) is bounded by

ν∗θ0+h/
√
n

(
sup
δ∈Θδ

1√
n

n∑
i=1

[
ln qβ0,δ(si)−

∫
ln qβ0,δdν

∗
θ0+h/

√
n

]
≥
√
nε− η̄

)
. (C.16)

As we show below, we may apply Lemma C.2 to this quantity. Similarly, by Assumption 3 and
Lemma C.1, (C.14) is bounded by

ν∗θ0+h/
√
n

(
inf
δ∈Θδ

1√
n

n∑
i=1

[
ln qβ0,δ(si)−

∫
ln qβ0,δdνθ0+h/

√
n

]
≤ −
√
nε+ η̄

)
. (C.17)

Now, let G ≡ {g = ln qβ0,δ, δ ∈ Θδ}. Then, by Lemma C.3, the induced family of functions FG
defined in (C.20) consists of uniformly bounded and Lipschitz functions. By Theorem 2.7.11 in
van der Vaart and Wellner (1996), it follows that

N[](ε‖FG‖L2(M),FG , L2(M)) ≤ N(ε/2,Θδ, ‖ · ‖) ≤ (2diam(Θδ)/ε)
dδ . (C.18)

Therefore, FG satisfies the condition of Lemma C.2. Applying the lemma ensures that (C.16) is
bounded by (

Cdiam(Θδ)

√
nε− η̄√
dδ

)dδ
e−2(

√
nε−η̄)2 , (C.19)

which tends to 0 as n→∞. (C.17) can be handled similarly. This completes the proof.

Let S be a Euclidean space. Given a family G of measurable functions on S and a random set
K : Ω 7→ K(S), define a family of measurable functions on K(S) by

FG ≡
{
f : f(K) = max

s∈K
g(s), g ∈ G

}
. (C.20)

We denote the envelope function of FG by FG . A class F of uniformly bounded functions is covered
by at most (Dε )v brackets if for positive constants v and D,

N[](ε‖F‖L2(M),F , L2(M)) ≤
(D
ε

)v
, 0 < ε < D, (C.21)

The following lemma gives concentration inequalities for the suprema (and infima) of empirical
processes under plausibility functions.

Lemma C.2. Let νn be a belief function such that νn(B) = Mn(Kn ⊂ A) for any A ∈ K(Sn). Let
G be a family of uniformly bounded measurable functions on S such that FG in (C.20) is covered by
at most (Dε )v brackets. Then, for all t > 0

ν∗,n
(

sup
g∈G

1√
n

n∑
i=1

[
g(si)−

∫
gdν∗

]
≥ t
)
≤
(
CD

t√
v

)v
e−2t2 , (C.22)

ν∗,n
(

inf
g∈G

1√
n

n∑
i=1

[
g(si)−

∫
gdν

]
≤ −t

)
≤
(
CD

t√
v

)v
e−2t2 . (C.23)

for some CD that depends on D only.
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Proof. Define the following events

BU
n =

{
sn : sup

g∈G

1√
n

n∑
i=1

[
g(si)−

∫
gdν∗

]
≥ t
}

(C.24)

BL
n =

{
sn : inf

g∈G

1√
n

n∑
i=1

[
g(si)−

∫
gdν

]
≤ −t

}
. (C.25)

Observe that

Kn ∩BU
n 6= ∅ ⇔ sup

sn∈Kn
sup
g∈G

1√
n

n∑
i=1

[
g(si)−

∫
gdν∗

]
≥ t (C.26)

⇔ sup
g∈G

1√
n

n∑
i=1

[
sup
si∈Ki

g(si)−
∫
gdν∗

]
≥ t (C.27)

⇔ sup
g∈G

1√
n

n∑
i=1

[
sup
si∈Ki

g(si)−
∫

sup
s∈K

g(s)dM(K)
]
≥ t (C.28)

⇔ sup
g∈G

1√
n

n∑
i=1

[
f(Ki)− EM [f(K)]

]
≥ t. (C.29)

Therefore,

ν∗,n
(

sup
g∈G

1√
n

n∑
i=1

[
g(si)−

∫
gdν∗

]
≥ t
)

= Mn(Kn ∩BU
n 6= ∅) (C.30)

= Mn
(

sup
g∈G

1√
n

n∑
i=1

[
f(Ki)− EM [f(K)]

]
≥ t
)
, (C.31)

By Theorem 1.3 (ii) in Talagrand (1994), for all t > 0,

Mn
(

sup
g∈G

( 1√
n

n∑
i=1

f(Ki)− EM [f(K)]
)
≥ t
)
≤Mn

(
‖Gnf‖F ≥ t

)
≤
(
CD

t√
v

)v
e−2t2 . (C.32)

A similar argument can be applied to BL
n as well.

LetK be a subset of S = Y×X . The following lemma shows that fδ(K) ≡ max(y,x)∈K ln qβ0,δ(y|x)
is uniformly bounded and Lipschitz, which provides a control of the covering number.

Lemma C.3. Suppose Assumption 3 holds. Then, (i) fδ is uniformly bounded; and (ii) for any
δ, δ′ ∈ Θδ,

|fδ(K)− fδ′(K)| . ‖δ − δ′‖. (C.33)

Proof. (i) follows from the map δ 7→M(δ) being continuous by Assumption 3 and hence achieving a
finite maximum on the compact set Θδ.

(ii) Let s = (y, x) and let g(δ, s) = ln qβ0,δ(y|x). By Assumption 3,

fδ′(K) = max
(y,x)∈K

(
g(δ′, s)− g(δ, s) + g(δ, s)

)
≤ max

s∈K

(
‖δ − δ′‖+ g(δ, s)

)
= fδ(K) + ‖δ − δ′‖.

(C.34)
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Similarly,

fδ′(K) = max
s∈K

(
g(δ′, s)− g(δ, s) + g(δ, s)

)
≥ max

s∈K

(
− ‖δ − δ′‖+ g(δ, s)

)
= fδ(K)− ‖δ − δ′‖.

(C.35)

Combining the two inequalities above yields (C.33).

Below, we write Xn = OPn(an) uniformly in Pn ∈ Fn if for any ε > 0, there exist finite M > 0
and N > 0 such that supPn∈Fn P

n(|Xn/an| > M) < ε for all n > N .

Theorem C.1. Suppose Assumptions 1-3 hold. Then, for any η > 0,

lim
n→∞

inf
Pn∈Qn

θ0+h/
√
n

Pn
(
‖δ̂n − δ0‖ < η

)
= 1 (C.36)

and Mn(δ̂n) ≥Mn(δ0)−OPn(r−2
n ) uniformly in Pn ∈ Qn

θ0+h/
√
n
.

Proof. The proof is based on the standard argument for the consistency of extremum estimators (see
e.g. Newey and McFadden, 1994). A slight difference is that one needs a uniform law of large numbers
under any sequence Pn ∈ Qn

θ0+h/
√
n
, which is established by Proposition C.1. For each δ ∈ Θδ, recall

that M(δ) ≡ EQ0 [ln qβ0,δ] and let Mn(δ) ≡ n−1
∑n

i=1 ln qβ0,δ(si). Given any neighborhood V of δ0,
we want to show that δ̂n ∈ V , wp→ 1 uniformly over Qn

θ0+h/
√
n
. For this, it suffices to show that

infPn∈Qn
θ0+h/

√
n
Pn(M(δ̂n) < infδ∈Θ∩V c M(δ))→ 1. Let ε ≡ infδ∈Θ∩V c M(δ)−M(δ0). This constant

is well-defined since infΘ∩V c M(δ) = M(δ∗) >M(δ0) for some δ∗ ∈ Θ ∩ V c by Assumption 3 and the
compactness of Θδ.

Let A1n ≡ {ω : M(δ̂n) < Mn(δ̂n) + ε/3}, A2n ≡ {ω : Mn(δ̂n) < Mn(δ0) + ε/3}, A3n ≡ {ω :
Mn(δ0) <M(δ0) + ε/3}. For any ω ∈ A1n ∩A2n ∩A3n,

M(δ̂n) <Mn(δ̂n) + ε/3

<Mn(δ0) + 2ε/3

<M(δ0) + ε.

Therefore,

inf
Pn∈Qn

θ0+h/
√
n

Pn(M(δ̂n) <M(δ0) + ε) ≥ inf
Pn∈Qn

θ0+h/
√
n

Pn(A1n ∩A2n ∩A3n) (C.37)

≥ inf
Pn∈Qn

θ0+h/
√
n

(
1− Pn(Ac1n)− P (Ac2n)− P (Ac3n)

)
(C.38)

≥ 1−
3∑
j=1

sup
Pn∈Qn

θ0+h/
√
n

Pn(Acjn). (C.39)

Note that, for any h, supPn∈Qn
θ0+h/

√
n
Pn(Ac1n)→ 0 and supPn∈Qn

θ0+h/
√
n
Pn(Ac3n)→ 0 by Proposition

C.1. Also note that supPn∈Qn
θ0+h/

√
n
Pn(Ac2n)→ 0 by the construction of δ̂n.

Proof of Proposition 3.1. The result follows immediately from Theorem 3.2.5 in van der Vaart and
Wellner (1996) with φn(ζ) = ζ, rn =

√
n, and applying their argument uniformly over Pn ∈

Qn
θ0+h/

√
n
.
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C.2 Size control

Proof of Theorem 3.1. We show the result for the general setting, in which the orthogonalized score
is used to construct Ŝn. To simplify the exposition below, we assume Iθ0 is known for now. Let

g∗n(β0) = C∗β0,n − Iβ,δI
−1
δ C∗δ,n, (C.40)

where

C∗β0,n =
1√
n

n∑
i=1

sβ(Yi|Xi;β0, δ0), C∗δ,n =
1√
n

n∑
i=1

sδ(Yi|Xi;β0, δ0). (C.41)

By Assumption 1, Pn0 = Qnθ0×q
n
X for some unique product measure. By Assumption 2 and arguing as

in Theorem 7.2 in van der Vaart (2000), we have E[sβ(Yi|Xi;β0, δ0)] = E[sδ(Yi|Xi;β0, δ0)] = 0, where
expectation is with respect to P0. By the square integrability of sβ and sδ ensured by Assumption 2,
the central limit theorem for i.i.d. sequences ensures

C∗n =

[
C∗β0,n
C∗δ,n

]
Pn0 N(0, Iθ0). (C.42)

Observing that
√
ng∗n(β0) = [Idβ ,−Iβ,δI

−1
δ ]C∗n and applying the continuous mapping theorem, we

obtain
√
ng∗n(β0)

Pn0 N(0, V0), (C.43)

where V0 = Iβ − Iβ,δI−1
δ Iδ,β. Define

S∗n = ng∗n(β0)′V −1
0 g∗n(β0)− inf

h∈V1
n(g∗n(β0)− h)′V −1

0 (g∗n(β0)− h). (C.44)

By (C.43), it then follows that

S∗n
Pn0 S, (C.45)

where S is as in (3.27).

For the desired result, it remains to show Sn is asymptotically equivalent to S∗n under Pn0 . For
each δ, let Gnsβ(δ) ≡ 1

n

∑n
i=1 sβ(Yi|Xi;β0, δ)− E[sβ(Yi|Xi;β0, δ)]. We may then write

√
ngn(β0)−

√
ng∗n(β0) = Gnsβ(δ̂n)−Gnsβ(δ0)

−
√
n(E[sβ(Yi|Xi;β0, δ̂n)]− E[sβ(Yi|Xi;β0, δ0)])

− Iβ,δI−1
δ Cδ,n + Iβ,δI

−1
δ C∗δ,n

= Gnsβ(δ̂n)−Gnsβ(δ0)− Iβ,δI−1
δ C∗δ,n + oPn(1)

− Iβ,δI−1
δ Cδ,n + Iβ,δI

−1
δ C∗δ,n

= oPn(1), (C.46)

where the last equality follows from the stochastic equicontinuity of Gnsβ,
√
n-consistency of δ̂n,

and Cδ,n = 1√
n

∑n
i=1 sδ(Yi|Xi;β0, δ̂n) = oPn(1) by the first-order condition for the RMLE.

Let ϕ(x) = x′V −1
0 x− infh∈V1(x− h)′V −1

0 (x− h). Note that x 7→ infh∈V1(x− h)′V −1
0 (x− h) is

continuous due to Berge’s maximum theorem (Aliprantis and Border, 2006, Theorem 17.31). Hence,
ϕ is continuous. By (C.46) and the continuous mapping theorem,

Ŝn − S∗n = ϕ(
√
ngn(β0))− ϕ(

√
ng∗n(β0)) = oPn(1). (C.47)
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By (C.45) and (C.47),

lim
n→∞

Pn0 (Ŝn > cα) = α. (C.48)

This establishes the claim of the theorem.

Note that we assumed Iθ0 was known. In general, it can be consistently estimated by În =

n−1
∑n

i=1 sθ(Yi|Xi;β0, δ̂n)sθ(Yi|Xi;β0, δ̂n)′. To see this, let sθ,j be the j-th component of sθ. For
each j and k, define

ξj,k(Yi, Xi; δ) ≡ sθ,j(Yi|Xi;β0, δ)sθ,k(Yi|Xi;β0, δ). (C.49)

For the (j, k)-th component of În, we then have

[În]j,k − [Iθ0 ]j,k =
1

n

n∑
i=1

ξj,k(Yi, Xi; δ̂n)− Eqθ0 [ξj,k(Yi, Xi; δ0)]

=
( 1

n

n∑
i=1

ξj,k(Yi, Xi; δ̂n)− Eqθ0 [ξj,k(Yi, Xi; δ̂n)
)

+
(
Eqθ0 [ξj,k(Yi, Xi; δ̂n)− Eqθ0 [ξj,k(Yi, Xi; δ0)

)
= oPn(1),

where the last equality follows because of supδ | 1n
∑n

i=1 ξj,k(Yi, Xi; δ)− Eqθ0 [ξj,k(Yi, Xi; δ)| = oPn(1)

due to Assumption 6, δ̂n’s consistency by Theorem C.1, and the continuity of δ 7→ E[ξj,k(Yi, Xi; δ)].
Given this, showing the claim of the theorem with the estimated Iθ0 is straightforward by applying
Slutsky’s theorem.
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