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1 Introduction

The events of the period since the financial crisis of 2008 have required a significant

reappraisal of the previous conventional wisdom, according to which interest-rate

policy alone — and more specifically, a policy of adjusting the central bank’s oper-

ating target for a short-term interest rate in response to contemporaneous economic

conditions (as proposed, for example, by Taylor, 1993) — should suffice to maintain

macroeconomic stability. It has become evident that conventional interest-rate policy

will often be constrained by the zero lower bound (ZLB) on nominal interest rates.1

One consequence has been a greater willingness on the part of central banks to make

statements about likely future interest-rate policy, even years in advance, as a sub-

stitute for further immediate interest-rate reduction. But another has been a revival

of interest in the use of counter-cyclical fiscal policy for macroeconomic stabilization.

An important research literature since the crisis has supported the view that fiscal

stabilization policy can be especially valuable when interest-rate policy is constrained

by the ZLB. This literature has mainly addressed the effects of countercyclical gov-

ernment purchases,2 rather than government transfers, on the ground that in simple

representative-agent New Keynesian models, Ricardian equivalence holds in the case

of lump-sum taxes and transfers; lump-sum transfers during a crisis, if expected to

be financed by future lump-sum taxes, should have no effect at all on economic ac-

tivity or inflation.3 On the other hand, the actual fiscal stimulus packages enacted

in response to the crisis consisted to an important extent of increases in government

transfers (Taylor, 2018). This makes it important to further consider the potential

role of countercyclical government transfers as a tool of stabilization policy.

The Ricardian Equivalence result in standard treatments depends crucially on

an assumption of rational expectations on the part of all decision makers. Yet the

grounds for assuming rational expectations in such a case are especially weak. To the

extent that a fiscal stimulus package is an ad hoc response to a single crisis, rather

than an implication of a systematic policy of adjusting the government’s budget in

1The effective lower bound need not be exactly zero; for purposes of our argument here, it is only

important that there be some lower bound, and that in certain situations even reducing the policy

rate to that lower bound will provide an insufficient stimulus to aggregate demand.
2See, for example, Eggertsson (2010), Christiano et al. (2011), or Woodford (2011).
3An exception is the paper of Ascari and Rankin (2013), who instead analyze the question under

an assumption of rational expectations, but using an overlapping generations model. We show that

the effectiveness of fiscal stimulus need not depend critically on the demographic structure (or the

absence of bequest motives), once one allows for finite planning horizons.
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response to the business cycle, one cannot expect that people should have rational

expectations as a result of learning from experience; instead, one needs to ask what

people should be able to deduce from reasoning about the predictable effects of a

novel policy.

Moreover, in order for it to make sense to suppose that people should anticipate

the future tax increases that must result from the increased public debt occasioned by

the stimulus policy, one must assume not merely that people are capable of forward

planning (taking into account the policy change), but that their forward planning

extends over quite a long horizon — as long as is required for the increased public

debt to be fully paid off. This means that in order for full (or nearly full) Ricardian

Equivalence to obtain, one needs to assume that most people’s planning horizons

extend far into the future.

In this paper, we reconsider the usefulness of government transfers as a tool of sta-

bilization policy, and the issue of coordination between monetary and fiscal policies,

under a more modest assumption about the degree to which people should be able to

correctly foresee the future consequences of a novel policy. The approach that we take

is the one proposed in Woodford (2019), based on the architecture of state-of-the-art

programs to play games of strategy such as chess or go. Our analysis assumes that

in any period, both households and firms look forward from their current situations

some finite distance into the future, to the possible situations that they can reach in

the end period of foresight through some finite-horizon action plan; they use struc-

tural knowledge (including any announcements about novel government policies) to

deduce the consequences of their intended actions over this horizon.

Interim situations that someone imagines reaching in the end period of foresight

are evaluated using a value function that has been learned from past experience.

Crucially, we suppose that the value functions cannot be adjusted to take account of

an unusual shock or a change in policy, if neither the shock nor the new policy is the

one with which people have had much prior experience, though their value functions

may be well-adapted to the prior environment. Under some circumstances, this kind

of analysis leads to conclusions very similar to conventional rational-expectations

analysis (at least, under a suitable equilibrium selection criterion), as discussed in

Woodford (2019). However, a situation in which monetary policy is constrained by

the ZLB for a period that may last longer than the length of many people’s planning

horizons is one in which the finiteness of planning horizons can make a significant
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difference for the predicted macroeconomic dynamics.

This suggests that in a model with finite planning horizons, countercyclical fiscal

stimulus might be a powerful tool, and indeed one that might make it possible to

stabilize the economy despite the lower bound on interest rates, without any need to

resort to commitments about future monetary policy. Here we consider what can be

achieved by state-contingent transfer policies4 when people’s planning horizons are

finite (and perhaps extend only a few quarters into the future). We focus on possible

responses to a temporary increase in the size of a financial wedge (intended to capture

a situation like the 2008 crisis) that is large enough to prevent complete stabilization

using interest-rate policy alone, owing to the ZLB.5

We show that fiscal transfers can indeed reduce the contractionary impact of

an increase in the financial wedge, and that, at least under some circumstances,

a willingness to use fiscal policy with sufficient aggressiveness makes it possible to

achieve complete stabilization of both aggregate economic activity and the overall

rate of inflation, despite the zero lower bound, and regardless of the size of the

increase in the financial wedge. Thus the existence of state-contingent transfer policies

expands the degree to which stabilization would be possible using interest-rate policy

alone; and we obtain this result under conditions that would guarantee Ricardian

Equivalence under an assumption of rational expectations.

At the same time, we show that it would be a mistake to conclude that counter-

cyclical transfers are so effective a tool that there is no need for a central bank to

ever indicate that it would allow inflation to overshoot the bank’s long-run inflation

target, nor any need for a commitment to conduct future interest-rate policy in any

way different from what will best serve the bank’s goals at that future date. We find

that state-contingent transfers make possible equilibria that could not be achieved

4Woodford and Xie (2019) similarly show how the effects of government purchases depend on

the length of decision makers’ planning horizons.
5While we refer to the shock that creates the crisis in our model as an increase in the financial

wedge, similar conclusions would be reached in the event of a reduction for other reasons in the

real interest rate required to induce an efficient level of expenditure. For example, the ZLB has

again become a binding constraint on US monetary policy in 2020 as a result of the COVID-19

pandemic, though in this case the disturbance did not originate in the financial sector. If a shock

of this kind increases uncertainty about future economic conditions, the result can be an increase in

precautionary saving that affects the equilibrium real interest rate in a way similar to the shock to

the financial wedge in the model set out here.
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using interest-rate policy alone, but that there is a limit to the stimulus that can be

achieved even by massive fiscal transfers, in the absence of monetary accommodation

— that is, a commitment not to raise interest rates, even if inflation overshoots its

long-run target.6

We also find that there is a limit to what can be achieved, even by coordinated

fiscal and monetary policy, if policy is expected to return to pursuit of its normal

targets as soon as the wedge returns to a normal level. A higher level of welfare

is possible, in general, if the monetary and fiscal authorities commit themselves to

history-dependent policies in the period after the real disturbance has dissipated.

Hence forward guidance — a commitment to conduct monetary policy differently in

the future than would be the case in normal times — remains valuable even when

fiscal transfers are also available as a tool of stabilization policy.

Our approach to introducing bounded rationality into a New Keynesian model is

related to a number of contributions to an active recent literature that has offered

reasons for central-bank forward guidance about monetary policy years in the future

to have weaker effects than those predicted by a New Keynesian model under the

assumptions of rational expectations and full credibility of the policy announcement

— a prediction of the standard model that is widely viewed as inconsistent with avail-

able evidence (the “forward guidance puzzle,” Del Negro et al., 2015).7 Perhaps most

obviously, Gabaix (2020) proposes a framework in which predictable future states are

assumed to be down-weighted in their effects on agents’ decision rules, relative to the

optimal decision rule under rational expectations, to an extent that is greater the

greater the distance in the future of these states. This leads to predictions that are

in many ways similar to those of our model with finite-horizon planning (especially if

6Our conclusions about the importance of monetary accommodation of fiscal stimulus are in

line with those of Ascari and Rankin (2013), though the reason for Ricardian Equivalence to fail is

different in our analysis.
7Not all of the proposed resolutions of the “forward guidance puzzle” have direct implications for

the effects of fiscal policy considered here, however. For example, Andrade et al. (2019) discuss how

forward guidance regarding interest-rate policy can fail to have the desired effect when the policy

commitment is not correctly understood or believed by everyone in the private sector, and Gust et

al. (2018) show how the effects of forward guidance can be attenuated by learning dynamics. These

issues are also important for predictions of the effect of fiscal policy, but the relevant grounds for

misunderstanding of the implications of a policy announcement are not the same for different kinds

of policy.
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we assume an exponential distribution of planning horizons); our framework can be

viewed as providing an explicit model of cognitive processing that might underly the

kind of reduced-form effects proposed by Gabaix.

The implications of the two models are, however, not equivalent.8 A difference

that matters for the current discussion is that while an exponential distribution of

planning horizons in our model leads to similar predictions as the representative-agent

model of Gabaix regarding the possibility of complete stabilization of both output

and inflation using fiscal policy (as discussed in section 3), the welfare implications

are not the same in the two models; thus the micro-foundations matter for policy

design, even when the predicted behavior of macroeconomic aggregates is similar.

The effects of “level-k reasoning” (Garćıa-Schmidt and Woodford, 2019; Farhi and

Werning, 2019; Iovino and Sergeyev, 2020) also have important similarities to the

effects of finite-horizon planning. In the “level-k” models, decision makers formulate

infinite-horizon plans, but assume that the future values of aggregate variables will

be determined by the behavior of others who do not take announced policy changes

into account to the same degree as they themselves do.9 This type of departure from

rational-expectations analysis (motivated by work in experimental game theory by

authors such as Nagel, 1995) is in the same spirit as our proposal of finite-horizon

planning, in that both proposals truncate the length of a decision maker’s chain of

deductive reason, to reduce the complexity of the required calculations; moreover, the

two proposals are complementary, rather than alternatives. A more general model

would allow both for truncation of forward planning after a finite number of steps

and truncation of the number of levels of higher-order expectations that are taken

into account.

We do not here present calculations with a limited level of reasoning, because this

departure from standard methodology only matters much when planning horizons

are long (as in the analyses of Garćıa-Schmidt and Woodford or Farhi and Werning);

8The differences are particularly notable in the case of long-lasting policy changes. For example,

the Gabaix model yields “neo-Fisherian” long-run predictions that are quite different from those

implied by finite-horizon planning, as discussed in Woodford (2019).
9In related work, Angeletos and Lian (2018) show how the aggregate effects of a policy announce-

ment can be attenuated when economic conditions are perceived with noise by individual decision

makers. While this analysis is based on imperfect information rather than a bound on the com-

plexity of reasoning, it similarly reduces the extent to which higher-order expectations adjust in

response to a policy change.
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if planning horizons are short, this fact already limits the degree to which decisions

depend on higher-order expectations. And while the two approaches lead to similar

conclusions in some respects,10 the finite-horizon planning approach has the advan-

tage of providing an integrated analysis of both short-run and long-run effects of a

policy change,11 and offers the prospect of explaining lower-frequency macroeconomic

dynamics in addition to the effects of unusual individual policy experiments.12

The paper proceeds as follows. Section 2 describes the New Keynesian DSGE

model with finite planning horizon and the financial shocks considered in this paper.

As a baseline to which more active stabilization policies can be compared, it analyzes

the effects of such shocks, under alternative assumptions about the length of planning

horizons, when monetary policy is specified by a purely forward-looking inflation tar-

get and strict budget balance is maintained. Section 3 then introduces fiscal transfer

policies, while section 4 considers what can be achieved through coordinated fiscal

and monetary stabilization policies. Section 5 concludes.

2 Output and Inflation Determination with Finite

Planning Horizons

2.1 Forward Planning with a Finite Horizon

We study the consequences of limited foresight in a New Keynesian DSGE model with

finite-horizon forward planning, building upon the approach developed in Woodford

(2019). Households and firms make contingent plans for a finite distance into the

future, and use a value function learned from past experiences to evaluate all possible

terminal states in the last period of the planning horizon. Over this horizon, they

10As an example, note the similarity of the conclusions in Garćıa-Schmidt and Woodford (2019)

and those in Woodford (2019) regarding the validity of “neo-Fisherian” predictions in the case of

an interest-rate peg.
11As Garćıa-Schmidt and Woodford (2019) discuss, the “level-k” approach only offers an analysis

of the immediate effects of the announcement of a novel policy, and does not answer the question

of how reasoning should change as people observe that outcomes under the new regime differ from

those that they had expected.
12A version of the model proposed in Woodford (2019) is empirically estimated in Gust et al.

(2019), who find that it is as good or better than more ad-hoc modifications of the rational-

expectations New Keynesian model in accounting for US macroeconomic dynamics.

6



use structural knowledge (including any announcements about novel central bank

or government policies) to deduce the consequences of their intended actions. For

simplicity, we assume that the planning horizon is taken to be exogenously fixed.

2.1.1 The household decision problem

We illustrate the approach by briefly discussing here the problem of households in our

model.13 As in standard New Keynesian models, we assume an economy made up of

infinite-lived households, here assumed to be identical apart from possible differences

in their planning horizons. But we suppose that at any date t, a state-contingent

expenditure plan is selected only for dates between t and some date t + h, a finite

distance in the future.

Letting Ci
τ be household i’s planned consumption in period τ of a composite good

(a CES aggregate of the many differentiated goods produced in the economy), we

suppose that at time t the household chooses state-contingent values {Ci
τ} for each

of the dates t ≤ τ ≤ t + h (specifying real expenditure in each of the exogenous

states that may arise at any of those dates, given the state of the world at the time

of the planning) so as to maximize the expected value (according to the household’s

calculations at time t) of an objective of the form

t+h∑
τ=t

βτ−t u(Ci
τ ) + βh+1v(Bi

t+h+1; st+h).

Here the first terms represent the discounted sum of flow utilities from consumption

in periods t through t + h, while the final term represents the household’s estimate

of the value of the discounted sum of flow utilities that it can expect to receive in

later periods, if the wealth that it holds at the end of the planning horizon is Bi
t+h+1.

We allow in general for the possibility that the value assigned to the household’s

continuation problem after period t + h may depend on the state of the world st+h

that has been reached in period t+ h.

In the household’s planning exercise, it takes into account its budget constraint,

and thus the way in which the value of Bi
t+h+1 will depend on its planned level of

expenditure. We assume that there exists only a single financial asset each period,

a one-period riskless nominal debt instrument, the interest rate it on which is also

13The decision problem of price-setting firms is treated using similar methods in Woodford (2019).
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the central bank’s policy instrument. Because wealth can take this single form, the

implications of the household’s choices over the planning horizon for the value of its

continuation problem can be summarized by a single quantity, Bi
t+h+1, indicating the

wealth carried into period t+ h+ 1 in the form of this riskless nominal asset.

The evolution of this quantity is determined by a flow budget constraint of the

form

Bi
τ+1 = (1 + iτ + ∆τ ) [Bi

τ/Πτ + Yτ + Tτ − Ci
τ ] − ∆τ [Bτ/Πτ + Tτ ] (2.1)

for each period t ≤ τ ≤ t + h. Here Bi
τ is the value of the nominal debt held by the

household that matures at date τ , deflated by the period τ − 1 price index Pτ−1,
14

so that it is a predetermined real variable.15 This quantity must be deflated by

Πτ ≡ Pτ/Pτ−1, the gross inflation rate between τ − 1 and τ , to obtain the real value

of the maturing debt in units of the period τ composite good. The term Yτ indicates

production of the composite good in period τ , the value of which is received as income

by the households (and treated as independent of any household decision, in the

household’s forward planning exercise); and Tτ is the value of lump-sum government

transfers (the same to each household), also in units of the composite good.

End-of-period asset balances earn a nominal financial yield of iτ between periods

τ and τ + 1. In addition, we assume that there is an additional benefit of holding

riskless claims, which we represent in (2.1) as an additional dividend equal to ∆τ per

unit of savings held in this form. This additional dividend is intended to represent

the existence of a (time-varying) safety premium as in the models of Del Negro et al.

(2017) and Caballero and Farhi (2017); increases in the size of such a premium are

an important reason for the lower bound on the safe nominal interest rate to become

a tighter constraint during financial crises.16

14As usual, this price index is the minimum cost at which a unit of the composite good can be

purchased in period τ − 1.
15In particular, Bit+h+1 is a quantity that is determined in period t + h, and thus within the

planning horizon, like the other terms in the objective function.
16The only consequence of a non-zero value of ∆τ in our model is the introduction of a time-

varying factor in the household Euler equations (2.4)–(2.5) below. The same kind of exogenous shift

factor in the Euler equation could alternatively arise from exogenous variation in households’ rate

of time preference, as assumed in Eggertsson and Woodford (2003). While the latter assumption

would allow for a simpler and more conventional model, we believe that variation in the size of the

financial wedge represented by ∆τ provides a more realistic picture of the kind of disturbance that

is likely to give rise to the policy challenges that we address in this paper.
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The final term in (2.1) is a lump-sum effective tax on households, equal in size to

the safety dividend received by households in aggregate (using the notation Bτ for

the aggregate supply of public debt carried into period τ). This indicates that the

advantages to an individual household of holding more safe assets are at the expense

of other households (as the “safety dividend” does not correspond to any additional

resources created by the safe assets). We model the safety premium {∆t} as an

exogenous process, satisfying ∆t ≥ 0 at all times; we do not consider in this paper

the possibility of government policies that can directly affect the size of this wedge.

2.1.2 Model-based expectations

The decision problem of a household at time t depends on the financial wealth Bi
t

that it brings into the period, and on the household’s expectations about the state-

contingent evolution of the variables {Πτ , Yτ , Tτ , iτ ,∆τ} over periods t ≤ τ ≤ t + h,

that is, the household’s planning horizon. We assume that in their forward plan-

ning exercises, households make use of correct structural information about how the

economy works (including a correct understanding of monetary and fiscal policy, tak-

ing into account any new policies that may have been announced in response to an

unexpected exogenous disturbance).

First, we assume a correct understanding of the state-contingent evolution of all

exogenous state variables; this means that households correctly understand the cur-

rent value of ∆t (since they know the economy’s exogenous state, before undertaking

forward planning), and the conditional probability of different possible future paths

{∆τ}.
Second, households are assumed to correctly understand the rules that will de-

termine the policy variables {Tτ , iτ} over the planning horizon. For simplicity, we

restrict attention in this paper to fiscal rules under which the path of the real public

debt {Bτ} is exogenously specified;17 this allows us to consider both the case of no

public debt (often assumed in analyses of alternative monetary policies), and vari-

ous ways in which the level of public debt might depend on the path of the financial

wedge {∆τ}. Aggregating over households, and assuming no government purchases,18

17See Xie (2020) for analysis of regimes in which there is instead feedback from endogenous

variables to the path of real public debt, including “active” fiscal policy regimes according to the

classification of Leeper (1991).
18The framework can easily be extended to allow for government purchases as well. See Woodford
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it follows from (2.1) that the evolution of the real public debt must satisfy

Bτ+1 = (1 + iτ ) [Bτ/Πτ + Tτ ] (2.2)

for each of the periods t ≤ τ ≤ t + h. This, like other structural equations of our

model, is assumed to be correctly understood by households. Then the assumption

that fiscal policy is specified by an exogenous process {Bτ} implies that Tτ must

endogenously adjust, to ensure that (2.2) is satisfied, in response to any changes in

iτ by the central bank, or changes in Πτ as a result of firms’ pricing decisions.

We similarly assume that households correctly understand the way in which iτ

will be determined under any contingency by the central bank’s policy. For example,

if the central bank follows a Taylor rule, then the state-contingent evolution assumed

in a household’s forward planning will necessarily satisfy that relation. Any feasible

policy is assumed to be subject to a ZLB constraint

it ≥ 0 (2.3)

at all times.

Finally, households are also assumed to correctly understand how the variables

Yτ and Πτ are determined by the decisions of households and price-setting firms

respectively. However, in order not to have to model how the economy should evolve

(or anyone else should be modeling it to evolve) beyond the horizon t+h, a household

with horizon h at time t must model Yτ and Πτ as being determined by households

and firms who do not look beyond the horizon t+ h while making their decisions at

time τ . Just as the household, in its planning at time t, models its own behavior at

some later date τ as the behavior that will appear optimal to someone with a planning

horizon at that time of only t + h − τ periods, it similarly models the behavior of

other households and firms at date τ under the assumption that they will all have

planning horizons of t+ h− τ periods. This means that the household will model all

other households as spending the same amount at time τ as it plans itself to spend

at that time. Hence the amount of income Yτ that it expects to receive in any future

state will be the same as the amount Ci
τ that it expects to spend in that state.

Let Y j
t ,Π

j
t , i

j
t be the (counterfactual) output, inflation, and nominal interest rate

in the case that all economic units (households and firms) have a planning horizon

and Xie (2019) for analysis of how the government purchases multiplier is affected by finite planning

horizons.
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of j ≥ 0 periods at time t. Then the Euler equation for optimal forward planning

requires that for any j ≥ 1,

u′(Y j
t ) = β(1 + ijt + ∆t) Et[u

′(Y j−1
t+1 )/Πj−1

t+1 ] (2.4)

while for j = 0,

u′(Y 0
t ) = β(1 + i0t + ∆t) v

′(Bt+1). (2.5)

In (2.5) we use the fact that in equilibrium, a household with planning horizon zero

must anticipate an interest rate i0t that leads it to choose to hold wealth B0
t+1 equal

to the exogenously specified supply of public debt Bt+1 (given that it expects other

households to optimize over the same planning horizon as it does, and it expects the

debt market to clear).

Thus we obtain a system of equations that can be recursively solved for the state-

contingent evolution of the variables {Y j
t } for each possible horizon j ≥ 0, given the

state-contingent evolution of the endogenous variables {Πj
t , i

j
t} for all j, and the state-

contingent evolution of the exogenous variables {∆t, Bt+1}, along with any exogenous

disturbances to the monetary policy rule.19 (Equation (2.5) can be solved for the value

of Y 0
t in any state of the world, given the values of the other variables; then given a

solution for the state-contingent evolution of {Y 0
τ }, the j = 1 case of equation (2.4)

can be solved for the value of Y 1
t in any state of the world; and so on for progressively

higher values of j.)

Modeling the optimizing decision of price-setting firms with finite planning hori-

zons, we similarly obtain a system of equations that can be recursively solved for

the state-contingent evolution of the variables {Πj
t} for each possible horizon j ≥ 0,

given the state-contingent evolution of the endogenous variables {Y j
t , i

j
t} and the

state-contingent evolution of the exogenous variables. These equations, together with

the monetary policy rule with which the endogenous variables must be consistent for

each value of j, provide a system that can be jointly solved for the state-contingent

evolution of the endogenous variables {Y j
t ,Π

j
t , i

j
t} for each possible horizon j ≥ 0,

given the state-contingent evolution of the exogenous variables.

In writing the above equations, we take as given the value function v(B) that

households will use in their forward planning, and similarly the value function that

19The model can easily be extended to allow for exogenous disturbances to productivity, pref-

erences, and government consumption, as treated in Woodford (2019); but in this paper, we are

concerned only with possible policy responses to disturbances to the financial wedge ∆t.
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firms will use. In Woodford (2019), the endogenous evolution of these value functions

in response to additional experience is also modeled; here, however, we abstract from

this additional source of dynamics, and assume fixed value functions, that will be the

same for the different policies that we consider. Our assumption is that the value

functions are determined in a backward-looking way (as an inference from outcomes

observed in the past), and not through a forward-looking deductive process; the whole

point of the use of a value function to evaluate conditions that might be reached at

the planning horizon t+h is to avoid having to reason deductively about what should

happen under various contingencies beyond that date.

Thus when an unusual shock hits, and unusual policies are announced in response,

the value functions that households and firms use, at least initially, will continue to be

ones that they learned from macroeconomic conditions prior to either the disturbance

or the new policies.20 Because our concern in this paper is solely with the effects

of temporary policy changes in response to a transitory disturbance, we simplify

the discussion by abstracting from the changes in the value functions that would

eventually occur if the new conditions were to persist sufficiently long.21 Instead

we assume that the value functions remain fixed over the scenarios that we consider

below, and are ones that represent an optimal adaptation to the stationary conditions

assumed to have existed prior to the disturbance.

In the analyses below, the situation prior to the disturbance is assumed to have

been the one in which the government debt has been zero (Bt = 0 at all times); the

central bank has pursued a forward-looking inflation targeting policy, setting it each

20If crises of a similar sort occur repeatedly and similar policies are adopted each time, one

might expect that the value function used when such a crisis arrives should eventually adapt to this

experience. We do not pursue this extension of the analysis here; but see the analysis in Woodford

and Xie (2019) of the effects on equilibrium dynamics during a crisis of learning to expect compliance

with a price-level targeting rule.
21Allowing the value functions to adapt is instead critical for certain other kinds of discussions.

These include consideration of the eventual effects of commitment to an interest-rate peg for a long

period of time, as in Woodford (2019); empirical modeling of US economic data over a period of

decades, that included significant shifts in both output and inflation trends, as in Gust et al. (2019);

analysis of the conditions under which joint monetary-fiscal policy regimes imply sustainable long-

run dynamics, as in Xie (2020); and consideration of the difference between commitment to a

systematic price-level targeting rule and adoption of an ad hoc “temporary price-level target” when

the ZLB binds, as in Woodford and Xie (2019).
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period at the level required to ensure that Πt = Π∗, the long-run inflation target;22

and the financial wedge ∆t has at all times been small enough to make it possible for

the central bank to achieve that target without violating the zero lower bound (2.3).

In a stationary equilibrium in which these conditions always hold, the maximum

attainable discounted utility for a household that enters period t with wealth B is

given by

v(B) =
1

1− β
u(Ȳ + (1− β)B/Π̄), (2.6)

where Ȳ and Π̄ are the stationary values of Yt and Πt.

This is the optimal value function for households in this stationary environment;

its use in a finite-horizon planning exercise in the stationary environment would result

in optimal behavior, regardless of the length of the planning horizon. It is also the

value function to which the adaptive process described in Woodford (2019) would

converge, if such an environment were maintained for a sufficiently long time. Thus

we assume the value function (2.6) for households in our analyses below; we similarly

assume for firms a value function that is optimally adapted to that same stationary

environment.

2.1.3 Log-linear approximate dynamics

As in many rational-expectations analyses, it will be convenient to approximate the

solution to the model structural equations using a log-linear approximation. We

linearize the model’s equations around a stationary equilibrium in which ∆t = 0

at all times, and the policy regime is the one discussed above for which the value

functions of households and firms are adapted. We express the linearized equilibrium

relations in terms of deviations from the stationary equilibrium values of the various

state variables, using the following notation:

yjt ≡ log(Y j
t /Ȳ ), πt ≡ log(Πt/Π̄), bt ≡ Bt/(Π̄Ȳ ),

ı̂t ≡ log

(
1 + it
1 + ı̄

)
, ∆̂t ≡

∆t

1 + ı̄
.

Here ı̄ ≡ β−1Π̄ − 1 > 0 is the stationary equilibrium value of the nominal interest

rate.
22This target is assumed to satisfy Π∗ > β, so that a stationary equilibrium is possible in which

this inflation rate is maintained at all times, and in this equilibrium, the ZLB constraint (2.3) is a

strict inequality. Note that this will be satisfied in the case of any non-negative inflation target.
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In terms of this notation, equilibrium conditions (2.4) and (2.5) can be log-

linearized to yield

yjt = −σ(̂ıjt + ∆̂t − Etπ
j−1
t+1) + Ety

j−1
t+1 (2.7)

for each j ≥ 1, and

y0t = −σ(̂ı0t + ∆̂t) + (1− β)bt+1. (2.8)

Note that except for the superscripts, (2.7) has the same form as the “New Keynesian

IS equation” obtained under rational expectations (see, e.g., Woodford, 2003, chap.

4).

Similarly, the structural relations describing optimal price-setting behavior by

firms can be log-linearized to yield

πjt = κyjt + βEtπ
j−1
t+1 (2.9)

for each j ≥ 1, and

π0
t = κy0t . (2.10)

(See Woodford, 2019, for the derivation.) Here again, it will be observed that except

for the superscripts, (2.9) has the same form as the “New Keynesian Phillips curve”

obtained under rational expectations (Woodford, 2003, chap. 3).

Up to a log-linear approximation, the predicted evolution of aggregate variables

is then given by

yt ≡
∑
h

ωhy
h
t , πt ≡

∑
h

ωhπ
h
t ,

where ωh is the fraction of both households and firms each period with planning

horizon h (for all h ≥ 0). We treat the frequency distribution {ωh} as exogenously

given in the exercises reported here.23 In some of our numerical results, we assume

an exponential distribution,

ωh = (1− ρ)ρh (2.11)

for all h ≥ 0, where 0 < ρ < 1, though our methods do not depend on this.

Finally, in terms of the deviations variables, the zero lower bound constraint can

be written as

ı̂t ≥ ı̂ (2.12)

23There is no logical reason why this distribution needs to be the same for households and firms,

but in the results presented here, we simplify the reporting of results by assuming the same planning

horizons for both.
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where ı̂ < 0, meaning that the constraint does not bind when it is near its stationary

equilibrium value ı̄.24

2.1.4 How long are planning horizons?

The quantitative relevance of the departure from rational expectations that we pro-

pose depends, of course, on how long we assume planning horizons to be. Because our

goal in this paper is to clarify how the assumed planning horizon matters, we do not

take a stand on the most plausible numerical assumption about planning horizons.25

There is, however, good reason to believe both that people are capable of some degree

of forward planning, and at the same time that planning horizons are often not too

long.

Keramati et al. (2016) provide experimental evidence for finite-horizon planning

by human subjects in a multi-stage decision problem.26 In this experiment, a horizon

h = 2 corresponds to full backward-induction solution of the problem; the authors

find evidence of use of the decision strategy corresponding to h = 1 (some forward

planning, but also not full backward induction), to an extent that varies with time

pressure, among other factors. Johnson et al. (2002) study behavior in a three-round

bargaining game, monitoring the information that subjects collect before making their

first offer. They find that all subjects look at first-stage information; yet on 19% of

trials, they fail to even look at information about the second-stage situation (evidence

of a planning horizon h = 0), and on another 10% of all trials, they look at stage-two

information but fail to look at information about the third-stage situation (consistent

with a horizon h = 1). These experiments involve only relatively shallow decision

trees, but nonetheless provide fairly clear evidence of finite-horizon planning.

There is also considerable evidence that laboratory subjects playing repeated

games or multi-stage games with many stages often fail to “solve” these games by

24If the lower bound is exactly zero, then we will have ı̂ = −(r∗ + π∗) < 0, where r∗ ≡ β−1 − 1

is the stationary equilibrium real rate of return inclusive of the safety premium. This is assumed in

our numerical calibration, but our qualitative results depend only on our assumption that ı̂ < 0.
25When possible, in our numerical results we illustrate how results differ under different assump-

tions about the planning horizon. Additional numerical results under alternative assumptions about

the planning horizon are shown in the online appendix.
26This study is of particular interest because it examines the predictions of a model much like

ours, that incorporates both finite-horizon forward planning and a value function learned from prior

experience.
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backward induction when there are more than a few stages. For example, in the

case of a finitely-repeated prisoner’s dilemma, with the number of repetitions known

from the start, backward induction would require players to never cooperate at any

stage; instead, players often cooperate initially,27 but then defect systematically for

the last few rounds (e.g., Selten and Stoecker, 1986). Similarly, in the “centipede

game,” where players whose moves alternate can continue the game or immediately

terminate it at each of a sequence of stages, backward induction would dictate that a

player should immediately terminate whenever given the opportunity; yet in labora-

tory experiments, players typically continue the game until three or four stages before

the (known) final stage, but terminate at that point (McKelvey and Palfrey, 1992).

Both of these patterns of behavior are consistent with a model in which people can

plan three or four stages ahead, but not farther.

Coibion et al. (2020) conduct an experiment that is arguably more relevant to

the decision situations considered in this paper, by measuring the effect on household

expectations of provision of information about the Fed’s projections for the future

path of nominal interest rates. They find that this information affect households’

expectations (as reported in a survey) of variables such as US inflation most notably

when it is information about the path of interest rates over the coming year; that

there is some additional effect of information about the path over the year after that;

but that there is little measurable effect on expectations of information provided

about the path more than two years in the future. These findings are consistent

with a model of the kind that we propose, on the assumption that most households’

planning horizons extend no more than two years into the future. At the same time,

they suggest that forward planning with h equal to 3 or 4 quarters may well be within

the capabilities of many households.

Perhaps most obviously relevant to the calibration of our model are the empirical

27While this is not rational if the value function used to evaluate terminal positions is the one

implied by backward induction — which would reflect an expectation that in susbsequent play,

one’s opponent will defect regardless of what has happened thus far — it can be rational if the value

function used reflects an expectation that having cooperated to that point makes it more likely that

the opponent will cooperate. The latter sort of value function could well be learned, given how

subjects actually play, if subjects do not learn a value function that conditions on the number of

remaining rounds. We leave further analysis of the application of our approach to such settings for

future work. Other learning models are proposed by Selten and Stoecker (1986), Nagel and Tang

(1998), and Ho and Su (2013).
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estimates of Gust et al. (2019), who estimate a complete New Keynesian DSGE

model with finite-horizon forward planning, assuming an exponential distribution of

planning horizons (2.11). They find that quarterly US aggregate data are best fit by a

parameterization in which ρ is approximately 0.5, meaning that 50 percent of decision

makers only calculate what should happen in the coming quarter when deciding what

to do (h = 0), another 25 percent calculate only what should happen in the coming

quarter and the next one (h = 1), and only 6 percent think beyond the coming year

(h ≥ 4).

It is possible that people typically do not need to engage in much forward planning,

because they expect the value function that they have learned to be fairly reliable

under ordinary circumstances, but that forward planning extends farther when there

is a reason to believe that it is worth the additional effort.28 If so, the kind of crisis

situations treated below are precisely the kind of situations in which it would be

plausible to expect more forward planning than usual. On the one hand, people

should realize that an unusual situation has arisen, so that the value function that

has been correct on average in the past may be a less accurate guide than usual;

and in addition, if the monetary and fiscal authorities announce novel policies, this

is new information with consequences for people’s decisions that can be determined

only through forward planning. Thus we might well expect somewhat longer planning

horizons in the situation of interest in this paper than are indicated by estimates like

those of Gust et al. (2019). Nonetheless, in what follows, we primarily consider the

consequences of planning horizons on the order of two years or less.

2.2 A Crisis Scenario

We consider the effects of alternative monetary and fiscal policies under the following

scenario: prior to date t = 0, we suppose that the economy has for a long time

been in the stationary equilibrium discussed above, in which the financial wedge

has always been small, the government’s budget has been balanced each period (so

that government debt has remained equal to zero), and the inflation target π∗ has

been consistently achieved. As a result, households and firms have learned the value

functions that are appropriate to a stationary environment of that kind. At time

28Generalizing our model framework to endogenize the planning horizon in this way would be a

valuable extension, but is beyond the scope of the current paper.
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Table 1: Calibrated Parameter Values

Value

Discount factor β = 0.997

Price inertia (Calvo parameter) α = 0.7747

Elasticity of substitution between goods θ = 12.7721

Inverse of Frisch elasticity of labor supply ω = 1.5692

Phillips curve slope coefficient κ = 0.00859

Intertemporal elasticity of substitution σ = 0.862

Financial wedge in “crisis” state ∆̂ = 0.013

Persistence of “crisis” state µ = 0.903

Inflation target π∗ = 0.005

t = 0, however, an unexpected financial disturbance occurs, and the economy enters

a “crisis” state, in which there is a substantial financial wedge ∆̂t > 0 between the

return on safe assets (balances held at the central bank) and other assets.

We assume that this crisis state persists, with the size of the financial wedge

unchanged, until some date T at which the economy reverts back to its “normal”

state, in which we suppose that the financial wedge ∆̂t will subsequently equal zero

forever after. In some of the exercises below, we assume that the duration T of

the crisis is known at the time that the shock occurs. In others, we assume that

it is stochastic, but for simplicity we assume that there is a fixed probability 1 − µ
of reversion to the “normal” state each period, so that the exogenous fundamental

{∆t} evolves according to a two-state Markov chain, as in Eggertsson and Woodford

(2003). We write the constant financial wedge in the crisis state as ∆̂t = −ı̂ + ∆,

where ∆ > 0; the latter quantity measures the degree to which the financial wedge is

too large to be offset through a contemporaneous interest-rate reduction.29 It is the

fact that ∆ > 0 that means that the inflation target can no longer be maintained at

all times, using only conventional interest-rate policy and with a balanced government

budget.

29In the notation of Eggertsson (2011), this quantity corresponds to ∆ = −r− π∗, where r < 0 is

the natural rate of interest in the crisis state.
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2.2.1 Numerical calibration

We illustrate a number of our conclusions about the effects of alternative policies

under such a scenario for economic fundamentals using numerical computations. In

these calculations, we calibrate the model — including our assumption about the

size and persistence of the disturbance to fundamentals — largely in accordance

with the parameter values proposed by Eggertsson (2011), who shows that under

the assumption of rational expectations and a zero inflation target, these parameter

values would imply a contraction of the size experienced by the US economy during

the Great Depression, as shown by Eggertsson (2011). However, in this paper, we

specify “normal” monetary policy as involving an inflation target π∗ of two percent

per year, rather than a target of zero inflation, as in Eggertsson’s model of the Great

Depression. This makes the zero lower bound a less severe constraint in our scenario

than in the one considered by Eggertsson, since we continue to assume the same size

of increase in the financial wedge as in his Depression scenario.

In our numerical calculations, the periods of our discrete-time model are identified

with quarters. We set the subjective discount factor β = 0.997, the slope of the

Phillips curve κ = 0.00859, and the elasticity of intertemporal substitution σ =

0.862.30 The shock required to account for the size of the contraction during the

Great Depression is one in which ∆̂ = 0.013,31 and the probability of remaining

in the crisis state is µ = 0.903, so that the expected length of a crisis is about 10

quarters. In addition, we assume a long-run inflation target of 2 percent per year;

that is, π∗ = 0.005 in quarterly terms, which implies that the part of financial wedge

that cannot be offset by monetary policy owing to the ZLB is ∆ = 0.005, or two

percent per year.32 The calibrated parameter values are summarized in Table 1.

30The table also reports values for several additional parameters (α, ω, θ) that matter only in

section 4.3, when we consider welfare analysis in the presence of heterogeneous planning horizons.

These parameters and their relevance for welfare calculations are discussed further in Appendix D.
31This is a quarterly rate; thus the assumed increase in the size of the financial wedge is a bit

greater than 5 percent per annum. The natural rate of interest in the normal state is r∗ = β−1 − 1,

or slightly above 1 percent per annum; thus we assume that in the crisis state, the natural rate of

interest falls to -4 percent per annum, as in Eggertsson (2011).
32Note that this is only half the size of ∆ in the crisis state considered by Eggertsson (2011).
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2.2.2 Contraction in the absence of a policy response

We first consider the consequences of a temporary large increase in the size of the

financial wedge (the “crisis scenario” explained above), in the case of a two-state

Markov disturbance, under an assumption that monetary and fiscal policy continue

to be conducted as under normal conditions, which is to say as assumed above in

our discussion of the stationary equilibrium prior to the occurrence of the shock. We

assume that the government budget continues to be balanced each period, so that

Bt+1 = 0 at all times, and that the central bank continues to conduct monetary policy

in accordance with a strict inflation target. The latter stipulation implies that in each

period, ı̂t will be set as necessary to ensure that inflation is equal to the target rate

(πt = 0, in our deviations notation), if this is consistent with the ZLB; if inflation

undershoots the target in any period t even when the interest rate is at its lower

bound, then ı̂t will equal ı̂ in that period (the policy as close as possible to achieving

the inflation target in that period, taking as given the expected conduct of monetary

policy in all future periods).

Let us first recall the analysis of such a situation under the assumption of rational

expectations (RE) by Eggertsson and Woodford (2003) and Eggertsson (2011). The

linearized equations of the RE model can be written in vector form as

zt = AEtzt+1 − σa (̂ıt + ∆̂t), (2.13)

where we define

zt ≡

[
yt

πt

]
, A ≡

[
1 σ

κ β + κσ

]
, a ≡

[
1

κ

]
.

(Note that the path of public debt is irrelevant, owing to Ricardian Equivalence.)

Under the assumption that ∆̂t evolves according to the two-state Markov process and

that ı̂t is chosen according to the inflation targeting policy, there exists a rational-

expectations solution that is also Markovian, in the sense that the vector zt takes

only two possible values: a vector z in any period t in which the crisis state persists,

and the zero vector in each period after the reversion to the normal state (in which

case the inflation target is achievable each period from then on).33

33Mertens and Williams (2018) call this the “target equilibrium”; it is not the only possible RE

solution, even if one restricts attention to Markovian solutions. It is however the solution emphasized
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In the case that

κσµ < (1− µ)(1− βµ),

the matrix A has two positive real eigenvalues, both less than µ−1, and the Marko-

vian solution is also the unique bounded solution to the linear system (2.13). This

condition holds if and only if

µ < µ̄, (2.14)

where µ̄ is a bound between zero and 1 that depends on the values of κσ and of β;

this is the case considered by Eggertsson and Woodford (2003).34 In this case, the

Markovian RE solution under which the crisis state persists is given by

zt = zRE ≡ −σ (I − µA)−1a∆ << 0. (2.15)

In this equilibrium, both output and inflation remain persistently below their

target values as long as the crisis state continues, but return immediately to their

target values as soon as the financial wedge returns to its normal (negligible) value.

As Eggertsson and Woodford (2003) show in a calibrated example, this equilibrium

can involve quite a severe contraction as well as substantial deflation, in response to

even a few percentage points’ increase in the financial wedge. We now examine the

robustness of these conclusions to allowing for finite planning horizons.

Assume again that the central bank adheres to a strict inflation targeting policy,

and suppose also that there is no government debt (so that the fiscal authority main-

tains a balanced budget).35 Equations (2.7) and (2.9) can then be written in vector

form as

zjt = AEtz
j−1
t+1 − σa (̂ıjt + ∆̂t) (2.16)

in the RE literature, following Eggertsson and Woodford (2003); we show below that restriction of

attention to this RE solution can be justified as the limit of the unique solution associated with a

model with finite planning horizons, when the length of the planning horizons is made arbitrarily

long.
34A Markovian rational-expectations solution can also be defined when µ exceeds the bound (2.14),

but in this case it does not correspond to the limit of an equilibrium with finite-horizon planning,

as planning horizons are made arbitrarily long.
35This is a common assumption in New Keynesian models used for monetary policy analysis,

though in models where Ricardian Equivalence would hold, it is without loss of generality. With

finite planning horizons, the assumption is not innocuous, as we show in section 3.
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for each j ≥ 1, using the notation zjt for the vector [yjt π
j
t ]
′, while (2.8) and (2.10) can

be written as

z0t = −σa (̂ı0t + ∆̂t) + (1− β)a bt+1. (2.17)

Under the assumption of zero public debt, equation (2.17) implies that an expec-

tation of strict inflation targeting requires that horizon-zero agents expect an interest

rate

ı̂0t = max{−∆̂t, ı̂}.

Under the assumption that the financial wedge evolves as a two-state Markov chain,

this implies that z0t = 0 if t is any date after the reversion to the normal state, while

z0t = z0 ≡ −σa∆ << 0 (2.18)

if t is any date at which the crisis state continues.

We can then use this result to solve recursively for the behavior of households and

firms with progressively longer planning horizons. We find that zht has a common

value zh in each period t in which the crisis state continues, given by36

zh = −σ
h∑
j=0

(µA)ja∆ << 0 (2.19)

for any planning horizon h ≥ 0. Note that the solution is well-defined for any fi-

nite h; if in addition to our more general assumptions, µ satisfies the bound (2.14),

the solution has a well-defined limit as h is made unboundedly large. In this lat-

ter case, we find that as h → ∞, zh → zRE, so that the unique equilibrium with

finite-horizon planning approaches the Markovian rational-expectations equilibrium

discussed above. It follows that any long enough finite planning horizon will lead to

outcomes similar to those in the RE analysis.

If planning horizons are only of modest length, however, the quantitative predic-

tions of the model with finite-horizon planning are different from those of the RE

analysis. Since each of the terms in the sum (2.19) is a vector with both elements

negative, it is evident that both yh and πh are more negative the longer the planning

horizon. This is illustrated in Figure 1, for the numerical parameter values listed in

Table 1.

36See Appendix A for details of the derivation.
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Figure 1: Expenditure and rates of price increase during the crisis period, under

different assumptions about the planning horizon h (in quarters) of households and

firms, when the central bank follows a strict inflation targeting policy and there is no

response of fiscal policy.

This solution tells us the value of yh and πh for each possible planning horizon h.

These calculations are the same regardless of the distribution of planning horizons

in the economy. For a given distribution of planning horizons {ωh}, we can then

compute the predicted state-contingent evolution of aggregate output and inflation

by aggregating the individual decisions of the agents with different horizons. In the

case of an exponential distribution of planning horizons (2.11), the condition required

for the infinite sum
∑∞

h=0 ωhz
h to converge — and hence for there to be a well-defined

equilibrium under the assumed policies — is

ρµ < µ̄, (2.20)

where µ̄ is defined as in (2.14).

This is a weaker condition than (2.14), that requires only that the product ρµ not

be too large; it will be satisfied if either most planning horizons are not too long (ρ is

well below 1) or the financial disturbance is not expected to last too long (µ is well
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below 1), or both. In the case that it is satisfied, aggregate outcomes in the crisis

state will be given by

z = −σ [I − ρµA]−1a∆ << 0 (2.21)

Note that if (2.20) is satisfied, (2.21) is the unique solution to our model, not simply

one among multiple possible solutions, as in the rational-expectations analysis. In the

case that (2.14) is satisfied, the solution (2.21) approaches the RE solution specified

in (2.15) as ρ approaches 1; this provides a possible justification for selecting that

solution in a rational-expectations analysis.

We see from Figure 1 that when households and firms have finite planning hori-

zons, the contractionary and disinflationary effects of an increase in the financial

wedge are less severe than in a rational-expectations analysis; the more short-sighted

people are assumed to be, the milder the effects. Nevertheless, assuming some degree

of foresight, the ZLB can pose a serious problem, under these assumptions about

policy. (A larger increase in the financial wedge would produce a correspondingly

larger contraction than those shown in the figure.) Thus it is still desirable to explore

whether alternative policies can mitigate this problem.

One possibility would be to consider what can be achieved by committing to

a more expansionary monetary policy following the return of the financial wedge

to its normal level, as proposed by Eggertsson and Woodford (2003). In their RE

analysis, such a policy can greatly improve upon the outcomes associated with a

purely forward-looking inflation targeting regime; however, the effects of such “for-

ward guidance” depend entirely upon its being taken into account in the expectations

of households and firms during the crisis period, which depends upon planning hori-

zons being sufficiently long.37 An alternative approach is to consider what can be

achieved by increasing fiscal transfers in response to the financial disturbance. As we

shall see, when planning horizons are finite, the use of this additional tool can achieve

greater stabilization than even the best-designed forward guidance policy can on its

own. However, the ideal policy response will involve both increased fiscal transfers

and forward guidance regarding future interest-rate policy.

37See Woodford and Xie (2019) for quantitative analysis of the degree to which shortening the

assumed length of planning horizons reduces the predicted effects of such policies, even when clearly

explained and fully credible.

24



3 Fiscal Transfers and Aggregate Demand

As explained in section 2, in this paper we consider only fiscal policies in which the

real public debt Bt+1 is a function of the exogenous state in period t (including the

history of exogenous evolution of the financial wedge, through period t, and any

information available at time t about future financial wedges); but in this section we

no longer require that Bt+1 = 0 at all times. The implied state-contingent level of net

lump-sum transfers Tt is then given by equation (2.2). While we now allow the path

of the debt to respond to shocks, we consider only policies under which the process

{Bt+1} remains within finite bounds with certainty for all time; this means that

we consider only policies under which any increase in the public debt is eventually

paid off, with certainty.38 Given this — together with the facts that all taxes and

transfers are lump-sum and distributed equally to all households, and that there are

no financial constraints (other than the “financial wedge” that allows riskless claims

on the government to trade at a lower equilibrium rate of return than private debt)

— our model is one in which Ricardian Equivalence would hold under an assumption

of rational expectations.

Instead, if households have finite planning horizons — or even, if a sufficient

number of them do — a bounded increase in the path of the real public debt (resulting

from an initial increase in lump-sum transfers, followed eventually — though possibly

much later — by the tax increases required to keep the debt from exploding) will

increase aggregate demand. Note that the household FOCs (2.4)–(2.5) imply that

real expenditure Y h
t by households with a planning horizon of h periods must satisfy

u′(Y h
t ) = Et[

h∏
j=1

Dh+1−j
t+j · D̃0

t+hv
′(Bt+h+1)], (3.1)

where the stochastic discount factors are defined by

Dj
t+1 ≡ β

1 + ijt + ∆t

Πj−1
t+1

for any j ≥ 1, D̃0
t ≡ β(1 + i0t + ∆t).

Now consider the effect of a fiscal policy change, that increases the planned level of

Bt+1 for at least some future dates (in at least some possible states of the world), while

38This is true regardless of how prices, interest rates, and economic activity may evolve; thus we

do not consider the effects of “non-Ricardian” fiscal policy rules of the kind discussed, for example,

in Woodford (2001).
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decreasing it at no dates. If the paths of neither goods prices nor asset prices change

(as would be the case under Ricardian Equivalence), then (3.1) implies that Y h
t must

increase in any period t with the property that Bt+h+1 is increased in at least some

states that remain possible, conditional on the state at date t.39 Aggregating across

households with different planning horizons, one concludes that aggregate output Yt

must increase, in at least some periods; thus Ricardian Equivalence does not obtain.

The key to this result, of course, is our assumption that announcement of the

policy change does not change the value function v(B) used to evaluate terminal

states. A household with rational expectations should instead understand that if a

policy change results in a higher real public debt Bt+h+1, it must imply higher tax

obligations in periods subsequent to t + h (that is, beyond the planning horizon);

and this should change the level of private wealth Bi
t+h+1 needed in order to ensure

a given level of continuation utility. Thus the correct value function v(Bi
t+h+1) would

have as another argument the aggregate supply of debt Bt+h+1.

Because the value function takes account only of a coarse description of the house-

hold’s situation — and because the situation that gives rise to an unusually large pub-

lic debt following a financial crisis may not be similar to situations that the household

has frequently encountered in the past — we suppose that households have not al-

ready learned how to take this additional state variable into account in the way that

they value terminal states.40 Neglect of this state variable is what breaks Ricardian

Equivalence. The degree to which this is quantitatively important will depend on the

extent to which the time that it takes for the real public debt to return to its normal

level following a shock exceeds the planning horizons of many households.

The failure of Ricardian Equivalence adds another dimension along which govern-

ment policy can shift the equilibrium allocation of resources, possibly in ways that

can improve stabilization outcomes. This is particularly easy to see in the case of an

exponential distribution of planning horizons (2.11), where the parameter 0 < ρ < 1

39This follows from the fact that both u′(Y ) and v′(B) are decreasing functions of their respective

arguments.
40One might wonder whether after crises have repeatedly occurred, to which fiscal policy always

responds in the way discussed here, people should not learn a value function which takes account

of the predictable increase in tax obligations following the crisis, undercutting the effects of fiscal

transfers during the crisis. While this logic is consistent with our account of how the value function

is learned, such learning is likely to be slow, in the absence of commitment by the fiscal authorities

to a strict rule for the way in which taxes adjust to any increase in the public debt.
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determines the mean planning horizon h̄ ≡ ρ/(1− ρ). In this case, the log-linearized

aggregate demand relations (2.7)–(2.8) can be aggregated to yield

yt = −σ(̂ıet + ∆̂t − ρEtπt+1) + ρEtyt+1 + (1− ρ)(1− β)bt+1, (3.2)

where

ı̂et ≡ (1− ρ)
∞∑
j=0

ρj ı̂jt

is an average of the interest rates expected by households with different planning

horizons.41 The linearized aggregate supply relations (2.9)–(2.10) can similarly be

aggregated to yield

πt = κyt + ρβEtπt+1. (3.3)

Note that equations (3.2) and (3.3) relating the evolution of aggregate output and

inflation reduce to the structural equations of the standard New Keynesian model

under rational expectations in the limit as ρ→ 1.

Equation (3.2) shows that variation in the level of real public debt bt+1 (the debt

issued in period t) shifts the aggregate-demand relation in exactly the same way as

does variation in ı̂t, the central bank’s interest-rate target. It follows that, if one is

concerned solely with stabilization of the aggregate variables yt and πt, there is no

need to consider varying the path of the real public debt, as long as it is possible for

the central bank to vary ı̂t to the desired degree instead. However, when the zero

lower bound is a binding constraint on interest-rate policy, the fact that the public

debt can still be increased through transfer policy can effectively relax this constraint.

This allows stabilization of the aggregate economy in cases where this would not

be possible under a policy that maintained bt+1 = 0 at all times. Note that the paths

in which yt = πt = 0 at all times are consistent with both equations (3.2) and (3.3)

holding at all times, if and only if

−σ(̂ıet + ∆̂t) + (1− ρ)(1− β)bt+1 = 0 (3.4)

41In Woodford (2019), this equation involves ı̂t, the actual interest-rate target of the central bank,

rather than the variable ı̂et defined here. The form (3.2) is more generally valid. In the earlier paper,

monetary policy is assumed to be characterized by a linear relationship among ı̂t and other aggregate

variables, such as a Taylor rule ı̂t = φ(πt, yt; st), where st is an exogenous state and φ is linear in

the first two arguments. In such a case, the fact that the policy rule is understood by all households

implies that ı̂jt = φ(πjt , y
j
t ; st) for each horizon j; aggregating over the different horizons then implies

that ı̂et = φ(πt, yt; st) = ı̂t, owing to the linearity of φ. When the zero lower bound sometimes

constrains policy, as in the cases considered in this policy, ı̂et will in general no longer equal ı̂t.
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at all times. Since everyone is assumed to understand that the central bank’s policy

must conform to the lower bound ı̂t ≥ ı̂, the interest rates expected by households

must satisfy ı̂et ≥ ı̂ at all times. Hence if ∆̂t > −ı̂ at some time, it will not be possible

to satisfy (3.4) with bt+1 = 0.

Instead the condition can always be satisfied if we allow fiscal transfers. Let us

suppose that the central bank’s interest-rate target tracks variations in the financial

wedge to the extent that this is consistent with the ZLB, i.e., that monetary policy

ensures that

ı̂t = max{−∆̂t, ı̂} (3.5)

each period.42 Then (since the interest rate is specified as a function of the exogenous

state) ı̂et will equal ı̂t, and condition (3.4) will be satisfied if and only if fiscal policy

is given by

bt+1 =
σ

(1− ρ)(1− β)
∆̃t (3.6)

where

∆̃t ≡ max{∆̂t + ı̂, 0} (3.7)

measures the part of the financial wedge that is not offset by interest-rate policy. If

monetary policy is given by (3.5) and fiscal policy by (3.6), equilibrium will involve

yt = πt = 0 at all times, regardless of the path of the financial wedge.43

42More precisely, we assume that this policy is followed during a relatively brief period in which

there is a non-trivial financial wedge, but that after that period the central bank reverts to a policy

rule that ensures achievement of its inflation target. The latter stipulation is required in order to

ensure that there should not be any long-run drift in the value functions of households and firms,

allowing us to abstract from modeling the endogenous adjustment of value functions, as discussed

in section 2. If the rule (3.5) were followed forever, then the learning process for the value functions

specified in Woodford (2019) would lead to unstable dynamics, as shown in that paper for the case

of a permanent zero financial wedge.
43It is immediately obvious from inspection of equations (3.2) and (3.3) that the asserted solution

is consistent with both of these equations at all times. We show in Appendix B that this is indeed

the unique equilibrium outcome, assuming a bound on the asymptotic growth rate of the excess

financial wedge. The required condition holds, for example, in the case of the two-state Markov

process for the financial wedge introduced in section 2.2 as long as (2.20) is satisfied.
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4 Coordinated Monetary and Fiscal Stabilization

Policy

The striking result of the previous section might make it seem that there is no need

for a central bank to depart from its commitment to a strict inflation-targeting policy,

given that fiscal transfers can be varied to offset any effects on aggregate demand of

variations in the financial wedge. Can one simplify the tasks of both policy authori-

ties, and communication with the public as well, by stating that the sole concern of

the central bank should be to ensure that inflation remains equal to the target rate,

while it is the responsibility of the fiscal authority to offset any excessive financial

wedge (any positive value of ∆̃t) with fiscal transfers, so as to maintain a zero output

gap?

We shall argue that this would be a mistake. Successful use of fiscal policy as a

tool of stabilization policy requires that it be supported by an appropriate monetary

policy; moreover, the ideal joint policy will involve a commitment that monetary

policy will continue to depart from the central bank’s usual inflation targeting policy,

even after the financial wedge has returned to its normal size.

4.1 The Dependence of Fiscal Stimulus on Monetary

Accommodation

It might seem from the analysis above that the central bank can commit itself to the

inflation targeting policy considered in section 2.2.2 (setting ı̂t as needed to achieve

the inflation target, or as low as possible if the target cannot be achieved), and that

as long as fiscal policy is given by (3.6), the outcome will be complete stabilization of

both inflation and the output gap. This would however be incorrect. It is true that

the equilibrium described at the end of the previous subsection is one in which the

paths of ı̂t and πt conform to the proposed monetary policy rule; but it is not true

that that equilibrium is consistent with everyone expecting that monetary policy will

be conducted in accordance with that rule. In our model, because of people’s finite

planning horizons, it matters not only what happens in equilibrium, but what the

central bank would be expected to do out of equilibrium; and the complete stabiliza-

tion of macroeconomic aggregates actually depends on people’s understanding that

the central bank is not determined to prevent over-shooting of the long-run inflation
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target under any circumstances.

In order to see this, we need to consider the forward plans of agents with differing

planning horizons in the equilibrium in which yt = πt = 0 at all times. Substituting

the monetary policy rule (3.5) into (2.16)–(2.17) yields

zjt = AEtz
j−1
t+1 − σa ∆̃t (4.1)

for each j ≥ 1, and

z0t = −σa ∆̃t + (1− β)a bt+1.

In the case of an arbitrary process for the financial wedge and an arbitrary fiscal

policy, this system of equations can be solved recursively to yield

zht = −σ ·
h∑
j=0

[Aja] Et∆̃t+j + (1− β)[Aha] Etbt+h+1 (4.2)

for any planning horizon h ≥ 0. The implied solutions for the aggregates yt and πt

are then obtained by averaging over the various planning horizons h. If fiscal policy

is given by (3.6), these equations imply yt = πt = 0; however, they do not generally

imply yht = πht = 0 for each individual planning horizon.

Consider, for example, the case in which the financial wedge evolves according

to a two-state Markov chain of the kind proposed in section 2.2. In this case, the

right-hand side of (4.2) depends only on whether the economy is still in the crisis

state at date t, or has already returned to normal. In any period t such that the

economy remains in the crisis state, the solution is given by

zht = zh ≡ σ ·

{
µh

1− ρ
[Aha] −

h∑
j=0

µj [Aja]

}
·∆,

where ∆ > 0 is the excess financial wedge in this state. Instead, in any period after

the return to the normal state, zht = 0. Note that the solution for zh is well-defined

for any finite horizon h, regardless of parameter values.

One observes that in the crisis state, the elements of zh are different for different

horizons h. For example, when h = 0,[
y0

π0

]
= σ

ρ

1− ρ

[
1

κ

]
∆ >> 0.
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Moreover, one can show that the largest of the two positive real eigenvalues of A is

equal to µ̄−1 > 1, where µ̄ is the quantity introduced in (2.14). Then if µ < µ̄, one

finds that

zh → zRE << 0

as h → ∞, where zRE is the Markovian rational-expectations solution defined in

(2.15). Thus both yh and πh are positive in the case of short enough planning horizons,

while both are negative in the case of long enough horizons.44

The situation would be quite different if, instead, the central bank were understood

to be committed to setting the interest rate required to achieve its inflation target,

unless constrained by the ZLB. In that case, there would be a maximum degree of

aggregate demand stimulus that could be achieved through fiscal transfers, no matter

how large the transfers might be. Under strict inflation targeting, (2.8) and (2.10)

imply

π0
t = −κσ(̂ı0t + ∆̂t) + κ(1− β)bt+1

= min{−κσ(̂ı+ ∆̂t) + κ(1− β)bt+1, 0}.

In the case of the assumed two-state Markov chain for the financial wedge, this implies

that as long as the crisis state persists, one will have

π0
t = π0 = κ min{(1− β)bt+1 − σ∆, 0}.

(The corresponding value of y0 is simply this quantity without the prefactor κ.) Thus

increases in the public debt are stimulative only up to the level

bmax ≡ σ∆

1− β
.

(In our numerical calibration, this amounts to 0.36 of annual GDP.45) For any level

bt+1 ≥ bmax, the model predicts that y0 = π0 = 0.

44See Figure 4 below for illustration of a similar result in the case that the duration of the crisis

period is known with certainty from the beginning.
45Note that this does not mean that there would be no effect of increasing the public debt beyond

36 percent of GDP — a level that the US is already well past. It means that, under the assumptions

of our calibration, there would be no effect of an increase by more than 36 percent of GDP relative

to the normal steady-state level of public debt.
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For any longer horizon h, we similarly will have zht = zh as long as the crisis state

persists, where crisis values {zh} can be computed recursively as follows. For any

j ≥ 1, (4.1) implies that in any crisis period,

πjt = [κ β + κσ]µzj−1 − κσ∆

if ı̂jt is expected to be at the lower bound. If both elements of zj−1 are non-positive,

this implies inflation below target, even with the interest rate at the lower bound.

Hence the ZLB will bind, and we must have

zj = µAzj−1 − σa∆ << 0. (4.3)

Under the assumption that bt+1 ≥ bmax for as long as the crisis state persists (the

most favorable assumption for a stimulative effect of fiscal policy), we have shown in

the previous paragraph that z0 = 0; we can then show recursively using (4.3) that

both elements of zj are non-positive for all j ≥ 0. It follows that the assumption used

to derive (4.3) is valid for all j ≥ 1.

Thus under the most expansive possible fiscal policy, we will have zht = zh as

long as the crisis state persists, where the sequence {zh} can be computed recursively

using (4.3), starting from the initial condition z0 = 0. This yields the solution

zh = −σ
h∑
j=1

(µA)j−1a∆ << 0

for each h ≥ 1. Both yht and πht remain below their target values for all horizons h > 0,

and more so the longer the horizon. (This is illustrated for our numerical example in

Figure 2, which shows the values of zh both in the case of zero fiscal stimulus46 and

in the case of the maximum fiscal stimulus.) We see that fiscal stimulus can mitigate

the contractionary and disinflationary effects of the financial disturbance, but both

spending and the rate of price increase continue to fall, even with the maximum fiscal

stimulus, for all horizons h > 0; if planning horizons extend years into the future,

the fraction of the contractionary effect that can be offset using fiscal policy alone is

quite modest.

Summing over the different planning horizons (again assuming an exponential dis-

tribution of horizons), the net effect on both aggregate output and aggregate inflation

46Note that the results for b = 0 repeat those shown in Figure 1 above.
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Figure 2: Expenditure and rates of price increase during the crisis period, for house-

holds and firms with different planning horizons h (in quarters) when the central bank

follows a strict inflation targeting policy. The two lines correspond to the minimal

and maximal sizes of fiscal stimulus.

is necessarily contractionary. As long as (2.20) is satisfied,47 the weighted average of

the {zh} is a convergent sum, and equal to

z = (1− ρ)
∞∑
h=0

ρhzh = −ρσ [I − ρµA]−1 a∆ << 0.

It is not possible to fully stabilize either aggregate output or inflation; both necessarily

fall in the crisis state. Indeed, the effects on aggregate output and inflation are similar

to those obtained in the case of no fiscal response (see equation (2.21) above): they

are simply both reduced by a factor of ρ. This means that the contractionary effects

are reduced by less than half, in the case of any mean planning horizon h̄ greater

than one quarter.

Instead, it is possible to completely eliminate the contractionary effects of the

47This is the condition required for both eigenvalues of ρµA to be less than 1, the same condition

required for convergence as in the case of zero fiscal stimulus considered in section 2.2.2.
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increased financial wedge on both output and inflation, if an expansionary fiscal pol-

icy (an increase in the real public debt through lump-sum transfers, in an amount

proportional to the excess financial wedge ∆) is combined with monetary accommo-

dation — a commitment to keep the nominal interest rate at its lower bound during

the period in which the financial wedge is large, even if this causes inflation to over-

shoot its long-run target. A coordinated change in both monetary and fiscal policy

in response to the financial disturbance can achieve more than either policy can on

its own.

Thus while fiscal transfers have an important contribution to make, in the case

that planning horizons are finite, the availability of this additional instrument does

not make monetary stabilization policy irrelevant. Moreover, the important aspect of

monetary policy is not what the central bank actually does during the period when

the financial wedge is large (since the ZLB binds during this period); rather, it is what

it leads people to believe that it would do, in the event that the ZLB were to cease

to bind. In this sense, commitments about the determinants of future interest-rate

policy remain a crucial dimension of policy, even when aggressive use of government

transfers is possible.

4.2 The Continuing Relevance of Forward Guidance

The example considered above not only shows that the use of fiscal transfers can im-

prove stabilization outcomes, relative to what monetary policy alone can accomplish;

the results obtained might seem to make the details of monetary policy unimportant,

given sufficient latitude in the way that fiscal policy can be used. If we assume a

conventional objective for stabilization policy, in which the aim is to minimize the

expected value of a discounted sum of squared target misses

E0

∞∑
t=0

βt[π2
t + λy2t ], (4.4)

then it is easy to characterize an optimal joint monetary-fiscal policy in the case of

an exponential distribution of planning horizons.

We have shown in this case that if (3.4) is satisfied at all times, we will have

yt = πt = 0 at all times, which obviously achieves the minimum possible value of

criterion (4.4). Moreover, it is possible to choose a state-contingent evolution {bt+1}
that satisfies (3.4) at all times, in the case of any assumed state-contingent evolution
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for {ı̂t}, as long as ı̂t is a function only of the exogenous state, so that ı̂et = ı̂t.
48 For

example, it is not necessary for interest-rate policy to respond at all to increases in

the financial wedge in order for complete aggregate stabilization to be possible; we

could assume that ı̂t = 0 at all times, and make the fiscal authority solely responsible

for responding to variations in financial conditions.

The example suggests another strong conclusion as well: it would seem that there

is no need to contemplate any deviation from our baseline policy regime (strict in-

flation targeting and zero public debt) in periods when financial wedges are small

(small enough so that ∆̃t = 0), simply because there are transitory periods in which

the wedges are large. Thus there might seem to be no need for forward guidance, in

the sense of a commitment to more stimulative than ordinary policy for a time even

after the financial wedge is again small, for the sake of improved stabilization during

the period when the wedge is large.

But even if we assume that the expected value of (4.4) is the sole objective of

policy (an assumption that we challenge below), this conclusion is not generally true

outside the special case of the exponential distribution of planning horizons. As

a simple (but instructive) alternative case, suppose instead that all households and

firms have a common planning horizon h > 0, and consider the general class of policies

specified by exogenous state-contingent paths for both {ı̂t, bt+1}. Within this family

of policies, our goal is to choose state-contingent paths {ı̂t, bt+1} so as to minimize the

expected value of (4.4), where yt = yht , πt = πht at all times (because of the common

planning horizon).

Let us begin by considering the optimal evolution of {bt+1}, taking as given the

state-contingent path of {ı̂t}. In the case of an arbitrary interest-rate policy, we

can use the same methods as above to show that zht will be given by (4.2), except

that in the more general case the variable ∆̃t defined in (3.7) must be replaced by

∆̌t ≡ ∆̂t + ı̂t.

Since only the evolution of the variables {zht } for horizon h matters for the sta-

bilization objective, it follows from this solution that the choice of bt+h+1 for any

exogenous state st+h in period t+ h affects no variables relevant to the stabilization

48It is necessary, however, that we assume that interest rates do not adjust endogenously in

response to changes in bt+1 in such a way as to keep (1 − ρ)(1 − β)bt+1 − σı̂et constant; this is

the problem with an expectation that the central bank is committed to whatever interest-rate

adjustments are needed to achieve a fixed inflation target.
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objective other than zht in the state at period t in which it is possible to reach the par-

ticular state st+h at date t+h. We can then reduce the problem of choosing an optimal

state-contingent evolution for {bt+1} to a sequence of independent static problems:

for any state st in period t, choose the level of bt+h+1 in the states at date t+h that are

possible conditional on being in state st so as to minimize L(zht ) ≡ (πht )
2 + λ(yht )2,

where zht is given by the generalized version of (4.2).

This is a convex minimization problem, with a unique interior solution character-

ized by a first-order condition. If we introduce the notation

Aja =

[
αj

γj

]

for each j ≥ 0, then the first-order condition is given by

γhπ
h
t + λαhy

h
t = 0.

Substituting the generalization of (4.2) into this yields a linear equation (with a

unique solution) for the expected public debt at the end of the planning horizon:

Etbt+h+1 =
σ

1− β

h∑
j=0

λαhαj + γhγj
λα2

h + γ2h
Et∆̌t+j. (4.5)

Substituting this solution into the generalization of (4.2) then yields an equation for

zht in the case of an optimal transfer policy, but arbitary interest-rate policy,

zht = θt

[
−γh
λαh

]
, where θt ≡ σ

h−1∑
j=0

αjγh − αhγj
λα2

h + γ2h
Et∆̌t+j. (4.6)

It follows that the minimum achievable value of L(zht ), given interest-rate policy, will

be given by

Lt = λ(λα2
h + γ2h) θ

2
t ,

where θt is the function of financial wedges and interest rates defined in (4.6).

Given that these results obtain regardless of the assumed interest-rate policy, the

choice of an optimal interest-rate policy reduces to the choice of a state-contingent

evolution {ı̂t} subject to the lower bound (2.12) holding at all times, so as to minimize

the expected value of
∑∞

t=0 β
tθ2t , where θt is given by (4.6). If the ZLB never binds,

this problem will be solved by choosing ı̂t = −∆̂t each period, so that ∆̌t = 0 at all
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times, implying that θt = 0 at all times. However, this will be possible if and only if

financial wedges are never large, i.e., ∆̃t = 0 at all times — the same condition as is

required for complete stabilization to be possible under the constraint that bt+1 = 0

at all times. While the availability of countercyclical fiscal transfers as an additional

policy instrument reduces the losses associated with a given process {∆̌t} for the

financial wedges not offset by contemporaneous interest-rate adjustments, it does not

change the fact that complete stabilization requires (except in the case where h = 0)

that one be able to ensure that ∆̌t = 0 at all times. As discussed in section 2.2, this

is sometimes precluded by the ZLB.

We can also see that in general, when complete stabilization is not possible, the

optimal second-best policy will involve committing to maintain bt+1 > 0 and/or ı̂t < 0

(that is, deviation from the policies associated with the long-run steady state) even in

some periods t after the financial wedge has again become small, so that an immediate

return to the long-run steady state would be possible. Suppose instead that one were

to have ı̂t = 0 (and hence ∆̌t = 0) for all t ≥ T, where T is the (possibly random)

date at which reversion to the “normal” state occurs, while ∆̌t is instead necessarily

positive (because of the ZLB) at all dates 0 ≤ t < T. It would then follow that at any

date t (and in any state of the world at that date) at which the financial wedge remains

large, ∆̌t > 0 and ∆̌t+j is also anticipated to be non-negative in all possible successor

states with j > 0; hence the right-hand side of (4.5) will necessarily be positive.49

We can thus conclude that optimal policy would require that Etbt+h+1 > 0.

If we further suppose that t is a date such that the financial wedge remains large

at date t, but it is foreseen that it will necessarily be small at date t + h, then this

requires that bt+h+1 > 0 with positive probability even after reversion to the normal

state. Furthermore, on the assumption that the economy is already in the normal

state at date t + h, and hence that ı̂t+h = 0 in all possible states at that date, a

policy under which bt+h+1 > 0 in some state st+h will also have to involve π0
t+h > 0

in that state.50 Thus the optimal joint fiscal-monetary policy must also involve an

understanding that inflation would be allowed to overshoot its long-run target, even

in some periods t ≥ T. Stabilization outcomes during the period when the financial

wedge remains large (and the ZLB consequently binds) are improved by committing

49Here we use the fact that all elements of the vector a and the matrix A are positive, implying

that αj , γj > 0 for all j ≥ 0.
50This follows from (4.2), given that γh > 0.
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Figure 3: Equilibrium trajectories in the case of an elevated financial wedge for 10

quarters (panel (a)), under three alternative assumptions about policy: (i) bt+1 = 0

at all times, and ı̂t = max{−∆̂t, ı̂}; (ii) bt+1 = 0 at all times, but the path {ı̂t}
is chosen optimally; or (iii) the paths of both {bt+1} and {ı̂t} are chosen optimally.

Planning horizons extend 8 quarters into the future, and t measures quarters since

the onset of the elevated financial wedge.

to continue expansionary policies for a time beyond the date T at which it would be

possible to again achieve complete stabilization using orthodox (and purely forward-

looking) policies.

This is illustrated by a numerical example in Figure 3.51 In this example, all

households and firms are assumed to have planning horizons extending eight quarters

into the future (h = 8); we furthermore assume for simplicity that it is known from

t = 0 onward that the financial wedge will be elevated for exactly ten quarters (rather

51We discuss further the calculations involved, and show how the results depend on the assumed

planning horizon, in Appendix C.
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than assuming stochastic exit from the crisis state, as in the two-state Markov case),

so that T = 10 with certainty.

The several panels of the figure show the (deterministic) evolution of the financial

wedge, output, inflation, the nominal interest rate, and the real public debt in re-

sponse to such a disturbance,52 under three possible assumptions about monetary and

fiscal policy, which is to say about the paths of {ı̂t} and {bt+1}. (Both of these evolve

deterministically under all of the policies considered, since no further uncertainty is

resolved after date t = 0.) In case (i), we assume that ı̂t tracks the variation in the

“natural rate of interest” (the interest rate required for stabilization of the output

gap, as specified in (3.5)), and that bt+1 = 0 (no response of fiscal policy to the dis-

turbance). These assumptions lead to the same outcomes as under the “orthodox”

policy discussed in section 2.2.

In case (ii), we again assume that bt+1 = 0 at all times, but consider optimal

forward guidance with respect to the future evolution of the central bank’s nominal

interest-rate target {ı̂t}. In case (iii), we instead allow the paths of both {ı̂t} and

{bt+1} to be optimized. In the latter case, we see that the optimal joint fiscal-monetary

commitment involves promising to maintain both bt+1 > 0 and ı̂t < 0 for a time after

the reversion to the normal state in quarter 10. The figure (panel (e)) shows that

optimal policy requires an increase in the public debt (by an amount equal to nearly

two years’ GDP) by at least quarter 8, which must then be maintained in quarter

9. In quarter 10, when the financial wedge has returned to zero (see panel (a)), it

continues to be optimal to maintain a larger public debt than in the long-run steady

state (though not as large as the debt in quarters 8 and 9); and the optimal level of

the debt continues to be somewhat positive in quarters 11 and later, though much

smaller than the earlier levels of debt.

The optimal joint fiscal-monetary commitment also involves keeping the nominal

interest rate lower than its long-run steady-state level, for two quarters following the

reversion of the financial wedge to zero. Panel (d) of the figure shows that under

policy (iii), the nominal interest rate remains at the zero lower bound in quarter 10,

52Here the financial wedge, inflation and the nominal interest rate are reported in annualized

terms: ∆̂t = 0.05 means a safety premium of 5 percentage points per year (and is equivalent to the

value ∆̂ = 0.013 given in Table 1, where the value is for a quarterly model). Output is reported as

a percentage deviation from the long-run steady state level of output, and real public debt in units

of years of long-run steady state real GDP.
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even though it would be possible at this time to return immediately to the long-run

steady state (and policy (i) would require ı̂t = 0 from t = 10 onward). The nominal

interest rate also remains well below its long-run steady-state level in quarter 11,

though no longer at the lower bound.

As in rational-expectations analyses of optimal forward guidance, a commitment

to keep the interest rate “low for longer” following the reversion of the financial wedge

to zero improves stabilization during earlier periods when the financial wedge is large

(and the ZLB precludes complete stabilization as a result). Indeed, the degree to

which it is optimal to commit to keep interest rates low beyond date T = 10 is

similar in the case when fiscal transfers are used optimally (case (iii)) as in the case

where fiscal transfers cannot be used (case (ii)). Despite the optimal use of counter-

cyclical transfer policy, it remains valuable for the central bank to communicate that

it will not quickly return to pursuit of its normal targets following a period in which

the financial wedge has been so elevated as to cause the ZLB to bind.

4.3 Optimal policy with a welfare-theoretic stabilization

objective

It might be thought that the conclusions about the role of forward guidance in the

previous section depend on our having assumed (unrealistically) that all households

and firms have planning horizons of exactly the same length, while forward guidance

about policy after the financial wedge reverts to a normal level would be unnecessary

in the case of a heterogeneous distribution of planning horizons of the kind assumed

in section 3. But the results in section 3 show only that in the case of an exponential

distribution of planning horizons, a relatively simple policy commitment suffices to

completely stabilize both an overall price index (or inflation rate) and aggregate

output. This implies that the loss function (4.4) can be minimized by such a policy;

yet the proposed policy does not really eliminate all distortions in the allocation of

resources.

In a representative-household model, a loss function of the form (4.4) can be justi-

fied as a quadratic approximation to the level of expected utility of the representative

household, under conditions discussed by Woodford (2003) and Benigno and Wood-

ford (2005). However, those derivations apply to a model in which the aggregate

output measure Yt (or rather, Yt − Gt, where Gt is the quantity of the composite
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good consumed by the government) represents the quantity of the composite good

consumed by each household, and in which all firms that reconsider their price in pe-

riod t choose the same (optimal) new price, so that the only reason for the prices of

different goods to be mis-aligned is that different firms adjust their prices at different

dates.

In the model considered here, instead, if the planning horizons of different house-

holds and firms are heterogeneous, then households with different planning horizons

will generally consume different amounts at a given point in time, and firms with

different planning horizons will generally set different prices even when they adjust

their prices at the same point in time. This creates additional sources of inefficiency

in the allocation of resources: non-uniform allocation of the goods produced at a

given date to the different households reduces average utility (and hence reduces the

representative household’s ex ante expected utility, since households do not know ex

ante which planning horizon they will have), and dispersion in the prices of the goods

supplied by different firms (even though the aggregate inflation rate never varies)

means that the composite good will be obtained in a way that uses more resources

than necessary (because the quantities supplied of the different differentiated goods

will not be uniform).

Using the same methods as are explained in Woodford (2003) for the representative-

household case, a quadratic approximation to the average level of expected utility in

the economy (averaging over the agents with different planning horizons) leads to a

loss function for stabilization policy of a more general form,53

E0

∞∑
t=0

βt[π2
t + α−1var(πht ) + λaggy

2
t + λdispvar(yht )], (4.7)

where var(πht ) and var(yht ) measure the dispersion of the values of πht and yht respec-

tively, across decision makers with heterogeneous planning horizons at a given point

in time (and in a particular state of the world).54 Here 0 < α < 1 is the fraction of

price-setters that do not reconsider their price from one period to the next (a mea-

sure of price stickiness in the Calvo model of price adjustment), and the coefficients

53See Appendix D for details of the derivation.
54For example, we define var(πht ) ≡

∑
h ωh(πht )2 − (

∑
h ωhπ

h
t )2. Like the aggregate inflation rate

πt ≡
∑
h ωhπ

h
t , this is a random variable that takes a particular value in each possible state of the

world at each date t. Thus the variance refers to the distribution of different values of h in the

population, not to uncertainty about which of various future states of the world will be reached.
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λagg > λdisp > 0 are functions of the model’s underlying micro parameters. In the

case of the parameter values specified in Table 1, the weight on var(πht ) is 1.29 times

the weight on π2
t , while the weight on var(yht ) is 0.43 times the weight on y2t ; thus the

dispersion terms are of non-trivial significance.

Note that in the case that all households and firms have a common planning

horizon h, as assumed in section 4.2, var(πht ) = var(yht ) = 0 at all times, regardless

of the policy chosen, and in this case (4.7) reduces to the simpler loss function (4.4)

assumed above. Thus the characterization of optimal policy given in section 4.2

continues to be correct if the criterion is the welfare-based objective (4.7). However,

the welfare-based objective has different consequences in the case of heterogeneous

planning horizons.

For example, we can reconsider the question of optimal stabilization policy in the

case of an exponential distribution of planning horizons, as assumed in section 3. This

case is of particular interest, apart from the opportunity it provides to reconsider the

results of section 3. One of the less appealing features of the optimal policy exercise

reported in section 4.2 is that the criterion used to judge which policy is best is based

on the projected evolution of the economy by the policymaker (i.e., by our model),

who knows that each period’s actual outcomes will be determined by households with

planning horizon h, whereas people’s subjective assessments of their welfare will be

based on their own expectations of the economy’s future evolution, which assume

that outcomes at future dates will be determined by the decision rules of people who

all have horizons shorter than h.

Thus there can be a systematic difference between the consequences of the policy

projected in the welfare-evaluation exercise and those projected by the people in the

economy. Indeed, it might be judged desirable to create expectations of outcomes

that people won’t like (based on their analysis of the future behavior of short-horizon

decision makers) in order to get people to do things earlier that the policymaker likes;

in the proposed welfare analysis, the policymaker need not be concerned by such

expectations because actually the later outcomes will be different (because people

will actually have longer planning horizons at the later date than they had earlier

projected themselves to have). Such an analysis, while correct under its assumptions,

raises questions about the degree of public support that can be expected for the

“optimal” policy.

This problem is much less glaring in the case of an exponential distribution of
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planning horizons. If the distribution of planning horizons is given by (2.11), then

(for example) the future inflation rate predicted at date t by the policymaker for some

future date τ > t will be given by (the state-contingent value of)

yτ = (1− ρ)
∞∑
h=0

ρhπhτ . (4.8)

Instead, a private decision maker with planning horizon h who projects an inflation

rate for that state of the world at date τ as part of a forward planning exercise at

time t will project an inflation rate of πt+h−ττ . But an inflation rate for period τ will

only be projected by decision makers with horizons h ≥ τ − t. Among these, fraction

(1− ρ) have horizon h− (τ − t), fraction (1− ρ)ρ have horizons h+ 1− (τ − t), and

so on; hence fraction (1 − ρ) project the inflation rate π0
τ , fraction (1 − ρ)ρ project

the rate π1
τ , and so on. It follows that the average inflation rate projected for period

τ by private decision makers (among those who calculate a projected future inflation

rate at all) will be given by the right-hand side of (4.8).

There will thus be no systematic difference between the inflation rate projected

by the policymaker under a given policy and the average inflation rate predicted by

private decision makers. Of course, it is still the case that to the extent that decision

makers with different planning horizons make different projections, they will not all

agree with the policymaker’s projection; they will only agree with it on average. But

the stabilization objective (4.7) also directs the policymaker to prefer policies that

reduce the extent to which people with different planning horizons expect different

future outcomes. Thus a policy chosen to minimize (4.7) in the case of an exponential

distribution of planning horizons does not result in such an uncomfortable degree of

difference between the outcomes projected by the policymaker and those expected by

people in the economy.

In the case of an exponential distribution of planning horizons, we have seen

(in section 3) that the policy that minimizes the ad hoc loss function is one that

completely stabilizes both output and inflation at all times. But such a policy is

not optimal from the standpoint of the welfare-based criterion (4.7), because it leads

to substantial dispersion in the forecasts of decision makers with different planning

horizons, as discussed in section 4.1 for the case of a Markovian disturbance process.

Here we consider (as in section 4.2) the simpler case of a disturbance that increases

the financial wedge for T periods, with the value of T known with certainty at the

time of the shock.

43



-6

-4

-2

0

2

4
10

-2

0 2 4 6 8 10 12 14 16 18 20

-1

-0.5

0

0.5

1
10

-2

Figure 4: The paths of real spending (top panel) and inflation (bottom panel) at

each date t (the horizontal axis) as determined by the decisions of agents with each of

several different planning horizons h. As in Figure 3, the shock is assumed to result

in an elevated financial wedge for 10 quarters. The policy is one that completely

stabilizes aggregate output and inflation in all periods, in the case of an exponential

distribution of planning horizons with mean horizon h̄ = 8 quarters.

In Figure 4, we consider a financial disturbance expected to last for T = 10 quar-

ters, and assume for purposes of our numerical illustration an exponential distribution

of planning horizons with mean horizon h̄ = 8 quarters. If the fiscal-monetary policy

discussed in section 3 is followed, it is possible to completely stabilize the paths of

both aggregate output yt and inflation πt. The figure shows the projected time paths

of πht and yht implied by (4.2) for the 20 quarters following the shock, for each of

several different planning horizons h.

In this thought experiment, everyone understands that it is possible to return to

the economy’s long-run steady state from period T onward, and the policy authori-

ties are expected to adopt policies consistent with this; thus everyone agrees on the

expectations yht = πht = 0 for all t ≥ 10. But in the periods with the elevated financial

wedge, the behavior of decision makers with different planning horizons are not at

all the same. All those with planning horizons that do not extend to period T spend
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Figure 5: The paths of aggregate variables in the case of the disturbance considered

in Figures 3 and 4, in an economy with the same distribution of planning horizons as

in Figure 4. Two policies are compared: a policy that completely stabilizes aggregate

output and inflation, as in Figure 4 (dashed lines), and the policy that maximizes

average expected utility (solid lines). The variables shown are as in Figure 3.

more during this period than they would normally, as a result of their expectation

that the public debt (which is increased in response to the shock) will not yet have

been paid back at the end of their planning horizon. But all those whose planning

horizons extend to date T or beyond spend less than normally, just as would be the

case in the absence of expansionary fiscal policy (given that there is no monetary

easing beyond date T ), as they expect tax increases over their planning horizon that

fully offset the effect of the initial fiscal transfers. Because the expected level of the

public debt is very different before and after date T under this policy, the decisions

made by people with horizons that do or do not extend to date T are notably different.

Because of this, not all terms in (4.7) are reduced to zero by such a policy, and one
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can do better under a policy that does not promise such an abrupt change in policy

around date T . Figure 5 shows how the policy that minimizes (4.7) differs from the

policy derived in section 3. Here we optimize over policies specified by deterministic

paths {ı̂τ , bτ+1} for all τ ≥ 0, announced at time t = 0 and similarly understood by

all decision makers that plan far enough ahead (at any date t ≥ 0) to model economic

conditions at date τ . (We can specify policy by deterministic paths for the policy

variables because all uncertainty about fundamentals is resolved in period t = 0.)

Under any policy of this kind, the paths {yht , πht } for all t ≥ 0 implied by the policy

are given by (4.2). This allows us to evaluate (4.7) for any such policy; this objective

is optimized over the set of possible sequences {ı̂τ , bτ+1}.55

Panels (d) and (e) of the figure compare the paths {ı̂τ , bτ+1} that minimize the

welfare-based objective (4.7), shown by solid lines, to the ones that minimize the ad

hoc objective (4.4), shown by dashed lines. (The latter policy is the one discussed

in section 3.) The policy that minimizes the ad hoc objective reduces the nominal

interest rate to its lower bound and increases the public debt by several multiples of

GDP, and maintains both variables at these constant (very accommodative) levels

until date T ; but returns both variables immediately to their long-run steady-state

levels from date T onward.56 Instead, the welfare-optimal policy involves a less ag-

gressive fiscal stimulus during the period of the elevated financial wedge, which is

also withdrawn less abruptly after time T . Instead, forward guidance regarding fu-

ture interest-rate policy is also used as an additional stimulus to demand during the

period with the elevated financial wedge. Interest rates are not raised to their normal

level until three quarters after the financial disturbance has dissipated (and indeed

remain at the lower bound for the first two quarters after the reversion to normal

fundamentals).

This alternative policy does not fully stabilize the economy from time T onward

(even though this would be possible, as shown in Figure 4), and it is less successful

than the other policy in stabilizing aggregate output and inflation in the period

before time T as well, as shown in panels (b) and (c) of Figure 5. But it has the

55See Appendix E for details of our numerical method.
56This is essentially the policy that is recommended by Gabaix (2020) to minimize an ad hoc

objective of the form (4.4) in his model with cognitive discounting of future outcomes. Our model

agrees with his conclusions as to the effects of such a policy on aggregate variables, under the

assumption of an exponential distribution of planning horizons; but it does not imply that this is

the policy that is best for private welfare.
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Figure 6: The paths of the dispersion measures over time, in the case of the same

disturbance and same two policies as are considered in Figure 5.

virtue of producing less disagreement about optimal action across decision makers

with different planning horizons, This is shown in Figure 6, where the dashed and

solid lines correspond to the same two policies as in Figure 6. This makes the policy

superior, from the standpoint of criterion (4.7), despite larger values for the terms in

the loss function measuring departures of aggregate output and inflation from their

target values.

Just as in the case where everyone is assumed to have a common (but finite)

planning horizon (Figure 3), the optimal combined monetary-fiscal regime involves

a commitment to maintain more accommodative policies than normal, using both

monetary and fiscal instruments, beyond the date T at which it becomes possible to

fully stabilize the economy (that is, to achieve zero values for all of the terms in (4.7),

not just stabilization of aggregate output and inflation). It is optimal to commit

to a more expansionary policy in the period immediately following the reversion

of fundamentals, not because of any desirable effects from period T onward, but

purely for the sake of better outcomes during the period of the elevated financial

wedge, owing to the anticipation of more accommodative policies later. Thus forward

guidance continues to be a valuable component of an optimal policy, despite the fact

that planning horizons are finite (and indeed, the horizons of some decision makers

are assumed to be quite short), and also despite the fact that there are now two

instruments of stabilization policy.
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Figure 7: The same three policies are compared as in Figure 3, but now for the case

of an economy with the heterogeneous distribution of planning horizons assumed in

Figure 5. The format and the assumed disturbance are as in Figures 3 and 5.

And just as in the case of the common planning horizon, the optimal use of

interest-rate forward guidance is fairly similar, even when fiscal transfer policy is also

available as a tool of stabilization (and is optimally used), as it would be under the

assumption of no use of fiscal transfers for stabilization purposes. Figure 7 compares

the optimal coordinated monetary-fiscal policy with the optimal interest-rate path in

the case that transfer policy cannot be used, as well as with the equilibrium outcome if

neither transfer policy nor interest-rate forward guidance can be used (as in Figure 3,

but now under the assumption of an exponential distribution of planning horizons).

The format of the figure is the same as in Figure 3. One sees that the optimal

interest-rate path is fairly similar regardless of whether fiscal policy can also be used

for stabilization policy; however, use of the additional fiscal instrument considerably

improves on the degree to which both output and inflation can be stabilized in the
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period of the financial disturbance.

While the numerical example presented is a special case, it illustrates a fairly

general point. Once one recognizes that there are many different distortions each

period (associated with the separate pricing and expenditure decisions of agents with

different planning horizons) that must all be set to zero in order to achieve the first-

best allocation of resources, it is evident that a first-best outcome will not generally be

achievable, even when both fiscal transfer policy and interest-rate policy are available

as instruments (assuming that neither can be separately targeted to households or

firms depending on their planning horizon).

And the fact that the first-best allocation is not achievable makes it not generally

optimal to fully stabilize both inflation and output as soon as the financial wedge

reverts to its normal level, even though this would be optimal if one only cared about

outcomes from date T onward. The reason is that changing anticipated outcomes after

date T can change the allocation of resources prior to date T (when stabilization is

incomplete, even under the second-best optimal policy), and it will be optimal to

choose at least some degree of distortion after date T for the sake of reducing the

much larger distortions before date T , just as in the RE analysis of Eggertsson and

Woodford (2003). Hence we should expect in general that forward guidance regarding

policy after date T will be useful in mitigating the distortions created by the large

financial wedge of the crisis period.

5 Concluding Remarks

In this paper, we reconsider the nature of effective stabilization policy when the zero

lower bound is a relevant constraint on the effectiveness of conventional monetary pol-

icy, by relaxing the unrealistic assumption that people should be able to deductively

reason about the economy’s future evolution under a novel policy regime arbitrarily

far into the future. We examine the robustness of conclusions about the consequences

of particular combined monetary-fiscal regimes to changes in the assumed degree of

decision makers’ foresight in the economy. We find that when planning horizons are

finite, the contractionary effects of a financial disturbance are less dramatic than

in the rational-expectations analysis. But, as long as there is some degree of fore-

sight, even a relatively modest financial wedge can substantially impact stabilization

goals, if additional tools of stabilization policy beyond those needed under normal
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circumstances are not available.

Given that Ricardian equivalence does not hold when people have finite horizons,

we consider in particular the extent to which pure variation in the government’s

budget balance, i.e., changes in the size of lump-sum transfers, can serve as a tool of

stabilization policy. We show that fiscal transfers can be a powerful tool to reduce

the contractionary impact of a financial disturbance, and can even make possible a

complete stabilization of both aggregate output and inflation, despite the binding

ZLB constraint. But the power of fiscal transfers relies on the degree of monetary

accommodation of such transfers.

Moreover, neither the availability of transfer policy nor the fact that the length of

planning horizons is bounded makes commitments about interest-rate policy beyond

the date at which the financial disturbance has dissipated, of the kind argued for

in the rational-expectations analysis of Eggertsson and Woodford (2003), no longer

relevant. We show that the use of such forward guidance along with fiscal policy

achieves better stabilization outcomes than fiscal policy alone would achieve under

an understanding that the central bank will return to pursuit of its usual inflation

target once the financial wedge is again modest in size.

In a numerical example that we present, the degree to which it is optimal to

commit to a continuation of looser monetary policy beyond the time at which fun-

damentals have reverted to normal is roughly the same in the case of an optimal

state-contingent transfer policy as in the case of no response of fiscal transfers to

the disturbance at all. Thus while the rational-expectations analysis exaggerates the

quantitative effects of forward guidance policies as a response to the kind of financial

disturbance considered here (as stressed in the literature on the “forward guidance

puzzle” cited in the introduction), a commitment to keeping interest rates “lower

for longer” following a crisis that causes the ZLB to become a binding constraint

continues to be desirable in the framework for policy analysis proposed here.
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[15] Garćıa-Schmidt, Mariana, and Michael Woodford, “Are Low Interest Rates De-

flationary? A Paradox of Perfect-Foresight Analysis,” American Economic Re-

view 109: 86-120 (2019).

[16] Gust, Christopher, Edward Herbst, and David López-Salido, “Forward Guidance
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A Output and Inflation Contraction in the Crisis

State in the Absence of a Policy Response

Here under the assumption that the financial wedge evolves as a two-state Markov

chain, we show the derivation for equation (2.19), i.e., the expressions of output and

inflation in the crisis state in the absence of a policy response as in section 2.2.2. In

the text, we have already shown that for the case of h = 0, z0t = 0 if t is any date

after the reversion to the normal state, while

z0t = z0 ≡ −σa∆ << 0 (A.1)

if t is any date at which the crisis state continues.

We can then use this result to solve recursively for the behavior of households and

firms with progressively longer planning horizons. First we observe that if t is any

date after the reversion to the normal state, zht = 0 for all h. This can be established

recursively; we first show that if zht = 0 for all dates after the reversion to normal for

some horizon h ≥ 0, (2.16) implies that inflation targeting will require ı̂h+1
t = 0 at

any date after the reversion to normal, and hence that zh+1
t = 0 as well. Then the

fact that we have already shown that z0t = 0 after the reversion to normal implies

that zht = 0 for all h.

Next, consider instead dates t at which the crisis state continues, and suppose that

it has already been established for some horizon h that in any crisis state, zht = zh,

where zh is a vector that is negative in both elements. Then it follows from (2.16)

that even if ı̂h+1
t = ı̂ (the most expansionary possible monetary policy that can be

expected), in any crisis state the vector zh+1
t will equal

zh+1
t = µAzh − σa∆ << 0.

Hence the ZLB will necessarily bind, and we will have zh+1
t = zh+1 in any such state,

where

zh+1 = µAzh − σa∆ << 0. (A.2)

It follows that the equilibrium will be Markovian,57 and that the sequence of vectors

57Note that this is not an assumption (equilibrium selection criterion), as in the case of the

rational-expectations analysis; we have shown that in the case of finite-horizon planning, there is

necessarily a unique solution, and that it has this property.
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{zh} characterizing the Markovian equilibrium can be computed recursively, using

(A.2) together with the initial condition (A.1).

This system of equations can be recursively solved to yield

zh = −σ
h∑
j=0

(µA)ja∆ << 0

for any planning horizon h ≥ 0.

B Output and Inflation Stabilization with an

Exponential Distribution of Planning Horizons

Here we demonstrate that the combination of a monetary policy specified by (3.5)

and a fiscal policy specified by (3.6) each period imply complete stabilization of

aggregate output and inflation at all times, in the case of an exponential distribution

of planning horizons. In the text, we have already shown that this monetary rule

implies that the spending and price-increase decisions of households and firms with

an arbitrary planning horizon h are given by equation (4.2). This is a well-defined,

unique solution, independent of any assumption about the distribution of planning

horizons in the economy. There will therefore exist a well-defined, unique solution in

the case of an exponential distribution of planning horizons (2.11) if and only if the

infinite sums

zt = (1− ρ)
∞∑
h=0

ρhzht (B.3)

converge, where zht is given by (4.2). This is the issue that remains to be addressed.

Let us first consider the partial sum that aggregates the decisions of only the part

of the population with horizons less than or equal to k periods,

z
(k)
t = (1− ρ)

k∑
h=0

ρhzht

for some finite k. This finite sum is obviously well-defined; it remains to be determined

whether the sequence {z(k)t } converges as k is made large.
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Substituting (4.2) into this definition yields

z
(k)
t = −σ(1− ρ)

k∑
h=0

ρh
h∑
j=0

[Aja] Et∆̃t+j + (1− β)(1− ρ)
k∑

h=0

ρh[Aha] Etbt+h+1

= −σ(1− ρ)
k∑

h=0

k∑
j=h

ρj[Aha] Et∆̃t+h + (1− β)(1− ρ)
k∑

h=0

ρh[Aha] Etbt+h+1

=
k∑

h=0

[Aha]Et[(1− β)(1− ρ)ρhbt+h+1 − σ(ρh − ρk+1)∆̃t+h].

If we further substitute the fiscal rule (3.6) into this, we obtain

z
(k)
t = σρk+1

k∑
h=0

[Aha] Et∆̃t+h. (B.4)

Thus the condition required for a well-defined solution is convergence of the sequence

defined by the right-hand side of (B.4) as k becomes large.

The existence of a well-defined limit depends on the asymptotic rate of growth

of the expected future excess financial wedge Et∆̃t+h. A sufficient condition for the

existence of a well-defined solution is that ∆̃t = 0 with probability one beyond some

finite future date T . In this case, for all k ≥ T − t, z(k)t is a constant multiple of ρk,

and hence converges to zero as k is made large (regardless of the value of ρ < 1).

But this is not necessary: a weaker sufficient condition is that there exists a finite

constant C > 0 such that Et∆̃t+h ≤ C · µh for all h, where µ ≥ 0 is a growth factor

satisfying (2.20). As discussed in the text, this bound implies that both eigenvalues

of A are less than ρ−1µ−1. The partial sum
∑k

h=0[A
ha] is therefore positive, increases

in k, and grows asymptotically with a growth factor less than ρ−1µ−1. Hence the

right-hand side of (B.4) is necessarily non-negative (since (3.7) implies that ∆̃ ≥ 0

at all times), and bounded above by a positive sequence that converges to zero at an

exponential rate as k is made large.

Hence under this condition, the infinite sum in (B.3) is well-defined, and equal to

zt = lim
k→∞

z
(k)
t = 0.

Thus the specified joint fiscal-monetary regime implies the existence of a well-defined

unique equilibrium, in which yt = πt = 0 at all times, as stated in the text. Among

the cases in which a well-defined equilibrium exists is the two-state Markov process
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for the financial wedge introduced in section 2.2, under the assumption that the

probability µ of continuation of the crisis state satisfies (2.20), the condition already

discussed in section 2.2.2 for the existence of a well-defined equilibrium in the case of

a balanced-budget policy and strict inflation targeting.

C Optimal Fiscal-Monetary Policy Coordination

with a Common Planning Horizon: Numerical

Methods

In this section, we propose a numerical method to compute the solutions for optimal

exogenous state-contingent fiscal transfer policy and interest rate policy. Assume all

agents have the same planning horizon, and the path of financial wedge is perfectly

predictable, i.e., ∆̂t = −ı̂+ ∆ for 0 ≤ t < T − 1, where ∆ > 0 is the excess financial

wedge that cannot be offset by a reduction in nominal interest rate, and ∆̂ = 0 for

all t ≥ T . We consider the following class of policies: the fiscal policy specified by an

exogenous path of the real public debt {bt+1} and the monetary policy specified by an

exogenous path of the nominal interest rate {ı̂t} consistent with the ZLB constraint

(2.12).

The structural equations (2.7) and (2.9) can be written as

zjt = Azjt+1 − σa(̂ıt + ∆̂t)

for all j ≥ 1, while (2.8) and (2.10) can be written as

z0t = −σa(̂ıt + ∆̂t) + (1− β)abt+1,

where zjt = [yjt π
j
t ]
′ and the matrices A and a are defined as in (2.13).

Since the path of ∆̂t is exogenously given, policy variables {ı̂t, bt+1} can be equiv-

alently described by the sequences of {∆̌t, bt+1}, where ∆̌t = ı̂t + ∆̂t. The problem of

solving optimal monetary and fiscal policy is then to choose {∆̌t, bt+1} for all t ≥ 0,

subject to the constraints that ∆̌t ≥ ∆ > 0 for all 0 ≤ t < T and ∆̌t ≥ ı̂ for all t ≥ T ,

so as to minimize the welfare loss (4.4).

Now we characterize the solution to such an optimal fiscal and monetary policy

problem. Let us first take the sequence of {∆̌t} as given, and derive the optimal
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choice of the sequence {bt+1}, which is a sequence of independent static optimization

problems. More specifically, for any period t ≥ 0, we choose bt+h+1 to minimize

(πht )
2 + λ(yht )2 , where {yht , πht } are given by

zht = −σΣh
j=0[A

ja]∆̌t+j + (1− β)[Aha]bt+h+1. (C.5)

for any horizon h ≥ 0.

Denote [Aja] = [αj γj]
′ for each j ≥ 0, and then the F.O.C.s of the problem for

optimal fiscal transfer policy are given by[
λαh γh

]
zht = 0,

Substituting (C.5) into the above formula yields the unique solution of bt+h+1 as

bt+h+1 =
σΣh

j=0(λαhαj + γhγj)∆̌t+j

(1− β)(λα2
h + γ2h)

. (C.6)

By substituting the expression of bt+h+1 into (C.5), the output and inflation under

the optimal fiscal transfer policy conditional on a given state-contingent interest rate

policy are thus given by

zht = −σΣh−1
j=0{[Aja]−

(λαhαj + γhγj)

λα2
h + γ2h

[Aha]}∆̌t+j

= [−σΣh−1
j=0θj∆̌t+j]

[
γh
−λαh

]
,

where θj =
αjγh−αhγj
λα2

h+γ
2
h

for each 0 ≤ j ≤ h− 1. It follows that the minimized value of

the objective function Lt ≡ (πht )
2 + λ(yht )2 is equal to

Lt = [σΣh−1
j=0θj∆̌t+j]

2λ(λα2
h + γ2h).

We now consider the optimal monetary policy {∆̌t} so as to minimize Σ∞t=0β
tLt,

subject to the constraint ∆̌t ≥ ∆ > 0 for all 0 ≤ t < T and ∆̌t ≥ ı̂ for all t ≥ T . The

F.O.C.s of the optimal choice of ∆̌t for any t ≥ h− 1 are given by

Σh−1
j=0β

−j[Σh−1
l=0 θl∆̌t−j+l]θj ≥ 0, ∆̌t ≥ ∆̌t, (C.7)

where at least one of these inequalities must hold with equality, and ∆̌t = ∆ for all

0 ≤ t < T and ∆̌t = ı̂ for all t ≥ T . Instead, for any 0 ≤ t < h− 1, the F.O.C.s are

given by

Σt
j=0β

−j[Σh−1
l=0 θl∆̌t−j+l]θj ≥ 0, ∆̌t ≥ ∆̌t. (C.8)

59



We conjecture that the solution of {∆̌t} to (C.7) and (C.8) has the following form:

there exists a T ∗ such that the ZLB binds in every period up to some date T ∗ ≥ 0,

and then the ZLB never binds for any dates t ≥ T ∗, i.e., for any 0 ≤ t < T ∗, ∆̌t = ∆̌t,

while Σjβ
−j[Σh−1

l=0 θl∆̌t−j+l]θj = 0 for all t ≥ T ∗, and ∆̌t → 0 as t→∞.

Under this conjecture, for numerical purpose, we assume that there exists a large

enough Tmax such that ∆̌t = 0 for any date t > Tmax.58 Then (C.7) and (C.8) give

a total number of Tmax − T ∗ + 1 linear equations for the periods T ∗ ≤ t ≤ Tmax

in which the ZLB is not binding, with the unknown variables {∆̌t}T
max

t=T ∗ . This linear

system yields a unique solution if there exists one. Thus we can start with T ∗ = 0

and increase the possible values of T ∗ until we find a value of T ∗ so that the unique

solution {∆̌t} satisfies all the inequality conditions. In other words, for a given guess

of T ∗, we have a system of linear equations to solve with a unique solution {∆̌t}; then

we check whether the solution satisfies a sequence of inequalities (in which case it is

the desired solution).

Once we get the solution of T ∗ and the sequence of {∆̌t}, the optimal fiscal transfer

policy is accordingly pinned down by (C.6). With the optimal fiscal and monetary

policy, the realized paths of output and inflation are then given by (C.5), while the

expected paths of output and inflation are given by (2.7)-(2.10).

Figure C.8 and C.9 show the equilibrium dynamics of output, inflation, interest

rate, and public debt with different common planning horizons under the optimal

fiscal transfer policy and monetary policy. In these figures, the economy enters the

crisis state at time t = 0 and reverts to the normal state after 10 quarters (T = 10).

All the variables are reported in annualized terms.

So far, we have shown the numerical methods for solving optimal combined fiscal

transfer policy and interest rate policy. In order to highlight the role of fiscal transfer

policy, we now consider optimal exogenous state-contingent interest rate policy but

with bt+1 = 0 at all times (as included in Figure 3). In this case, output and inflation

(C.5) are instead given by

zht = −σΣh
j=0[A

ja]∆̌t+j.

Then the minimized value of the objective function Lt ≡ (πht )
2 + λ(yht )2 is equal to

Lt = [σΣh
j=0γj∆̌t+j]

2 + λ[σΣh
j=0αj∆̌t+j]

2.

58In the numerical exercise, we take Tmax = 200.
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Figure C.8: Equilibrium trajectories in the case of an elevated financial wedge for 10

quarters, for households and firms with relatively short common planning horizons,

under the paths of both {bt+1} and {ı̂t} being chosen optimally. The planning horizon

h is in quarters, and t measures quarters since the onset of the elevated financial

wedge.

The F.O.C.s for the optimal monetary policy with bt+1 = 0 for any t are thus

given by

Σh
j=0β

−j[(Σh
l=0γl∆̌t−j+l)γj + λ(Σh

l=0αl∆̌t−j+l)αj] ≥ 0, ∆̌t ≥ ∆̌t,

for any t ≥ h, while for any 0 ≤ t < h, the F.O.C.s are given by

Σt
j=0β

−j[(Σh
l=0γl∆̌t−j+l)γj + λ(Σh

l=0αl∆̌t−j+l)αj] ≥ 0, ∆̌t ≥ ∆̌t.

We similarly conjecture that there exists a T ∗ such that the ZLB binds in every

period up to some date T ∗ ≥ 0, and then the ZLB never binds for any dates t ≥ T ∗.

With the same numerical method as in solving the optimal combined fiscal-monetary
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Figure C.9: Equilibrium trajectories in the case of an elevated financial wedge for 10

quarters, for households and firms with relatively long common planning horizons,

under the paths of both {bt+1} and {ı̂t} being chosen optimally. The planning horizon

h is in quarters, and t measures quarters since the onset of the elevated financial

wedge.

policy problem, we can similarly solve for the optimal monetary policy of {∆̌t} under

the assumption of bt+1 = 0 at all times.

Besides the numerical methods to calculate the optimal fiscal and monetary policy,

it is also important to recognize that the superior stabilization outcomes shown in

case (iii) of Figure 3 in section 4.2 depend on people’s understanding that under this

policy, the central bank is committed to maintaining low interest rates even if inflation

and/or output overshoot their long-run target values, and even if such overshooting

occurs at date T = 10 or later (which is to say, after complete stabilization has

again become feasible). We first note that panel (c) of Figure 3 shows that under the

optimal fiscal-monetary commitment, inflation is allowed to overshoot its long-run

target value in quarters 0 through 8; this is because over this period, this degree
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of demand stimulus remains insufficient to raise output to its target level — some

degree of over-shooting of inflation is tolerated in order not to have even greater

under-shooting of output. But we further observe that this degree of stabilization

depends on allowing people to believe that (under circumstances that are actually

counter-factual) monetary policy would allow both output and inflation to over-shoot

their targets simultaneously.

Figure C.10 shows the paths of output and inflation that are anticipated in the

forward plans of households and firms, in the case (iii) equilibrium of Figure 3.59

Here the assumed path of the financial wedge is shown again in panel (a) — because

this is an exogenous variable, actual and anticipated paths coincide. In the other

two panels, the paths of output and inflation that are anticipated looking forward

from each date are shown. If we let yτ |t (respectively, πτ |t) denote the level of output

(inflation) in period τ that is anticipated during forward planning in period t, then

the figure shows the paths {yτ |t} and {πτ |t} for dates t ≤ τ ≤ t + 8, looking forward

from each of a succession of dates t. The solid line in each panel shows the actually

realized path of the variable (the paths of yt = yt|t and πt = πt|t as functions of t); the

dashed lines instead show the paths of yτ |t and πτ |t as functions of τ , with a separate

dashed line for each value of t.

Note that these anticipated paths involve greater over-shooting of long-run targets

than the actually realized paths do. Furthermore, the over-shooting is anticipated

to extend into the period t ≥ 10 in which complete stabilization would be possible.

For example, both inflation and output are anticipated to over-shoot their long-run

targets simultaneously in quarter 10, in the forward plans of people looking forward

from quarters t = 2 through 7; both are anticipated to over-shoot simultaneously

in quarter 11, by people looking forward from quarters t = 3 through 6. Thus not

only does the optimal forward guidance express an intention to keep interest rates

below their long-run level in these quarters, but it requires people to believe that the

central bank will do so even though (in the calculations of people considering this

period several quarters earlier) this is expected to lead to over-shooting of the long-

run targets for both inflation and output. Despite the optimal use of counter-cyclical

transfer policy, it remains valuable for the central bank to communicate that it will

not quickly return to pursuit of its normal targets following a period in which the

59Figure C.10 shows the case with a common planning horizon h = 8 quarters, while Figure C.11

shows the case with a longer common planning horizon h = 20 quarters.
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Figure C.10: Dashed lines show the expected paths of output (yhτ |t) and inflation

(πhτ |t) for dates t ≤ τ ≤ t + h, under the plans calculated by households and firms

with horizon h = 8 at successive dates t, in the case that both monetary and fiscal

policy commitments are optimal (case (iii) from Figure 3). The solid lines show the

predicted actual paths of output (yht|t) and inflation (πht|t). Both t and τ indicate

quarters since the onset of the disturbance (again shown in panel (a)).

financial wedge has been so elevated as to cause the ZLB to bind.

D A Utility-based Welfare Loss Function with

Heterogeneous Planning Horizons

Here we derive a quadratic approximation to the objective function of policymak-

ers who maximize the average level of expected utility of households (with different

planning horizons) in the economy. We use the same methods as are explained in

Woodford (2003) for the representative household case, and thus make the welfare

loss function with heterogeneous planning horizons comparable to the familiar one

for the standard representative-agent New Keynesian model. To facilitate this com-

parison, in this section we use the same notation as in Woodford (2003, chap. 6).
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Figure C.11: Dashed lines show the expected paths of output (yhτ |t) and inflation

(πhτ |t) for dates t ≤ τ ≤ t + h, under the plans calculated by households and firms

with horizon h = 20 at successive dates t, in the case that both monetary and fiscal

policy commitments are optimal. The solid lines show the predicted actual paths of

output (yht|t) and inflation (πht|t). Both t and τ indicate quarters since the onset of the

disturbance.

For any given distribution of planning horizons {ωh}, the average period utility of

households in period t is given by

Ut = Σhωhu(Ch
t ; ξt)−

∫ 1

0

v(lt(i); ξt)di,

where ξt is a vector of random exogenous disturbances and v(lt(i); ξt) is the disutility

of working lt(i) hours in producing differentiated good i.

We can equivalently define a function ṽ(y; ξ̃) indicating the disutility of supplying

quantity y as follows:

ṽ(y; ξ̃) ≡ v(f−1(y/A); ξ),

where Af(l) is the output produced with labor input and ξ̃ ≡ (ξ, a) denotes the

complete vector of exogenous disturbances, including both the exogenous shocks ξ

and the technology shock a ≡ logA.
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By substituting the equilibrium condition Ch
t = Y h

t , where Y h
t is what agents

with planning horizon h believe that aggregate demand will be, the period utility to

a second-order approximation can be written as

Ut = Σhωhu(Y h
t ; ξt)−

∫ 1

0

ṽ(yt(i); ξ̃t)di

= Ȳ uc{Σhωh[Ŷ
h
t +

1

2
(1− σ−1)(Ŷ h

t )2 + σ−1gtŶ
h
t ]

−
∫ 1

0

[ŷt(i) +
1

2
(1 + ω)(ŷt(i))

2 − ωqtŷt(i)]}+ t.i.p., (D.9)

where Ŷ h
t ≡ log(Yt/Ȳ ) and ŷt(i) ≡ log(yt(i)/Ȳ ).60 The parameter σ is the intertem-

poral elasticity of substitution and ω is the elasticity of real marginal cost with respect

to its own output (i.e., the inverse of Frisch elasticity of labor supply). As in Wood-

ford (2003, chap. 6), given the preference shock ξt, the notation gt measures the

percentage variation in output required to keep the marginal utility of expenditure uc

at its steady state level and qt measures the percentage variation in output required to

keep the marginal disutility of supply ṽy at its steady-state level.61 The term “t.i.p.”

includes all the terms that are independent of policy.

Note that Yt = ΣhωhY
h
t , and then to a second-order approximation, we have

Ŷt = ΣhωhŶ
h
t +

1

2
[Σhωh(Ŷ

h
t )2 − (ΣhωhŶ

h
t )2],

which implies

Σhωh[Ŷ
h
t +

1

2
(1− σ−1)(Ŷ h

t )2] = Ŷt −
1

2
[Σhωh(Ŷ

h
t )2 − (ΣhωhŶ

h
t )2]

+
1

2
(1− σ−1)[Σhωh(Ŷ

h
t )2].

60We have assumed a tax policy that exactly offsets the distortion due to market power so that

the steady-state output level is efficient.
61Mathematically, we define σ ≡ −uc/Ȳ ucc, ω ≡ ṽyȲ /ṽyy, gt ≡ −ucξξt/Ȳ ucc, and qt ≡
−ṽyξξt/Ȳ ṽyy.
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By plugging the above equation into the expression (D.9), we obtain

Ut = Ȳ uc{−
1

2
σ−1Σhωh(Ŷ

h
t )2 +

1

2
(ΣhωhŶ

h
t )2 + σ−1gt(ΣhωhŶ

h
t )

−1

2
(1 + ω)(ΣhωhŶ

h
t )2 + ωqt(ΣhωhŶ

h
t )− 1

2
(θ−1 + ω)vari(ŷt(i))}+ t.i.p.

= − Ȳ uc
2
{σ−1Σhωh(Ŷ

h
t )2 + ω(ΣhωhŶ

h
t )2 + (σ−1 + ω)Ŷ n

t (ΣhωhŶ
h
t )

+(θ−1 + ω)vari(ŷt(i))}+ t.i.p., (D.10)

where θ is the elasticity of substitution between differentiated goods (under the as-

sumption of CES preferences) and Ŷ n
t ≡ (σ−1gt + ωqt)/(σ

−1 + ω) denotes the log of

the natural rate of output (i.e., the equilibrium level of output under flexible price).

Note that the assumption of CES preferences implies that

vari log yt(i) = θ2vari log pt(i),

and then by substituting this term into the expression (D.10), we have

Ut = − Ȳ uc
2
{σ−1Σhωh(Ŷ

h
t )2 + ω(ΣhωhŶ

h
t )2 + (σ−1 + ω)Ŷ n

t (ΣhωhŶ
h
t )

+θ(1 + ωθ)vari(log pt(i))}+ t.i.p. (D.11)

Letting

P̃t ≡ Ei log pt(i), Vt ≡ vari log pt(i),

and if one assumes a fraction 0 < α < 1 of all prices that remain unchanged each

period as in the Calvo (1983) pricing model, it follows that

Vt = vari[log pt(i)− P̃t−1]
= Ei{[log pt(i)− P̃t−1]2} − (Ei log pt(i)− P̃t−1)2

= αEi{[log pt(i)− P̃ ]2}+ (1− α)Σhωh(log p∗ht − P̃t−1)2 − (P̃t − P̃t−1)2

= αVt−1 +
1

1− α
Σhωh(π

h
t )

2 − (Σhωhπ
h
t )

2,

where p∗ht is the optimal price chosen at date t by firms (with planning horizon

h) who can choose a new price at that date. Here we use the definition of πht =
1

1−α(log p∗ht − P̃t−1), and observe that it follows that P̃t − P̃t−1 = Σhωhπ
h
t .
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Thus if we take the discounted value of Vt over all periods t ≥ 0, it follows that

Σ∞t=0β
tVt =

1

1− αβ
Σ∞t=0β

i[
1

1− α
Σhωh(π

h
t )

2 − (Σhωhπ
h
t )

2]

=
α

(1− α)(1− αβ)
Σ∞t=0β

t[
1

α
Σhωh(π

h
t )

2 − 1− α
α

(Σhωhπ
h
t )

2],

and hence, together with equation (D.11), we obtain

Σ∞t=0β
tUt = −ΩΣ∞t=0β

tLt + t.i.p.,

where Ω is a positive constant and the period quadratic welfare loss function Lt is

given by

Lt =
1

α
Σhωh(π

h
t )

2 − 1− α
α

(Σhωhπ
h
t )

2

+[λdispΣhωh(y
h
t )2 + (λagg − λdisp)(Σhωhy

h
t )2],

with the relative weight λdisp = λaggσ
−1/(σ−1 + ω) and λagg = κ/θ. Here we use the

notation yht = Ŷ h
t − Ŷ n

t .

Since the aggregate inflation rate and output are given by πt = Σhωhπ
h
t and

yt = Σhωhy
h
t , we can re-write the expression of Lt as

Lt = π2
t +

1

α
var(πht ) + λaggy

2
t + λdispvar(yht ), (D.12)

where the dispersion of the values of πht and yht are respectively given by

var(πht ) = Σhωh(π
h
t )

2 − (Σhωhπ
h
t )

2, var(yht ) = Σhωh(y
h
t )2 − (Σhωhy

h
t )2.

Thus both the composition of aggregate output yt and the composition of aggre-

gate inflation rate πt matter for welfare – it is not enough to only stabilize yt and πt.

Note that in the case that all households and firms have a common planning horizon

h, var(πht ) = var(yht ) = 0 at all times, regardless of the policy chosen, and in this case

the welfare loss function of the form (D.12) reduces to the simpler loss function (4.4)

in section 4.2.
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E Optimal Fiscal-Monetary Coordination with an

Exponential Distribution of Planning Horizons:

Numerical Methods

In this section, we propose a numerical method to compute the solutions for optimal

exogenous state-contingent fiscal transfer policy and interest rate policy, which min-

imize the accumulated present value of average-utility welfare loss. As in section 4.2

and 4.3, we assume that the shock of financial wedge lasts for T periods and its path

is perfectly predictable, i.e., ∆̂t = −ı̂ + ∆ for 0 ≤ t < T − 1, where ∆ > 0 is the

excess financial wedge that cannot be offset by a reduction in nominal interest rate,

and ∆̂ = 0 for all t ≥ T .

Because all uncertainty about fundamentals is resolved in period t = 0, we opti-

mize over policies specified by deterministic paths {ı̂τ , bτ+1} consistent with the ZLB

constraint (2.12) for all τ ≥ 0, announced at time t = 0 and similarly understood by

all decision makers that plan far enough ahead (at any date t ≥ 0) to model economic

conditions at date τ . In other words, the optimization problem for the policymakers

(with commitment) is to choose the set of possible sequences {ı̂τ , bτ+1}∞τ=0 so as to

minimize

E0Σ
∞
t=0β

tLt

subject to the ZLB constraint (2.12) for all τ ≥ 0. Here the average-utility welfare

loss function Lt is given by equation (D.12) and the paths {yht , πht } for all t ≥ 0

implied by the policy {ı̂τ , bτ+1} are given by (C.5). In the case of an exponential

distribution of planning horizons, the share of agents with planning horizon h is

given by ωh = (1− ρ)ρh for all h ≥ 0.

To numerically solve this optimization problem, we assume that after long-enough

time Tmax > T , all equilibrium variables will be staying at the steady state under

the optimal policy.62 Furthermore, to approximate the exponential distribution of

planning horizons, we assume that for those agents looking forward beyond hmax

periods, their planning horizon is hmax.
63 Thus the optimization problem of the

62In the numerical example we presented in section 4.3, given that the shock lasts for T = 10

periods in a quarter model, we choose Tmax = 200 quarters. The numerical results are robust if we

take a larger value of Tmax.
63With an average planning horizon being 8 quarters, we choose hmax = 60 quarters. In this case,
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policymakers reduces to choosing {ı̂τ , bτ+1}Tmax+hmax
τ=0 so as to minimize ΣTmax

t=0 βtLt,

subject to the ZLB constraint (2.12) for all τ ≥ 0. Note that in this case, the loss

function Lt is only determined by {yht , πht } with 0 ≤ h ≤ hmax.

Since this is a deterministic system with finite choice variables in the optimization

problem, we shall be able to numerically find the optimal policy, i.e., the sequences

of {ı̂τ , bτ+1}Tmax+hmax
τ=0 (with ı̂τ = bτ+1 = 0 for all τ > Tmax + hmax). We utilize the

optimization package “fmincon” provided by Matlab to solve such a minimization

problem with constraints. For robustness check, we have confirmed that with this

algorithm, the same results can be obtained as in Appendix C if we assume a common

planning horizon instead of an exponential distribution.

the share of agents that look beyond 60 quarters is less than 0.1% of the whole population. The

numerical results are robust if we take a larger value of hmax.
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