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We study a small open economy displaying Pareto-distributed wealth result-

ing from random death. The government runs a distribution scheme on in-

heritance. We present the mathematical background that allows to study

the dynamics of means. We end up with ordinary differential equations for

individual and government wealth. We also study distributional dynamics

analytically. Starting from any distribution of wealth, the aggregate distrib-

ution converges, both on a transition path towards a steady state and on a

transition path towards balanced growth, to a Pareto-distribution of wealth.

The findings are illustrated for different distribution schemes.
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1 Introduction

Distributional analyses gain in importance in times where wealth or income appear to

become increasingly unequally distributed across individuals. An observed distribution

that differs at two points in time can be understood in (at least) two ways. First, by

comparative static analysis of a stationary distribution or by studying the transition

process from the first realization of the distribution to the second. As the former is the

dominating approach in the literature and the latter is often performed numerically, we

focus on the latter from an analytical perspective for the case of a ’perpetual youth’

model.

We model the age process of representatives of a dynasty by a stochastic differential

equation. Wealth of the dynasty is derived from this age process while individuals are

1We would like to thank Danial Ali Akbari, Alberto Bisin, Thomas Fischer, Philip Sauré, John

Stachurski, Damir Stijepic and seminar and workshop participants at Le Mans University, Lund Univer-

sity and Bielefeld University for discussions and comments. Special thanks for detailed comments and

discussions are due to Jess Benhabib and Alberto Bisin.
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alive. Newborns are endowed with a constant initial wealth level. We assume that capital

is the only source of income. This setup implies a stochastic differential equation for the

wealth process as well. We study dynasties in a small open economy framework with free

international capital flows. We investigate convergence properties towards a steady state

and balanced growth path.

We emphasize that our setup reflects the age process of a typical ’perpetual youth’

Yaari-Blanchard model (Yaari, 1965, Blanchard, 1985). The wealth process in our setup

is an alternative representation of the evolution of wealth in Jones (2014, 2015). An

endowment that is identical at birth reminds of Kasa and Lei (2018), among others (see

below for a detailed comparison with the literature).

Our contribution is fourfold. The crucial departure from the economic birth-death

literature we are aware of lies in a modelling choice. We represent the age process resulting

from a birth-death process by a stochastic differential equation (SDE). As a consequence,

the wealth process in our economy can also be represented by an SDE. This allows us to

apply standard stochastic methods to understand its properties.

Second, building on the SDE, we derive an ordinary differential equation (ODE) that

describes how mean wealth evolve over time. We derive conditions under which mean

wealth converges to a steady state and under which it converges to a growth path. We

derive an SDE for government wealth as well. The government taxes income (with a

positive or negative rate), receives all wealth at death and endows each newborn with a

constant initial wealth level. The corresponding ODE tells us under which conditions the

debt to GDP ratios approach a steady state or a balanced growth path.

Third, combining conditions at the household level with conditions for government

wealth, we obtain equilibrium conditions. The economy can converge to a steady-state

economy or to a balanced growth path. The conditions are expressed in terms of the

interest rate, time preference rate, death rate and intertemporal elasticity of substitution.

Finally, we obtain results on the dynamics of distributions by steps that differ from

the more popular Fokker-Planck equations (FPEs). We rather solve the SDEs and derive

distributions from these solutions. We show that our wealth process converges to a

Pareto distribution in the limit.2 Starting from any arbitrary initial condition, the well-

known link between an exponential age and a Pareto wealth distribution is absent in

transition. We characterize transitional dynamics of the wealth distribution analytically

and illustrate them graphically.

The next section briefly surveys the literature to which we relate our work. Section

3 introduces the model. Section 4 provides the stochastic background of our analysis.

Section 5 provides findings on the evolution of expected individual wealth and government

2The discussion paper version also proves many properties of the age process. Mean age always

converges to a constant, the age process converges to an exponential distribution in the long run, starting

from an arbitrary distribution. More details are in Birkner et al. (2021) or in an appendix available upon

request.
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wealth. Section 6 first derives conditions for a steady state vs. a balanced growth path,

illustrates the difference between time paths for expected values and realizations and

offers our analytical characterization of transitional dynamics of distributions. The final

section concludes.

2 Related literature

Birth-death process. We employ Poisson processes to model birth-death processes as

many other papers in the wealth-distribution literature (Cao and Lou, 2017, Gabaix et

al., 2016, Kasa and Lei, 2018, Aoki and Nirei, 2017). We share with others (Blanchard,

1985, Benhabib et al., 2016, Benhabib and Bisin, 2006, Gabaix et al., 2016, Kaymak and

Poschke, 2016, Kasa and Lei, 2018, Toda, 2014, Benhabib et al., 2011, Aoki and Nirei,

2017, Benhabib et al., 2019, Itskhoki and Moll, 2019) that death and birth rates are

identical. This differs from analyses that allow rates of birth and death to differ leading

to population growth (Jones, 2014, 2015, Cao and Lou, 2017). Yaari (1965) and d’Albis

(2007) consider age-dependent death rates.

Identical initial endowment. Newborns in our model receive a constant initial endow-

ment. This captures the idea of equality of chances with respect to initial wealth.3 This

assumption is also made by Kasa and Lei (2018). Newborns born at the same point in

time receive identical endowments also in Jones (2015). This endowment can grow over

time, however. The literature employing insurance companies in finite-life models in the

tradition of Yaari (1965) and Blanchard (1985) redistribute wealth intragenerationally.

Both use insurance companies selling an annuity to a consumer who then receives a

frequent payment until the point of death. After that, the insurance company claims

the annuity without any further obligation (Yaari, 1965), or keeps the individual’s total

wealth (Blanchard, 1985). In models in the Blanchard-tradition, all individuals also have

an identical initial wealth level (of zero).4

Kolmogorov backward equations. Analysis of the mean is facilitated by employing

Kolmogorov backward equations. An introduction can be found in Stokey (2008, ch.

3.7). They are also applied in finance papers like Cox and Ross (1976), Aoki (1995),

Kawai (2009), or Eberlein and Glau (2014).

Kolmogorov forward / Fokker-Planck equations. Fokker-Planck equations (FPEs) be-

came very popular recently and we share the belief in their usefulness with Benhabib,

Bisin and Zhu (2016), Achdou et al. (2020), Jones and Kim (2017), Cao and Luo (2017),

3We ignore other determinants of equality of chances such as cognitive and non-cognitive skills or

family background. We also acknowledge a long literature studying alternative redistribution schemes.

Recent contributions include Cao and Luo (2017), Benhabib and Bisin (2006) and Benhabib et al. (2011,

2016).
4Including an annuity in our model would lead to a different deterministic evolution of wealth over

time. It would not change our main points, however. Thus, we share the ideas of Jones (2014, 2015),

Toda (2014, p. 329), or Cao and Luo (2017) and omit insurance markets.
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Aoki and Nirei (2017), Kaplan et al. (2018), Nuño and Moll (2018) and Itskhoki and

Moll (2019).5 ,6

Probability theory. Given the nature of our project, we used textbooks on probability

theory. They include Oksendal (1998), Kallenberg (1997), or Privault (2018). In order to

understand stochastic integral equations, their solutions, and the infinitesimal generator

of Markov processes, Protter (1995) is helpful. Davis (1993) establishes a theorem on the

evolution of an expected value as being entirely determined by a generator for certain

assumptions which is essential when analyzing the mean.

Poisson processes. Going beyond the analysis of wealth distributions, we emphasize

that Poisson processes are ubiquitous in other parts of economics as well. Modelling

strategies to which our method of analyzing the mean could be applied include models

of R&D (Aghion et al., 2001, Grossman and Helpman, 1991, Helpman et al., 2005,

Klette and Kortum, 2004, Aghion and Howitt, 1992). Search and matching models

in the tradition of Diamond (1982), Mortensen (1982) and Pissarides (1985) also build

on Poisson processes as do some business cycles models (Brunnermeier and Sannikov,

2014, Wälde, 2005, He and Krishnamurthy, 2011, 2013, or Di Tella, 2017) or the trade

literature in the tradition of Melitz (2003).

Pareto and double-Pareto distributions. Pareto distributions have become very pop-

ular recently (Piketty and Zucman, 2015). They appeared in the analysis of top income

changes (Saez and Zucman, 2016), income growth per person, population growth (Jones,

2015), financial deregulation, (corporate) taxes (Cao and Luo, 2017) or bequests and

saving rate inequality (Benhabib et al., 2019). Some models derive a ’double Pareto

distribution’for wealth. This can be achieved by introducing a diffusion processes in a

model with exponentially distributed lifetimes (Reed, 2001, 2003, Toda, 2012, 2014).7

Our focus is on analytical results for transitional dynamics of distributions. We believe

that they can also be applied to (appropriately modified) double-Pareto structures.8 ,9

5Achdou et al. (2014) provide an overview of partial differential equation models in macroeconomics.

Ahn et al. (2017) describe numerical methods for continuous time models.
6Bayer and Wälde (2015, p. 4) provide a short survey on the use of FPEs in economics prior to these

papers (see Benhabib and Bisin, 2006, for an example). Bayer and Wälde (2010a, sect. 5) showed how

to derive FPEs for relatively general cases (using a Bewley-Huggett-Aiyagari model as example).
7See also the analyses by Benhabib et al. (2016), Reed (2011) or Toda and Walsh (2015).
8So far double-Pareto findings are built on a combination of Brownian motion and exponential age.

Toda (2014) writes that “the double Pareto property is robust in the sense that it depends only on

multiplicative growth and the geometric age distribution and not on the details of the stochastic process

governing growth”. Gabaix (1999) conjectures that the power law should hold even if the multiplicative

process is time-varying. Hence, obtaining double-Pareto findings employing Poisson processes only seems

possible.
9A paper very close to ours in spirit is Benhabib and Bisin (2006), as was kindly pointed out to us

by Jess Benhabib and Alberto Bisin after having completed our study. We share the optimal saving

structure, the death-birth process, the distributional nature of government activity and the intention

to understand transitional wealth dynamics. We differ from their analysis in inter alia our explicit use

of SDEs (from which we derive all of our findings), in our rigorous foundation in stochastics, in our
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3 The model

The model presentation starts from small agents (one individual and one dynasty), passes

by a large agent (the government) and ends in equilibrium (the small open economy).

3.1 The individual

Each individual is endowed with a time preference rate ρ̂ > 0 and has a finite life that

ends at a random point in time. This point T is exponentially distributed with parameter

δ, denoted death rate. The individual maximizes expected utility Et
∫ T
t
e−ρ̂[s−t]u (c (s)) ds,

where expectations are formed with respect to T > t given information up to t. Instanta-

neous utility is u (c (s)) and the individual chooses the time path of consumption c (s). It

is well-known from Blanchard-Yaari models that this maximization problem is identical

to maximizing a deterministic objective function

U (t) =

∫ ∞
t

e−ρ[s−t]u (c (s)) ds, (1)

where discounting takes place at the rate ρ = ρ̂ + δ, i.e. adding the death rate δ to the

time preference rate. As the objective function shows, the individual cares about own

consumption only. They do not value bequests or utility of offsprings. Consumption c (s)

is therefore perceived to be deterministic. All bequests in our model will be accidental.

We consider a standard, constant relative risk aversion (henceforth CRRA), instantaneous

utility function

u (c (t)) =
c1−σ − 1

1− σ . (2)

The budget constraint of our individual is deterministic as well and reads

ȧ (t) = (r − τ) a (t)− c (t) . (3)

In the absence of labor income, the only source of income is interest r on individual

wealth a (t). Furthermore, a wealth tax τ is paid to the state.10 Consumption reduces

wealth accumulation and the price of the consumption good is normalized to one. The

time derivative of wealth is denoted by the usual ȧ (t) .

When we solve the individual’s maximization problem assuming non-negative wealth,

optimal consumption is available in closed form (derivation available upon request) as

c (t) = φa (t) with φ ≡ ρ− (1− σ) (r − τ)

σ
. (4)

more general treatment of the government’s budget constraint (it is not balanced at each point in time

leading to richer equilibrium conditions) and in our analytical and graphical characterization of the

wealth density over time.
10The wealth tax τ turns into a capital income tax τc when we replace τ by rτc. The budget constraint

(3) would then read ȧ (t) = (1− τc) ra (t)− c (t).
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Consumption is a constant share φ out of wealth. Deriving this solution also shows that

consumption grows at a rate

z ≡ r − τ − ρ
σ

. (5)

As long as the net interest rate r − τ exceeds the time preference rate ρ, wealth of the
individual increases over time.

Now imagine an individual is born at tB. Age of the individual is then t− tB. Using
(4), (3) and endowing the individual with initial wealth a (tB) , wealth is a function of

age and follows

a (t) = a (tB) ez[t−tB ]. (6)

This finding is well-known from many closed-form solutions or steady-state properties:

Wealth also grows at the rate z.

3.2 The dynasty

Turning to a dynasty i, an offspring is born once an individual dies. A dynasty is therefore

characterized by a stochastic age process and a stochastic wealth process. We describe

both of them by stochastic differential equations driven by Poisson processes. This is the

key novelty of our paper from a methodological perspective.

3.2.1 Age

We start by specifying the age process. As emphasized above, our specification is rep-

resentative of age processes in many papers employing a birth-death framework with

constant population size. Our findings obtained below are possible as we model this age

process by a stochastic differential equation. It reads

dXi (t) = bdt−Xi (t−) dQδ
i (t) . (7)

Age of the currently alive individual of dynasty i at a point in time t is denoted by Xi (t).

It increases linearly and deterministically in time with slope b. When age and time are

measured in the same units, b equals one. Age drops to zero at random points in time,

i.e. when the increment dQδ
i (t) of the Poisson process (Q(t))t≥0 equals one. Poisson

processes Qδ
i (t) are independent of each other.

The arrival rate of this Poisson process is the constant death rate introduced above

before (1). Age dropping to zero means that an individual that dies is replaced by a newly

born offspring of age zero. Population size N therefore remains constant. We denote the

initial age of the currently alive individual of dynasty i by xi.11

11Parameters of the process (7) could differ across dynasties. Concerning the age process, we only

allow for differences in initial age in this paper.
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3.2.2 Wealth

We can now describe the wealth process of a dynasty i.While alive, an individual accumu-

lates wealth according to (6). When death hits according to (7), all wealth of a dynasty

goes to the state which, in turn, endows the newborn with some initial endowment ā.12

This wealth accumulation and redistribution scheme is captured by

dAi (Xi (t)) = zAi (Xi (t)) dt+ [ā− Ai (Xi (t−))] dQδ
i (t) . (8)

Wealth Ai of dynasty i whose currently alive member has age Xi (t) at time t changes

according to a deterministic and a stochastic part. The deterministic part incorporates

optimal wealth accumulation (6) at the individual level via the parameter z: as long as

the individual is alive, (8) describes a deterministic growth of wealth at the rate of z, just

as (6).13 The stochastic part shows that in the case of death at t, wealth is reduced by

the wealth level Ai (Xi (t−)) at t−, i.e. an instant before death.14 Wealth is increased by

ā such that the newborn starts with this initial endowment.15

3.3 The government

Consider a government that levies a tax on wealth, collects all wealth at the moment

of death and endows all newborns with an initial constant amount of wealth. We can

express the change in government wealth based on one dynasty by the following SDE

dGi (Ai (t)) = τAi (t) dt+ [Ai (t−)− ā] dQδ
i (t) . (9)

The first source of income is given by tax revenue τAi (t) . The second source is wealth

Ai (t−) of individuals being transferred to the state at the moment of death, i.e. when

dQδ
i (t) = 1. Government spending consists in endowing the newborn with a constant

amount of wealth ā.We do not impose a balanced government budget at each instant (as

e.g. Benhabib and Bisin, 2006, or Benhabib et al., 2016). We rather allow the government

to trade government bonds on the international capital market.16

12As discussed above, the absence of planned bequests and identical endowments of newborns is a

common assumption in the literature (Kasa and Lei, 2018, Jones, 2015 and models in the Blanchard,

1985, tradition).
13Even though Ai (Xi (t)) precisely describes the deterministic link between wealth and age in models

of this type, we will also employ Ai (t) when appropriate.
14Moll et al. (2021) allow for “random dissipation shocks” that imply that households are left with

zero wealth after such a shock.
15An obvious extension reduces the inheritance tax from 100% as in (8) to some 0 < τb < 1. The wealth

constraint would read dAi (Xi (t)) = zAi (Xi (t)) dt+[ā− τbAi (Xi (t−))] dQδi (t) . Extending our analyses

for the mean and aggregate equilibrium is straightforward. The analysis of distributional dynamics is

an order of magnitude more complex. We return to this issue once we have understood distributional

dynamics of wealth following (8).
16This allows to study wealth of domestic dynasties and government wealth independently of each

other.
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When we denote total government wealth byG (t) , its evolution follows from summing

over all dynasties N ,

dG (t) = ΣN
i=1

{
τAi (t) dt+ [Ai (t−)− ā] dQδ

i (t)
}
. (10)

3.4 The small open economy

We study a small open economy. All of our distributional findings below concerning

wealth can therefore be understood as findings describing the population of a small open

economy. In this small open economy, international capital flows fix the domestic in-

terest rate r. Optimal consumption as described in (4) is therefore determined by the

international interest rate (and preferences of households).

Concerning production processes, we could think of AK technologies as in Toda

(2014). With an AK technology (used domestically and abroad), domestic output would

be indeterminate as it does not matter where capital is allocated. In the case of a neoclas-

sical production function with capital and labour, the wage w would be fixed as well.17

We could add labour income to the household budget constraint. Closed-form solutions

would persist.

The production process in our model is not central to the results, however, as long as

the consumption good is homogenous and traded internationally. Domestic production

would be constant in the neoclassical case with a constant interest rate r. Households

would nevertheless grow richer and experience exponential consumption growth as they

accumulate wealth abroad. For all of our results on inequality and output, we either

measure output by consumption or by wealth directly.

4 Mathematical background: Describing the mean

of a stochastic process

This section discusses principles behind computing means in section 4.1. Section 4.2 looks

at a linear stochastic differential equation (SDE) that describes a stochastic process. This

section also computes the time derivative of the mean of this stochastic process. We

propose two approaches: a “fast and intuitive”approach and one that follows a general

rigorous approach from stochastic theory. Both approaches yield the same results.18

17It would also imply a constant domestic wage rate. In the presence of unemployment as in Bayer et

al. (2019), the domestic capital stock would adjust accordingly.
18Readers interested in understanding means can go to section 4.2 immediately. The analysis of the

mean can be understood without the rigorous background in section 4.1.
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4.1 Preliminaries

We are interested in a class of real-valued stochastic processes (X(t))t≥0. This class can

be described as solutions of an SDE driven by a Poisson process (Q(t))t≥0 with intensity

λ > 0. Given suitable functions f, g : R→ R, the SDE takes the form19

dX(t) = f(X(t))dt+ g(X(t−))dQ(t), t ≥ 0. (11)

Intuitively, the dynamics of the solution to (11) is the following: The path (X(t)) moves

along solution curves of the ordinary differential equation ẋ = f(x). Whenever the

Poisson process (Q(t)) jumps at a certain time, say τ , the process jumps from its position

X(τ−) immediately before τ to its new position X(τ) = X(τ−) + g(X(τ−)).

For completeness, let us briefly discuss the general mathematical set-up behind (11):

The process is defined on a filtered probability space20
(

Ω,F , P, F̃
)
where Ω is the

sample space, F is a σ−algebra and P is a probability measure on F and F̃ = (F̃t)t≥0

is a filtration of sub-σ-algebras of F . Strictly speaking, X : [0,∞) × Ω → R is then a
function of time and “randomness”, where X(t, ω) is the (random) value of the process

at time t ≥ 0 in the sample point ω. We will follow the usual approach and suppress the

dependence on ω in the notation, so X(t) denotes the real-valued random variable which

describes the state of the process at a fixed time t ≥ 0. We will write (X(t)) ≡ (X(t))t≥0

to denote the (random) path of the process and sometimes simply write X to denote the

process when the context is clear. We will try to follow the usual notational convention

to denote random variables by capital letters and possible (fixed) values by small letters.

A Poisson process (Q(t))t≥0 with intensity λ > 0 on
(

Ω,F , P, F̃
)
is a process with

Q(0) = 0 which is constant between jumps of size +1 with the property that Q(t)−Q(s)

is independent of F̃s and Poisson distributed with mean λ(t− s) for any 0 ≤ s < t.

Under suitable assumptions,21 it is known that (11) has a unique solution for any

starting valueX(0) (which could itself be random) which is adapted to the filtration F̃ and
has right-continuous paths. Furthermore, if X(0) has finite expectation E[|X(0)|] < ∞,
we have then E[|X(t)|] < ∞ for all t > 0 as well. The analogous statement holds for

second moments.

The solutions are semi-martingales and also (strong) Markov processes.22 This allows

to use tools both from stochastic analysis and from the theory of Markov processes in

19As usual, we understand (11) to be a shorthand notation for the equation X(t) = X(0) +∫ t
0
f(X(s)) ds+

∫ t
0
g(X(s−)) dQ(s) with t ≥ 0.

20We can and will assume that the “usual conditions” are fulfilled, i.e., F̃ is right-continuous and

complete, see e.g., Garcia and Griego (1994, p. 338).
21We will either assume that f is Lipschitz continuous, that is there exist cf <∞ so that |f(x)−f(y)| ≤

cf |x − y| holds for all x, y ∈ R and that g is either Lipschitz continuous or bounded (see for example
Garcia and Griego, 1994, Theorem 6.2).
22In fact, they belong to the class of piece-wise deterministic Markov processes: Between the jump

times of (Q(t)), (X(t)) follows a differentiable curve. Such processes are discussed in much greater detail

in Davis (1993). See also Garcia and Griego (1994, p. 362) for the Markov property.
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order to analyze the behavior of the process (X(t)).

For the Markov process viewpoint, we need a family Px, x ∈ R of probability measures
on (Ω,F) where for given x ∈ R, Px describes the law when starting from the fixed

x = X(0), in particular Px(X(0) = x) = 1. We will write expectations with respect to

Px as Ex such that

Ex[h(X(t))] = E[h(X(t)) | X(0) = x], (12)

where h : R → R is (a suitable) test function.23 The transition semigroup24 is (Pt)t≥0

where Pt is defined via

Pth(x) ≡ Ex[h(X(t))], x ∈ R. (13)

In an economic spirit, if the test function h : R → R, represented utility, Pth(x) is the

expected value at time 0 of the random utility h(X(t)) at time t given that we know

X(0) = x.

The generator A of a (Feller) transition semigroup (Pt)t≥0 is defined as

Ah (x) = lim
t→0,t>0

Pth(x)− h(x)

t
, x ∈ R (14)

for functions h in its domainD(A). By definition, D(A) consists of all functions h ∈ C(R)

for which the limit on the right hand side of (14) exists (in the “strong” sense of the

supremum norm on C(R), i.e., uniformly in x). For a more probabilistic interpretation of

(14), we re-write this as Ah (x) = limt→0,t>0
Ex[h(X(t))]−h(x)

t
. Thus, for a very small positive

time t > 0 and a given starting point x, we have

Ex[h(X(t)] ≈ h(x) + tAh (x)

and, hence, Ah(x) describes approximately25 how the mean of h(X(t)) changes from its

initial value h(x) over a very short time interval.

The generator for the solution of (11) looks as follows26

Ah (x) = f(x)h′(x) + λ [h(x+ g(x))− h(x)] (15)

and D(A) contains all differentiable functions h ∈ C(R) such that the derivative h′ ∈
C(R).

Let us briefly discuss why (15) holds. For an intuitive approach, consider h ∈ D(A),

X(0) = x, t > 0 very small. Then Px(Q(t) = 1) = λt + O(t2), Px(Q(t) = 0) =

23Suitable means that the expectation in (12) is well-defined. This is, for example, the case when h is

measurable and bounded or non-negative.
24The semigroup property means PtPs = Pt+s, compare e.g. Protter (2004, p. 35). It is known that

for our examples (Pt)t≥0 is a so-called Feller transition semigroup, see e.g. Davis (1993, Thm. (27.6)),

that is Pt : C(R)→ C(R) where C(R) denotes the set of continuous functions which vanish at ±∞. This
is mathematically convenient since it allows to work on the Banach space C(R).
25A precise meaning of ≈ is here that in fact Ex[h(X(t)] = h(x) + tAh (x) + o(t) as t ↓ 0, where the

“error term”o(t) goes to 0 faster than linearly in t.
26See, e.g., Garcia and Griego (1994, p. 361—362).
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1 − λt + O(t2), Px(Q(t) ≥ 2) = O(t2). On the event {Q(t) = 0} (no jump before time
t), we have, by linearizing the ODE, X(t) ≈ x+ tf(x); on the event {Q(t) = 1} we have
X(t) ≈ x+ g(x). Hence

Ex[h(X(t))] ≈ (1− λt)h(x+ tf(x)) + λth(x+ g(x))

= h(x+ tf(x))− h(x) + λt [h(x+ g(x))− h(x)]− λt [h(x+ tf(x))− h(x)]

subtracting h(x) on both sides, dividing by t and letting t ↓ 0 then yields (15) (use the

chain rule on d
dt
h(x+ tf(x)) and observe that λt

(
h(x+ tf(x))− h(x)

)
= O(t2)).

A rigorous argument goes as follows: Applying to (X(t))t≥0 the chain rule for paths

of bounded variation,27 we find

h(X(t)) = h(X(0)) +

∫ t

0

h′(X(s))f(X(s)) ds+

∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
dQ(s)

= h(X(0)) +

∫ t

0

h′(X(s))f(X(s)) ds+ λ

∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
ds

+

∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
d[Q(s)− λs].

By martingale properties of compensated Poisson processes (see, e.g. Garcia and Griego,

1994, Thm. 5.3), the process∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
d[Q(s)− λs], t ≥ 0

is a martingale, in particular its expectation equals 0. Thus, taking expectations with

respect to Px shows

Ex[h(X(t))] = h(x) + Ex

[∫ t

0

h′(X(s))f(X(s)) ds

]
+ λEx

[∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
ds

]
= h(x) +

∫ t

0

Ex [h′(X(s))f(X(s))] ds

+ λ

∫ t

0

Ex

[(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)]
ds,

where we used Fubini’s theorem in the second equation. Thus

Ex[h(X(t))]− h(x)

t
=

1

t

∫ t

0

Ex [h′(X(s))f(X(s))] ds

+
λ

t

∫ t

0

Ex

[(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)]
ds.

Using the fact that lims↓0X(s) = lims↓0X(s−) = X(0) because paths are right-continuous,

this shows (15) by taking t ↓ 0.

27See, e.g., Garcia and Griego (1994, p. 344).
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This a good place to highlight the difference between Kolmogorov backward equations

and Kolmogorov forward equations (aka Fokker-Planck equations). If distributional prop-

erties are to be understood, the forward equation is applied. If the interest lies in the

mean, the backward equation can be used (see for instance Kallenberg, 1997, p. 192).

For Markov processes the general Kolmogorov backward equation reads (compare Davis,

1993, p.30, equ. 14.11)

d

dt
Ex [h (X (t))] = Ex [(Ah) (X (t))] (16)

for all functions h ∈ D(A).28

We are particularly interested in computing the mean

µ(x, t) ≡ Ex[X(t)] (17)

for processes of the form (11). We will do this in the following section.

4.2 An example

We start by looking at a stochastic process X(t) described by a SDE,

dX (t) = −aX (t) dt+ bdQ (t) (18)

with X (0) > 0 and a, b > 0. To connect (18) to (11), set f(x) = −ax and g(x) = b. This

implies that X (t) ≥ 0 ∀ t as the deterministic decay is exponential, i.e. X (t) approaches

zero asymptotically in the absence of jumps. The arrival rate of Q(t) is given by the

constant λ > 0. The support of X (t) is R∗+, i.e. neither zero nor infinity are included,
]0,∞[. The support is infinitely large as in principle Q(t) can jump very often relative to

the speed of a. Figure 1 shows one possible realization of process (18).

Figure 1 One possible realization of the stochastic process (X(t))t≥0 in (18)

28As further information, a brief and reader-friendly introduction is Garcia and Griego (1994). Stan-

dard texts include Davis (1993), Protter (1995), Privault (2018), Kallenberg(1997) and Liggett (2010).

In particular, Liggett (2010, ch. 3) has a very readable introduction to Feller processes.
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4.2.1 The mean (simple approach)

We will now derive the expected value Ex[X(t)] in a rather straightforward way. The

linearity of (18) helps in this respect.

In a first step, we express the SDE in (18) in its integral version. It reads X (t) −
X (0) = −a

∫ t
0
X (s) ds+ b

∫ t
0
dQ (s) . When we apply the expectations operator Ex from

(12), we get

Ex[X (t)]− Ex[X (0)] = −a
∫ t

0

Ex[X (s)] ds+ bEx

[∫ t

0

dQ (s)

]
= −a

∫ t

0

Ex[X (s)] ds+ bλ

∫ t

0

ds. (19)

We can pull the expectations operator inside the integral as the appropriate version of

a Fubini theorem holds (see Protter, 2004, p. 207 or Bichteler and Lin, 1995, p. 277,

ex. 4.1 for more background). The second equality uses the martingale result of Garcia

and Griego (1994, theorem 5.3).

In a second step, we rewrite (19) employing µ (x, t) from (17) and obtain µ (x, t) −
µ (x, 0) = −a

∫ t
0
µ (x, s) ds + bλ

∫ t
0
ds. Computing the derivative with respect to time t

gives
dµ (x, t)

dt
≡ µ̇ (x, t) = −aµ (x, t) + bλ. (20)

The Kolmogorov backward equation has thus turned into an ordinary differential equa-

tion. It describes the change over time of the expected value of X (t) . Expectations

are formed from the perspective of the initial point of the process, here 0. The initial

condition for t = 0 is µ(x, 0) = x.

It would then be straightforward to study the properties of this ODE. As one can

easily verify, the mean converges to the fixpoint µ∗ = bλ/a from above and below.

4.2.2 The mean (generic approach)

We now show how to derive the ODE for the mean in (20) in a way more closely related

to section 4.1. The idea consists in using the identity function h(x) = x as a test function

and insert it into the corresponding Kolmogorov backward equation.

With h(x) = x, h′(x) = 1, (16) becomes

d

dt
Ex [X (t)] = Ex [(Ah) (X (t))] = Ex [−aX(t) + b] = −aEx [X(t)] + b.

Replacing Ex [X (t)] by µ(x, t) from (17) again, yields (20). Hence, we can either work

with the integral version of an SDE and form expectations as in section 4.2 or we use

insights from section 4.1 to obtain an ODE for the mean of our stochastic process. The

second approach also shows why the first approach works so nicely: We need that for

h(x) = x, Ah(x) is an affi ne function of x.
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5 Mean dynamics for dynasties, the population and

the government

We now apply the results of section 4 to the model from section 3. There is no need to

apply our findings to an individual as an individual experiences a deterministic evolution

of age and wealth up to death. We therefore study expectations for dynasties, the pop-

ulation and the government. The main part focuses on the analysis of expected private

and public wealth. 29

5.1 Expected wealth

• A dynasty

Our main variable of interest is dynasty wealth. We define the expected level of

dynasty wealth, η (ai, t) , as

η (ai, t) = Ea (Ai (t)) ≡ E [Ai (t) |Ai (0) = ai] . (21)

Following the intuitive description from above, we are at an initial point in time 0, consider

an individual with initial age Xi (0) and endow them with initial wealth Ai (0) = ai. The

mean η (ai, t) then provides the expected value for individual i with initial wealth ai

at a future point in time t.Following similar steps as for age, we again obtain a linear

differential equation (see app. A.1),

η̇ (ai, t) = δā+ (z − δ) η (ai, t) . (22)

Expected wealth depends on the death rate δ, on endowment ā of a newborn and on

the growth rate z of individual consumption and wealth from (5). Solving this equation

yields

η (ai, t) = (ai − η∗) e(z−δ)t + η∗, with η∗ ≡ − δ

z − δ ā. (23)

The solution shows that expected wealth can rise or fall over time. The convergence

or growth rate for expected wealth is z−δ = r−τ−ρ
σ
−δ, which can be positive or negative,

depending on all those five parameters. When z < δ, the long-run expected wealth level

η∗ ≡ δ
δ−z ā is positive. The initial expected value is ai which can be of course larger

or smaller than η∗. As illustrated in the left panel of figure 2, any initial wealth level

converges to η∗ at the convergence rate z − δ, i.e. η∗ is a globally stable fix point. This
fix point is larger than the initial endowment ā as long as δ/ (δ − z) > 1 i.e. as long as

z > 0. Expected wealth falls when initial wealth ai is above the long-run expected wealth

level η∗, otherwise, it rises.

29The analysis of expected age is very similar and is available in our discussion paper version Birkner

et al. (2021) or in an online appendix available upon request.
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Figure 2 Expected wealth as a function of parameters z and δ

For the empirically more relevant case of z > δ, the stationary level η∗ is negative.

When the initial condition ai = η∗, which would require initial debt, the expected wealth

level always stays at η∗. For ai < η∗, expected wealth falls to minus infinity, for ai > η∗,

expected wealth rises without bound. Hence, η∗ is an unstable fix point. As we assume

positive initial wealth ai, expected wealth rises at the growth rate z − δ.

• The population

Average wealth of the population at t is defined as the average over dynasty wealth

levels Ai (t),

Ā (t) ≡ ΣN
i=1Ai (t) /N . (24)

Once again, the population size N is independent of time and, therefore, constant. As

dynasty wealth from (8) is stochastic, we need to form expectations for any point in time

t > 0 in order to be able to make any model predictions. We obtain

EĀ (t) = E
[
ΣN
i=1Ai (t) /N

]
= ΣN

i=1Ea [Ai (t)] /N . (25)

As we can pull the expectation operator into the sum, we end up with a familiar

expression, namely Ea [Ai (t)]. As Ea [Ai (t)] = η (ai, t) from (21), the expected popu-

lation mean equals the mean over expected dynasty means, EĀ (t) = ΣN
i=1η (ai, t) /N .

Employing the solution for expected dynasty wealth (23) yields

EĀ (t) =
(
ΣN
i=1ai/N − η∗

)
e(z−δ)t + η∗ (26)

where η∗ is the same expression as defined in (23) for expected dynasty wealth.

Here we need to distinguish the two cases of z − δ being positive or negative as well.
As z > δ is the empirically relevant case, we focus on this assumption. The long-run

average wealth level η∗ in our economy is then negative and an unstable fix point. As

the initial average wealth ΣN
i=1ai/N needs to be positive by empirical relevance, expected

average wealth increases at the exponential rate z − δ > 0.

15



If we assume that population size goes to infinity, i.e. N →∞, the variance of average
wealth Ā (t) from (24), as a result of the law of large numbers,30 tends towards 0. Hence,

in any practical sense the observation Ā (t) equals the expected value EĀ (t) (plus some

small error). We can therefore equate EĀ (t) with empirical data.

5.2 Expected government wealth

The government runs a redistribution scheme based on inheritances. Is this scheme

feasible for government wealth? Under which conditions will the government exhibit

a balanced budget in the long run? To start answering these questions, we first study

the evolution of expected government wealth as an outcome of applying its distribution

scheme to one dynasty only. We then aggregate over all dynasties. The full answer will

be obtained when we study equilibrium in section 6.1.

• Expected government wealth based on one dynasty

We define expected government wealth following (9) as

γ (ai, t) ≡ E [Gi (Ai (X (t))) |Ai (X (0)) = ai] . (27)

The initial condition ai is the same as in (21). Following methods from above, the mean

γ (ai, t) follows (see app. A.2)

γ̇ (ai, t, τ) = −δā+ (τ + δ) η (ai, t) . (28)

The dynamics can be easily understood when comparing this ODE with the ODE

for expected wealth of a dynasty in (22). Expected wealth of a dynasty rises in δ (via

a first channel) as the dynasty receives ā when an offspring is born. Expected wealth

of the government falls in δ as a new offspring is an expenditure for the government.

Expected wealth of a dynasty falls in δ (via a second channel) as the household loses

expected wealth η (ai, t). By contrast, government wealth rises in this second channel as

the government receives this expected wealth. Expected wealth of the household rises at

the rate of z, resulting from the optimal consumption decision of the household. Wealth

of the government rises at τ as this is the tax rate applied to expected wealth of the

dynasty.

While ODEs between the dynasty and government level have very similar interpre-

tations, the solution of (28) looks very different from the solution at the dynasty level.

This is not surprising as the right hand side of the government’s expected wealth (for

this dynasty) contains expected wealth of the dynasty. Hence, (28) is not an autonomous

30The summands in ΣNi=1Ai (Xi (t)) are independent of each other as Ai (Xi (t)) is a deterministic

function of random age Xi and, given independence of Poisson processes in (7), random variables Xi are

independent of each other.
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differential equation but needs to be solved by taking the solution of the dynasty budget

constraint (23) into account. The solution to (28) reads (see app. A.2.3)

γ (ai, t, τ) = Gi,0 + ((τ + δ) η∗ − δā) t+
(τ + δ) (ai − η∗)

z − δ
(
e(z−δ)t − 1

)
, (29)

where Gi,0 describes the government wealth at the initial point in time 0 stemming from

dynasty i. Given its complexity and differences compared to expected wealth of a dynasty,

different interpretations emerge. Equilibrium implications or requirements of (29) will be

discussed later.

• Expected total government wealth

Similar to (10), expected total wealth of the government is simply the sum over

dynasty-specific means, Γ (t, τ) = ΣN
i=1γ (ai, t) . After some steps (see app. A.2.4), we

obtain an expression for expected government wealth per capita that reads

Γ (t, τ)

N
=
G0

N
+ ((τ + δ) η∗ − δā) t+

(τ + δ)
(
Ā (0)− η∗

)
z − δ

(
e(z−δ)t − 1

)
. (30)

Juxtaposing this equation with (29) shows that dynasty initial wealth Gi,0 is replaced by

G0/N and dynasty initial wealth ai is replaced by average initial wealth Ā (0) defined as

in (24). The interpretation is therefore in perfect analogy to the earlier expression.

We can apply a law of large numbers for per capita government wealth in the same way

as we did for average individual wealth Ā (t) from (24). Hence, we can equate expected

government wealth per capita Γ (t, τ) /N to observed government wealth in the data.

6 Aggregate and distributional findings

We now characterize equilibrium in our small open economy. Subsequently, we describe

distributional properties of wealth.

6.1 Steady state and balanced growth path equilibrium

Depending on parameter values, the model ends up in a stationary equilibrium or on a

growth path. We say that our economy is in a steady-state equilibrium when both indi-

vidual variables (e.g. dynasty wealth) and aggregate variables (e.g. government wealth)

converge to stationary values. The economy is in a growth equilibrium when individual

and aggregate variables converge to a balanced growth path where (most) variables grow

at identical rates. Interestingly, distributions can be stationary on a balanced growth

path.
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6.1.1 Convergence to a general steady-state equilibrium

As the expected wealth analysis, summarized in figure 2, has shown, a partial stationary

equilibrium holds if z < δ, i.e. when the rate of wealth growth falls short to the death

rate δ. Expected wealth of a dynasty (23) as well as expected average wealth of the

population (26) converge to their long-run value η∗, where the latter is described by (23).

With constant wealth, consumption and utility are constant as well, where the rate z is

treated as exogenous by individuals.

In order to describe the general stationary equilibrium, however, we need to consider

the evolution of the government budget as well. For a steady-state equilibrium, we require

that government wealth approaches a long-run constant value.

• A stationary government wealth implies an endogenous tax rate

The solution (29) shows that expected government wealth from one dynasty can rise

or fall over time. The exponential term clearly shows that one necessary condition for a

steady state is z < δ. This makes sure that the final term in (29) approaches a constant.

The term linear in time t, by contrast, requires that the term in front of t equals zero at

each instant,

τη∗ = δ [ā− η∗] . (31)

This condition needs to be fulfilled in order to describe a steady-state equilibrium as

otherwise the state runs a surplus or a deficit in the long run. If η∗ is larger in equilibrium

than ā (which holds for z > 0 as shown in the discussion of figure 2), this condition

suggests a negative tax rate: A positive government income per birth, η∗ > ā, implies

subsidies to capital income, τ < 0.

In order to determine τ , we start from (31) and employ η∗ from (23). After some

steps (see app. A.2.3), the resulting tax rate reads

τ =
r − ρ
1− σ . (32)

Interestingly, this tax rate is constant over time. As (31) already suggests, a long-run

balanced budget only requires that the tax rate obeys long-run values, here, the long-run

expected wealth of a dynasty. Short run average wealth of the population or current

government wealth do not matter.

As the tax rate has now endogenously been determined, we need to adjust the growth

rate z from (5). After some simple steps (see appendix A.3), the revised wealth growth

rate reads

z =
r − ρ
σ − 1

. (33)
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• Conditions for convergence to a steady-state equilibrium

So far, we obtained two necessary conditions for a steady-state equilibrium. First,

steady state requires z < δ as (i) expected household wealth then approaches a constant

and as (ii) the second term of the wealth expression for the government (30) also ap-

proaches a constant. Second, steady state requires an endogenous tax rate, the condition

for τ in (32). This tax rate makes sure that government wealth approaches a constant in

the long run. The endogenous tax rate led to the new expression for z in (33). A steady

state for both the household and the government level therefore requires that z < δ also

holds for z from (33).

To understand when z < δ, consider figure 3. It plots z from (33) as a function of σ.

The left panel displays the case of r > ρ, the right panel of r < ρ. There are poles at

σ = 1. We understand when z < δ by defining a threshold level σ∗ that implies z = δ.

This threshold level is given by

σ∗ ≡ r − ρ+ δ

δ
(34)

and is also shown in both panels for an example of δ.

Figure 3 The steady-state condition for σ for r > ρ (left) and r < ρ (right)

When r > ρ, the threshold level is σ∗ > 1 for all positive δ. There is a steady state

(where z < δ with endogenous τ from (32)) if and only if σ < 1 or σ > σ∗. For levels

inbetween, i.e. for 1 < σ < σ∗, the economy is on a growth path. When r < ρ (right

panel) and δ < − (r − ρ) (as not drawn in the panel), the threshold level is negative,

σ∗ < 0. There is a steady state if and only if σ > 1. For σ < 1, the economy is on a

growth path. By contrast, when r < ρ and δ > − (r − ρ) (as drawn in the right panel),

the threshold level is between zero and one, 0 < σ∗ < 1. There is a steady state if and

only if σ < σ∗ or σ > 1. For σ∗ < σ < 1, the economy is on a growth path. These

conditions are summarized in the following table.
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σ < 1
r > ρ  σ* < σ

1 < σ < σ* growth path
σ > 1 steady state
σ < 1 growth path

σ < σ*
1 < σ

σ* < σ < 1 growth path

steady state

δ < —  (r —   ρ)
r < ρ

steady state
δ > —  (r —   ρ)

Table 1 Parameter conditions for steady state and growth path

• The importance of risk aversion for the equilibrium type

We would like to emphasize the importance of σ in determining the equilibrium type.

To the best of our knowledge, risk aversion never played this role in any models of the

optimal growth or new growth theory. Risk aversion (in optimal saving rules of the type

ċ/c = (r − ρ) /σ) amplifies the growth rate, but does not have an effect on the sign of the

growth rate —whether the economy ends up in a steady state or on a balanced growth

path.

Figure 4 Steady state and balanced growth path regions

This importance of σ is illustrated in figure 4. The horizontal axis plots the difference

between r and ρ, the vertical axis plots risk aversion σ. Consider first the case of a positive

difference r− ρ.With a risk aversion below 1, the economy ends up in a steady state. As

z < 0, wealth falls over time. This holds in individual data but not for empirical aggregate

averages over the lifetime. This is therefore the empirically less relevant steady state. A

risk aversion equal to 1 (see app. A.2.5 ) or larger than 1 but still below σ∗ implies a
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balanced growth path (provided that (39) holds). When σ rises further, we return to a

steady-state economy. For this region of σ > σ∗, z is positive such that expected dynasty

wealth η (t, ai) rises and approaches the steady state from below (as illustrated by the

trajectory starting at a1 in the left panel of figure 2).

When r − ρ is negative but still larger than −δ, an increase in σ also moves the

economy through three regimes. With risk aversion below σ∗, the economy is in a steady

state with positive z. Wealth evolves as just illustrated by η (t, a1) in figure 2. A higher

σ brings us to a growth equilibrium and risk aversion above one leads to an empirically

non-convincing steady state with z < 0.

For r− ρ < −δ, the economy starts (at low σ) in a growth equilibrium. Risk aversion

exceeding 1 yields the steady state just described.

Why does σ play this role here? It enters the condition whether z > δ (growth) or

z < δ (steady state) as a determinant of z. Hence, the reason why σ matters for the

equilibrium type is the fact that individual wealth growth and aggregate wealth growth

differ. In a model without death, aggregate wealth would grow at z from (5). The sign

of this growth rate is independent of σ. In our model with death and birth, the sign of

the aggregate wealth growth rate z − δ is determined by σ. The precise channel through
which σ affects aggregate growth or steady state is not z from (5) but z from (33). Hence,

it is also the presence of a government budget that we require to be balanced in a steady

state that determines the effect of σ on the type of equilibrium.

What is the intuition behind this channel of σ? The parameter should be understood

here in its interpretation (of its inverse) as intertemporal elasticity of substitution (and

not in terms of risk aversion). We prefer this interpretation as the channel through which

σ acts is through its effect on the wealth growth rate z of an individual while alive, i.e.

in the absence of any risk.

Generally speaking, the higher 1/σ, the higher the individual (deterministic) growth

rate. This is a well-known property and visible here in (5). High needs to be understood

in an absolute sense, however. If the numerator in (5) is negative, the growth rate has a

high negative number. The sign also plays a crucial role in the expression for the growth

rate z from (33) with the tax rate from (32) guaranteeing a balanced government budget.

In this version for z, which is relevant for our discussion here, the sign of z depends on

the sign of r − ρ and on the level of σ, given the term “−1”in the denominator of (33).

When r exceeds ρ, the growth rate z (33) is negative as long as σ is below 1, i.e. as

long as the intertemporal elasticity of substitution (IES) exceeds 1. Hence, z < δ and

the economy is in a steady-state equilibrium. This is the grey lower right area in figure

4. When the IES falls (σ rises further) below 1, the growth rate (33) turns positive. We

are in a growth equilibrium. When the IES falls further (σ rises even more), the growth

rate z (33) falls. At some point (when σ exceeds σ∗), the growth rate is below the death

rate and the economy is back in a steady-state equilibrium.

An interpretation in the same spirit can be given for r falling short of ρ.
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• Equilibrium convergence to a steady state

We can now summarize equilibrium dynamics of means in our small open economy.

The economy starts with initial wealth levels ai for dynasties i. Expected dynasty wealth

converges to a steady state following (23). Average wealth in our economy follows (26).

These paths are illustrated in the left panel of figure 2.

Expected government wealth follows

Γ (t, τ)

N
=
G0

N
+
(
Ā (0)− η∗

) (
1− e(z−δ)t) . (35)

It can rise or fall over time, depending on whether initial wealth Ā (0) of households lies

above or below expected wealth η∗. Interestingly, the per-capita government wealth in

the steady state, G0/N + Ā (0) − η∗, displays two initial conditions. Usually (as e.g. in
dynasty wealth (23) or average wealth (26)), initial conditions vanish in the long run.

Here, they persist as (initial) government wealth is not directly owned by households and

therefore not subject to the death-birth process (as discussed after (9)).

Concerning realized consumption and wealth growth while alive, given the optimal

consumption share φ from (4) and τ from (32), consumption reads c (t) = ra (t) . This

illustrates that, if taxes are instantaneously chosen such that the long-term budget is

balanced, the optimal, utility-maximizing share of wealth consumed is equal to the gross

before-tax interest rate. From the budget constraint (3), wealth therefore falls at the rate

of τ . Remember that τ can be positive or negative, depending on parameter values.

• Expected values vs. realizations

It appears useful to be explicit about the difference between an expected evolution

and realizations in our model.

Figure 5 Realized wealth paths (red) vs. expected wealth paths (black) of a dynasty

To this end, figure 5 illustrates expected wealth dynamics vs. realized wealth while

alive. Such a distinction helps intuition and is central for relating the model to data.
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Equilibrium dynamics for expected wealth in a steady-state economy are shown in black

in the left panel of figure 5. In addition to figure 2, this panel also shows an example of

a realized wealth path in red. The corresponding paths for the growing economy are in

the right panel to which we turn later.

In a steady-state economy with a long-run balanced government budget, the link

between expected dynasty wealth η∗ and initial endowment ā from (23) adjusts due to

the endogenous tax rate and the implied new accumulation rate z from (33). After some

steps (see appendix A.3), expected dynasty wealth reads

η∗ =
(1− σ) δ

r − ρ+ (1− σ) δ
ā. (36)

Obviously, η∗ exceeds ā if r < ρ and falls short of it for r > ρ. The left panel shows the

case of a z < δ economy converging towards a steady state with r < ρ. When we look at

expected dynasty wealth η (ai, t) in black, it approaches η∗ irrespective of initial conditions

a1 or a3. By contrast, when we look at an example of a realized growth path Ai (t) of a

dynasty i from (8) in red, it starts at the initial level a2 and grows at the constant rate z

as long as the current representative of the dynasty stays alive. Whenever the individual

is replaced by an offspring, wealth jumps to ā. The black curves also represent realized

average wealth in the economy as a whole, i.e. Ā (t) from (26).

Empirically, the expected value η (t) or Ā (t) should be employed when looking at

average wealth data (as some deaths do occur in a large group of individuals). When

looking at wealth of one individual, the realized wealth path a (t) should be used as point

of reference.

6.1.2 Convergence towards a balanced growth path

Figure 4 shows parameter values for which the economy finds itself on a growth path.

On such a path, condition (31) making sure that the government wealth approaches

a constant might not be required. A growing economy would not require a constant

(expected) government wealth level. It would be enough to think of government wealth (or

debt) as staying within a certain range of GDP or overall wealth (think of the Maastricht

criteria of the EU).

• Convergence of government wealth to a balanced growth path

In this vein, we divide government wealth (30) per capita by aggregate average wealth

(26) and obtain

Γ (t, τ) /N

EĀ (t)
=
G0/N + ((τ + δ) η∗ − δā) t+ τ+δ

z−δ
(
e(z−δ)t − 1

) (
Ā (0)− η∗

)(
Ā (0)− η∗

)
e(z−δ)t + η∗

. (37)

When we now consider the long run, i.e. t → ∞, both the linear growth expression,
((τ + δ) η∗ − δā) t, and the exponential growth expression,

(
Ā (0)− η∗

)
e(z−δ)t, tend to-

wards infinity. As the exponential term grows faster than linear or constant terms, limit
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arguments yield

lim
t→∞

Γ (t, τ) /N

EĀ (t)
= lim

t→∞

G0/N+((τ+δ)η∗−δā)t

e(z−δ)t
+ τ+δ

z−δ
[
1− 1

e(z−δ)t

] (
Ā (0)− η∗

)
Ā (0)− η∗ + η∗

e(z−δ)t

=
τ + δ

z − δ . (38)

In the long run, government wealth relative to expected average wealth is constant. The

government budget is balanced asymptotically even though in absolute terms government

wealth features linear and exponential growth. In the long run, government wealth follows

the same growth path as dynasty wealth —independently of the tax rate τ .

Even though the government has one additional degree of freedom in a growing econ-

omy as compared to an economy that converges to a steady state, the tax is subject to

one constraint: It must not be too large such that z > δ still holds. This is the case as

long as the tax does not exceed an upper bound (see app. A.3)

z > δ ⇔ τ < τ ∗ ≡ r − ρ− δσ. (39)

If it did, individual returns to wealth would fall too much and wealth growth z would

become smaller than the death rate. The economy would return to a steady-state equi-

librium.31

• Equilibrium convergence to a balanced growth path

Equilibrium dynamics in our growing small open economy are as follows. Expected

wealth of a dynasty starts from an initial value and grows at a rate z − δ as described in
(23). Population average wealth follows (26). The debt to GDP ratio (37) in our growing

economy is potentially non-monotonic over time. It starts at t = 0 at G0/N
Ā(0)

and converges

to τ+δ
z−δ from (37).

Equilibrium dynamics for expected and realized wealth are shown in the right panel

of figure 5. (Remember that (36) only holds for the left panel.) As for the steady-

state economy, black curves show expected growth paths for dynasties, η (ai, t) , given

initial conditions a1 or a3. Both grow at the same rate and there is no convergence in

expectation. Realized wealth of subsequent representatives of one dynasty starting at

initial wealth a2 are shown by the red curve. Each offspring starts at ā and experiences

higher wealth growth than expected wealth growth. Given that average wealth Ā (t) from

(26) is again (as in the steady-state economy) also represented by the black curves, each

individual becomes richer over life relative to the population average.

6.2 Distributional dynamics

How do our aggregate equilibrium dynamics square with transitional distributional dy-

namics of wealth? We now present analytical findings on the dynamics of the wealth

31If by accident τ takes on the expression (32), the linear component in (38) is removed. The debt to

wealth ratio still converges to the same constant in the limit.
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distributions on the adjustment paths towards a steady state or towards the balanced

growth path.32 We then explain how distributional dynamics and aggregate findings fit

together.

Before going into details, we would like to point out that well-understood links between

an exponential distribution of age and a Pareto distribution of wealth (e.g. Benhabib and

Bisin, 2018, p. 1277) also exist in our framework —but only in the long run when dis-

tributions are stationary. Applying the Edgeworth translation method means computing

the density of a fixed function (wealth as a function of age) of a random variable (age).

When we face an arbitrary (cross-section) distribution of age (e.g. on the transition to-

wards the stationary exponential distribution), we can still compute the corresponding

wealth distribution by the Edgeworth method, given an initial cross-section distribution

of wealth. As will become clear, we derive the wealth distribution independently of the

age distribution, however. The link between the two is provided by the Poisson process

underlying the birth-death structure.

6.2.1 The wealth distribution

We now describe the derivation of the wealth distribution in detail. We first undertake

the fundamental analytical steps. Subsequently, we illustrate the dynamics of the wealth

density for an initial mass point and for an initial (non-degenerate) distribution.

• Deriving distributional dynamics

Define the probability that realized dynasty wealth Ai (t) from (8) for an initial wealth

level of ai and at a point in time t lies within a certain range or set B ⊂ R by

π (ai, B, t) ≡ Pr (Ai (t) ∈ B|Ai (0) = ai) . (40)

We introduce an indicator function IA (z) = 1 if z ∈ A and zero otherwise.
The essential step in translating this definition into informative expressions consists

in solving the SDE (8). Given the framework defined and discussed in section 4.1 and

given an initial condition Ai (0) = ai ≥ 0, the unique solution (strong and weak solutions

coincide in this framework) to (8) reads (see appendix A.4.1)

Ai (t) = I
Qδ
i
(t)

(0) aie
zt +

(
1− I

Qδ
i
(t)

(0)
)
āez(t−T ), (41)

where T marks the most recent point in time before t where a jump of (Qδ
i (s))s≥0 occurred,

i.e. where a member of dynasty i deceased for the last time.

The indicator function I
Qδ
i
(t)

(0) equals 1 for Qδ
i (t) = 0 and zero otherwise. The

former represents the absence of death: the individual initially representing dynasty i

32We know from more abstract (probability based) work by Bayer et al. (2019) that processes like our

age and the related wealth process are characterized by the existence of a unique long-term distribution

which is stable. The latter means that for all (meaningful) initial distributions, an initial distribution

converges over time to this unique and stable long-term distribution.
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lives on to accumulate wealth based on the initial value of wealth ai and rate z. The

latter describes the opposite, namely an individual being born as a result of the previous

individual’s death. Wealth initially starts with ā and then exponentially accumulates

over the time span between birth date T and today t at rate z.

We now specify the set B from (40) as B = [ā, x]. We also assume, to avoid te-

dious case-by-case analyses, that ai > ā. We can then rewrite the probability in (40) as

π (ai, x, t) ≡ Pr (Ai (t) ≤ x|Ai (0) = ai) . Building on the solution in (41), this probability

can be expressed by (see appendix A.4.2)

π (ai, x, t) = e−δtIB
(
aie

zt
)

+

∫
B

δ

z

ā
δ
z

v
δ
z

+1
I [ā,āezt] (v) dv. (42)

To understand this expression, consider three ranges for x. Initially, imagine x is small,

i.e. ā ≤ x < āezt. Then IB (aie
zt) = 0 and I [ā,āezt] (x) = 1. The probability (42) reads

π (ai, x, t) =

∫ x

ā

δ

z

ā
δ
z

v
δ
z

+1
dv for ā < x < āezt. (43)

In the second range āezt < x < aie
zt, it still holds that IB (aie

zt) = 0. In addition, the

second indicator function is zero, I [ā,āezt] (v) = 0 for all v > āezt. Hence, we can replace

the general set B by a lower bound ā and an upper bound āezt such that (42) reads

π (ai, x, t) =

∫ āezt

ā

δ

z

ā
δ
z

v
δ
z

+1
dv for āezt < x < aie

zt. (44)

Note that the integral in (44) is not a function of x but only of time t. For the third range

when x ≥ aie
zt, the probability that Ai (t) is smaller than x is one, π (ai, x, t) = 1.

In simple words, when we are interested in the probability that wealth x is small (the

first range), this probability can only come from being reborn. Wealth of an individual

that lived as of 0 would be aiezt and would be too high. Hence, we only consider the range

of wealth from endowment ā at birth to the wealth level x of interest, as shown in (43).

The integrand in (43) is the Pareto density. It follows from the Pareto density in the

general expression (42) which in turn is the outcome of a simple parameter substitution

(see appendix A.4.2) starting from (41). Why do we see the Pareto density in (43) from

an intuitive perspective? First, when we are interested in small wealth levels x, small

levels would result from just being reborn. When being young, wealth cannot be much

larger than initial endowment ā. Second, we obtain a Pareto distribution in the short

run for the same reason that there are Pareto distributions in the long run: There is

exponentially distributed age. We can start our analysis of the wealth distribution from

any initial age or wealth distribution. As soon as an individual is reborn, however, our age

process (7) makes sure that age is back to an exponential distribution. With exponential

age distribution, it seems intuitive, that we obtain a (truncated) Pareto distribution for

wealth in the transition.

When our wealth level x of interest is a bit larger (second range), we integrate in (44)

over the entire range from ā to āezt. When we think about its construction, we integrate
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over the entire density apart from the probability of not having died. So the integral in

(44) equals 1− e−δt where e−δt is the probability of still being alive at t.

• Illustration for an initial mass point

We have described the distribution function most generally in (42). Figure 6 illustrates

this expression for an initial mass point. When we start from an initial condition a (0) =

ai, the probability to hold wealth ai in t = 0 equals one. At any point t, the wealth

distribution has a probability mass of e−δt at aiezt where δ is again the death rate from the

age process (7). As long as the individuals do not die, they start with ai and accumulate

wealth at the rate of z. The probability to survive until t is given by the probability mass

e−δt.

Figure 6 Dynamics of the wealth density for an initially degenerate distribution

Now imagine the individual is replaced by an offspring. Wealth jumps to ā. If this

jump takes place at t = 0, the maximum wealth level that can be reached is āezt. Hence, as

shown in (43), there is an expanding support [ā, āezt] within which wealth is (truncated)

Pareto distributed with density

f (a) =
δ

z

ā
δ
z

a
δ
z

+1
. (45)

As the mass point loses mass over time at rate δ, the truncated Pareto density gains in

mass at rate δ. As we assume ai > ā, the mass point at aiezt is always to the right of the

upper bound of the Pareto support. In the long run, the mass-point vanishes and the

support of the Pareto density is [ā,∞[ .

• Illustration for an initial distribution

Now consider figure 7 where the initial condition is given by an initial distribution.

Let the support be given by [ai, a
max[ where amax could be infinity. We could think
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of this initial distribution as being Pareto whose parameters follow from a certain tax

policy being characterized by āold and a tax rate τold translating into a zold. This initial

distribution has a mass of 1 and reads

f (a) =
δ

zold

ā
δ
z
old

a
δ
z

+1
for a ≥ āold.

As time goes by, the support of the initial distribution moves to the right and is given by

[āolde
zt, amaxezt[ . Given the death rate δ, the mass of the distribution is e−δt.

Figure 7 Dynamics of the wealth density with an initial Pareto distribution of wealth

For wealth levels ā < w < āezt, the density behaves identically to the case of an initial

condition being given by a fixed number. With a new tax policy, the density on the

support ānew < a < ānewe
zt is truncated Pareto,

f (a) =
δ

znew

ā
δ
z
new

a
δ
z

+1
for ānew < a < ānewe

zt. (46)

In the long run, the complete mass “walked into”the latter density function. This marks

the completion of the transition from an old to a new stationary distribution of wealth.

As we assume āold > ānew, the old stationary distribution’s lower bound is always to the

right of the upper bound. The long-run support of the Pareto density is [ānew,∞[.

6.2.2 The link between the distribution and the mean

Let us briefly comment on the link between the distributions and the mean. For our econ-

omy converging to a steady state, it is not hard to imagine that mean wealth converging

to η∗ (left panel in figure 2) goes hand in hand with a density that converges to a stable

density (figure 6 or 7). But how does an exploding mean (right panel in figure 2) in our

growing economy square with a density that is stationary in the long run?
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The answer comes from the property that the Pareto distribution has an undefined

mean for z > δ. Computing the mean over a range [ānew, a] based on the (truncated)

density f (a) from (46), we get (see appendix A.4.3)
∫ a
ānew

xf (x) dx = ωāωnew

[
a1−ω−ā1−ωnew

1−ω

]
where ω ≡ δ/znew. This mean approaches infinity when znew approaches δ and a becomes

larger and larger. When we look at figure 6, it is clear that for any finite t, we have a finite

mean of wealth. Yet, mean wealth grows and approaches infinity as the long-run density

is Pareto with z > δ and a support [ā,∞[ and therefore an infinite mean. Wealth of

the economy grows in expectation, yet the distribution of wealth approaches a stationary

distribution.

6.2.3 A note on Fokker-Planck equations

Before concluding, we would like to point out the link to Fokker-Planck equations. Fol-

lowing the usual steps (see the references in the literature section or app. A.5), the FPE

for wealth reads
∂p (Ai, t)

∂t
= − (z + δ) p (Ai, t)− zAi

∂p (Ai, t)

∂Ai
.

The analytical solution and its illustration in the above figures lead to three obser-

vations. The transition from the original to the new distribution in figure 7 can best

be understood by a transfer of probability mass from one distribution to another. The

original density is characterized by a uniform loss of density at rate δ across its entire

range. This simply means that individuals of each wealth level die at the same rate. It is

also characterized by an exponential shift to the right driven by the growth of its lower

bound.

The new density is characterized by ∂p(Ai,t)
∂t

= 0. The new density gains probability

mass by an increasing upper bound, not by an increasing density for any given Ai. Third,

the entire density is characterized by non-differentiability (with respect to wealth) at

ānewe
zt and at āoldezt.

Approximating this evolution by a numerical solution to the FPE could easily miss

these points. We acknowledge that more complex models do not allow for analytical

solutions and solving FPEs is the only option to understand model properties. Yet,

features of the analytical structures identified here are bound to be present in more

complex models as well.

6.2.4 Outlook: Generalizing the tax scheme

Let us briefly return to the issue of extending the SDE on wealth (8) as discussed in

footnote 15. The task is considerably more complex than above as can be seen from

the solution of the SDE (8) in (41). Our above solution is “simple”as the initial wealth

endowment after being reborn is ā, irrespectively of the previous wealth level Ai (X (t−)) .

Hence, the solution (41) displays one term only in addition to the case of no jump.
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When we allow for an inheritance tax lower than 100%, initial wealth after being

reborn is a function of wealth of the previous dynasty representative. The generalization

of (8) leads to a generalized solution of (41) with a countable but infinite number of

terms. These terms consist of multiple integrals. Understanding their property is the

objective of future research.

7 Conclusion

This paper studies a small open economy with finitely lived households and an inheritance-

based redistribution scheme for wealth. We describe the death-birth process of members

of dynasties by a stochastic differential equation. This allows us to describe expected

wealth of a dynasty by an ordinary differential equation. Expected government wealth

also follows an ordinary differential equation. By a law of large numbers, per capita

wealth and per capita government wealth are deterministic.

The economy approaches either a steady state or a balanced growth path, depending

on the interest rate, time preference rate, death rate and risk aversion. Especially the

latter is crucial for pinning down equilibrium properties. Requiring a balanced long-run

government budget endogenizes the tax rate on wealth for a steady-state economy. When

the economy approaches a balanced growth path, the tax rate is a free parameter.

Solving our SDE for dynasty wealth, we can analytically describe the transition of

the wealth distribution from any initial distribution to its long-run Pareto distribution,

respectively. These transitions are illustrated both for initial degenerate distributions

and for initial well-behaved distributions. The effects of a change in fiscal policies are

illustrated.

We explain how a balanced growth path at the aggregate level is consistent with a sta-

tionary wealth distribution in the long run. The key is the mean of a Pareto distribution

that approaches infinity when the shape parameter is smaller than one.
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A Online-Appendix

A.1 Deriving (22) —Evolution of the mean of wealth

Given the process introduced in section 3.2.2, we can again apply the simple approach

from 4.2.1 and determine the mean and its evolution over time. We employ Ai (t) here,

as discussed in footnote 13.

A.1.1 Deriving the ODE

Following the simple approach, we begin with expressing (8) using integrals. We get

Ai (t)− Ai (0) = z

∫ t

0

Ai (s) ds−
∫ t

0

(Ai (s−)− ā) dQδ
i (s) .

When we apply the expectations operator Ea from (21) onto our SDE, we get

Ea[Ai (t)]− Ea[Ai (0)] = zEa

∫ t

0

Ai (s) ds− Ea
∫ t

0

(Ai (s−)− ā) dQδ
i (s)

= z

∫ t

0

Ea [Ai (s)] ds− δ
∫ t

0

Ea [Ai (s−)] ds+ δā

∫ t

0

ds. (A.1)

We can pull the expectations operator inside the integral as the necessary properties hold

again (compare section 4.2). The last line also applies the martingale result of Garcia

and Griego (1994, theorem 5.3). Since ā is a constant, it does not require expectations

to be formed.

In a second step, we rewrite (A.1) employing η (ai, t) from (21) and obtain

η (ai, t)− η (ai, 0) = z

∫ t

0

η (ai, s) ds− δ
∫ t

0

η (ai, t) ds+ δāt.

Computing the derivative with respect to time t gives

η̇ (ai, t) = δā+ (z − δ) η (ai, t) . (A.2)

This linear ODE describes mean wealth evolving positively with a fraction δ of the starting

wealth of a newborn ā and then either continuing positively or negatively, depending on

z ≶ δ. Setting (A.2) equal to 0 allows to come up with the stationary solution

η∗ ≡ η∗ (ai) = − δ

z − δ ā =
1

1− z
δ

ā. (A.3)

Hence, the long-run mean wealth of an individual is a fraction 1
1− z

δ
of the wealth newborns

are endowed with, i.e. ā. Given δ > 0 by construction, the whole fraction is either

negative (in case z
δ
> 1), implying the mean of individual wealth to characterize an

unstable steady-state value, or the fraction is smaller than 1 (in case z
δ
< 0, which occurs

when r < τ + φ) or larger than 1 (in case z
δ
< 1) implying a positive mean wealth in the

long run.
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A.1.2 Guess and verify

We guess that a solution to (A.2) is

η (ai, t) = (ai − η∗) e(z−δ)t + η∗ (A.4)

where we used η∗ from (23).

We verify the guess by computing a time derivative of (A.4). This yields

η̇ (ai, t) = (ai − η∗) e(z−δ)t [z − δ] = (η (ai, t)− η∗) (z − δ) ,

where the second equality employed (A.4). Rearranging and employing η∗ from (23), or

(A.3) in the appendix, yields

η̇ (ai, t) = η (ai, t) [z − δ] + δā,

which is (A.2).

A.2 Deriving (29) —Evolution and determination of expected
public wealth

A.2.1 Deriving the ODE for expected public wealth

Even though we could resort to the simple approach again, for illustration purposes we

apply the approach from sect. 4.1 to the SDE (9) of government wealth. We calculate

the time evolution of expected government wealth and then solve this ODE to obtain an

explicit expression for the expected government wealth based on one dynasty.

Calculating the mean starts with setting up the differential of an auxiliary function

f . We begin with

df (Gi (ζ)) = f ′ (Gi (ζ)) τAi (ζ) dζ

+ {f (Gi (ζ−) + Ai (ζ−)− ā)− f (Gi (ζ−))} dQδ
i (ζ) .

If we think of ζ as a future point in time t+ ε, we can rewrite the just-stated equation in

its integral representation

f (Gi (t+ ε)) = f (Gi (t)) +

∫ t+ε

t

τAi (s) f
′ (Gi (s)) ds

+

∫ t+ε

t

f (Gi (s−) + Ai (s−)− ā)− f (Gi (s−)) dQδ
i (s) . (A.5)

Forming expectations gives

Ea [f (Gi (t+ ε))− f (Gi (t))] = τ

∫ t+ε

t

Ea [Ai (s) f
′ (Gi (s))] ds

+ δ

∫ t+ε

t

Ea

[
f (Gi (s−) + Ai (s−)− ā)

−f (Gi (s−))

]
ds. (A.6)
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As Gi entirely depends on dynasty i’s wealth, we apply the expectation operator Ea from

above. Rewriting leads to

Ea [f (Gi (t+ ε))− f (Gi (t))] = τ

∫ t+ε

t

Ea [Ai (s) f
′ (Gi (s))] ds

+ δ

∫ t+ε

t

Ea

[
f (Gi (s−) + Ai (s−)− ā)

−f (Gi (s−))

]
ds. (A.7)

Dividing by ε and letting ε move towards 0, we obtain

lim
ε→0

Ea [f (Gi (t+ ε))− f (Gi (t))]

ε
= τ lim

ε→0

∫ t+ε
t

Ea [Ai (s) f (Gi (s))] ds

ε

+ δ lim
ε→0

∫ t+ε
t

Ea

[
f (Gi (s−) + Ai (s−)− ā)

−f (Gi (s−))

]
ds

ε
.

(A.8)

Using (21) for Ea, we write

lim
ε→0

E [f (Gi (t+ ε)) |Ai (t) = a]− E [f (Gi (t)) |Ai (t) = a]

ε

= τ lim
ε→0

∫ t+ε
t

E [Ai (s) f
′ (Gi (s)) |Ai (t) = a] ds

ε

+ δ lim
ε→0

∫ t+ε
t

E [f (Gi (s−) + Ai (s−)− ā)− f (Gi (s−)) |Ai (t) = a] ds

ε
. (A.9)

As the left hand side reflects the infinitesimal generator, we apply its definition (compare

section 4.1) and get

Af (Gi (t)) = τ lim
ε→0

∫ t+ε
t

E [Ai (s) f
′ (Gi (s)) |Ai (t) = a] ds

ε

+ δ lim
ε→0

∫ t+ε
t

E [f (Gi (s−) + Ai (s−)− ā)− f (Gi (s−)) |Ai (t) = a] ds

ε
.

In order to take the limit, we have to apply L’Hôspital’s rule. If numerator and denomi-

nator of both limit expressions move towards 0 or ±∞, we are allowed to do so. As this
is fulfilled, we get

Af (Gi (t)) = τAi (t) f
′ (Gi (t)) + δ (f (Gi (t) + Ai (t)− ā)− f (Gi (t))) . (A.10)

Specifying f (Gi (t)) to be the identity function leads to

Af (Gi (t)) = τAi (t) + δ (Ai (t)− ā) .

Knowing that d
dt
E [f (Gi (t))] = E [(Af) (Gi (t))] and using the definition (27) gives

γ̇ (ai, t) = Ea [τAi (t) + δ (Ai (t)− ā)] , (A.11)
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which ultimately leads to

γ̇ (ai, t) = −δā+ (τ + δ) η (ai, t) . (A.12)

This linear ODE describes mean government budget evolving negatively with a frac-

tion δ of the starting wealth of a newborn ā, which describes the expense of the state,

and then changes positively according to τ + δ multiplied with the expected wealth of a

dynasty η.

A.2.2 Solving the ODE

To solve the ODE, we employ the solution for η (ai, t) from (23), reproduced here for

convenience, η (ai, t) = (ai − η∗) e(z−δ)t + η∗. Plugging this into (A.12) yields

γ̇ (ai, t) = −δā+ (τ + δ)
[
(ai − η∗) e(z−δ)t + η∗

]
= (τ + δ) η∗ − δā+ (τ + δ) (ai − η∗) e(z−δ)t

≡ A+Be(z−δ)t.

The solution to this ODE is

γ (t) = γ̃ + At+
B

z − δ e
(z−δ)t,

which can easily be verified by computing the time derivative: γ̇ (t) = A+Be(z−δ)t. Hence,

with auxiliary parameters being replaced, we have

γ (ai, t) = γ̃ + ((τ + δ) η∗ − δā) t+
(τ + δ) (ai − η∗)

z − δ e(z−δ)t. (A.13)

• The initial value for government wealth

Focusing on the initial value of (A.13), we set t = 0 and get

γ (ai, 0) = γ̃ +
(τ + δ) (ai − η∗)

z − δ .

When we want γ (ai, 0) to equal a certain initial government wealth level, we can compute

γ̃. Imagine, we want γ (ai, 0) to equal some government wealth level Gi,0, where Gi,0 ∈
R≥0. Then

γ̃ = Gi,0 −
(τ + δ) (ai − η∗)

z − δ .

Thus, the solution (A.13) eventually reads

γ (ai, t) = Gi,0 −
(τ + δ) (ai − η∗)

z − δ + ((τ + δ) η∗ − δā) t+
(τ + δ) (ai − η∗)

z − δ e(z−δ)t. (A.14)
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A.2.3 Deriving (32)

In order to achieve a balanced government budget, the government chooses a tax rate

τ such that its expected value approaches a constant in the long run. This is what we

show first. Additionally, a budget-balancing tax rate shapes the wealth accumulation of

the government. This is why, secondly, we concentrate on the expression for expected

government wealth from one dynasty, given a budget balancing tax τ .

• The tax rate under a balanced government budget constraint

When we ask about the limit, i.e. t → ∞, we start from (A.14) and we get, given

z < δ,

lim
t→∞

γ (ai, t) = Gi,0 −
(τ + δ) (ai − η∗)

z − δ + (τη∗ − δ [ā− η∗]) lim
t→∞

t.

This limit is plus or minus infinity unless (τ + δ) η∗ = δā. Hence, the latter fixes the tax

rate to τ =
(
ā
η∗ − 1

)
δ. Inserting η∗ from (23) leads to

τ =

(
ā

− δ
z−δ ā

− 1

)
δ =

(
z − δ
−δ − 1

)
δ = −z + δ − δ = −z. (A.15)

Employing z defined in (5), we get

τ = −r − τ − ρ
σ

⇔ τ =
r − ρ
1− σ . (A.16)

• Expected government wealth

Assuming a balanced budget, the solution for mean government wealth (A.14) reads

γ (ai, t) = Gi,0 +
(τ + δ) (ai − η∗)

z − δ
(
e(z−δ)t − 1

)
.

Inserting τ from (32) in the main text or from (A.16) in the appendix, we get

γ (ai, t) = Gi,0 + (ai − η∗)
(
1− e(z−δ)t) .

A.2.4 Aggregate government wealth

Aggregating γ from (29), we write

Γ (t, τ) = ΣN
i=1γ (ai, t)

= ΣN
i=1

(
Gi,0 −

(τ + δ) (ai − η∗)
z − δ + ((τ + δ) η∗ − δā) t+

(τ + δ) (ai − η∗)
z − δ e(z−δ)t

)
.

Using G0 ≡ ΣN
i=1Gi,0 as well as Ā (0) = ΣN

i=1
ai
N
, where the latter, i.e. Ā (0), stems from

(26), we obtain

Γ (t, τ) = G0 +N

[
((τ + δ) η∗ − δā) t+

(τ + δ)
(
Ā (0)− η∗

)
z − δ

(
e(z−δ)t − 1

)]
. (A.17)
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The difference between the state’s wealth based on one individual dynasty and all

dynasties lies in the aggregation of the initial government wealth Gi,0 as well as N times

the linear and exponential evolution of government wealth stemming from one dynasty i.

We are allowed to do the latter as the law of motion holds for every dynasty in the same

way.

A.2.5 Expected government wealth for σ = 1

It can easily be shown (appendix is available upon request) that optimal consumption

in the logarithmic case (σ = 1) reads c (t) = ρa (t) . Given the budget constraint ȧ (t) =

(r − τ) a (t)− c (t) , wealth evolution now reads ȧ (t) = za (t) where

z = r − τ − ρ.

We now assume that a steady-state equilibrium exists and study its properties. We

start by considering the limit for government wealth γ,

lim
t→∞

γ (ai, t) = Gi,0 −
(τ + δ) (ai − η∗)

z − δ + (τη∗ − δ [ā− η∗]) lim
t→∞

t.

We see that the exponential expression drops out due to z < δ. We again require a

balanced budget in the long run. We therefore impose

τη∗ − δ [ā− η∗] = 0 (A.18)

as in the non-logarithmic case.

We finally want to determine the expression for the tax rate taking the endogeneity

of η∗ into account. We begin by inserting z into η∗ from (23) and the resulting revised

η∗ into (A.18). We get

τ
δ

δ − r + τ + ρ
ā− δ

(
1− δ

δ − r + τ + ρ

)
ā = 0⇔ (τ + δ) δ

δ − r + τ + ρ
− δ = 0⇔

(τ + δ) δ = (δ − r + τ + ρ) δ ⇔ 0 = (−r + ρ) δ

where reallocating eventually yields

r = ρ. (A.19)

This implies that a steady-state equilibrium only exists for this special case. For all other

cases, a steady-state equilibrium does not exist. We conclude that the logarithmic case

with r 6= ρ implies a growth equilibrium.
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A.3 Some simple derivations

• Deriving (33)

We consider (5) and insert (32). This yields

z =
r − τ − ρ

σ
=
r − r−ρ

1−σ − ρ
σ

=
(r − ρ) (1− σ)− (r − ρ)

1− σ
1

σ
=
−σ (r − ρ)

1− σ
1

σ
= − r − ρ

1− σ .

• Deriving (36)

We start from η∗ = − δ
z−δ ā given in (23). Inserting the updated z from (33), we get

η∗ = − δ

− r−ρ
1−σ − δ

ā = − δ
−r+ρ−(1−σ)δ

1−σ

ā = −δ (1− σ)

−r + ρ− (1− σ) δ
ā =

δ (1− σ)

r − ρ+ (1− σ) δ
ā.

• Deriving (39)

The growth rate z is described by (5). As we are in the balanced growth path equi-

librium, we are interested under which conditions z > δ. We find

z > δ ⇔ r − τ − ρ
σ

> δ ⇔ r − ρ− σδ > τ ⇔ τ < τ ∗,

where we defined

τ ∗ ≡ r − ρ− σδ.

A.4 Dynamics of the wealth distribution

We start from the law of motion for wealth described by the SDE (8), expressed here in

its integral version,

Ai (t) = ai +

∫ t

0

zAi (s) ds+

∫ t

0

[ā− Ai (s−)] dQδ
i (s) . (A.20)

The main part provides the solution of the SDE (8) in (41). We treat this expression in

this appendix as a guess and denote it by Ãi (t) ,

Ãi (t) = I
Qδ
i
(t)

(0) aie
zt +

(
1− I

Qδ
i
(t)

(0)
)
āez(t−T ). (A.21)

The next section proves that this guess satisfies (A.20) and thereby, by definition, is a

solution.
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A.4.1 Proof for the solution of the SDE

Let us distinguish two cases, Qδ
i (t) = 0 and Qδ

i (t) > 0. For Qδ
i (t) = 0, i.e. the individual

has survived from 0 to t, our guess (A.21) reads Ãi (t) = aie
zt. The integral version (A.20)

reads

Ai (t) = ai +

∫ t

0

zAi (s) ds.

Employing our guess, i.e. replacing Ai (s) with aiezs, we get

Ai (t) = ai +

∫ t

0

zaie
zsds = ai + ai

[
ezt − 1

]
= aie

zt = Ãi (t) .

Hence, our guess fulfills (A.20) for Qδ
i (t) = 0.

In the case of Qδ
i (t) > 0, we assume jump times T1 to TQδi (t) and set T0 = 0. Employing

these points in time, our integral equation (A.20) can be written as33

Ai (t) = ai +

Qδi (t)∑
j=1

∫ Tj

Tj−1

zAi (s) ds+

∫ t

T
Qδ
i
(t)

zAi (s) ds+

Qδi (t)∑
j=1

[ā− Ai (Tj)] . (A.22)

To understand this, look at the second term on the right hand side first. The integral∫ Tj
Tj−1

zAi (s) ds “sums up”capital income zAi (s) between birth at Tj−1 and death at Tj
(where Tj is birth of the offspring). The second term therefore represents the sum of all

capital income between T0 = 0 and the point in time of the last jump, TQδi (t). Employing

our guess, i.e. replacing Ai (s) by aiezs or by āez[s−Tj−1], we can rewrite the second term

of (A.22) as

Qδi (t)∑
j=1

∫ Tj

Tj−1

zAi (s) ds =

∫ T1

0

zaie
zsds+

Qδi (t)∑
j=2

∫ Tj

Tj−1

zāez[s−Tj−1]ds. (A.23)

The third term of (A.22) simply integrates over capital income between the last jump

time TQδi (t) and today t. Employing our guess, this term can be replaced by

∫ t

T
Qδ
i
(t)

zAi (s) ds =

∫ t

T
Qδ
i
(t)

zāe
z

[
s−T

Qδ
i
(t)

]
ds. (A.24)

The Ai (Tj)-part of the fourth term of (A.22) can be rewritten, using again our guess

for j = 1 or j > 1, as

Ai (Tj) =

{
aie

zT1

āez[Tj−Tj−1]

}
for j

{
=

>

}
1. (A.25)

33Technically speaking, we should make a distinction in this expression between Tj and Tj(−), an

instant before Tj . As this leads to cumbersome notation and does not increase readability, we always

write Tj .
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Inserting (A.23), (A.24) and (A.25) into (A.22), we obtain

Ai (t) = ai +

∫ T1

0

zaie
zsds+

Qδi (t)∑
j=2

∫ Tj

Tj−1

zāez[s−Tj−1]ds+

∫ t

T
Qδ
i
(t)

zāe
z

[
s−T

Qδ
i
(t)

]
ds

+
(
ā− aiezT1

)
+

Qδi (t)∑
j=2

[
ā− āez[Tj−Tj−1]

]
.

Calculating the integral expressions leads to

Ai (t) = ai + ai [e
zs]T10 +

Qδi (t)∑
j=2

ā
[
ez[s−Tj−1]

]Tj
Tj−1

+ ā

[
e
z

[
s−T

Qδ
i
(t)

]]t
T
Qδ
i
(t)

+ ā− aiezT1 +

Qδi (t)∑
j=2

[
ā− āez[Tj−Tj−1]

]

= aie
zT1 +

Qδi (t)∑
j=2

ā
[
ez[Tj−Tj−1] − 1

]
+ ā

[
e
z

[
t−T

Qδ
i
(t)

]
− 1

]

+ ā− aiezT1 +

Qδi (t)∑
j=2

ā
[
1− ez[Tj−Tj−1]

]

= ā

[
e
z

[
t−T

Qδ
i
(t)

]
− 1

]
+ ā = āe

z

[
t−T

Qδ
i
(t)

]
.

As our guess (A.21) for Qδ
i (t) > 0 and therefore I

Qδ
i
(t)

(0) = 0 reads

Ãi (t) = āez[t−T ]

and T in (A.21) is the point in time of the last jump (i.e. it is TQδi (t)), our guess fullfills

(A.20) for Qδ
i (t) > 0 as well. Hence, (A.21) and thereby (41) is a solution to (A.20) and

thereby (8).

A.4.2 The probability distribution of Ai (t) —deriving (42)

• The distribution function and an illustration

We denote and define the probability distribution of Ai (t) from (41) by

π (ai, B, t) ≡ Pr (Ai (t) ∈ B|Ai (0) = ai) .

We obtain a more informative expression for this density when starting from the solution

of the SDE in (41), which we reproduce here for reference,

Ai(t) = IQδi (t)=0(0)aie
zt +

(
1− IQδi (t)=0(0)

)
āez[t−T ]. (A.26)
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In this equation, T < t is the most recent point in time before t where a jump of(
Qδ
i (s)

)
s≥0

occurred (we implicitly define T = 0 when Qδ
i (t) = 0, i.e. in case that no such

jump occurred at all). For fixed t ≥ 0 we have P
(
Qδ
i (t) = 0

)
= e−δt. For Qδ

i (t) > 0,

by translation invariance and reflection symmetry of the law of a Poisson process, the

distribution of T −t is exponential with rate δ conditioned on being smaller than t. Thus,
using the formula of total probability, we see from (A.26) that, for any (measurable) set

B ⊂ R, the distribution reads

π (ai, B, t) = P
(
Qδ
i (t) = 0

)
P
(
Ai(t) ∈ B|Qδ

i (t) = 0
)

+ P
(
Qδ
i (t) > 0

)
P
(
Ai(t) ∈ B |Qδ

i (t) > 0
)

= e−δtIB(aie
zt) + (1− e−δt)

∫ t

0

δe−δu

1− e−δtIB(āezu) du

= e−δtIB(aie
zt) +

∫ t

0

δe−δuIB(āezu) du. (A.27)

To understand this expression, consider some set B =
{
Ai (t)|wmin < Ai (t) < w

}
.

Imagine that aiezt > w. Then the indicator function IB (aie
zt) equals 0 in the first term of

(A.27). In words, when t is so large that in the case of no jump wealth would have grown

above w, then the event ’no jump’cannot imply wmin < Ai (t) < w. As the event ’no jump’

has a probability of e−δt, this probability does not count towards (Ai (t) ∈ B|Ai (0) = ai).

The probability of B can only result from the event ’at least one jump’.

When there was at least one jump, the most recent one occurred at some u between 0

and t. Since the last jump, accumulated wealth amounts to āezu as shown in the argument

of the indicator function of the integral. Now we define uw by āezuw = w, i.e. the length

in time since the last jump, such that wealth is just not above w and therefore still in B,

is uw. Define further uminw by āezu
m in
w = wmin, i.e. uminw is the smallest length in time such

that wealth just reaches B. Then, for this example, the probability (A.27) reads

Pr
(
wmin < Ai (t) < w|Ai (0) = ai

)
=

∫ uw

um inw

δe−δudu.

The probability that wealth Ai (t) lies between wmin and w is the “sum”(the integral)

over all the probabilities that the last jump occurred between uminw and uw.

Consider a final example where B = R. Then the probability for Ai (t) ∈ B must

obviously equal one. Then IB (aie
zt) = IB (āezu) = 1 and the probability reads

π (ai, B, t) = e−δt +

∫ t

0

δe−δudu = e−δt −
[
e−δu

]t
0

= 1. (A.28)

• Rewriting the distribution function

We now rewrite the distribution function (A.27) such that the link to the Pareto

distribution becomes aparent. Define the wealth level v such that v = āezu. This implies
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u = 1
z

(ln v − ln ā) and du = 1
zv
dv. Then, our distribution function reads

π (ai, B, t) = e−δtIB
(
aie

zt
)

+

∫ āezt

ā

δe−
δ
z

(ln v−ln ā)IB (v)
1

zv
dv

= e−δtIB
(
aie

zt
)

+

∫ āezt

ā

δ

z

ā
δ
z

v
δ
z

+1
IB (v) dv (A.29)

= e−δtIB
(
aie

zt
)

+

∫
B

δ

z

ā
δ
z

v
δ
z

+1
I{ā,āezt} (v) dv,

where the first equality simply exploits the link between time u and wealth v and the sec-

ond equality rearranges. The third equality swaps lower and upper bound for integration

and the condition for the indicator function. This is equation (42) in the main text.

• The stationary distribution

Taking the limit for t → ∞ of (A.29) yields the wealth distribution in the long run.

Considering the set B = {Ai (t)| ā < Ai (t) < w} , we obtain

lim
t→∞

π (ai, B, t) = 0 +

∫ ∞
ā

δ

z

ā
δ
z

v
δ
z

+1
IB (v) dv =

∫ w

ā

δ

z

ā
δ
z

v
δ
z

+1
dv +

∫ ∞
w

δ

z

ā
δ
z

v
δ
z

+1
IB (v) dv

=
δ

z
ā
δ
z

[
v−

δ
z

]w
ā

− δ
z

+ 0 = −ā δz
[
w−

δ
z − ā− δz

]
= 1−

( ā
w

) δ
z

.

A.4.3 The mean of the truncated Pareto distribution

Computing the mean over range [ānew, a] employing the truncated Pareto density from

(46) yields∫ a

ānew

xf (x) dx =
δ

znew
ā
δ
z
new

∫ a

ānew

x−
δ

znew dx =
δ

znew
ā
δ
z
new

[
x1− δ

znew

1− δ
znew

]a
ānew

=
δ

znew
ā

δ
znew
new

a1− δ
znew − ā1− δ

znew
new

1− δ
z

 = ωāωnew

[
a1−ω − ā1−ω

new

1− ω

]
,

where the last equality employed

ω ≡ δ

znew
.

When we study the limit for ω → 1, we see that a1−ω−ā1−ωnew
1−ω approaches zero in numerator

and denominator. Employing L’Hôspital’s rule, we get

lim
ω→1

a1−ω − ā1−ω
new

1− ω = lim
ω→1

eln(a)(1−ω) (− ln (a))− eln(ānew )(1−ω) (− ln (ānew))

−1

= lim
ω→1

eln(a)(1−ω) ln (a)− lim
ω→1

eln(ānew )(1−ω) ln (ānew)

= ln (a)− ln (ānew) .

This obviously approaches infinity when a approaches infinity.
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A.5 The FPE for the wealth distribution

We start from the law of motion for wealth in (8). To simplify notation, we abbreviate

Ai (t) by Ai here and start from

dAi = zAidt+ [ā− Ai]dQδ
i (t) . (A.30)

Being in t, consider the probability that some realization Ai of wealth is smaller than

some a at a future point in time t + h for a small h > 0. We denote this probability by

P (a, t+ h). Most generally speaking, a can be larger or smaller than ā. As wealth is

larger than ā after rebirth, we focus on a > ā > 0.34 We can write

P (a, t+ h) = e−δh
[
P (a, t)−

∫ a

(1−zh)a

p (y, t) dy

]
+
(
1− e−δh

)
[P (a, t) + 1− P (a, t)] .

(A.31)

When there is no jump over the period of lenght h, for which the probability is e−δh, the

probability mass in t+ h below a is given by the current mass P (a, t) minus the outflow

from the range a−zah = (1− zh) a to a. This is the first term on the right-hand side. As

h is very small, there is either no jump or one jump. In the case of a jump, occuring with

probability 1−e−δh, the mass in t+h is the current mass P (a, t) increased by everything

above a, i.e. 1 − P (a, t). The resulting probability is 1. Simply speaking, when there is

a jump, all wealth drops to ā. As we assumed a > ā > 0, P (a, t+ h) = 1 conditional on

a jump between t and t+ h.

Approximating the exponential functions e−δh by 1− δh yields

P (a, t+ h) = (1− δh)

[
P (a, t)−

∫ a(t)

(1−zh)a

p (y, t) dy

]
+ δh.

Subtracting P (a, t) and rearranging, we get

P (a, t+ h)− P (a, t) = (δh− 1)

∫ a

(1−zh)a

p (y, t) dy − δhP (a, t) + δh.

Dividing by h yields

P (a, t+ h)− P (a, t)

h
= (δh− 1)

∫ a
(1−zh)a

p (y, t) dy

h
− δP (a, t) + δ.

Letting h become small, we get

∂P (a, t)

∂t
= −zap (a, t) + δ (1− P (a, t)) . (A.35)

Note that the last step employed L’Hospital’s rule stating, given well-known condi-

tions,

lim
h→0

f (x)

g (x)
= lim

h→0

f ′ (x)

g′ (x)
.

34When assuming ā > a > 0, the derivation is slightly different. The final Fokker-Planck equation is

the same as for a > ā > 0. The derivation is available upon request.
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Setting f (x) ≡
∫ a

(1−zh)a
p (y, t) dy and g (x) ≡ h, we get

lim
h→0

f ′ (x)

g′ (x)
=
zap (a, t)

1
= zap (a, t) ,

where we used the Leibniz rule to determine the derivative of f (x).

Now compute the derivative of (A.35) with respect to a and get

∂p (a, t)

∂t
= −zp (a, t)− za∂p (a, t)

∂a
− δp (a, t) .

Hence, the Fokker-Planck equation describing the evolution of the density of wealth over

time reads
∂p (a, t)

∂t
= − (z + δ) p (a, t)− za∂p (a, t)

∂a
.
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