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Abstract

We develop a trade model where correlation in productivity between coun-

tries arises from technological similarity. The model spans the full class of

generalized extreme value (GEV) import demand systems and formalizes Ri-

cardo’s insight that countries with relatively dissimilar technology gain more

from trade. Our characterization of productivity links the GEV structure to

technological primitives, providing the basis for an estimation procedure for

correlation. We estimate significant differences in technological sharing across

sectors and countries. These estimates imply larger and more heterogenous

gains from trade relative to models that assume independent productivity

across sectors.
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1 Introduction

Two hundred years ago, Ricardo (1817) proposed the idea that cross-country dif-

ferences in production technologies can lead to gains from trade. Ricardo’s work

led to the following insight: Two countries gain more from trade when they have

dissimilar production possibilities. If so, different degrees of correlation in produc-

tivity lead to heterogeneity in the gains from trade.

While the Ricardian trade model in Eaton and Kortum (2002, henceforth, EK) does

not account for correlation in productivity, the rich quantitative literature inspired

by EK captures the Ricardian insight by incorporating sectors, multinational pro-

duction, or global value chains. Yet, the way this literature incorporates correlation

is restrictive, potentially removing empirically relevant sources of heterogeneity.

Concretely, although multi-sector models create correlation because each sector is

present in many countries, productivity is independent across sectors, implying

that sectors do not share technologies.

In this paper, we develop a Ricardian theory that allows for rich patterns of cor-

relation in productivity, generates import demand systems spanning the entire

generalized extreme value (GEV) class (McFadden, 1978, 1981), and preserves the

tractability properties central to the EK model. The novelty of our approach stems

from linking the GEV structure to a common foundation based on technological

primitives. This foundation sheds light on the properties and limitations of exist-

ing models, provides tools to build new models with rich patterns of correlation,

and enables us to develop an estimation procedure based on disaggregate data to

uncover the technological factors that underly correlation in productivity. In the

context of a multi-sector model of trade, our estimates reveal significant technolog-

ical sharing across sectors and countries, which changes the answers to standard

counterfactuals.

The Ricardian trade model in EK assumes that productivity is a random vari-

able drawn from an independent max-stable Fréchet distribution. While the max-

stability property leads to tractability, the independence assumption entails that

bilateral trade flows follow a constant elasticity of substitution (CES) structure.

By preserving the max-stability property central to the EK model, but allowing

for a general dependence structure in productivity across countries, our model

implies expenditure shares that belong to the GEV class, a class that admits rich
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substitution patterns. We show that, as a result, any trade model that generates a

GEV import demand system is equivalent to a Ricardian model with a max-stable

multivariate Fréchet distribution. In this way, our approach brings many existing

trade models into a unifying framework, including: multi-sector models (Costinot

et al., 2012; Costinot and Rodrìguez-Clare, 2014; Levchenko and Zhang, 2014; Di-

Giovanni et al., 2014; Caliendo and Parro, 2015; Ossa, 2015; Levchenko and Zhang,

2016; French, 2016; Lashkaripour and Lugovskyy, 2017); multinational production

models (Ramondo and Rodríguez-Clare, 2013; Alviarez, 2018); global value chain

models (Alvarez and Lucas, 2007; Antràs and de Gortari, 2017); and models of

trade with domestic geography (Fajgelbaum and Redding, 2014; Ramondo et al.,

2016; Redding, 2016).

Despite its generality, our theory leads to intuitive and tractable counterfactual

analysis. We can calculate the gains from trade for the GEV class as a simple ad-

justment to the CES case: The results of Arkolakis et al. (2012) (henceforth, ACR)

generalize, after a simple correction, to the GEV class. In the Ricardian context, this

correction adjusts a country’s self-trade share for correlation in technology with the

rest of the world, formalizing Ricardo’s insight that more dissimilar countries have

higher gains from trade.

We go a step further and characterize the GEV class by providing a structure for

technology that is necessary and sufficient for productivity to be distributed max-

stable multivariate Fréchet. Our approach leverages the spectral representation

theorem for max-stable processes (De Haan, 1984; Kabluchko, 2009), which gener-

ates max-stable distributions from Poisson processes. We refer to this structure as

the global innovation representation because productivity is interpreted as the result

of countries adopting globally available innovations according to their individual

ability to apply them. When countries adopt similar technologies—those with sim-

ilar characteristics, "latent factors"—they have correlated productivity. This repre-

sentation enables us to link existing GEV Ricardian models (e.g., many sectors) to

technological primitives, as well as build new models with rich patterns of corre-

lation.

This characterization sets the foundation to estimate correlation in productivity.

We show that the global innovation representation implies a linear latent-factor

structure such that expenditure is approximately cross-nested CES (CNCES). The

advantage is that we do not need to impose strong distributional and parametric
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assumptions, so that we can estimate import demand systems with rich substitu-

tion patterns. We show how to estimate this latent-factor structure using an esti-

mator based on non-negative matrix factorization (Lee and Seung, 1999, 2001; Fu

et al., 2019) and pseudo Poisson maximum likelihood (Silva and Tenreyro, 2006;

Fally, 2015). We apply our procedure to the estimation of a multi-sector model

of trade where we fully relax the common assumption of independent sectoral

productivity.1 Our global innovation representation makes clear that this indepen-

dence assumption corresponds to a structure where sectors do not share technolo-

gies and independence of irrelevant alternatives (IIA) holds at the sector level. We

find significant departures from IIA for aggregate sectoral categories, suggesting

that sectors do share technology.

We estimate that seven latent technological factors explain over 90 percent of the

variation in 4-digit SITC bilateral trade flows. These factors are broadly shared

across sectors, yet are also used intensively for the production of certain goods.

Factors related primarily to the production of simple manufactured goods are

highly correlated across countries, while the factors associated with the production

of complex manufactured products, such as electronics, and with natural-resource

extraction are almost uncorrelated across countries.

The aggregate substitution elasticities generated by these factors differ significantly

from those implied by models with independent sectoral productivity, and lead to

larger and more heterogenous estimates of the gains from trade. For example, the

welfare cost to the United States of a 50-percent tariff on China doubles. This result

arises because we estimate that China has a comparative advantage in the techno-

logical factor used intensely in the production of complex manufactured goods and

this factor is weakly correlated across countries. As a consequence, US consumers

cannot easily find an alternative supplier as tariffs increase.

Our paper relates to several strands of the literature. First, we naturally relate

to the large trade literature using the Ricardian-EK framework (Eaton and Kor-

tum, 2012). More generally, our approach can be applied to any environment that

requires Fréchet tools, such as selection models used in the macro development

literature (Lagakos and Waugh, 2013; Hsieh et al., 2013; Bryan and Morten, 2018),

1While we relax the independence assumption of multi-sector EK models, we do not incorpo-
rate an input-output structure into the model, as in e.g. Caliendo and Parro (2015). We show in
Online Appendix O.1 that a trade model with an input-output loop belongs to the GEV class. For
a generalization of the input-output network to non-linear environments and its consequences for
the gains from trade see Baqaee and Farhi (2019).
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as well as trade models used in the urban literature (Ahlfeldt et al., 2015; Monte

et al., 2015; Caliendo et al., 2017; Redding and Rossi-Hansberg, 2017).

Our paper is closely related to Adao et al. (2017), who show how to calculate macro

counterfactual exercises in neoclassical trade models with invertible import de-

mand systems. They provide sufficient conditions for non-parametric identifica-

tion using aggregate trade data. Their approach departs from CES demand, but

does not necessarily lead to closed-form results. By focusing on the subclass of

GEV import demand systems, we operationalize a tractable model of Ricardian

comparative advantage where IIA does not need to hold, and relate various dis-

aggregate structures to the macro demand systems studied by Adao et al. (2017).

All in all, our distinct contribution is to provide a foundation for the entire GEV

class of import demand systems. This foundation allows us to develop an esti-

mation procedure based on latent factors and disaggregate data, and presents an

alternative to the Berry et al. (1995) procedure used in Adao et al. (2017).2

Relatedly, papers such as Caron et al. (2014), Lashkari and Mestieri (2016), Brooks

and Pujolas (2017), Feenstra et al. (2017), and Bas et al. (2017), among others, aban-

don homothetic demand systems, which we do not, and aim, as we do, to incor-

porate detailed micro data to estimate elasticities. In contrast with this literature,

in our supply-side framework, substitution patterns come from the degree of tech-

nological similarity between countries. As a result, we can incorporate heteroge-

neous elasticities without relying on demand-side factors, which links seemingly

different micro structures to common primitives of technology, and ties the micro

estimates in this literature to macro counterfactual exercises.

Finally, our global representation result relates to the literature on dynamic in-

novation and knowledge diffusion processes that generate Fréchet productivity

(Kortum, 1997; Eaton and Kortum, 1999, 2001; Buera and Oberfield, 2016). This

literature uses extreme-value theory to generate independent max-stable random

variables. We introduce a new tool—the spectral representation theorem for max-

stable processes—and use it for estimation. In contrast with methods from extreme-

value theory, our approach accommodates statistical dependence, and delivers

closed-form and exact, not limiting, results.

2Our model also generates mixed CES as used in Adao et al. (2017) (see Online Appendix O.1.6).

4



2 The Ricardian Model of Trade from Primitives

Consider a global economy consisting of N countries that produce and trade in a

continuum of product varieties v ∈ [0, 1]. Consumers have identical CES prefer-

ences with elasticity of substitution η > 0, Cd =
(∫ 1

0
Cd(v)

η−1
η dv

) η
η−1

. Expenditure

on variety v is Xd(v) ≡ Pd(v)Cd(v) = (Pd(v)/Pd)
1−ηXd where Pd(v) is the price of

the variety, Pd =
(∫ 1

0
Pd(v)1−ηdv

) 1
1−η

is the price level in country d, and Xd is total

expenditure in country d.

Each variety, v, is produced with an only-labor constant returns to scale technology.

The marginal product of labor, Zod(v), referred to as productivity, depends on both

the origin country o where the good gets produced and the destination market d

where it gets delivered. This variable captures both efficiency of production in the

origin and inefficiencies associated with delivery to the destination—trade costs.

Productivity is the result of adopting the best innovation available in country o to

serve market d, for variety v. We assume that for each v ∈ [0, 1], there exists an

infinite, but countable, set of technological innovations, i = 1, 2, . . . , that represent

physical techniques (i.e., blueprints) for producing a good. Each innovation is

characterized by two components.

Quality, Qi(v), measures the fundamental efficiency of the technique, and is iden-

tical across all origins and destinations.

Characteristics, χi(v), represent anything specific to the innovation i—for example,

which sectors and countries can use the innovation. Combined with bilateral fac-

tors (e.g. proximity), characteristics generate heterogeneity in productivity across

origins and destinations. This spatial heterogeneity is captured by the function

Aod(χi(v)), which we refer to as spatial applicability. For instance, if a characteristic

is whether an innovation is known in each country, applicability is zero in coun-

tries with no knowledge of the innovation; if the country knows the innovation,

applicability is positive and can depend on the proximity between production lo-

cation o and destination d. In general, these characteristics are not observable and

we refer to them as latent factors. We formalize our assumption on the determinants

of productivity next.

Assumption 1 (Innovation Decomposition). There exists a measurable space of char-

acteristics (X ,X) and for each v ∈ [0, 1] an infinite, but countable, set of global innova-
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tions, i = 1, 2, . . . , with quality, Qi(v) > 0, and characteristics, χi(v) ∈ X , such that

Zod(v) = max
i=1,2,...

Qi(v)Aod(χi(v)), (1)

for some measurable function χ 7→ Aod(χ) for each o, d = 1, . . . , N .

This assumption specifies that quality and spatial applicability combine multi-

plicatively to determine patterns of technology adoption. Countries adopt those

innovations with the highest applicability-adjusted quality.

Given the productivities arising from technology adoption, the marginal cost to

deliver a variety v to destination d from origin o is Wo/Zod(v) where Wo is the

nominal wage in country o.3 Under perfect competition, prices are equal to unit

costs and good v is provided to country d by the lowest-cost supplier,

Pd(v) = min
o=1,...,N

Wo/Zod(v). (2)

Next, as in EK, we model productivity as a random draw. We focus on multivariate

random variables that satisfy a property known as max stability; that is, we focus

on multivariate max-stable Fréchet distributions. The EK model, which is built on

independent Fréchet random variables, gets its tractability from this property. We

first adapt the tools developed originally for random utility models to Ricardian

models of trade. In this way, we are able to relax the independence assumption in

EK, and get a flexible, yet tractable, model of trade with an import demand system

in the generalized extreme value (GEV) class.

Our contribution with respect to McFadden (1978, 1981) and Eaton and Kortum

(2002) is not only to fully characterize the GEV class in the Ricardian context, but

more importantly to provide technological primitives—quite natural in the Ricar-

dian context—for the origins of the entire GEV class. Our result in Theorem 1

provides economic interpretation for—and facilitates the estimation of—any GEV

model.
3Notice that our framework does not require the standard assumption on iceberg trade costs

(Samuelson, 1954). That assumption entails that Zod(v) = Zo(v)τod and that, for each origin o, the
productivity to serve any destinations dwith variety v is the same. Relaxing this assumption allows
us to have a productivity distribution over both origins o and destinations d.
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2.1 Max-Stable Multivariate Fréchet Productivity

We want the vector of productivities across countries to be drawn from a max-

stable multivariate Fréchet distribution. Max stability, the central property in EK,

ensures closed-form solutions for equilibrium prices and expenditure shares.

The vector of productivities (Z1d(v), . . . , ZNd(v)) is max-stable multivariate Fréchet

if for any αo ≥ 0 with o = 1, . . . , N the random variable maxo=1,...,N αnZod(v) has

a Fréchet distribution with shape parameter θ. In this case, the marginal distribu-

tions, P [Zod(v) ≤ zo] = exp
[
−Todz−θo

]
, are Fréchet with a (common) shape param-

eter θ and scale parameter Tod. This definition directly implies the max-stability

property: The maximum of the components of the vector has the same distribu-

tion (to scale) as the marginal distributions. Because a common shape parameter

is necessary, we refer to a multivariate max-stable Fréchet distribution as a multi-

variate θ-Fréchet distribution.4

These multivariate distributions are parameterized by the scale parameters of the

marginal distributions, Tod, and by a correlation function, Gd, also called tail depen-

dence function in probability and statistics (see Appendix Lemma A.2),5

P [Z1d(v) ≤ z1, · · ·ZNd(v) ≤ zN ] = exp
[
−Gd(T1dz

−θ
1 , . . . , TNdz

−θ
N )
]
.

As in EK, the scale parameters capture the absolute advantage of countries, while

the shape parameter regulates the heterogeneity of productivity draws, which are

independent and identically distributed across the continuum of varieties—as in

all models based on EK.

Appendix Lemma A.3 presents properties of the correlation function. The key

property ensuring max-stability is homogeneity, which implies that the scale of the

maximum isGd(T1d, . . . , TNd). Additionally, a correlation function also presents the

regularity properties of the social surplus function in GEV discrete choice models

(McFadden, 1981; Train, 2009): unboundedness (Gd(x1, . . . , xN) → ∞ as xo → ∞
for any o = 1, . . . , N ); and (if sufficiently differentiable) a sign pattern for the cross-

partial derivatives. Finally, a correlation function must satisfy a normalization

4Multivariate Fréchet distributions may have marginal distributions with different shape pa-
rameters, in which case the maximum, even under independence, is not distributed Fréchet.

5A function G : RN+ → R+ is a correlation function if C(u1, . . . , uN ) ≡ exp[−G(− lnu1, . . . , uN )]

is a max-stable copula—that is, C(u1, . . . , uN ) = C(u
1/m
1 , . . . , u

1/m
N )m for any m > 0 and all

(u1, . . . , uN ) ∈ [0, 1]N . For details see Gudendorf and Segers (2010).

7



restriction, G(0, . . . , 0, 1, 0, . . . , 0) = 1. This property separates the scales, which

parameterize the marginal distributions, from the correlation function, which de-

termines the joint distribution of productivity.

In EK, productivity draws are independent across origin countries,

P[Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] =
∏

o=1,...,N

P[Zod(v) ≤ zo] = exp

(
−

N∑
o=1

Todz
−θ
o

)
.

(3)

This assumption implies an additive correlation function,

Gd(x1, . . . , xN) =
N∑
o=1

xo. (4)

In this case, the scale of the maximum is simply the sum of marginal distribution

scales,
∑N

o=1 Tod. Under independence, the shape parameter also captures compar-

ative advantage across countries. Our approach drops the independence assump-

tion and introduces the correlation function, which controls comparative advan-

tage by determining relative productivity levels across origin countries within the

same destination market.

The correlation function allows for a flexible dependence structure across coun-

tries. But, as Train (2009, page 107) warns: "There is little economic intuition to

motivate [the] properties [of G] ... However, it is easy to verify whether a func-

tion exhibits these properties. [...] The disadvantage is that the researcher has little

guidance on how to specify a G that provides a model that meets the needs of his

research. The advantage is that the purely mathematical approach allows the re-

searcher to generate models that he might not have developed while relying only

on his economic intuition." In the next section, we attempt to fill that gap. We es-

tablish a structure for technology that is necessary and sufficient for productivity to

be multivariate θ-Fréchet. This structure not only provides an economic justifica-

tion for any choice of the correlation function, but it also facilitates its estimation.

2.2 The Origins of Max-Stable Multivariate Fréchet Distributions

Next, we establish the conditions under which productivity—the result of adopt-

ing the best available innovation, as specified in (1)—has a multivariate θ-Fréchet

distribution. We first specify the assumption on the stochastic properties of quality
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and applicability.

Assumption 2 (Poisson Innovations). There exists θ > 0 and a σ-finite measure µ

such that
∫
X Aod(χ)θdµ(χ) < ∞ and the collection {Qi(v), χi(v)}i=1,2,... consists of the

points of a Poisson process with intensity measure θq−θ−1dqdµ(χ), i.i.d. over v ∈ [0, 1].

Assumption 2 states that innovations follow a Poisson process over qualities and

characteristics. The key is that the measure µ, which determines the joint distri-

bution of spatial applicability across origin countries, is relatively unrestricted and

allows for rich patterns of correlation—through the inclusion of characteristics.6

This assumption has two main implications. First, the measure µ specifies the

expected number of innovations with characteristics in any set B ∈ X and qual-

ity above 1. For example, if χi(v) is a list of sectors that can use the innovation,

µ({s1, s2}) is the expected number of innovations that can be used by both sectors

s1 and s2. Second, conditional on being above any cutoff q, quality is independent

of characteristics and distributed Pareto with lower bound q and shape θ.7 As a

consequence, spatial applicabilities are independent of global productivities.

The following theorem characterizes when productivity is multivariate θ-Fréchet,

and is a consequence of the spectral representation theorem for max-stable pro-

cesses (De Haan, 1984; Kabluchko, 2009).8

6Assumption 2 can be interpreted as arising from a random discovery process as in Eaton and
Kortum (1999, 2010). In our static framework, we interpret i as indexing all innovations up until the
present. The difference between our setup and the Poisson process in Eaton and Kortum (1999) is
the inclusion of innovation characteristics. Rather than assuming that innovations are country spe-
cific, innovations are global and countries adopt the most efficient innovation for them depending
on how characteristics determine the spatial applicability.

7The expected number of innovations with Qi(v) > q > 0 and χi(v) ∈ B ∈ X is

E
∞∑
i=1

1{Qi(v) > q, χi(v) ∈ B} =

∫
B

∫ ∞
q

θq−θ−1dqdµ(χ) = q−θµ(B).

Conditional on Qi(v) > q and χi(v) ∈ B, the likelihood that Qi(v) = q is

∂

∂q
P[Qi(v) ≤ q | Qi(v) > q, χi(v) ∈ B] =

θq−θ−1µ(B)∫∞
q
θq−θ−1dqµ(B)

=
θqθ

qθ+1
.

8Resnick and Roy (1991) characterize upper-semi-continuous max-stable random utility pro-
cesses on complete metric spaces. Dagsvik (1994) uses the spectral representation theorem to es-
tablish behavioral assumptions that imply max-stable random utility processes on countable sets
and subsets of Euclidean space. Our global innovation representation establishes necessary and
sufficient conditions for max-stable productivity on a finite set (of countries) and puts restrictions
on cardinal—and potentially observable—outcomes, rather than on ordinal outcomes such as la-
tent utility. Also, due to Kabluchko (2009), Theorem 1 extends directly to the case with an arbitrary
index set.
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Theorem 1 (Global Innovation Representation). We say that productivity has a

global innovation representation if it satisfies Assumptions 1 and 2. In that case, for each

destination d, productivity is distributed multivariate θ-Fréchet,

P [Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = exp
[
−Gd

(
T1dz

−θ
1 , . . . , TNdz

−θ
N

)]
, (5)

with scale

Tod ≡
∫
X
Aod(χ)θdµ(χ), for o = 1, . . . , N, (6)

and correlation function

Gd(x1, . . . , xN) ≡
∫
X

max
o=1,...,N

Aod(χ)θ

Tod
xodµ(χ). (7)

Conversely, if productivity is distributed multivariate θ-Fréchet, it admits a global inno-

vation representation.

Proof. Sufficiency follows directly from Campbell’s theorem (Kingman, 1992). Ne-

cessity follows from Theorem 1 in Kabluchko (2009), which states that any θ-Fréchet

process has a spectral representation. See Appendix B.1.

Theorem 1 establishes that θ-Fréchet productivity can always be interpreted as

arising from the spatial applicability of global technologies. In turn, a global inno-

vation representation leads to θ-Fréchet productivity. Correlation in productivity

reflects the extent to which countries adopt similar innovations—with characteris-

tics that lead to similar applicability across countries—while scale parameters re-

flect the average applicability of the innovations adopted by each country. The key

aspect of Theorem 1 is that the correlation function has an integral representation

over the characteristics of innovations. As a direct consequence, we can approxi-

mate the correlation function using the cross-nested CES (CNCES) functional form

in the following corollary.

Corollary 1. Suppose Assumptions 1 and 2 hold and, additionally, there exists a partition

of characteristics, {Xk}Kk=1, such that, for each k, applicability restricted to Xk is indepen-

dent σk-Fréchet across origins. That is, the measure µ satisfies

∫
Xk

1{Aod(χ) ≤ ao ∀o}
dµ(χ)

µ(Xk)
= exp

[
−

N∑
o=1

Aσkkoda
−σk
o

]
, (8)
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for some {Akod}No=1, for each k = 1, . . . , K.

Then, the distribution of productivity is multivariate θ-Fréchet with scale

Tod =
K∑
k=1

Γ(ρk)A
θ
kodµ(Xk)

and a cross-nested CES (CNCES) correlation function,

Gd(x1, . . . , xN) =
K∑
k=1

[ ∑
o=1,...,N

(ωkodxo)
1

1−ρk

]1−ρk

, (9)

where ωkod ≡ Γ(ρk)A
θ
kodµ(Xk)/

∑K
k′=1 Γ(ρk′)A

θ
k′odµ(Xk′) and ρk ≡ 1− θ/σk.

Proof. See Appendix B.2.

This corollary restricts the measure µ to derive a useful and interpretable form

for the correlation function. Each nest of this CNCES correlation function corre-

sponds to a group of characteristics with similar applicability across origins and

destinations, which we refer to as a factor. The parameter σk controls dispersion

in applicability within factor k. The Poisson i.i.d. structure in Assumption 2 im-

plies independence across factors. Within factor k, however, dispersion in spatial

applicability determines correlation in productivity across origins, measured by

the correlation coefficient, ρk. As σk → θ, dispersion in applicability is high, and

ρk → 0. Intuitively, when applicability becomes very fat tailed, it dominates the

contribution of the common quality component of productivity. In this case, pro-

ductivity is independent and the k’th nest of the correlation function is additive

due to the assumption that applicability is independent across countries. In con-

trast, as σk → ∞, dispersion in applicability becomes negligible and ρk → 1. In

this case, applicability becomes deterministic and heterogeneity in productivity is

entirely determined by quality. Since quality is common across countries, produc-

tivity becomes perfectly correlated within factor k.

The weights, ωkod, sum to one across factors and indicate the relative importance

of each group of characteristics for a given trading pair. If the share of factor k

is high for a given country pair, it means that those innovations are particularly

productive for production in country o and delivery to d.

The corollary is important for two reasons. First, it establishes that, under some
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assumptions for spatial applicability, the correlation function has a CNCES form.

This case is the building block for multivariate θ-Fréchet distributions commonly

used in the literature (e.g. multi-sector EK models). In the examples in Section

2.3, we show how specific EK-type trade models arise as special cases from these

primitive assumptions on technology.

Second, as K → ∞, the CNCES correlation function can uniformly approximate

any correlation function—the function in (7). The next proposition provides a

bridge between the result in Theorem 1 and Corollary 1, setting the base for our

CNCES estimation procedure in Section 4.

Proposition 1 (Cross-Nested CES Approximation). Any correlation function can be

uniformly approximated on compact sets by a CNCES correlation function as in (9).

Proof. The proof constructs partitions of the space of characteristics (i.e. the groups

indexed by k in Corollary 1), and for each partition an approximating CNCES cor-

relation function, as in (9). As we let the partitions become increasingly fine, the

approximating correlation functions uniformly converge on compact sets to the

true correlation function. See Appendix B.3.

The result in Proposition 1 implies that not only can we uniformly approximate

any correlation function with some CNCES correlation function, but also that we

can always interpret the nests of that function as corresponding to underlying dis-

tinct groups of innovations, representing latent technological factors. It means that

the interpretation of Theorem 1 directly transfers to CNCES correlation functions,

which are useful for both closed-form theoretical results as well as empirical anal-

ysis.9

Specifically, this result allows us to estimate the latent factors that underly the dis-

tribution of productivity. Section 4 presents our proposed estimator in the context

of a multi-sector Ricardian model of trade. Guided by Theorem 1, we uncover

from observable sectoral expenditure shares the latent dimensions that indicate

that some innovations are more useful in certain sectors, but different sectors can

potentially use the same innovations. As we explain next—and in detail in Sec-

tion 4—the standard multi-sector EK model imposes independent sectoral pro-

ductivity, which implicitly assumes that technologies are sector specific; that is,
9This result is related to the result in Fosgerau et al. (2013) where the choice probabilities of

GEV models can be uniformly approximated on compact sets by the choice probabilities of CNCES
models. Here, we prove that the underlying distribution can be uniformly approximated.
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each sector uses a distinct group of innovations. In this way, those models pair the

unobserved factors with observed sectors.

2.3 Examples

We now provide examples of multivariate θ-Fréchet distributions commonly used

in the literature, and link them to Theorem 1. All the cases we present are special

cases of the CNCES correlation function in Corollary 1. As such, they are derived

imposing some additional restrictions on the distribution of spatial applicability.

First, consider the case where each innovation can only be applied in a single coun-

try. This restriction corresponds to the model in Eaton and Kortum (2001) where

a country’s stock of knowledge only depends on their own history of research. It

means that each factor is paired with a country (K = N ), and imposes that Akod
is zero for k 6= o. The correlation function in (9) collapses to (4), corresponding

to independent productivity across countries. This example shows that sharing

innovations across countries is necessary for correlation in productivity.

Second, consider an extreme case where all innovations are of the same type, K =

1. This restriction means that the distribution of applicability is identical across

countries (up to scale) and the relative productivity of any two innovations is the

same, on average, across origins. In this case, (9) collapses to

Gd(x1, . . . , xN) =

[ ∑
o=1,...,N

x
1

1−ρ
o

]1−ρ

. (10)

Corollary 1 directly links the parameter ρ to dispersion in applicability, controlled

by σ. High dispersion (low σ), dampens the importance of the global component

(quality) and reduces correlation in productivity across countries. Note that for

ρ = 0, we get the productivity distribution in (3), as in EK. But even for ρ > 0, cor-

relation has no impact on trade patterns.10 This example shows that for correlation

to be empirically relevant, countries must be heterogeneous in their ability to use

innovations—so we need K > 1.

Now consider the case where each factor k = 1, . . . , K corresponds to a sector

s = 1, . . . , S. Corollary 1 implies a CNCES correlation function for aggregate pro-

10Eaton and Kortum (2002) point out that ρ > 0 implies CES expenditure shares and is equivalent
to the case with ρ = 0.
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ductivity,

Gd(x1, . . . , xN) =
S∑
s=1

(
N∑
o=1

(ωsodxo)
1

1−ρs

)1−ρs

. (11)

This correlation function is commonly used in multi-sector EK-type models (e.g.

Costinot and Rodrìguez-Clare, 2014; Caliendo and Parro, 2015). The implicit as-

sumption is that innovations can only be applied in a single sector. Given that the

primitive assumption on characteristics is independence (i.e. the Poisson structure

in Assumption 2), the lack of common innovations implies independence across

sectors. Within each sector, however, productivity draws can be correlated (ρs ≥ 0),

and heterogeneous (ρs 6= ρs′), with higher sectoral correlation due to more similar

applications of innovations across countries (high σs).

Our estimation procedure moves away from the assumption of independence across

sectors by allowing for technological factors to be shared across sectors, and the

number of latent factors, K, to differ from the number of sectors, S. When sectors

share factors, within-factor correlation induces across-sector correlation, breaking

the independence assumption implicit in pairing factors with sectors.

Finally, it is worth mentioning that the correlation function in (11) is commonly

used in applications of the EK model other than the sectoral model. For instance,

in Ramondo and Rodríguez-Clare (2013), this specification is used in the context of

multinational firms whose home country may differ from their production location

(see Online Appendix O.1.2). In that context, factors are paired with home coun-

tries and productivity is independent across home countries. Another application

is the mixed CES specification used in Adao et al. (2017). A mixed-CES correlation

function can be generated by letting K → ∞ and drawing each {ωkod}No=1 and ρk

from some distribution (see Online Appendix O.1.6).

3 Trade Flows, Prices, and Welfare

Our theory generates macro substitution patterns belonging to the generalized ex-

treme value (GEV) class. This is a large sub-class in the class of invertible demand

systems with the gross substitute property, allows for rich patterns of substitution,

and leads to closed-form expenditure shares.

In what follows: We derive the import demand system for the Ricardian model

presented in Section 2 and establish that it has a one-to-one mapping with ex-
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penditure shares in the GEV class; we present properties of the GEV class; and

we characterize macro counterfactuals under GEV—a direct generalization of the

ACR formula.

3.1 GEV Import Demand

We first present the import demand system implied by θ-Fréchet productivity.

Proposition 2 (Price Levels and Trade Shares). If productivity is multivariate θ-

Fréchet with θ > η − 1 and a continuously differentiable correlation function, then:

1. The price index in country d is

Pd = Gd
(
P−θ1d , . . . , P

−θ
Nd

)− 1
θ , (12)

for Pod ≡ γT
−1/θ
od Wo where γ ≡ Γ

(
θ+1−η
θ

) 1
1−η and Γ(·) is the gamma function; and

2. Country d’s expenditure share on country o equals the share of varieties imported,

πod ≡
Xod

Xd

=
P−θod G

d
o

(
P−θ1d , . . . , P

−θ
Nd

)
Gd
(
P−θ1d , . . . , P

−θ
Nd

) , (13)

where Gd
o (x1, . . . , xN) ≡ ∂Gd (x1, . . . , xN) /∂xo.

Proof. See Appendix B.4.

First, the price level in each destination market is determined by aggregating im-

port prices using the correlation function. In analogy to the discrete choice litera-

ture, welfare calculations depend crucially on the specification of this function.

Second, the share of expenditure of country d on goods from o equals the proba-

bility that o is the lowest cost producer, as in EK, thanks to max-stability.11

Finally, the share of varieties imported from o into d has the same form as choice

probabilities in GEV discrete choice models, with P−θod = TodW
−θ
o replacing choice-

11Due to max-stability (see Appendix Lemma A.5), the conditional and unconditional distribu-
tions of the maximum are identical: P [maxo′=1,...,N Zo′d(v) ≤ zo′ | Zod(v) = maxo′=1,...,N Zo′d(v)] =
P [maxo′=1,...,N Zo′d(v) ≤ zo] . Then πod = E

[
(Pd(v)/Pd)

1−η1{Wo/Zod(v) = Pd(v)}
]

=

E
[
(Pd(v)/Pd)

1−η]P [Wo/Zod(v) = Pd(v)]. Since the first term integrates to one, πod =
P [Wo/Zod = Pd(v)]. This result does not rely on CES preferences (see Online Appendix O.4).
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specific utility.12 Accordingly, we refer to the import demand system in (13) as a

GEV import demand system. These import demand systems are uniquely character-

ized by the shape parameter, θ, and the correlation function, Gd.

An important class of import demand systems within the GEV class is CES. This

class is generated by an additive correlation function, so that

πod =
P−θod∑
o′ P

−θ
o′d

. (14)

This specification includes most of the workhorse models of trade, such as Arm-

ington, Melitz, and EK (Arkolakis et al., 2012). The GEV class, however, is much

larger than the CES class, including nested CES, cross-nested CES, and mixed CES,

among many others. All these cases can generate patterns of substitution that are

richer than CES, the difference coming from the correlation function.

To clearly see this result, compute the elasticity of (13) with respect to the real

import price for goods from o′ sold in d,

∂ lnπod
∂ lnPo′d/Pd

= −θ × 1{o = o′} − θP
−θ
o′dG

d
oo′(P

−θ
1d , . . . , P

−θ
Nd)

Gd
o(P

−θ
1d , . . . , P

−θ
Nd)

, (15)

where Gd
oo′(x1, . . . , xN) ≡ ∂Gd

o(x1, . . . , xN)/∂xo′ .13 When the correlation function

is additive, the second term is zero and the own-price elasticity is −θ, while the

cross-price elasticity is zero. That is, CES entails independence of irrelevant al-

ternatives (IIA). When the correlation function is not additive, the second term

in (15) is not zero, generating departures from IIA. The cross-price elasticities are

non-negative—GEV import demand entails gross substitutes—because the second

cross-partial derivative of the correlation function is non-positive due to the sign-

switching property. The own-price elasticity is non-positive because the sum of

(15) across o′ equals −θ.14 Since linearity is associated with independence, more

12Even though we have not imposed an iceberg structure for trade costs, the scale parameters
Tod can be mapped into standard variables in the trade literature: an origin-country productivity
index, Zo ≡ T

1/θ
oo , which measures a country’s ability to produce goods in their domestic market;

and an iceberg trade cost index, τod ≡ (Too/Tod)
1/θ, which measures efficiency losses associated with

delivering goods to market d. In this way, Tod = (τod/Zo)
−θ.

13Since Gd(x1, . . . , xN ) is homogenous of degree one, Gdo(x1, . . . , xN ) is homogenous of de-
gree zero so that we can normalize import prices by the price level before differentiating, and
Gdoo′(x1, . . . , xN ) is homogenous of degree −1 which allows us to eliminate the price level from the
resulting expression.

14Since Gdo(x1, . . . , xN ) is homogenous of degree zero,
∑N
o′=1 xo′G

d
oo′(x1, . . . , xN ) = 0 so

Gdoo(x1, . . . , xN ) = −
∑
o′ 6=o xo′G

d
oo′(x1, . . . , xN ) ≥ 0.
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curvature is associated with more correlation and stronger departures from IIA.

How is the import demand system in Proposition 2 linked to the technological

primitives in Theorem 1? We focus on the cross-nested CES (CNCES) case of

Corollary 1, which constitutes the basis of our estimation procedure. In that case,

expenditure shares can be decomposed into the sum of expenditure shares on the

underlying technological factors,

πod =
K∑
k=1

X∗kod
Xd

, with
X∗kod
Xd

≡ (ωkodP
−θ
od )

1
1−ρk∑N

o′=1(ωko′dP
−θ
o′d )

1
1−ρk

[∑N
o′=1

(
ωko′dP

−θ
o′d

) 1
1−ρk

]1−ρk

∑K
k′=1

[∑N
o′=1

(
ωk′o′dP

−θ
o′d

) 1
1−ρk′

]1−ρk′
.

(16)

The first term in X∗kod/Xd is the share of expenditure on goods made using latent

factor k that destination d sources from origin o, while the last term equals the

overall share of destination d’s expenditure in goods produced using k.

In the special case where each group of characteristics k is paired with a sector, as

in (11), we simply replace k by s in (16). Factor-level expenditure equals sectoral

expenditure, X∗kod = Xsod, and within-sector correlation coefficients (and elastici-

ties) are constant across origins and destinations, ρk = ρs.

In the CNCES case, the aggregate elasticity is a weighted average of factor-level

elasticities (see Appendix C.2 for derivations),

εoo′d ≡
∂ ln πod

∂ lnPo′d/Pd
=

K∑
k=1

X∗kod
Xod

ε∗koo′d, with ε∗koo′d ≡
θ

1− ρk

[
ρk

X∗ko′d∑N
n=1X

∗
knd

− 1{o = o′}

]
.

(17)

Factor-level elasticities, ε∗koo′d, depend on the degree of correlation across origins

within each factor, ρk, and on the factor expenditure share of o′. The factor-level

elasticity is non-positive for o = o′ and non-negative for o 6= o′. Higher corre-

lation (higher ρk) increases within-factor substitution because more similarity in

applicability among innovations of type k increases head-to-head competition. If a

country tends to export goods using innovations that have very similar applicabil-

ity across competitors, its aggregate trade flows will be more sensitive to changes

in import costs. In contrast, aggregate elasticities will be low for those countries

whose exports are specialized in goods that use technologically distinct factors—

made with innovations that have very different applicability across countries. Ad-

ditionally, the aggregate elasticity depends on the composition of expenditure in

market d across factors embedded in goods from both o and o′. When o′ has a
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larger share of the market for goods made with high correlation factors, expendi-

ture shifts more rapidly from o′ to o when Po′d increases.

Ultimately, elasticities are the result of each country’s access to global innovations.

When a country has access to innovations that have dissimilar applicability across

countries, their productivity will be relatively uncorrelated with other countries,

and their goods will not be very substitutable. In contrast, when a country only has

access to innovations whose applications are very similar across countries, their

productivity will be highly correlated with the rest of the world, and their goods

will be easy to substitute.

3.2 GEV Equivalence

Proposition 2 establishes that the Ricardian model with θ-Fréchet productivity

maps into the class of GEV import demand systems. However, any trade model

that generates trade shares in the GEV class can be cast in terms of a Ricardian

model with multivariate θ-Fréchet productivity, and, consequently, has a global

innovation representation as established by Theorem 1.

Corollary 2 (GEV Equivalence). For any trade model that generates a GEV import

demand system, there exists a Ricardian model with a global innovation representation

that generates the same import demand system.

By pairing any model with expenditure in the GEV class to a multivariate θ-Fréchet

Ricardian model, Corollary 2 ties together many existing non-CES and disaggre-

gate trade models. For example, Ricardian trade models based on θ-Fréchet pro-

ductivity at the disaggregate level, such as models with many sectors, many re-

gions, multinational firms, or global value chains, have aggregate import demand

systems belonging to the GEV class.15 That is, all these models are equivalent to a

model where aggregate productivity is multivariate θ-Fréchet —- a result rooted in

the max-stability property due to the fact that aggregate productivity arises from

maximizing over disaggregate θ-Fréchet productivity (e.g. sectoral productivity).

More generally, the disaggregate outcomes of these models can be linked to the

technological primitives in Theorem 1 and can be estimated using the procedure

described in Section 4.
15Online Appendix O.1 shows the equivalence for the standard multi-sector EK model of trade

(without an input-output loop) and other disaggregate EK trade models.
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Corollary 2 provides an "umbrella" for a large class of models in the trade literature.

Despite their distinct microfoundations, all models in the GEV class can be tied to

a common Ricardian interpretation, and can be estimated using the procedure in

Section 4.16 Moreover, macro counterfactuals are also identical, as we explain next.

3.3 Macro Counterfactuals with GEV

We next show the form taken by macro counterfactuals in the GEV class.17 Het-

erogeneity in correlation leads to heterogeneity in the gains from trade, but calcu-

lations including correlation only require data on expenditure shares across coun-

tries, preserving the simplicity of the ACR calculation for the gains from trade.

Specializing (13) to o = d and using the expression for the price index in (12), we

can write the real wage in country d as

Wd

Pd
= γ−1T

1
θ
dd (π̃dd)

− 1
θ , (18)

where π̃dd ≡ πdd/G
d
d(P

−θ
1d , . . . , P

−θ
Nd) = (Pdd/Pd)

−θ reflects the real price of domesti-

cally produced goods. Using (18), the change in real wages between two equilibria

(with the same Tdd) is
W ′
d/P

′
d

Wd/Pd
=

(
π̃
′

dd

π̃dd

)− 1
θ

. (19)

In autarky, country d purchases only its own goods, πdd = 1, and the price of

domestic output is equal to the domestic price level, Pdd = Pd. The expression in

(19) collapses to
Wd/Pd
WA
d /P

A
d

= (π̃dd)
− 1
θ . (20)

This expression generalizes the results of ACR to the class of models with GEV

import demand systems. With a CES import demand system, the correlation func-

tion is additive, and the gains from trade in (20) simplify to the ones in ACR where

π̃dd = πdd and two countries with the same self-trade share have the same gains

from trade.
16 By adapting results from the discrete choice literature (Dagsvik, 1995), we can show that GEV

import demand systems are dense in the space of import demand system generated by Ricardian
models with arbitrary productivity distributions (see Online Appendix O.2).

17Online Appendix O.3 presents the equilibrium formally and shows how to apply exact hat-
algebra methods.
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Importantly, the gains from trade, and other counterfactuals, can be calculated di-

rectly from expenditure data, as in ACR. The procedure requires solving a system

of equations in π̃od given data on πod, and estimates of the parameters defining the

correlation function (see Appendix C.1 for derivations).

For a given shape parameter θ, the gains from trade starting from autarky under

CES are the largest. Once some correlation in productivity exists, these gains are

lower. This occurs because the correlation function is convex and linear functions

bound convex functions from below. Because an additive correlation function cor-

responds to the CES case, the right-hand side of (20) is bounded above by the

ACR gains from trade. In the extreme, when productivity draws across coun-

tries are perfectly correlated, there would be no scope for trade and the gains

would be zero. Additionally, the expression in (20) admits the possibility that

if two countries have the same self trade share, but one country has very simi-

lar technology to other countries—high correlation—their gains from trade will be

smaller. In contrast, if that country have dissimilar technology to other countries—

low correlation—their gains from trade will be larger. In this way, our framework

captures Ricardo’s insight on the heterogeneity of the gains from trade across coun-

tries.

As for the import demand system, we can write the gains from trade in terms of the

technological primitives of Theorem 1. To such end, we focus on the cross-nested

CES (CNCES) case of Corollary 1 and use the expenditure shares derived in (16).

Proposition 3. Under the assumptions of Corollary 1, the gains from trade relative to

autarky for destination d in terms of the latent-factor expenditure in (16) are

Wd/Pd
WA
d /P

A
d

= π
− 1
θ

dd

[
K∑
k=1

(
X∗kdd∑K
k′=1 X

∗
k′dd

)(
X∗kdd∑
oX

∗
kod

)−ρk]− 1
θ

. (21)

Proof. The result follows from inverting the factor-level demand system. See Ap-

pendix B.5.

For ρk = 0, the gains from trade reduce to the ACR formula; for ρk = 1, they col-

lapse to 1. The second term on the right-hand side of (21) measures how much

correlation reduces the gains from trade relative to CES. Conditional on expendi-

ture, more correlation within any factor reduces the gains from trade. Addition-

ally, given the distribution of a country’s self-trade across factors, the higher factor
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imports, the lower the gains from trade—and more so if imports occur in high-

correlation factors. Intuitively, there are diminishing returns to importing goods

made using innovations that have very similar applications across countries.

It is easy to see that when factors are identified with sectors, the gains from trade

in (21) can be calculated directly from observed sectoral expenditure.

Before turning to our estimation procedure, in which factors and sectors do not

coincide, we provide further intuition on the effects of correlation on the gains

from trade using a three-country example.

3.3.1 A three-country example

Consider a three-country world with a correlation function given by

Gd(x1, x2, x3) =
(
x

1/(1−ρ)
1 + x

1/(1−ρ)
2

)1−ρ
+ x3.

Countries 1 and 2 are technological peers, with the parameter ρ measuring the

degree of correlation in their technology. Country 3’s productivity is uncorrelated

with productivity in countries 1 and 2. Using Proposition 3, we can calculate the

gains from trade starting from autarky as

Wd/Pd
WA
d /P

A
d

=
[
π1−ρ
dd (π1d + π2d)

ρ]− 1
θ for d = 1, 2 and

W3/P3

WA
3 /P

A
3

= π
− 1
θ

33 .

The gains from trade for countries 1 and 2 depend on the degree of correlation

in technology, while the gains for country 3 simply reflect their self-trade share.

The gains for trade for country 1 and 2 are given by a Cobb-Douglas combination

between each country’s expenditure share on its own goods and on the aggrega-

tion of its own goods with its peer’s goods—the self-trade share if countries 1 and

2 were combined into a single country. Conditional on observed expenditure, when

ρ = 0, we get the ACR formula; for ρ > 0, correlation increases effective self trade

and implies lower gains from trade; for ρ → 1, the two countries are effectively a

single country and the gains from trade depend on their combined self trade.

This intuition carries over to counterfactuals where equilibrium expenditure shares

change. To see these effects, assume that Tod = T = 1, for all o, d, and that coun-

tries have the same size. Heterogeneity in correlation precludes wage equalization

between countries 1 and 2, and country 3, with the (real) wage in the technological-
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peer countries lower than in the more dissimilar country.18 In all three countries,

wages (and the gains from trade) are decreasing in the parameter ρ, being their

highest for ρ = 0 and their lowest for ρ → 1. Country 3 gains the most from

trade, however, while countries 1 and 2 have lower gains from trade. In turn,

trade shares from country 3 increase with ρ, while trade shares from countries 1

and 2 decrease with ρ. In an otherwise identical world, heterogenous correlation

impact real wages, expenditure shares, and the gains from trade across countries.

4 Quantitative Application

In this section, we estimate the model and use it for counterfactual exercises. We

rely on the results from Theorem 1 and the approximation result in Proposition 1

to estimate the aggregate correlation function. Due to the "latent" nature of tech-

nological factors the procedure requires high-dimensional data. For such reason,

we estimate a multi-sector version of our model that allows us to incorporate the

rich information present in disaggregate trade flow and tariff data. In this way,

we infer the latent dimensions of the correlation function from the sectoral data.

The model boils down to a Latent Factor Model (LFM), which does not pair a latent

nest to a sector. It is precisely this generalization that permits departures from the

standard multi-sector EK model, which assumes independence across sectors and

hence leads to a gravity structure. We refer to this model as the Sectoral Gravity

Model (SGM).

4.1 Multi-Sector Ricardian Model from Primitives

The economy consists of S sectors. Each sector s in origin o has productivityZsod(v)

for variety v ∈ [0, 1] when delivering to d. Additionally, all varieties shipped

from o to d in sector s pay the tariff tsod, so that aggregate productivity is the re-

sult of choosing the sector with the highest tariff-adjusted productivity, Zod(v) ≡
maxs=1,...,S Zsod(v)/tsod. In turn, each destination d sources variety v from the origin

with the lowest unit cost, Wo/Zod(v).

Like in our baseline model, sectoral productivity arises from the adoption of glob-

18The wage in country 3 is W3 =
(

1 + 2
1+θ−ρ
1+θ

)1/θ
, while the wage in countries 1 and 2 is W =

2−
ρ

1+θW3. Trade shares are: πod = 2−ρW−θ = 2−
ρ

1+θW−θ3 , o = 1, 2 and π3d = W−θ3 .
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ally available technologies. Sectors are defined by their ability to use innovations,

and we assume differences across sectors are independent of geography. That

is, each innovation has the same relative applicability across sectors regardless

of where the innovation gets applied. The following assumption formalizes this

restriction, which boils down to a sectoral extension of Assumption 1.

Assumption 3 (Sectoral Innovation Decomposition). There exists a measurable space

of characteristics (X ,X) and, for each v ∈ [0, 1], an infinite, but countable, set of global

innovations, i = 1, 2, . . . , with qualityQi(v) > 0 and characteristics χi(v) ∈ X , such that

Zsod(v) = max
i=1,2,...

Qi(v)Asod(χi(v)), with Asod(χi(v)) = Aod(χi(v))Bs(χi(v)),

for some measurable functions χ 7→ Aod(χ) for each o, d = 1, . . . , N and χ 7→ Bs(χ) for

each s = 1, . . . , S.

The separability of applicability across sectors and countries means that sectors are

comparable across all origins and destinations; the sectoral comparative advantage

of countries only arises from a country’s access to innovations. Assumption 3, how-

ever, does not impose any restriction on the aggregate correlation function because

it implies aggregate productivity satisfying Assumption 1.

We next apply Corollary 1 and Proposition 1 in Section 2.2 to the sectoral model.

We partition the innovation characteristics set into K groups and approximate the

distribution of applicability on the kth partition with an independent σk-Fréchet

distribution across origins with scales AθkodB
θ
sk. The sectoral productivity distribu-

tion implied by this approximation is

P[Zsod(v) ≤ zso,∀s, o] = exp

− K∑
k=1

(∑
s,o

(AθkodB
θ
skz
−θ
so )

1
1−ρk

)1−ρk

µ(Xk)

 , (22)

where ρk = 1−θ/σk. Aggregate (tariff-adjusted) productivity is also multivariate θ-

Fréchet with scale Tod =
∑K

k=1 Tkod where Tkod ≡ Γ(ρk)[
∑S

s=1(BskAkod/tsod)
θ

1−ρk ]1−ρkµ(Xk),

and a CNCES correlation function with correlation coefficients ρk and weights

ωkod ≡ Tkod/Tod. Latent factors and sectors do not necessarily coincide because

sectors can share technologies. The distribution of aggregate productivity, with

correlation function given by (9), reflects sectoral primitives, with between-sector

correlation arising from the adoption of common technologies across sectors.
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Bilateral sectoral expenditure is given by (see Appendix C.3 for derivations)

Xsod =
K∑
k=1

(
tsod
t∗kod

)−σk
λskX

∗
kod, (23)

where the variable t∗kod is a factor-level CES tariff index defined by

t∗kod ≡

(
S∑
s=1

t−σksod λsk

)− 1
σk

with λsk ≡
Bσk
sk∑S

s′=1B
σk
s′k

, (24)

and the variable X∗kod is latent factor-level expenditure defined in (16). Notice that

the share of each factor that gets applied to each sector, λsk, is exogenous and iden-

tical across origins and destinations. This result reflects the assumption that sec-

toral comparative advantage only arises from a country’s ability to use global in-

novations. Factor-level expenditure and tariff indices reflect each country’s access

to innovations.

Recall that the case of independence across sectors implies that each sector corre-

sponds to a distinct set of latent factors (formally, Bsk = 0 for s 6= k). In that case:

Factor-level expenditure in (16) coincides with observed sector-level expenditure,

X∗kod = Xsod ; factor weights are one for k = s and zero otherwise; tariff indices are

observed sectoral tariffs, t∗sod = tsod; and sectoral elasticities are constant across ori-

gins and destinations, σk = σs. As a consequence, the sectoral independent model

can be estimated using gravity regressions, which we present in Section 4.3.1.

4.2 Latent-Factor Model Estimation

When sectors do not correspond to factors, we need an alternative to gravity esti-

mation. We propose an estimator that infers latent expenditure and tariff indices

from observed sectoral expenditure and tariffs. We first write (23) as a share of

aggregate expenditure
Xsod

Xod

=
K∑
k=1

t−σksod λskφkod, (25)

where φkod ≡ (t∗kod)
σkX∗kod/Xod. This is a (tariff-weighted) factor model where φkod

are latent factors. The key result—which is a direct consequence of Theorem 1 and

Assumption 3—is that observed sectoral shares are linear in factor weights λsk and

latent factors φkod.
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We estimate the factor structure in (25) using 4-digit SITC sectoral tariff and trade

flow data from COMTRADE for 1999-2007. Appendix D presents a detail descrip-

tion of the data construction.

Motivated by pseudo Poisson maximum likelihood (PPML) methods used in the

gravity literature (Silva and Tenreyro, 2006; Fally, 2015), we choose a Poisson crite-

rion for deviations of observed from predicted sectoral expenditure shares. For a

given choice of K, we choose Σ = {σk}k, Λ = {λsk}s,k, and Φ = {φkod}k,o,d to solve

Σ̂, Λ̂, Φ̂ = arg minσ≥0,Λ≥0,Φ≥0

∑
s,o,d

`

(
Xsod

Xod

,

K∑
k=1

t−σksod λskφkod

)
, (26)

where `(x, x̂) ≡ 2(x ln(x/x̂)− (x− x̂)).19

We adapt techniques from the literature on non-negative matrix factorization to

solve the problem in (26).20 We extend the multiplicative update algorithm in Lee

and Seung (1999, 2001) to accommodate both missing data and simultaneous es-

timation of σk. Although latent factor models typically have many solutions, the

presence of non-negativity constraints in (26) means that the latent factors can be

identified under relatively general conditions (Fu et al., 2019), which, in our con-

text, translate into assumptions related to the sparsity of factors across sectors and

countries. Appendix E provides details of the algorithm.

We choose the number of latent factors by estimating (26) for K = 1, 2, . . . , and

perform likelihood ratio tests until we fail to reject that the number of latent factors

is K versus the alternative of K + 1.21

Lastly, we need to estimate the parameter θ, which, as shown in Section 3.3, con-

trols the magnitude of the gains from trade. In particular, smaller values of θ imply

19The Poisson deviance is the unique likelihood-based criterion that ensures that our estimates
of factor-level latent expenditure exactly aggregate to observed trade flows and therefore they are
consistent with the structure of the model. Fally (2015) establish that PPML is the unique likelihood-
based criterion that preserves the restriction that predicted aggregate expenditure matches ob-
served expenditure.

20In principle, the model could be estimated using principal-component analysis (PCA) to infer
the factor structure. However, our theory implies that all the factor weights and latent factors are
non-negative. PCA estimates typically include negative entries.

21The Poisson deviance function is homogenous of degree one and therefore its value depends
on scaling of the data. The scaling does not impact the parameters’ estimation, but it does matter
for likelihood ratio tests. To address this scaling issue, we scale the Poisson deviance by the mean-
variance ratio in the data. Effectively, we are relaxing the strict Poisson assumption to assuming
that there exists some scaling of the data such that it is approximated by a Poisson distribution, and
using the moment condition that the mean equals the variance to standardize the units of the data
to be consistent with a Poisson distribution.
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larger gains from trade. To get a lower bound on those estimates, we set θ to the

minimum estimated σk, θ = mink=1,...,K σk. This is the largest possible value for θ

that satisfies that θ ≤ σk for all k.

With estimates of σk, λsk, φkod, θ, and K, we infer factor-level tariff indices, t∗kod, us-

ing (24), and factor-level expenditure, X∗kod, using (25). In turn, we get the weights

ωkod from our estimates of latent-factor expenditure.22

4.3 Results

Before turning to the estimates of our latent-factor model (LFM), we first estimate

the sectoral gravity model (SGM). Because productivity is independent across sec-

tors with symmetric correlation within sectors, sectoral expenditure is CES, and we

can estimate the model using gravity-type equations. With those estimates, we re-

ject that elasticities are the same across origins within a sector. We show that these

violations of IIA are associated with geographical distance and other characteris-

tics of trading partners. We take this finding as reduced-form evidence against the

independence assumption of the SGM, and as motivation for our LFM estimation.

4.3.1 Sectoral gravity model (SGM): estimates and IIA tests.

We estimate the SGM for 14 aggregate sectoral categories from WIOD, denoted by

j, and we add a time subscript t to denote the year. Expenditure shares for each

j = 1, . . . , J are given by the expression in (16) for k = j. To get an estimating

equation, we first re-express expenditure as

Xjodt ≡
(t∗jodtWot/A

∗
jodt)

−σj∑
o′(t
∗
jo′dtWo′t/A∗jo′dt)

−σj

(∑
o′(t
∗
jo′dtWo′t/A

∗
jo′dt)

−σj

P
σj
dt

)−θ/σj
Xd, (27)

where t∗jodtWot/A
∗
jodt = ω

−1/θ
jodt Pjodt, the tariff index t∗jodt is the result of aggregating

4-digit SITC tariffs into the aggregate WIOD sectoral category, and A∗jodt is a pro-

ductivity index (see Appendix C.3 for derivations and index definitions).23 We

assume that A∗jodt = exp(ajot + bjdt + cjod)νjodt, where ajot is a sector-origin-time ef-

fect, bjdt is a sector-destination-time effect, cjod is a sector-origin-destination effect,

22Inverting the expression for X∗kod in (16) yields ωkod ≡
(X∗kod)

1−ρk(
∑N
o′=1

X∗
ko′d)

ρk∑K
k′=1

(X∗
k′od)

1−ρ
k′ (

∑N
o′=1

X∗
k′o′d)

ρ
k′ .

23The aggregation of tariffs follows a model-consistent procedure. See Appendix D.4.
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and νjodt is the residual. Replacing A∗jodt in (27) and re-grouping yield

Xjodt∑N
o′=1 Xjo′dt

= exp
(
αjot + γjdt + δjod − σj ln t∗jodt

)
νjodt, (28)

where αjot ≡ σj(ajot− lnWot), γjdt ≡ σjbjdt + σj ln(
∑

o′(t
∗
jo′dtWo′/A

∗
jodt)

−σj)−1/σj , and

δjod ≡ σjcjod. Under the no-technology-sharing assumption, expenditure across

origins within each WIOD aggregate has a constant elasticity of substitution, σj =

θ/(1− ρj). Further, if σj = σ, for all j, we get the independence case of ACR where

σ = θ and ρ = 0—correlation in productivity is zero not only across sectors but

also across origin countries.

Table 1 presents PPML estimates of (28). We estimate specifications with a com-

mon tariff coefficient across sectors, with sectoral tariff coefficients, and with in-

teractions of log tariffs with distance and income of the destination and origin

countries. The SGM implies that the coefficients on the interaction terms must be

zero. The last rows of Table 1 present Wald tests of the null hypothesis that these

interaction terms are jointly insignificant.

The first column in Table 1 corresponds to structural estimates of the ACR model

and implies θ = 2.63. The estimates in the second column indicate that the tariff

elasticity decreases with distance and with income per capita of the destination.24

The third column includes interactions between origin dummies and log tariffs.

The Wald tests indicate that the interaction terms in columns 2 and 3 are jointly

significant, suggesting that departures from independence are related to distance,

destination income, and also characteristics of the origin country.

The final three specifications in Table 1 allow for the elasticity to be heterogenous

across sectors—that is, we move from ACR to SGM. The estimates in column 4

correspond to structural estimates of sectoral elasticities in standard multi-sector

Ricardian models. The Wald test rejects the restriction in ACR that elasticities are

equal across sectors. Additionally, our Wald tests strongly reject that the tariff in-

teractions in columns 5 and 6 are zero. This result indicates that allowing for het-

erogenous sectoral elasticities is not enough to capture the substitution patterns in

the data since we observe significant violations of IIA in exactly the same patterns

24Distance and income are relative to the United States, which means that the elasticity estimates
when these covariates are included are interpreted as the elasticity when the United States is both
the origin and destination. Hence, in column 2 the USA-to-USA elasticity falls because the United
States are both close to itself and have high income relative to most countries.
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Table 1: Sectoral Gravity Model (SGM): IIA Tests. PPML.

Dep. variable Xjodt/
∑
o′ Xjo′dt

(1) (2) (3) (4) (5) (6)

σ × ln tjodt 2.626*** 0.785** 1.654***
(0.107) (0.296) (0.42)

σ1 × ln tjodt 4.150*** 2.464*** 2.161***
(0.227) (0.347) (0.431)

σ2 × ln tjodt 4.374*** 2.373* 0.326
(1.145) (1.207) (1.193)

σ3 × ln tjodt 2.211*** 0.292 1.623***
(0.109) (0.305) (0.453)

σ4 × ln tjodt 1.815*** 0.202 0.957
(0.287) (0.382) (0.523)

σ5 × ln tjodt 1.128*** -0.931* -1.374*
(0.31) (0.449) (0.616)

σ6 × ln tjodt 1.249*** -0.642 -0.202
(0.24) (0.387) (0.546)

σ7 × ln tjodt 4.005*** 2.108* 0.115
(0.928) (0.982) (0.876)

σ8 × ln tjodt 2.395*** 0.564 0.795
(0.233) (0.375) (0.54)

σ9 × ln tjodt 0.659** -1.34*** -0.585
(0.253) (0.401) (0.513)

σ10 × ln tjodt 3.256*** 1.38*** 1.645**
(0.229) (0.374) (0.523)

σ11 × ln tjodt 2.827*** 1.191** 1.814***
(0.361) (0.445) (0.548)

σ12 × ln tjodt 5.174*** 3.575*** 4.582***
(0.756) (0.767) (0.655)

σ13 × ln tjodt 2.360*** 0.640 1.245*
(0.38) (0.464) (0.500)

σ14 × ln tjodt 2.196*** 0.338 0.978*
(0.278) (0.398) (0.499)

−∆ lnDistod × ln tjodt -0.184* -0.316***
(0.076) (0.082)

−∆ lnYot × ln tjodt -0.123 -0.14
(0.082) (0.083)

−∆ lnYdt × ln tjodt -0.840*** -0.768***
(0.154) (0.148)

o× ln tjodt No No Yes No No Yes
Obs. 121,086 121,086 121,086 121,086 121,086 121,086
Deviance 7.025 7.013 4.449 7.003 6.989 4.427

Null Hypothesis ACR ACR ACR SGM SGM
χ2 41.139 224.472 186.254 45.288 235.008
P-Value 0.0 0.0 0.0 0.0 0.0

Notes: Estimates of (28). Distod = population-weighted bilateral distance between origin o and
destination d, Yot = income per capita in o at time t, ∆ lnDistod = lnDistod − lnDistUSA,USA, and
∆ lnYot = lnYot−lnYUSA,t. j refers to an aggregate WIOD sectoral category. All specifications include
j × o× t, j × d× t, and j × o× d fixed effects. Last three rows show results of Wald tests for the null
that interaction terms are jointly insignificant. Robust standard errors in parenthesis with levels of
significance denoted by *** p < 0.01, and ** p < 0.05 and * p<0.1.
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Table 2: Model Order Selection: Likelihood Ratio Test.

Number of latent factors K

4 5 6 7 8

R2 for sectoral trade flows, Xsodt 0.826 0.835 0.937 0.937 0.936
R2 for sectoral trade shares, Xsodt/Xodt 0.219 0.245 0.285 0.313 0.341
Observations 5,528,764 5,528,764 5,528,764 5,528,764 5,528,764
Poisson Deviance 292,161 278,379 266,955 256,823 248,288
Degrees of Freedom 37,744 47,180 56,616 66,052 75,488
Log Likelihood Ratio 13,782 11,424 10,132 8,535
P-Value 0.0 0.0 0.0 1.0

Notes: Results from estimating LFM withK = 4, . . . , 8. P-values refer to the test with null hypothesis
of K latent factors against the alternative of K + 1 latent factors.

as for the ACR specification in the first three columns. Our LFM estimation will

not impose any structure on sectoral elasticities; instead, we will check ex-post if

they correlate with observable variables.

4.3.2 Latent factor model (LFM): estimates

We next present estimates of our LFM directly using the disaggregate 4-digit sec-

toral data. Our reduced-form evidence suggests that departures from IIA remain

after aggregating 4-digit SITC data to the aggregate sectoral categories in WIOD.

The implication is that those sectoral aggregates may not correspond to latent tech-

nological factors, and that the standard procedure of estimating sectoral gravity

regressions may not recover the true import demand system. Our LFM estimation

procedure relaxes the assumptions of the SGM, and allow for shared technology

across sectors. Heterogenous elasticities of substitution across origins, destina-

tions, and sectors are generated through the latent factors.

First, Table 2 shows that we fail to reject that a model with K = 8 is significantly

different from one with K = 7. Although each additional factor adds 9,436 pa-

rameters, only seven factors are necessary to get a reasonable fit to the sectoral

trade flow data: they are able to explain 93.7 percent of the variation in the sectoral

trade flow data, and 31.3 percent of the variation in expenditure shares within

an origin-destination-time pair. This LFM is a relatively parsimonious model; the

SGM estimated in column 4 of Table 1 requires 14 factors—one for each WIOD

sector.

Next, we examine how technology gets shared across sectors and how much de-
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pendence in sectoral productivity is implied by the trade data. Table 3 shows

statistics related to estimates of factor elasticities, σk and the factor-weight ma-

trix Λ. We rank the latent factors from largest (F1) to lowest (F7) elasticity. With

θ = mink σk = 0.375, this first panel of Table 3 shows that the highest within-factor

cross-origin correlation is ρ1 = 0.927 and the lowest is ρ7 = 0. The second panel

presents statistics for the matrix Λ. First, the fraction of factor weights that are

zero ranges from 6.2 to 23.3 percent–e.g. 23.3 percent of 4-digit SITC sectors do not

use technologies related to F6. Second, each factor is concentrated in a few 4-digit

SITC sectors. The largest weight for each factor ranges from 0.045 to 0.281, with 90

percent of the weights below 0.003 for all factors. Since
∑

s λsk = 1, this indicates

a very high level of sectoral concentration within each factor. Despite this concen-

tration, the third panel of Table 3 shows that each factor has some weight on the

majority of 1-digit SITC sectors (see Appendix Figures F.1 and F.2 for more details).

To measure how these estimates violate the no-shared technology assumption of

the SGM, we examine how many 4-digit SITC sectors use each factor (Figure 1a)

and how many factors each 4-digit SITC sector uses (Figure 1b). 75 to 95 percent of

sectors use each factor. Less than 15 percent of sectors use less than 4 factors, while

about 75 percent of sectors use at least six out of the seven factors. Clearly, factors

are not unique to sectors, as SGM assumes.

Additionally, we examine how intensively sectors use pairs of factors as well as fac-

tors are used by pairs of 2-digit sectors. Figure 1c shows a histogram of a similar-

ity measure that captures the intensity factors weigh on the same sectors, ranging

from completely orthogonal (0) to identical weights (1). Similarity is concentrated

close to zero for all pairs of factors, consistent with the structural interpretation

that factors are groups of distinct technologies, so that they weigh on sectors in

distinct ways. Figure 1d shows the distribution of the similarity measure across

sector pairs. Even at a 2-digit level of aggregation, many sector pairs weigh on

factors identically (high similarity), with some pairs never loading on the same

factors (low similarity). Appendix Table F.1 presents summary statistics using 4-

digit sectors.

To get some interpretation for each factor, we examine how factors load on sectors

(using our estimates of λsk), as well as patterns of expenditure, export intensity,

and domestic absorption by factor (using our estimates of X∗kod). First, the bottom
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Table 3: Estimates of factor elasticities and factor weights. Summary Statistics.

Factor

F1 F2 F3 F4 F5 F6 F7

σk 5.175 4.869 4.625 1.482 0.671 0.390 0.375
ρk = 1− θ/σk 0.927 0.923 0.919 0.747 0.44 0.038 0.00

Factor Weights: Summary Statistics

Zero Share 0.108 0.177 0.062 0.113 0.16 0.233 0.174
90th Percentile 0.003 0.002 0.003 0.003 0.002 0.001 0.001
99th Percentile 0.016 0.011 0.013 0.019 0.029 0.026 0.018
Maximum 0.045 0.281 0.113 0.036 0.059 0.105 0.277

Factor Weights: 1-Digit Sectoral Shares

Food and live animals 0.120 0.008 0.097 0.048 0.323 0.006 0.032
Beverages and tobacco 0.041 0.001 0.023 0.012 0.049 0.004 0.014
Crude materials, except fuels 0.030 0.005 0.029 0.075 0.312 0.017 0.126
Mineral fuels and lubricants 0.006 0.002 0.003 0.106 0.002 0.001 0.492
Animal/veg. oils and waxes 0.010 0.000 0.004 0.003 0.011 0.000 0.001
Chemicals and related, n.e.s. 0.040 0.046 0.305 0.132 0.027 0.036 0.067
Manufactures by material 0.245 0.138 0.065 0.399 0.107 0.026 0.203
Machinery, transport equip. 0.103 0.74 0.294 0.153 0.155 0.807 0.025
Misc. manufactures 0.378 0.05 0.103 0.048 0.013 0.103 0.006
Commodities/trans. n.e.s. 0.000 0.001 0.007 0.002 0.001 0.000 0.020
Residual 0.027 0.010 0.070 0.021 0.000 0.000 0.013

Factor Statistics

Share of Expenditure 0.063 0.123 0.117 0.333 0.258 0.071 0.034
Self-Trade Share 0.514 0.455 0.492 0.900 0.962 0.408 0.438
Share of Total Self-Trade 0.044 0.076 0.078 0.406 0.336 0.039 0.02
Share of Total Exports 0.118 0.255 0.228 0.127 0.037 0.161 0.073
Rank 1 Exporter in 1999 CHN DEU USA CAN USA USA RUS
Rank 2 Exporter in 1999 ITA JPN DEU DEU BRA JPN CAN
Rank 3 Exporter in 1999 IND USA FRA USA CAN CHN GBR
Rank 1 Exporter in 2007 CHN DEU USA DEU BRA CHN CAN
Rank 2 Exporter in 2007 ITA JPN DEU NLD USA KOR RUS
Rank 3 Exporter in 2007 IND USA FRA USA AUS JPN AUS

Notes: Residual sectors capture residual expenditure in the WIOD aggregate data attributable to
missing observations in the SITC data. See Appendix E.
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Figure 1: Factor Weights: Extensive and Intensive Margins.
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panel of Table 3 shows that F4 and F5 make up for the majority of global expen-

diture, with F4 representing ten percent of global trade and F5 barely traded. In

contrast, the remaining factors are heavily traded, with self-trade shares ranging

from around 40 to 50 percent. Turning to the use of factors by sectors, we supple-

ment the 1-digit sectoral shares in Table 3 by reporting the top-three 2-digit shares

for each factor in Table 4. These shares reveal the technological identity of each

factor. For example, the 2-digit weights reveal that F1 is most useful in manufac-

turing clothing, textiles, and fabrics, but it also captures technologies that are used

to produce vegetables and fruits. Table 3 shows that China, Italy, and India are the

exporters that use this factor. In contrast, F2 is used in the production of “machin-

ery and transport equipment"—in particular road vehicles—as indicated by the

rankings in Table 4. Germany, Japan, and the United States are the countries who

use this technology the most, as measured by each country’s share of total exports
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Table 4: Factor Weights: Top-Three 2-Digit Sectors.

Rank Code Description Weight

F1
1 84 Articles of apparel and clothing accessories 0.231
2 65 Textile yarn, fabrics, made-up articles, nes, and related products 0.107
3 05 Vegetables and fruit 0.076

F2
1 78 Road vehicles 0.422
2 77 Electric machinery, apparatus and appliances, nes, and parts, nes 0.092
3 74 General industrial machinery and equipment, nes, and parts of, nes 0.063

F3
1 54 Medicinal and pharmaceutical products 0.142
2 74 General industrial machinery and equipment, nes, and parts of, nes 0.068
3 51 Organic chemicals 0.063

F4
1 67 Iron and steel 0.136
2 64 Paper, paperboard, and articles of pulp, of paper or of paperboard 0.105
3 33 Petroleum, petroleum products and related materials 0.098

F5
1 79 Other transport equipment 0.115
2 28 Metalliferous ores and metal scrap 0.111
3 01 Meat and preparations 0.071

F6
1 75 Office machines and automatic data processing equipment 0.283
2 76 Telecommunications, sound recording and reproducing equipment 0.259
3 77 Electric machinery, apparatus and appliances, nes, and parts, nes 0.193

F7
1 33 Petroleum, petroleum products and related materials 0.291
2 32 Coal, coke and briquettes 0.115
3 68 Non-ferrous metals 0.092

Notes: Factor weights λsk from estimating LFM in (26).

that rely on this factor. Although F2 captures technologies central to the produc-

tion of cars and is the most concentrated factor, it is also used in many other pro-

duction processes involving sectors that produce electrical machinery, industrial

machinery, power generating machinery, and telecommunications equipment.

For the remaining factors, we see that: F3 relates to medical products, chemicals,

and industrial equipment; F4 and F5 are used for making less complex products,

related to basic materials, and are the two factors most related to self trade; F6

relates to highly specialized manufactured goods such as electronics and scientific

instruments; and F7, the factor with the lowest cross-country correlation, is re-

lated to extraction of energy and minerals, and its major exporters are Russia and

Canada.

Finally, our estimates of factor-level expenditure imply correlation function weights,

ωkod, that are used to calculate counterfactual exercises. Appendix Figure F.3 shows

the distribution of these weights across factors and origins when the United States

is the destination market, for 1999 and 2007.
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Table 5: Aggregate Elasticities and Country Observables. OLS.

ln−εoodt ln εoo′dt

(1) (2)

ln Xodt
Xdt

-0.206***
(0.007)

ln Distanceod -0.054*** ln Distanceoo′ -0.173***
(0.011) (0.005)

| lnYot − lnYdt| 0.038*** | lnYot − lnYo′t| -0.471***
(0.006) (0.007)

o× t Yes o× d× t Yes
d× t Yes o′ × d× t Yes

Obs 8,649 Obs 259,470
R2 0.724 R2 0.626
Within-R2 0.369 Within-R2 0.032

Notes: Aggregate expenditure elasticities calculated using (17) from latent-factor model (LFM) es-
timates. Distanceod = population-weighted bilateral distance between o and d, and Yot = income
per capita in o at time t. Subscript t refers to years 1999 to 2007.

4.3.3 Implied Expenditure Elasticities

We next compute the aggregate expenditure elasticities, εoo′dt, using the expres-

sions in Section 3.1 and our LFM estimates of the correlation function. The reduced-

form estimates in Table 1 indicate that violations of IIA are related to the distance

between the origin and destination, destination income, and other origin-specific

factors. Our LFM estimates of the implied own-price elasticities should capture

these patterns. The first column of Table 5 presents OLS estimates of the log of

(negative) own-price elasticity on country observables. Since the theory implies

that the own-price elasticity is inversely proportional to expenditure and country

observables are correlated with expenditure, we include the log of the bilateral

expenditure share as a control. We also include origin-year and destination-year

fixed effects. Own-price elasticities are negatively and significantly related to dis-

tance and positively related to income differences between the origin and destina-

tion, consistent with the reduced-form evidence in Table 1.25

The second column of Table 5 correlates cross-price elasticities with country ob-

servables. The reduced-form estimates in Table 1 do not directly speak to these

elasticities. However, if similar countries tend to adopt similar technologies—

25The inclusion of fixed effects absorbs any correlation between the elasticities and each country’s
income, so that the positive estimate on the income difference is not inconsistent with the negative
estimate on the level of destination income in Table 1.
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Table 6: Aggregate Expenditure Elasticities: China serving the United States.

SGM LFM SGM LFM SGM LFM SGM LFM

AUS 0.152 0.348 IND 0.271 1.528 HUN 0.572 0.113 DNK 0.366 0.075
AUT 0.146 0.04 IRL 0.226 0.001 GRC 0.119 2.209 RUS 0.052 0.004
BEL 0.125 0.008 ITA 0.224 1.559 GBR 0.191 0.034 SVK 0.151 0.244
BGR 0.242 2.027 JPN 0.272 0.038 TUR 0.186 2.54 DEU 0.215 0.024
BRA 0.116 0.367 KOR 0.432 0.139 FRA 0.169 0.283 PRT 0.251 0.987
CAN 0.089 0.047 MEX 0.385 0.336 SWE 0.186 0.017 ESP 0.151 0.715
CHN -2.866 -1.301 NLD 0.181 0.003 FIN 0.234 0.007 CZE 0.292 0.184
POL 0.254 0.747 SVN 0.250 1.550 USA 0.102 0.005

Notes: Expenditure elasticities, εo,CHN,USA,t, calculated using (17) from latent-factor model (LFM)
estimates, and sectoral gravity model (SGM) estimates. Subscript t refers to years 1999 to 2007.

consistent with faster diffusion between nearby countries (Keller, 2002; Bottazzi

and Peri, 2003; Comin et al., 2013; Keller and Yeaple, 2013)—then the theory sug-

gests that they will also have higher elasticities. We regress the log of the cross-

price elasticity between o and o′ within each destination d on the log of distance

and the difference in income between o and o′. We include origin-destination-year

fixed effects for both origins (which controls for destination expenditure on both

countries). We find that more distance and that larger income differences between

origins are both associated with lower substitution elasticities, implying that these

countries do not trade goods that are close substitutes in export markets.

These broad patterns suggest that the LFM helps to match departures from IIA

that SGM does not capture, and implies elasticities consistent with the intuition

that similar countries should be more substitutable. To get a sense of the difference

between LFM and SGM, Table 6 compares the values for aggregate elasticities for

the two models focusing on China as competition for other origins serving the

United States, εo,CHN,USA.26 LFM estimates indicate that Chinese goods are close

substitutes of goods from Turkey, Bulgaria, and Greece, for US consumers, while

they are very poor substitutes for goods from Ireland, Netherland, Russia, and the

United States itself. These rankings are different when the elasticities are calcu-

lated using estimates from the SGM. Relative to LFM, the SGM estimates imply a

larger own-price elasticity for China and more similar cross-price elasticities across

alternative origins serving the US market. These differences in elasticities can cre-

ate very different answers to counterfactual exercises, as we show next.

26For the SGM, we calculate aggregate elasticities using the estimates in column 4 of Table 1. We
use the same θ as LFM to ensure that differences solely come from the correlation function.
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4.4 Counterfactual Exercises

Armed with our LFM estimates, we perform two counterfactual exercises. First,

we compute the gains from trade starting from autarky. Second, we examine how

US protectionism impacts real wages.

4.4.1 The gains from trade.

Figure 2 shows the gains from trade against self-trade shares, using the LFM, the

SGM, and the ACR model. For the ACR model, we use θ = 2.626 as estimated

in column 1 of Table 1. For comparison, we also use the estimate for θ implied

by our LFM procedure of 0.375. LFM correlation (blue dots) implies much higher

gains from trade than the ACR model (dash-dot line), but as explained in Section

3.3, conditional on the same shape parameter θ, correlation always decreases the

gains from trade (blue dots vs dash line). Gains from trade under LFM are much

more heterogeneous than under ACR and SGM. For instance, the ACR model de-

livers the same gains for Bulgaria, Ireland, Czech Republic —because they have

very similar self-trade shares. Incorporating LFM correlation entails that gains are

different among these three countries depending on the degree of similarity with

trading partners. Incorporating correlation through sectors assuming that they do

not share technology results in gains from trade that are not very different from

the ACR model. This result implies that the way correlation in productivity is in-

troduced into the model matters for counterfactuals. In particular, it is important

to let the data reveal correlation patterns rather than assume that those patterns

are sector specific.

4.4.2 The cost of protectionism.

Consider the scenario where destination d raises tariffs on origin o′. The impact on

the real wage in d can be decomposed as

d ln
Wd

Pd
= (1− πdd)d ln

Wd

Wo′︸ ︷︷ ︸
Domestic Wage Effect

−
∑

o 6=o′ and o 6=d

πodd ln
Wo

Wo′︸ ︷︷ ︸
Third Party Effect

− πo′dd ln to′d︸ ︷︷ ︸
Direct Tariff Effect

, (29)
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Figure 2: Gains From Trade: ACR, SGM, LFM. Year 2007.

Notes: Real wages in the observed equilibrium relative to autarky real wages. Calculations using esti-
mates from latent factor model (LFM, blue dots), sectoral gravity model (SGM, black dots), ACR model
with θ = 2.626 (dash-dot line), and ACR model with θ = 0.375 (dash line).

where to′d ≡ [
∑K

k=1(t∗ko′d)
−θ]−

1
θ is the tariff component of Po′d.27 The first term is the

effect on real wages in d of changing Wd/Wo′ , while the second term is the effect on

countries other than d and o′. The third term is the direct effect of increasing tariffs

on real wages in d.

We calculate the elasticity in (29) and its components for each possible pair of coun-

tries, in 2007, and compare between the LFM and SGM model. Figure 3 shows den-

sity plots and Table 7 shows moments of the percent difference in the components

of the real wage elasticity. On average, the direct wage effect is smaller in the LFM

by more than 4 percent, and the third-party effect is larger by almost 16 percent.

The plot does not show the direct tariff effect because it only depends on observed

expenditure and is identical between the two models. The weaker increase in do-

mestic labor demand and stronger increase in third party labor demand increases

the impact of raising tariff in the LFM relative to the SGM by almost 18 percent, on

average. These results show that the difference in substitution elasticities between

the two models leads to first-order differences in counterfactuals, typically making
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Figure 3: Diff. in tariff effects, densities.

-100 -50 0 50 100
0.000

0.005

0.010

0.015

0.020

0.025

LFM vs SGM

% Difference Real Wage Elasticity

D
en

si
ty

Domestic
3rd Party
Total

Table 7: Diff. in tariff effects, moments.

%∆ Real Wage Elasticity (LFM vs SGM)

Domestic 3rd Party Total

Mean -4.08 15.86 17.88
Std. 44.02 45.89 40.72
Skewness 0.54 0.33 7.39
10th Pctl. -57.79 -47.72 -9.22
25th Pctl. -38.72 -16.98 7.63
50th Pctl. -8.72 18.87 15.34
75th Pctl. 25.59 43.48 26.75
90th Pctl. 56.01 68.29 43.70

Notes: Figure 3 shows density plots of the percent difference in the components of (29) between the
latent factor model (LFM) and sectoral gravity model (SGM). Blue corresponds to the domestic wage
effect, orange corresponds to the third party effect, and purple shows the full effect. The direct tariff
effect is identical between the two models. Table 7 shows moments of these densities.

the cost of increasing tariffs larger in the LFM than in the SGM.

Figure 4 focuses on the effect of the United States increasing tariffs on China from

0 to 100 percent, in the LFM and the the SGM, for 2007.28 For instance, the wel-

fare cost to the United States of imposing a 50-percent tariff on China doubles in

the LFM. Mimicking the results in Table 7, the cumulative effect of rising domestic

wages is smaller, while the cumulative (negative) effect of rising third-party wages

is larger for LFM. This is because US consumers substitute less towards their own

goods and more towards third parties in the LFM relative to the SGM (second row

of Figure 4). Additionally, the cumulative direct effect of higher tariffs is larger

in the LFM because the local direct-tariff effect is proportional to the share of US

expenditure on Chinese goods, and as tariffs rise, US consumers shift expenditure

away from China, dampening the cumulative direct tariff effect. However, US con-

sumers substitute less away from China in the LFM, which means this dampening

effect is weakened, and the cumulative direct cost on US consumers from rising

tariffs is larger in the LFM than in the SGM.

The difference in substitution patterns between the two models comes from dif-

ferences in expenditure shares across technological factors, which correspond to

sectors in the SGM. The final row of the figure shows that, for all factors, US ex-

penditure shifts away from China when tariffs rise. However, it does so much

27The result follows from ∂ lnPd
∂ lnPod

= −θ−1 ∂ lnGd(P−θ1d ,...,P
−θ
Nd)

∂ lnPod
= πod.

28We compute each component of the change in US real wages by integrating each term of (29)
from 0 to ∆t where ∆t is the total change in tariffs on the x-axis of Figure 4.
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more rapidly for factors with a higher correlation across countries; US consumers

are able to find alternative suppliers for products made using those factors. Fac-

tors that are not similar across countries are harder to substitute. For instance, F6,

which corresponds to technologies mostly used in complex manufactured goods,

such as electronics, has a very low correlation across countries and US consumers

do not rapidly shift their expenditure away from China. Because the SGM pairs la-

tent factors with sectors, it mixes together substitution patterns across technologies

and tends to estimate sectoral elasticities that are higher.29 Consequently, shifts in

US expenditure away from Chinese goods occur more rapidly.

5 Conclusions

This paper is motivated by the old Ricardian idea that a country gains from trading

with those countries who are technologically dissimilar. We develop a Ricardian

theory of trade that allows for rich patterns of correlation in technology between

countries, retains all the tractability of EK-type tools, and spans the entire class of

GEV import demand systems. Our key contribution is to provide a structure for

technology, based on the adoption of innovations, that is necessary and sufficient

to generate max-stable multivariate Fréchet productivity with a general depen-

dence structure. The theory, by relating macro substitutability patterns to under-

lying technological factors, allows us to develop a procedure to estimate a rich

correlation structure based on disaggregate sectoral data. Our quantitative appli-

cation to a multi-sector trade model reveals that differences in correlation across

countries matter: Gains are much more heterogeneous across countries than in the

case of independent sectoral productivity.

29The first factors in LFM absorb most of the covariance between sectoral tariffs and trade flows,
implying high elasticities. The remaining covariance is associated with other factors, which end up
with low elasticities. The SGM estimates an elasticity for each WIOD aggregate. If weight is put on
underlying sectors with high expenditure-tariff covariance, elasticities tend to be higher.
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Figure 4: Effect of the United States raising tariffs on China. Year 2007.

A. US Real Wage.

0 25 50 75 100

-0.02

-0.01

0.00

0.01

0.02

0.03

LFM

Percentage Point Change in Tariffs

C
ha

ng
e 

in
 L

og
 R

ea
l W

ag
e

Domestic
Third Party
Direct
Total

0 25 50 75 100

-0.02

-0.01

0.00

0.01

0.02

0.03

SGM

Percentage Point Change in Tariffs

C
ha

ng
e 

in
 L

og
 R

ea
l W

ag
e

Domestic
Third Party
Direct
Total

B. US Expenditure Shares.
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C. US Factor-level Expenditure Shares from China.
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Notes: LFM = Latent Factor Model; SGM = Sectoral Gravity Model. Changes in log US real wage are decom-
posed using (29).
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A Properties of Fréchet Random Variables

Let Γ(x) ≡
∫∞

0
tx−1e−tdt denote the Gamma function.

Lemma A.1. If X is Fréchet with scale A and shape α > 1, then E[X] = Γ(1−1/α)A1/α.

Proof. E[X] =
∫∞

0
zαAz−α−1e−Az

−αdz =
∫∞

0
t−1/αe−tdtA1/α = Γ(1− 1/α)A1/α.

Lemma A.2. A vector (Z1d(v), . . . , ZNd(v)) is max-stable multivariate Fréchet if and only

if there exists θ > 0, scale parameters {Tod}No=1, and a correlation function, Gd such that

P [Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = exp
[
−Gd(T1dz

−θ
1 , . . . , TNdz

−θ
N )
]
. (A.1)

Proof. First, we show that if productivity is θ-Fréchet, then there must exist a cor-

relation function Gd : RN
+ → R+ such that (A.1) is the joint distribution of produc-

tivity across origins.

Suppose productivity is θ-Fréchet. Then its marginal distributions are

P[Zod(v) ≤ z] = exp[−Todz−θ] ≡ Fod(z).

Consider any (x1, . . . , xN) ∈ RN
+ . Then x1/θ

o ≥ 0 for each o. From the definition of a

multivariate θ-Fréchet random variable, the random variable maxo=1,...,N x
1/θ
o Zod(v)

must be distributed as a θ-Fréchet random variable. That is, there exists some

T > 0 such that

P
[

max
o=1,...,N

x1/θ
o Zod(v) ≤ z

]
= e−Tz

−θ
.

Since this holds for any (x1, . . . , xN) ∈ RN
+ , we have

P
[

max
o=1,...,N

x1/θ
o Zod(v) ≤ z

]
= exp

[
−T d(x1, . . . , xN)z−θ

]
.

for T d : RN
+ → R+ defined as

T d(x1, . . . , xN) ≡ − lnP
[

max
o=1,...,N

x1/θ
o Zod(v) ≤ 1

]
.
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Note that the joint distribution of productivity can be written as

P[Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = P[Z1d(v)/z1 ≤ 1, . . . , ZNd(v)/zN ≤ 1]

= P
[

max
o=1,...,N

Zod(v)/zo ≤ 1

]
.

Choosing xo = z−θo and z = 1 we can use the properties of our function T d and get

P
[

max
o=1,...,N

Zod(v)/zo ≤ 1

]
= exp

[
−T d(z−θ1 , . . . , z−θN )

]
.

Therefore, the joint distribution of productivity satisfies

P[Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = e−G
d(T1dz

−θ
1 ,...,TNdz

−θ
N ),

for the function Gd : RN
+ → R+ defined by (x1, . . . , xN) 7→ T d(x1/T1d, . . . , xN/TNd).

We now show that Gd is a correlation function. To do so, we show that the copula

of productivity,

Cd(u1, . . . , uN) ≡ P [F1d(Z1d(v)) ≤ u1, . . . , FNd(ZNd(v)) ≤ uN ]

= P
[
Z1d(v) ≤ F−1

1d (u1), . . . , ZNd(v) ≤ F−1
Nd(uN)

]
≡ exp

[
−Gd(T1dF

−1
1d (u1)−θ, . . . , TNdF

−1
Nd(uN)−θ)

]
≡ exp

[
−Gd(− lnu1, . . . ,− lnuN)

]
,

is an max-stable copula.

To do so, we first show thatGd is homogenous. Fix (x1, . . . , xN) ∈ RN
+ and let λ > 0.

We have

exp
[
−Gd(λx1, . . . , λxN)

]
= P[T1dZ1d(v)−θ ≥ λx1, . . . , TNdZNd(v)−θ ≥ λxN ]

= P[(x1/T1d)
1/θZ1d(v) ≤ λ−1/θ, . . . , (xN/TNd)

−1/θZNd(v) ≤ λ−1/θ]

= P[ max
o=1,...,N

(xo/Tod)
−1/θZod(v) ≤ λ−1/θ]

= exp
[
−T d(x1/T1d, . . . , xN/TNd)λ

]
= exp

[
−λGd(x1, . . . , xN)

]
,

so that Gd(λx1, . . . , λxN) = λGd(x1, . . . , xN) as desired.

Now, we show that Cd is an max-stable copula. Let m > 0 and fix a (u1, . . . , uN) ∈
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[0, 1]N . Using the homogeneity of Gd, we have

Cd(u
1/m
1 , . . . , u

1/m
N )m = exp[−mGd(−m−1 lnu1, . . . ,−m−1 lnuN)]

= exp[−Gd(− lnu1, . . . ,− lnuN)]

= Cd(u1, . . . , uN).

Therefore, Cd is an max-stable copula and Gd is a correlation function.

We now prove the converse. Let Tod > 0 for each o = 1, . . . , N , and let Gd : RN
+ →

R+ be a correlation function. Suppose that {Zod(v)}No=1 satisfies

P[Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = exp
[
−Gd(Todz

−θ
1 , . . . , TNdz

−θ
N )
]
.

We want to show that {Zod(v)}No=1 is θ-Fréchet. Let (x1, . . . , xN) ∈ RN
+ and consider

the distribution of maxo=1,...,N xoZod(v),

P
[

max
o=1,...,N

xoZod(v) ≤ z

]
= P[x1Z1d(v) ≤ z, . . . , xNZNd(v) ≤ z]

= P[Z1d(v) ≤ z/x1, . . . , ZNd(v) ≤ z/xN ]

= exp
[
−Gd(Todx

θ
1z
−θ, . . . , TNdx

θ
Nz
−θ)
]

= exp
[
−Gd(Todx

θ
1, . . . , TNdx

θ
N)z−θ

]
,

where the last equality uses the homogeneity of Gd. Therefore, maxo=1,...,N xoZod(v)

is a θ-Fréchet random variable with scale parameter Gd(Todx
θ
1, . . . , TNdx

θ
N). As a

result, we conclude that {Zod(v)}No=1 is multivariate θ-Fréchet.

Lemma A.3 (Properties of the Correlation Function). Let G : RN
+ → R+ be a correla-

tion function. Then:

1. G is homogenous of degree one.

2. G is unbounded, G(x1, . . . , xN)→∞ as xo →∞ for any o = 1, . . . , N .

3. If the mixed partial derivatives of G exist and are continuous up to order N , then the

o’th partial derivative of G with respect to o distinct arguments is non-negative if o

is odd and non-positive if o is even.

4. G(0, . . . , 0, 1, 0, . . . , 0) = 1.
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Proof. Let G : RN
+ → R+ be a correlation function. Then there exists max-stable

copula, C : [0, 1]N → [0, 1], such that

G(x1, . . . , xN) ≡ − lnC(e−x1 , . . . , e−xN ).

Recall that for an max-stable copula,

C(u1, . . . , uN) = C(u
1/m
1 , . . . , u

1/m
N )m

for all m > 0 and (u1, . . . , uN) ∈ [0, 1]N .

We first show that G is homogenous of degree one. Fix (x1, . . . , xN) ∈ RN
+ and

λ > 0. We have

G(λx1, . . . , λxN) = − lnC(e−λx1 , . . . , e−λxN )

= − lnC((e−x1)λ, . . . , (e−xN )λ)

= − lnC(e−x1 , . . . , e−xN )λ

= −λ lnC(e−x1 , . . . , e−xN )

= λG(x1, . . . , xN)

where the third equality uses the fact that C is an max-stable copula. Therefore, G

is homogenous of degree one.

The unboundedness property follows from the limiting properties of copulas. Fix

o. Then,

lim
xo→∞

e−G
d(x1,...,xN ) = lim

xo→∞
C(e−x1 , . . . , e−xN ) = 0

Therefore, limxo→∞G
d(x1, . . . , xN) =∞ as desired.

The sign-switching property simply follows from the non-negativity of joint prob-

ability density functions. If the mixed partial derivatives of G exist and are con-

tinuous up to order N , then for any integer M ≤ N and distinct integers nm for
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m = 1, . . . ,M we have

∂MC(u1, . . . , uN)

∂un1 , . . . , ∂unM

=
∂M exp [−G(− lnu1, . . . ,− lnuN)]

∂un1 , . . . , ∂unM

= − exp [−G(− lnu1, . . . ,− lnuN)]
∂MG(− lnu1, . . . ,− lnuN)

∂un1 , . . . , ∂unM

= exp [−G(x1, . . . , xN)]
∂MG(x1, . . . , xN)

∂xn1 , . . . , ∂xnM

∣∣∣∣
x1=− lnu1,...,xN=− lnu1

(−1)M−1∏M
m=1 unm

Since C is a copula, its mixed partial derivatives must be non-negative if they exist.

Then the mixed partial derivative of the correlation function is

∂MG(x1, . . . , xN)

∂un1 , . . . , ∂unM
= (−1)M−1

M∏
m=1

e−xnm
∂MC(u1, . . . , uN)

∂un1 , . . . , ∂unM

∣∣∣∣
u1=e−x1 ...uN=e−xN

e(x1,...,xN ),

which is non-negative for odd M and non-positive for even M .

Lemma A.4. Let {Xi}Ni=1 be α-Fréchet with scale parameters {Ai}Ni=1 and correlation

function G : RN
+ → R+. Then, for any Bi ≥ 0 i = 1, . . . , N and β > 0, maxi=1,...,N BiX

β
i

is Fréchet with scale G(A1B
α/β
1 , . . . , ANB

α/β
N ), shape α/β.

Proof.

P
[

max
i=1,...,N

BiX
β
i ≤ y

]
= P

[
X1 ≤ (y/B1)1/β, . . . , XN ≤ (y/BN)1/β

]
= exp

[
−G(A1(y/B1)−α/β, . . . , AN(y/BN)−α/β)

]
= exp

[
−G(A1B

α/β
1 , . . . , ANB

α/β
N )y−α/β

]
.

Lemma A.5. Let {Xi}Ni=1 be θ-Fréchet with scale parameters {Ti}Ni=1 and continuously

differentiable correlation function G : RN
+ → R+. Then

1. P [Xi = maxi′=1,...,N Xi′ ] = TiGi(T1,...,TN )
G(T1,...,TN )

whereGi(x1, . . . , xN) ≡ ∂G(x1, . . . , xN)/∂xi;

2. P [Xi ≤ x | Xi = maxi′=1,...,N Xi′ ] = P [maxi=1,...,N Xi ≤ x] .
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Proof. We first prove part 1. We have, for Gi(x1, . . . , xN) = ∂G(x1, . . . , xN)/∂xi,

P
[

max
i′=1,...,N

Xi′ ≤ x and Xi = max
i′=1,...,N

Xi′

]
= P [Xj ≤ x and Xi ≤ Xi′ ,∀i′ 6= i]

=

∫ x

0

∂

∂t
P [Xi′ ≤ z,∀i′ 6= i, and Xi ≤ t]|z=t dt =

∫ x

0

∂

∂xi
e−G(T1x

−θ
1 ,...,TNx

−θ
N )
∣∣∣
x1=t,...,xN=t

dt

=

∫ x

0

e−G(T1x
−θ
1 ,...,TNx

−θ
N )Gi(T1x

−θ
1 , . . . , TNx

−θ
N )Tiθx

−θ−1
i

∣∣∣
x1=t,...,xN=t

dt

=

∫ x

0

e−G(T1,...,TN )t−θGi(T1, . . . , TN)Tiθt
−θ−1dt

=
TiGi(T1, . . . , TN)

G(T1, . . . , TN)

∫ x

0

e−G(T1,...,TN )t−θG(T1, . . . , TN)θt−θ−1dt

=
TiGi(T1, . . . , TN)

G(T1, . . . , TN)
e−G(T1,...,TN )x−θ .

Let x→∞ to get P [Xi = maxi′=1,...,N Xi′ ] = TiGi(T1,...,TN )
G(T1,...,TN )

.

Finally, part 2 follows from the previous results:

P
[

max
i′=1,...,N

Xi′ ≤ x | Xi = max
i′=1,...,N

Xi′

]
=

P [maxi′=1,...,N Xi′ ≤ x and Xi = maxi′=1,...,N Xi′ ]

P [Xi = maxi′=1,...,N Xi′ ]

=

TiGi(T1,...,TN )
G(T1,...,TN )

e−G(T1,...,TN )x−θ

TiGi(T1,...,TN )
G(T1,...,TN )

= e−G(T1,...,TN )x−θ = P
[
max
i
Xi ≤ x

]
.
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B Proofs

B.1 Proof of Theorem 1

Sufficiency follows from Campbell’s theorem (see Kingman, 1992) as follows. Un-

der Assumption 1,

P [Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ]

= P
[

max
i=1,2,...

Qi(v)Aod(χi(v)) ≤ zo,∀o = 1, . . . , N

]
= P [Qi(v)Aod(χi(v)) ≤ zo,∀o = 1, . . . , N, ∀i = 1, 2, . . . ]

= P
[
Qi(v) ≤ min

o=1,...,N
zo/Aod(χi(v)), ∀i = 1, 2, . . .

]
= P

[
Qi(v) > min

o=1,...,N
zo/Aod(χi(v)), for no i = 1, 2, . . .

]
.

This last expression is a void probability. Under Assumption 2, we can compute it

by applying Campbell’s theorem,

P
[
Qi(v) > min

o=1,...,N
zo/Aod(χi(v)), for no i = 1, 2, . . .

]
= exp

[
−
∫
X

∫ ∞
mino=1,...,N zo/Aod(χ)

θq−θ−1dqdµ(χ)

]

= exp

[
−
∫
X

max
o=1,...,N

Aod(χ)θz−θo dµ(χ)

]
,

for Tod ≡
∫
X Aod(χ)θdµ(χ). By the monotone convergence theorem,

P[Zod ≤ zo] = lim
z′o→∞∀o′ 6=o

exp

[
−
∫
X

max
o=1,...,N

Aod(χ)θz−θo dµ(χ)

]
= exp

[
−
∫
X
Aod(χ)θz−θo dµ(χ)

]
= exp

[
−Todz−θo

]
,

for Tod ≡
∫
X Aod(χ)θdµ(χ). Therefore, the marginal distribution of Zod(v) is Fréchet

with scale Tod and shape θ.
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For each o = 1, . . . , N let αo ≥ 0. Then

P
[

max
o=1,...,N

αoZ1d(v) ≤ z

]
= P

[
Z1d(v) ≤ α−1

o z∀o = 1, . . . , N
]

= exp

[
−
∫
X

max
o=1,...,N

Aod(χ)θαθodµ(χ)z−θ
]
,

which is a Fréchet distribution with scale
∫
X maxo=1,...,N Aod(χ)θαθodµ(χ) and shape

θ. Therefore, (Z1d(v), . . . , ZNd(v)) is max-stable multivariate Fréchet. It’s correla-

tion function is Gd(x1, . . . , xN) ≡
∫
X maxo=1,...,N

Aod(χ)θ

Tod
xodµ(χ).

Necessity follows from Theorem 1 in Kabluchko (2009), which states that any θ-

Fréchet process has a spectral representation. Let {Zod}o=1,...,N be a θ-Fréchet pro-

cess on {1, . . . , N}—that is, a multivariate θ-Fréchet random vector. Then there

exists a σ-finite measure space (X ,X, µ), spectral functions {Aod(χ)}o=1,...,N with∫
X Aod(χ)θdχ <∞, and a Poisson process {Qi, χi}i=1,2,... with intensity θq−θ−1dqdµ(χ)

such that Zod = maxi=1,2,...QiAod(χi). Taking {Zod(v)}o=1,...,N across v ∈ [0, 1] to be

i.i.d. copies of {Zod}o=1,...,N completes the proof.

B.2 Proof of Corollary 1

Suppose Assumptions 1 and 2 hold. Suppose that there exists a partition of char-

acteristics, {Xk}Kk=1, such that

∫
Xk

1{Aod(χ) ≤ ao ∀o}
dµ(χ)

µ(Xk)
= exp

[
−

N∑
o=1

Aσkkoda
−σk
o

]
,

for some σk and {Akod}No=1, for each k = 1, . . . , K. By Theorem 1, the distribution of

productivity is multivariate θ-Fréchet. The scale for o, d is

Tod =
K∑
k=1

∫
Xk
Aod(χ)θdµ(χ)

=
K∑
k=1

∫ ∞
0

aθo
∂

∂ao
exp

[
−Aσkkoda

−σk
o

]
daoµ(Xk)

=
K∑
k=1

Γ(ρk)A
θ
kodµ(Xk),
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for ρk = 1− θ/σk by Lemma A.4 and Lemma A.1. The correlation function is

Gd(x1, . . . , xN) =
K∑
k=1

∫
Xk

max
o=1,...,N

Aod(χ)θ

Tod
xodµ(χ)

=
K∑
k=1

∫
RN+

max
o=1,...,N

aθo
Tod

xo
∂N

∂a1 . . . ∂aN
exp

[
−

N∑
o=1

Aσkkoda
−σk
o

]
d(a1, . . . , aN)µ(Xk)

=
K∑
k=1

∫ ∞
0

t
∂

∂t
exp

[
−

N∑
o=1

Aσkkod

(
xo
Tod

)σk/θ
t−σk/θ

]
µ(Xk)

=
K∑
k=1

Γ(ρk)

(
N∑
o=1

Aσkkod

(
xo
Tod

)σk
θ

) θ
σk

µ(Xk) =
K∑
k=1

(
N∑
o=1

(ωkodxo)
1

1−ρk

)1−ρk

,

for ωkod ≡ Γ(ρk)A
θ
kodµ(Xk)/Tod by Lemma A.4 and Lemma A.1

B.3 Proof of Proposition 1

To simplify notation, we suppress the destination index, d. By Theorem 1, any

correlation function can be written as

G(x1, . . . , xN) =

∫
X

max
o=1,...,N

ao(χ)xodµ(χ),

with ao(χ) ≡ Ao(χ)θ∫
X Ao(χ)θdµ(χ)

for some measurable space (X ,X), measurable functions

χ → Ao(χ) for each o, and σ-finite meausre µ such that
∫
X Aod(χ)θdµ(χ) < ∞ for

each o.

Since for each o, χ 7→ ao(χ) is measurable, there exists a sequence of monotone in-

creasing simple functions that converges pointwise to it. Without loss of generality

we can take each function in these sequences to have the form

ãno(χ) =
Mn∑
m=1

1{Xmno}amno,

where {Xmno}Mn
m=1 is a pairwise disjoint partition of X . Next, let {Xkn}Knk=1 be the

largest pairwise disjoint partition of X that is a refinement of {Xmno}Mn
m=1 for every

o and define simple functions with respect to this new partition of the form

ano(χ) =
Kn∑
k=1

1{Xkn}akno,
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such that ãno(χ) = ano(χ) for all χ ∈ X . This construction makes the collection of

simple functions defined on a common partition of characteristics.

Define

Fn(x1, . . . , xN) ≡ n

n+ 1

∫
X

max
o=1,...,N

ano(χ)xodµ(χ) =
n

n+ 1

Kn∑
k=1

max
o=1,...,N

aknoxoµ(Xkn).

Due to the monotone convergence theorem

lim
n→∞

Fn(x1, . . . , xN) = lim
n→∞

n

n+ 1
lim
n→∞

∫
X

max
o=1,...,N

ano(χ)xodµ(χ) = G(x1, . . . , xN).

That is, Fn(x1, . . . , xN) converges pointwise to G(x1, . . . , xN).

We now construct an approximating function that is almost a CNCES correlation

function and lies between Fn(x1, . . . , xN) and Fn+1(x1, . . . , xN). Let ρn ∈ [0, 1). For

any ρkn ∈ [ρn, 1) for k = 1, . . . , Kn we have

Fn(x1, . . . , xN) =
n

n+ 1

Kn∑
k=1

max
o=1,...,N

aknoxoµ(Xkn)

≤ n

n+ 1

Kn∑
k=1

(
N∑
o=1

(aknoxo)
1

1−ρkn

)1−ρkn

µ(Xkn) ≤ n

n+ 1

Kn∑
k=1

N1−ρkn max
o=1,...,N

aknoxoµ(Xkn)

≤ n

n+ 1
N1−ρn

∫
X

max
o=1,...,N

ano(χ)xodµ(χ) ≤ n

n+ 1
N1−ρn

∫
X

max
o=1,...,N

an+1,o(χ)xodµ(χ)

=
n2 + 2n

n2 + 2n+ 1
N1−ρnFn+1(x1, . . . , xN).

If we choose ρn sufficient close to 1, we can achieve n2+2n
n2+2n+1

N1−ρn ≤ 1 since n2+2n
n2+2n+1

<

1 and limρn→1N
1−ρn = 1. In particular, choose ρn ≥ 1−

ln n2+2n+1

n2+2n

lnN
and set

F̂n(x1, . . . , xN) ≡ n

n+ 1

Kn∑
k=1

(
N∑
o=1

(aknoxo)
1

1−ρkn

)1−ρkn

µ(Xkn).

Then

Fn(x1, . . . , xN) ≤ F̂n(x1, . . . , xN) ≤ Fn+1(x1, . . . , xN) ≤ G(x1, . . . , xN).

Since Fn(x1, . . . , xN) → G(x1, . . . , xN) pointwise, we also have F̂n(x1, . . . , xN) →
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G(x1, . . . , xN) pointwise. Moreover, since

Fn(x1, . . . , xN) ≤ F̂n(x1, . . . , xN) ≤ Fn+1(x1, . . . , xN) ≤ F̂n+1(x1, . . . , xN),

the sequence F̂n(x1, . . . , xN) for n = 1, 2, . . . is monotone increasing. Since F̂n(x1, . . . , xN)

is continuous, andG(x1, . . . , xN) is also continuous, by Dini’s theorem, F̂n(x1, . . . , xN)→
G(x1, . . . , xN) uniformly on compact sets.

We now construct a CNCES correlation function whose difference with F̂n(x1, . . . , xN)

uniformly converges to zero. Let

δno ≡
∫
X
ano(χ)dµ(χ) =

Kn∑
k=1

aknoµ(Xkn).

By the monotone convergence theorem limn→∞ δno = 1 since
∫
X ao(χ)dµ(χ) = 1.

Define ωkno ≡ δ−1
no aknoµ(Xkn) and

Ĝn(x1, . . . , xN) ≡
Kn∑
k=1

(
N∑
o=1

(ωknoxo)
1

1−ρkn

)1−ρkn

.

Because
∑Kn

k=1 ωkno = 1, Ĝn(x1, . . . , xN) is a CNCES correlation function.

Note that Ĝn(x1, . . . , xN) ≥ F̂n(x1, . . . , xN), and hence

|Ĝn(x1, . . . , xN)− F̂n(x1, . . . , xN)|

=

∣∣∣∣∣∣
Kn∑
k=1

(
N∑
o=1

(δ−1
no aknoxo)

1
1−ρkn

)1−ρkn

µ(Xkn)− F̂n(x1, . . . , xN)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

max
o=1,...,N

δ−1
no

) Kn∑
k=1

(
N∑
o=1

(aknoxo)
1

1−ρkn

)1−ρkn

µ(Xkn)− F̂n(x1, . . . , xN)

∣∣∣∣∣∣
=

∣∣∣∣n+ 1

n
max

o=1,...,N
δ−1
no − 1

∣∣∣∣ F̂n(x1, . . . , xN).

We now show that the CNCES correlation function, Ĝn(x1, . . . , xN), converges uni-
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formly on compact sets to G(x1, . . . , xN). Fix any compact set X ⊂ RN
+ . We have

lim
n→∞

sup
(x1,...,xN )∈X

|Ĝn(x1, . . . , xN)−G(x1, . . . , xN)|

≤ lim
n→∞

sup
(x1,...,xN )∈X

|Ĝn(x1, . . . , xN)− F̂n(x1, . . . , xN)|

+ lim
n→∞

sup
(x1,...,xN )∈X

|F̂n(x1, . . . , xN)−G(x1, . . . , xN)|

≤ lim
n→∞

∣∣∣∣n+ 1

n
max

o=1,...,N
δ−1
no − 1

∣∣∣∣ lim
n→∞

sup
(x1,...,xN )∈X

F̂n(x1, . . . , xN)

+ lim
n→∞

sup
(x1,...,xN )∈X

|F̂n(x1, . . . , xN)−G(x1, . . . , xN)|

≤ lim
n→∞

∣∣∣∣n+ 1

n
max

o=1,...,N
δ−1
no − 1

∣∣∣∣ sup
(x1,...,xN )∈X

G(x1, . . . , xN) = 0.

The last inequality holds since F̂n(x1, . . . , xN) converges uniformly toG(x1, . . . , xN)

on compact sets, which means that the second term is zero, and also means we can

interchange the limit and supremum in the first term. Therefore, Ĝn(x1, . . . , xN)

converges uniformly to G(x1, . . . , xN) on compact sets.

B.4 Proof of Proposition 2

Since destination prices are given by (2), the price index in destination d is

Pd =

[∫ 1

0

min
o=1,...,N

(Wo/Zod(v))1−ηdv
] 1

1−η

=

[
E max
o=1,...,N

(Zod(v)/Wo)
η−1dv

] 1
1−η

= γGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)− 1
θ

= Gd
(
P−θ1d , . . . , P

−θ
Nd

)− 1
θ ,

where Pod ≡ γT
−1/θ
od Wo, γ = Γ

(
θ+1−η
θ

) 1
1−η , due to Appendix Lemma A.4 and Ap-

pendix Lemma A.1.
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The expenditure share of d on o is

πod ≡
Xod

Xd

=

∫ 1

0

(
Pd(v)

Pd

)1−η

1

{
Wo

Zod(v)
= Pd(v)

}
dv

= E
(
Pd max

o′=1,...,N

Zo′d(v)

Wo′

)η−1

1

{
Zod(v)

Wo

= max
o′=1,...,N

Zo′d(v)

Wo′

}
= E

[(
Pd max

o′=1,...,N

Zo′d(v)

Wo′

)η−1

| Zod(v)

Wo

= max
o′=1,...,N

Zo′d(v)

Wo′

]
P
[
Zod(v)

Wo

= max
o′=1,...,N

Zo′d(v)

Wo′

]

= E

[(
Pd max

o′=1,...,N

Zo′d(v)

Wo′

)η−1
]
P
[
Zod(v)

Wo

= max
o′=1,...,N

Zo′d(v)

Wo′

]

= E

[(
Pd(v)

Pd

)1−η
]
P
[
Zod(v)

Wo

= max
o′=1,...,N

Zo′d(v)

Wo′

]
,

= P
[

Wo

Zod(v)
= min

o′=1,...,N

Wo′

Zo′d(v)

]
using part 2 of Appendix Lemma A.5 and the previous result for the price level.

By part 1 of Appendix Lemma A.5,

P
[

Wo

Zod(v)
= min

o′=1,...,N

Wo′

Zo′d(v)

]
=
TodW

−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

=
P−θod G

d
o(P

−θ
1d , . . . , P

−θ
Nd)

Gd(P−θ1d , . . . , P
−θ
Nd)

.

B.5 Proof of Proposition 3

Let Assumptions 1 and 2 hold and suppose there exists a partition of character-

istics, {Xk}Kk=1, such that, for each k, applicability restricted to Xk is independent

σk-Fréchet across origins. Then productivity is θ-Fréchet. The correlation function

is CNCES as in (9) and expenditure shares are given by (16).

First, we can recover bilateral import prices up to a factor-destination constant

using the within-factor component in (16),

ω
− 1−ρk

θ
kod Pod/Pd(∑N

o′=1 ωko′d(Po′d/Pd)
− θ

1−ρk

)− 1−ρk
θ

=

(
X∗kod∑N
o′=1 X

∗
ko′d

)− 1−ρk
θ

.

The denominator on the left-hand-side can be recovered from the between-factor
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component in (16),

(
N∑
o′=1

ωko′d (Po′d/Pd)
− θ

1−ρk

)− 1−ρk
θ

=

(
N∑
o′=1

X∗ko′d
Xd

)− 1
θ

.

Together we have

ω
− 1−ρk

θ
kod Pod/Pd =

(
X∗kod∑N
o′=1 X

∗
ko′d

)− 1−ρk
θ
(

N∑
o′=1

X∗ko′d
Xd

)− 1
θ

.

Take this result to a power of −θ and sum across k to get

(Pod/Pd)
−θ =

K∑
k=1

(
X∗kod∑N
o′=1X

∗
ko′d

)1−ρk ( N∑
o′=1

X∗ko′d
Xd

)
=

K∑
k=1

(
X∗kod
Xd

)1−ρk
(

N∑
o′=1

X∗ko′d
Xd

)ρk

.

The gains from trade relative to autarky are then

Wd/Pd
WA
d /P

A
d

=

(
K∑
k=1

(
X∗kdd
Xd

)1−ρk
(

N∑
o=1

X∗kod
Xd

)ρk)− 1
θ

= π
− 1
θ

dd

(
K∑
k=1

X∗kdd
Xdd

(
N∑
o=1

X∗kod
X∗kdd

)ρk)− 1
θ

.

58



C Derivations

C.1 Solving for Correlation-Adjusted Trade Shares

Using the homogeneity of degree zero of Gd
o, expenditure shares in (13) can be

written as

πod =

(
Pod
Pd

)−θ
Gd
o

[(
P1d

Pd

)−θ
, . . . ,

(
PNd
Pd

)−θ]
,

where P−θod ≡ TodW
−θ
o . Noting that π̃od ≡ πod/G

d
o

(
P−θ1d , . . . , P

−θ
Nd

)
= (Pod/Pd)

−θ

yields the system

πod = π̃odG
d
o (π̃1d, . . . , π̃Nd) for o = 1, . . . , N. (C.1)

Given expenditure share data and the correlation function for each d = 1, . . . , N ,

the expression in (C.1) constitutes a system of N equations in the N unknown

correlation-adjusted expenditure shares across origins.

The correlation adjustment is well defined. The mapping from RN
+ to RN

+ , defined

by the right-hand side of the system in (C.1), satisfies strict gross substitutability

and is homogenous of degree one. As a result, it is injective and there is a unique

solution for {π̃od}No=1, given {πod}No=1 (see, for instance, Berry et al., 2013).

C.2 Expenditure Elasticities

The within-k elasticity of substitution is

∂ ln
X∗kod
Xd

∂ ln
Po′d
Pd

=
∂ ln

∂ ln
Po′d
Pd

(ωkod(Pod/Pd)
−θ)

1
1−ρk∑N

n=1(ωknd(Pnd/Pd)−θ)
1

1−ρk

(
N∑
n=1

(ωknd(Pnd/Pd)
−θ)

1
1−ρk

)1−ρk

= −ρk
∂

∂ ln
Po′d
Pd

ln

(
N∑
n=1

(ωknd(Pnd/Pd)
−θ)

1
1−ρk

)
− 1{o = o′} θ

1− ρk

=
ρkθ

1− ρk
(ωko′d(Po′d/Pd)

−θ)
1

1−ρk∑N
n=1(ωknd(Pnd/Pd)−θ)

1
1−ρk

− 1{o = o′} θ

1− ρk

= θ

[
ρk

1− ρk
X∗ko′d∑N
n=1X

∗
knd

− 1{o = o′} 1

1− ρk

]
.
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The aggregate elasticity of substitution is then

εoo′d ≡
∂ ln Xod

Xd

∂ ln
Po′d
Pd

=
∂ ln

∂ ln
Po′d
Pd

K∑
k=1

X∗kod
Xd

=
K∑
k=1

X∗kod
Xod

∂ ln(X∗kod/Xd)

∂ ln
Po′d
Pd

= θ

K∑
k=1

X∗kod
Xod

[
ρk

1− ρk
X∗ko′d∑N
n=1 X

∗
knd

− 1{o = o′} 1

1− ρk

]
.

C.3 Latent Factor Model

Define Psod ≡ γT
−1/θ
sod Wo, where Tsod ≡

∑K
k=1 Γ(ρk)A

θ
kodB

θ
skt
−θ
sodµ(Xk). Generalizing

(16) to be at the sector-origin level rather than just the origin level yields

Xsod =
K∑
k=1

ω
1

1−ρk
skod (Psod/Pd)

− θ
1−ρk∑S

s′=1

∑N
o′=1 ω

1
1−ρk
s′ko′d (Ps′o′d/Pd)

− θ
1−ρk

(
S∑

s′=1

N∑
o′=1

ω
1

1−ρk
s′ko′d (Ps′o′d/Pd)

− θ
1−ρk

)1−ρk

Xd,

where

ωskod ≡
Γ(ρk)A

θ
kodB

θ
skt
−θ
sodµ(Xk)∑K

k′=1 Γ(ρk′)Aθk′odB
θ
sk′t
−θ
sodµ(Xk′)

.

Aggregating over sectors yields aggregate expenditure,

Xod =
K∑
k=1

∑S
s=1 ω

1
1−ρk
skod (Psod/Pd)

− θ
1−ρk∑S

s=1

∑N
o′=1 ω

1
1−ρk
sko′d (Pso′d/Pd)

− θ
1−ρk

(
S∑
s=1

N∑
o′=1

ω
1

1−ρk
sko′d (Pso′d/Pd)

− θ
1−ρk

)1−ρk

Xd.

Note that

ω
1

1−ρk
skod (Psod)

− θ
1−ρk = (AθkodB

θ
skt
−θ
sodµ(Xk)W−θ

o )
1

1−ρk

= (Aθkodµ(Xk)W−θ
o )

1
1−ρk (t∗kod)

− θ
1−ρk

(
tsod
t∗kod

)− θ
1−ρk

λsk

S∑
s=1

Bσk
sk

=

(
tsod
t∗kod

)− θ
1−ρk

λsk

(
t∗kodWo

A∗kod

)− θ
1−ρk

,

where t∗kod ≡
(∑S

s=1 t
−σk
sod λsk

)− 1
σk , λsk ≡

B
σk
sk∑S

s′=1B
σk
s′k

, andA∗kod ≡
(∑S

s=1 B
σk
sk

) 1
σk Akodµ(Xk)1/θ.

Then,

S∑
s=1

ω
1

1−ρk
skod (Psod)

− θ
1−ρk =

S∑
s=1

(AθkodB
θ
skt
−θ
sodµ(Xk)W−θ

o )
1

1−ρk = (t∗kodWo/A
∗
kod)

− θ
1−ρk ,
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since
∑

s λsk = 1.

Replacing in aggregate expenditure yields

Xod =
K∑
k=1

(t∗kodWo/A
∗
kod)

− θ
1−ρk∑N

o′=1(t∗ko′dWo′/A∗ko′d)
− θ

1−ρk

(
N∑
o′=1

(
t∗ko′dWo′/A

∗
ko′d

Pd

)− θ
1−ρk

)1−ρk

Xd,

Define Tod ≡
∑K

k=1(A∗kod/t
∗
kod)

θ, ωkod ≡ (A∗kod/t
∗
kod)

θ/
∑K

k′=1(A∗k′od/t
∗
k′od)

θ, and Pod ≡
T
−1/θ
od Wo. This expression coincides with the one in (16).

We can further substitute into the sector-level demand system to obtain (23),

Xsod =
K∑
k=1

(
tsod
t∗kod

)− θ
1−ρk λsk(t

∗
kodWo/A

∗
kod)

− θ
1−ρk∑S

s′=1

∑N
o′=1 ω

1
1−ρk
s′ko′d (Ps′o′d/Pd)

− θ
1−ρk

(
S∑

s′=1

N∑
o′=1

ω
1

1−ρk
s′ko′d (Ps′o′d/Pd)

− θ
1−ρk

)1−ρk

Xd

=
K∑
k=1

(
tsod
t∗kod

)− θ
1−ρk

λsk
ω

1
1−ρk
kod (Pod/Pd)

− θ
1−ρk∑N

o′=1 ω
1

1−ρk
ko′d (Po′d/Pd)

− θ
1−ρk

(
N∑
o′=1

ω
1

1−ρk
ko′d (Po′d/Pd)

− θ
1−ρk

)1−ρk

Xd

=
K∑
k=1

(
tsod
t∗kod

)− θ
1−ρk

λskX
∗
kod,

where σk = θ
1−ρk

.
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D Data Construction

For our quantitative analysis, we use 4-digit SITC trade flow data and tariff data

from the United Nations COMTRADE Database. We also use trade flow data

in aggregated sector categories from the World Input-Output Database (WIOD).

Gravity covariates are from the Centre D’Études Prospectives et d’Informations

Internationales (CEPII).

D.1 Map from SITC Codes to WIOD Sectors

The WIOD data allow us to compute the total value of trade between a sample of

40 countries across 35 sectors from 1995 through 2011. While the sector classifica-

tion in this dataset comes from aggregating underlying data classified according

to the third revision of the International Standard Industrial Classification (ISIC),

the COMTRADE tariff data are classified according to the second revision of the

Standard International Trade Classification (SITC). In order to merge these data

sources, we construct a mapping that assigns SITC codes to aggregates of WIOD

sectors.

First, we match ISIC and SITC definitions using existing correspondences to Har-

monized System (HS) product definitions. These correspondences come from the

World Bank’s World Integrated Trade Solution (WITS).30 This merge matches 5,701

products out of 5,705 total HS products, creating a HS product dataset with 764

SITC codes and 35 ISIC codes. Note that there are 925 SITC codes in the tariff data

to be classified into WIOD sectors.

Next, we map the ISIC definitions in this merge to 25 aggregates of WIOD sectors.

This leaves products in the ISIC code 99 ("Goods n.e.c.") without a WIOD sector

definition. This results in a HS-product-level dataset with labels for the 25 WIOD

aggregates and 764 SITC codes.

At this point, there are two issues left to address: (1) classifying SITC codes that

have products in multiple WIOD sectors; and (2) classifying the SITC codes in the

tariff data that were either matched to ISIC code 99 or were not matched to any ISIC

code. First, we determine the most common WIOD sector classification (including

"unclassified") at the HS product level of each 4-digit SITC code within the merge.

30They are available at https://wits.worldbank.org/product_concordance.html.
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We re-classify all products within an 4-digit SITC sector as belonging to the most

common WIOD sector, and break ties manually. This step resolves issue (1) and

leaves us with 764 4-digit SITC codes mapped to a unique WIOD sector, and 161 4-

digit SITC codes left unclassified. Second, we resolve issue (2) by refining the map

by using the most common classification of HS products within each 3-digit SITC

code, again breaking ties manually. In this step, we only use the most-common

classification at the 3 digit level to classify previously unclassified 4-digit SITC

codes, filling in the map. This step mostly resolves issue (2), leaving only 12 4-

digit SITC codes unclassified. We complete the map by manually classifying the

12 remaining codes.This results in a map from 925 4-digit SITC codes to 25 WIOD

aggregates.

D.2 Reconciling WIOD and COMTRADE Data

We drop those countries in WIOD with completely missing data in COMTRADE,

and aggregate the 35 WIOD sectors to the 25 aggregates in our concordance with

4-digit SITC codes, and restrict the sample to 1999 through 2007. These restrictions

leave a balanced sample of 25 WIOD aggregates for 31 countries over 9 years.31

Finally, we keep the 14 WIOD aggregates that correspond to traded goods.

We then turn to the COMTRADE data. First, we drop all countries not in our

WIOD sample and drop a few instances of self-trade that only appear in a few

countries. We then merge the data with WIOD data, scaling units of both datasets

to be in thousands of US dollars, and adding missing observations to fill in all

possible pairs of the 925 SITC codes, 31 origin countries, 31 destination countries,

and 9 years.

Next, we compare the WIOD aggregate level expenditure implied by the COM-

TRADE data to the values coming from WIOD in order to infer missing values

and zeros in the underlying SITC-level expenditure data. On average, the two data

sets match at the WIOD aggregate level. However, there are some instances where

WIOD aggregates are larger than WIOD aggregates implied by COMTRADE, and

some instances where they are smaller. In the former case, we infer that there are

true missing values in the COMTRADE data, while in the later case we infer that

31There exist three small negative values in this dataset, which all are instances of self trade for
certain sectors and are negligible share of total self-trade. We assume that output is incorrect and
replace these value with zero (effectively increasing output in that WIOD aggregate and country).
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the WIOD aggregates have missing underlying values and the missing values in

COMTRADE are actually zeros.

We adjust the data as follows. Conditional on having a zero in the corresponding

WIOD aggregate, 20.6 percent of SITC observations have a value in COMTRADE.

The remaining we infer to be true zeros rather than missing observations, so when-

ever the WIOD aggregate is zero and a SITC value is missing, we set the SITC value

to zero. Otherwise, we assume that the WIOD data is incorrect and use the infor-

mation in the COMTRADE data to fill in the zeros in the WIOD. For observations

where WIOD aggregates are positive, we infer zeros and missing values in COM-

TRADE as follows. First, if the WIOD aggregate value implied by COMTRADE

is missing but the WIOD aggregate is positive, we treat all the underlying SITC

observations from COMTRADE as missing. Second, if the WIOD aggregate is less

than the WIOD aggregate implied by COMTRADE, we infer that the WIOD data

is incorrect, replace its value with the value implied by COMTRADE, and treat all

the SITC missing values underlying the aggregate as zeros. Finally, if the WIOD

aggregate is greater than the WIOD aggregate implied by COMTRADE, we infer

that the discrepancy is due to missing values in COMTRADE. As such, we leave

all missing SITC-level observations underlying the WIOD aggregate as true miss-

ing values. The resulting dataset has 23.3 percent inferred missing SITC values

and 25.4 percent inferred zeros, and its WIOD aggregates are always greater than

or equal to the aggregate of the underlying SITC expenditure data. We observe

no self-trade data in COMTRADE, so conditional on self trade, all SITC values are

missing. Among missing values, 13.9 percent are self trade observations.

D.3 Tariff Interpolation

Although our estimation can handle missing expenditure values at the SITC-level,

it requires a full sample of tariff observations. We use the tariff measure in COM-

TRADE which is the minimum of tariffs across underlying products. 49.1 percent

of these tariff values are missing including missing values associated with self-

trade observations (which make up 3.2 percent of the data). Among those that

are missing, 47.2 percent also have a missing value for expenditure, indicating

that about half of the missing tariff data comes from no COMTRADE observation.

Among observations with a non-missing value for expenditure, 33.8 percent of

tariffs are missing. We interpolate SITC tariff data as follows. First, we use the

64



minimum within each 4-digit SITC code (across origins within a destination-year)

to fill in missing values, which leaves 18.5 percent of observations missing. Sec-

ond, we interpolate using the minimum within each 3-digit SITC code (leaving 1.3

percent missing), the minimum within each 2-digit SITC code (leaving 0.33 per-

cent missing), and, finally, the minimum within each 1-digit SITC code (leaving no

missing values). Finally, we set self-trade tariffs to zero.

D.4 WIOD Aggregate-Level Tariffs

To estimate the independent sector model, we require WIOD sector-level tariff

data. We aggregate the COMTRADE tariff data to the WIOD aggregate sector level

as follows. We use our model-based aggregation procedure to compute the aggre-

gate applied tariff and total trade value in the COMTRADE data by SITC code, ex-

porter, importer, and year. In particular, the model implies that when factors cor-

respond to WIOD sectors, the within-WIOD-sector factor weights correspond to

global expenditure shares. Then, up to a first order approximation around zero tar-

iffs, factor-level tariff indices, which under SGM correspond to WIOD sectors, are

equal to a weighted average of underlying 4-digit SITC tariffs using these global

expenditure shares as weights. We use these global expenditure weighted tariff

averages for WIOD sector-level tariffs.
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E Latent Factor Model Estimation: Algorithm

We do not observe all sectors in (25). Additionally, we need to account for observed

tariffs, and simultaneously estimate σk for k = 1, . . . , K. The presence of missing

data requires to use an adjusted version of (26), which we describe in Section E.1.

We solve this adjusted problem using an extension of the multiplicative-update

non-negative matrix factorization (NMF) algorithm of Lee and Seung (1999, 2001)

to accommodate covariates and missing data, which we present in Section E.2.

E.1 Accounting for Missing Data

The WIOD expenditure data occasionally have more expenditure than the total

expenditure across SITC 4-digit sectors within that WIOD aggregate. To model

expenditure coming from sources other than those in the SITC 4-digit data, we

include a synthetic sector within each SITC 4-digit aggregate. When the SITC 4-

digit data match the WIOD data, there is no expenditure on this synthetic sector.

We then have 773 4-digit sectors plus 14 WIOD synthetic sectors, where the former

may be missing, and the latter are always observed. In the following notation we

do not differentiate between these sectors, so that S = 773 + 14.

Appending a t subscript to denote year, let Sjodt be the set of observed sectors for

origin o delivering to destination d at time t in WIOD aggregate j. We use data

from WIOD to construct residual expenditure on unobserved sectors, which is

Rjodt =
∑

s∈S\Sjodt

K∑
k=1

t−σksod λskφkod,

where S = {1, . . . , S}.

Since the sum of Poisson variables is also Poisson with scale equal to the sum of

underlying scale parameters, we can write the objective function in terms of an

observed component and residual component,

L =
∑
jodt

 ∑
s∈Sjodt

`

(
Xsod

Xod

,
K∑
k=1

t−σksod λskφkod

)
+ `

Rjodt,
∑

s∈S\Sjodt

K∑
k=1

t−σksod λskφkod

 .
The algorithm in the following section provides a method to minimize this func-
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tion.

E.2 NMF with Covariates and Missing Data

The extensions in the multiplicative-update non-negative matrix factorization (NMF)

algorithm of Lee and Seung (1999, 2001) do not change the properties of the algo-

rithm.

The data are (Xit, Zit) where i = 1, . . . , N is a (potential) unit of observation, while

t = 1, . . . , T indexes cross sections. We assume that Xit | Zit is a Poisson random

variable with scale

X̂it =
K∑
k=1

Z−σkit λikφkt,

for some unknown parameters {σk,Λk,Φk}Kk=1, with Λk ≡ (λ1k, . . . , λNk)
′ and Φk ≡

(φ1k, . . . , φTk)
′. We assume that all values of Zit are observed, but for each t there

are some (but not all) values of Xit that are unobserved. However, we also observe

some aggregates that are representative of each full cross section. For each i, there

is a j(i) such that in every t we observe

X̄jt ≡
N∑
i=1

1{j(i) = j}Xit.

Although we do not observe all the data at the i-level, we indirectly observe them

via these aggregates.

Let It denote the observations in cross-section t, and define the component of

each aggregate that is attributable to missing data—the residual component of the

aggregate—as

Rjt ≡ X̄jt −
∑
i∈It

1{j(i) = j}Xit =
∑
i 6∈It

1{j(i) = j}Xit.

Since the sum of Poisson random variables is Poisson with scale equal to the sum

of the underlying scales, we have that Rjt | X̂1t, . . . , X̂Nt is Poisson with scale R̂it =∑
i 6∈It 1{j(i) = j}X̂it.

In this setup, each X̂it contributes to explaining the observed data through a unique

observation—either because Xit is observed directly, or because it is unobserved

and shows up in the residual of a unique j. Define the group of potential observa-
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tions that i is aggregated with as Iit = {i} if i ∈ It and Iit = {i′ ∈ It | j(i′) = j(i)}
if i 6∈ It. Then, define

Yit ≡
∑
i′∈Iit

Xi′t =

Xit if i ∈ It

Rj(i)t if i 6∈ It
and Ŷit ≡

∑
i′∈Iit

X̂i′t.

It is useful to define the “filled in” N × T data matrix, Y, with entries [Y]it = Yit

and a prediction matrix Ŷ with entries [Ŷ]it = Ŷit. When there is no missing data,

this prediction matrix can be written as

Ŷ =
K∑
k=1

Z−σk � (ΛkΦ
′
k),

where Z is the matrix of explanatory variables, [Z]it = Zit. In the case without

explanatory variables, set σk = 0 for all k), and get

E[Y] = Ŷ = [Λ1 . . .Λk][Φ1 . . .Φk]
′.

That is, we have a matrix-factorization problem. Because all the data and pa-

rameters are non-negative, it is a non-negative matrix factorization problem. The

present model generalizes this problem to incorporate missing data and explana-

tory variables with factor-specific coefficients.

The Poisson deviance is

L =
T∑
t=1

[∑
i∈It

`(Xit, X̂it) +
J∑
j=1

`

(
Rjt,

∑
i 6∈It

1{j(i) = j}X̂it

)]
.

It is useful to re-write this expression as

L =
T∑
t=1

∑
i∈It

`(Xit, X̂it) +
∑
i 6∈It

`
(
Rj(i)t,

∑
i′ 6∈It 1{j(i

′) = j}X̂i′t

)
∑

i′ 6∈It 1{j(i′) = j}

 .
But then

L =
N∑
i=1

T∑
t=1

`(Yit, Ŷit)

Nit

, (E.1)

where Nit = 1 if i ∈ It and Nit =
∑N

i′=1 1{j(i′) = j(i)} if i 6∈ It. Recall that `(x, x̂) ≡
2(x ln(x/x̂) − (x − x̂)) = 2(x̂ − x ln x̂ + x lnx − x) so that ∂`(x, x̂)/∂x̂ = 2(1 − x/x̂).
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The derivative in λi′k is then

∂L
∂λi′k

= 2
N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

)
1{i′ ∈ Iit}Z−σki′t φkt

Nit

= 2
T∑
t=1

(
1− Yit

Ŷit

)
Z−σki′t φkt.

We can therefore write the gradient in Λk as

∂L
∂Λk

= 2Z−σkΦk − 2

(
Y

Ŷ
� Z−σk

)
Φk,

where [Z]it = Zit and � denotes element-wise multiplication. The update multi-

plies the existing value of Λk by the ratio of the negative component of the gradient

to the positive component,

Λk ← Λk �

(
Y

Ŷ
� Z−σk

)
Φk

(Z−σk)Φk

. (E.2)

Larger entries of Λk increase predicted values. When the current prediction is be-

low the observed value, this update increases Λk, thereby increasing the predicted

values. Any time we update Λk, we follow up by performing Φk ← Φk(1
′Λk), and

Λk ← Λk/(1
′Λk), where 1 denotes a vector of ones. This update has no effect on

predictions and forces the normalization
∑N

i=1 λik = 1.

Similarly, we get an updating rule for Φk given by

Φk ← Φk �

(
Y

Ŷ
� Z−σk

)′
Λk

(Z−σk)′Λk

. (E.3)

Finally, the derivative in σk is

∂L
∂σk

= −2
N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

) ∑
i′∈Iit

Z−σki′t λi′kφkt lnZi′t
Nit

= −2
N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

)
Z−σkit λikφkt lnZit

= −21′
[
Z−σk � (ΛkΦ

′
k)� lnZ− Y

Ŷ
� Z−σk � (ΛkΦ

′
k)� lnZ

]
1.
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The implied updating rule is

σk ← σk �
1′[Z−σk � (ΛkΦ

′
k)� lnZ]1

1′
[
Y

Ŷ
� Z−σk � (ΛkΦ′k)� lnZ

]
1
. (E.4)

Using the proof technique in Lee and Seung (2001), one can show that (E.1) is

monotonically decreasing in any of (E.2), (E.3), and (E.4). To estimate the model,

we sequentially iterate on these updating rules until convergence. With no guar-

antee of finding the global optimum, we repeat the algorithm from many random

starting values and use the version with the lowest value of (E.1) as our estimate.
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F Additional Quantitative Results
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Figure F.1: Factor Weights: 2-Digit Sectors.
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Notes: Estimates of factor weights across 4-digit sectors, aggregated to 2-digit sectoral level.
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Figure F.2: Similarity of Factor Use Across 2-Digit Sectors.
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ua
l

Live animals chiefly for food
Meat and preparations

Dairy products and birds' eggs
Fish, crustacean and molluscs, and preparations thereof

Cereals and cereal preparations
Vegetables and fruit

Sugar, sugar preparations and honey
Coffee, tea, cocoa, spices, and manufactures thereof

Feeding stuff for animals (not including unmilled cereals)
Miscellaneous edible products and preparations

Beverages
Tobacco and tobacco manufactures

Hides, skins and furskins, raw
Oil seeds and oleaginous fruit

Crude rubber (including synthetic and reclaimed)
Cork and wood

Pulp and waste paper
Textile fibres (not wool tops) and their wastes (not in yarn)

Crude fertilizer and crude minerals
Metalliferous ores and metal scrap

Crude animal and vegetable materials, nes
Coal, coke and briquettes

Petroleum, petroleum products and related materials
Gas, natural and manufactured

Animal oils and fats
Fixed vegetable oils and fats

Animal and vegetable oils and fats, processed, and waxes
Organic chemicals

Inorganic chemicals
Dyeing, tanning and colouring materials
Medicinal and pharmaceutical products

Oils and perfume materials; toilet and cleansing preparations
Fertilizers, manufactured

Explosives and pyrotechnic products
Artificial resins and plastic materials, and cellulose esters etc

Chemical materials and products, nes
Leather, leather manufactures, nes, and dressed furskins

Rubber manufactures, nes
Cork and wood, cork manufactures

Paper, paperboard, and articles of pulp, of paper or of paperboard
Textile yarn, fabrics, made-up articles, nes, and related products

Non-metallic mineral manufactures, nes
Iron and steel

Non-ferrous metals
Manufactures of metals, nes

Power generating machinery and equipment
Machinery specialized for particular industries

Metalworking machinery
General industrial machinery and equipment, nes, and parts of, nes

Office machines and automatic data processing equipment
Telecommunications, sound recording and reproducing equipment

Electric machinery, apparatus and appliances, nes, and parts, nes
Road vehicles

Other transport equipment
Sanitary, plumbing, heating, lighting fixtures and fittings, nes

Furniture and parts thereof
Travel goods, handbags and similar containers

Articles of apparel and clothing accessories
Footwear

Professional, scientific, controlling instruments, apparatus, nes
Photographic equipment and supplies, optical goods; watches, etc

Miscellaneous manufactured articles, nes
Animals, live, nes, (including zoo animals, pets, insects, etc)

Armoured fighting vehicles, war firearms, ammunition, parts, nes
Coin (other than gold coin), not being legal tender

Gold, non-monetary (excluding gold ores and concentrates)
Residual

Notes: Similarity is calculated as cosine similarity,
∑
i xiyi/

√
(
∑
i x

2
i

∑
i y

2
i ).
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Table F.1: Similarity of Factor Weights.

Pairs of Factors Pairs of 4-Digit Sectors

Fraction of 4-Digit Sectors Shared Similarity Fraction of Factors Shared Similarity

Mean 0.74 0.05 0.746 0.374
Standard Deviation 0.056 0.035 0.19 0.301
Minimum 0.649 0.001 0.0 0.0
10th Percentile 0.667 0.011 0.429 0.026
Median 0.745 0.046 0.714 0.302
90th Percentile 0.799 0.108 1.0 0.848
Maximum 0.842 0.112 1.0 1.0

Notes: For each column, we computed the measure in the second row for the unit of obser-
vation in the first row, then report the moments of the distribution of the measure across that
unit of observation. Sectors are 4-digit SITC sectors. Similarity is calculated as cosine similarity,∑
i xiyi/

√
(
∑
i x

2
i

∑
i y

2
i ).

Figure F.3: Correlation Function Weights.
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Notes: Each figure shows ωkod across k and o for d = USA. Each row sums to one.
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