
Regional Science and Urban Economics xxx (xxxx) xxx

Contents lists available at ScienceDirect

Regional Science and Urban Economics

journal homepage: www.elsevier.com/locate/regec

Estimating housing rent depreciation for inflation adjustments☆

Luis A. Lopez a,∗, Jiro Yoshida b

a College of Business Administration, University of Illinois at Chicago, 601 S. Morgan St., Rm. 2102, Chicago, IL, 60607, USA
b Smeal College of Business at The Pennsylvania State University, and Graduate School of Economics at the University of Tokyo, 368 Business Building,
University Park, PA, 16802, USA

A R T I C L E I N F O

JEL classification:
R32
D24
E23

Keywords:
Rental properties
Depreciation
Inflation
Consumer price index
Cohort effects

A B S T R A C T

U.S. inflation measures, such as the Consumer Price Index, are adjusted for an aging-bias based on estimates of
the average rent depreciation. This study analyzes the characteristics of rent depreciation using novel, market-
based data on rental contracts in Las Vegas, NV. We find that the estimated annual depreciation rate for new
properties is 0.9% for single-family residences and 1.5% for condominiums. The higher depreciation rate for
condominiums is due to higher functional obsolescence instead of physical deterioration. Rent depreciation rates
are lower for older and smaller structures and vary significantly across neighborhoods. Our results suggest that
local inflation rates are biased downward where new and large units increased since the last update to the
official rent depreciation estimates but upward where the housing stock became older. From an asset pricing
perspective, failing to account for initially high depreciation results in an overvaluation of new properties and
an undervaluation of old properties.

1. Introduction

Measuring inflation is essential to economic decision-making and
public policy, including consumption choice, corporate investment,
monetary policy, and social security. The mismeasurement of inflation
distorts decision-making because real values are estimated by deflat-
ing observed nominal values. However, measuring inflation is not a
straightforward task (e.g., Hausman, 2003; Lebow and Rudd, 2003;
Reinsdorf and Triplett, 2009). In particular, “[t]he treatment of owner-
occupied housing services costs in CPIs is arguably one of the most
difficult issues” (International Monetary Fund et al., 2020) because
owner-occupied housing services are not directly traded in the market.
A bias in the measurement of housing rents will significantly impact
inflation rates because shelter accounts for a large part of the consump-
tion basket (33% for the U.S. Consumer Price Index (CPI) and 41% for
the core CPI excluding food and energy). The recent turmoil from the
coronavirus pandemic (COVID-19) brought concerns about inflation to
the forefront of policy and academic debates. In particular, the relative
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importance of shelter may be even greater today following the sudden
increase in demand for housing space during the COVID-19 pandemic
(e.g., Armantier et al., 2020; Reinsdorf, 2020).

The U.S. Bureau of Labor Statistics (BLS, 2018) estimates inflation
rates for both the rent of primary residence and owners’ equivalent rent
by conducting the CPI Housing Survey of renters. The BLS adjusts for
the aging of the same housing unit by adding the average rent depreci-
ation rate to the observed rent change for each unit in the Housing Sur-
vey.1 Other inflation rates—such as the Personal Consumption Expen-
diture (PCE) Price Index—also depend on this BLS rent index. However,
studies on rent depreciation are scarce despite its importance. The BLS
uses depreciation rates estimated using a regression-based model from
Lane et al. (1988); Randolph (1988); and Campbell (2006) that has
several restrictions that could lead to inaccurate aging effects. Ran-
dolph (1988) estimates the average rent depreciation rate for the nation
(0.36%) and major Metropolitan Statistical Areas (MSAs), ranging from
0.76% for Anchorage to −0.40% (appreciation) for Washington D.C.
Similar rates are estimated by Lane et al. (1988) and Campbell (2006).
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This study analyzes the characteristics of housing rent depreciation
to improve the measurement of inflation rates and the valuation of res-
idential real estate. The economic depreciation of rents includes the
rate of functional obsolescence and physical deterioration such as the
wear and tear of the residential structure. We estimate net depreciation
based on the average level of maintenance in the market, which is the
relevant depreciation concept for the aging adjustment of BLS’s (2018)
rent inflation measure that implicitly includes maintenance effects.2 We
use novel administrative data on residential rental contracts from the
Las Vegas Realtors’ multiple listing service (MLS) for single-family resi-
dences and condominiums, which contains rich information on contract
terms, property characteristics, and location. These MLS data allow us
to estimate depreciation rates for use in either the rent or rent equiv-
alent indices because they mimic the local owner-occupied population
of housing units. The Las Vegas MSA epitomizes growing cities in the
West, which have become more significant for the U.S. economy but
have received profoundly less attention than the much older Eastern
and Midwestern metros. Over the past year alone, home prices in Las
Vegas rose sharply to unprecedented levels as households from across
the nation flee old cities such as San Francisco, New York, and Chicago,
all known to be expensive and dense, in exchange for cities that foster
larger living areas and newer homes.3 From a methodological perspec-
tive, we provide an analysis that other researchers with access to MLSs
in other cities can replicate.

We address four major challenges in estimating rent depreciation
rates. First, we show that the annual depreciation rate is not a linear
function of age after controlling for various property characteristics
and time fixed effects following Lane et al. (1988). Annual deprecia-
tion rates based on a more flexible specification such as a non-linear
age spline significantly differ from those based on a linear deprecia-
tion rate specification. We find that the estimated annual depreciation
rate for new properties is 0.9% for single-family residences and 1.5%
for condominiums. These estimates are significantly higher than the
current age adjustment. However, annual depreciation rates are signif-
icantly lower for older properties. For example, the depreciation rate is
0.5% between 46 and 50 years for single-family residences. Diminishing
depreciation rates are also commonly observed for price depreciation
due to a diminishing proportion of structure values to non-depreciating
land values (e.g., Bokhari and Geltner, 2018; Yoshida, 2020).

Second, the rent depreciation rate is high for a property with a larger
living area. We find that the annual depreciation rate for single-family
residences is 0.13 percentage points higher if the log living area is one-
standard-deviation larger. For condominiums, the annual depreciation
rate is higher by 0.43 percentage points for a one-standard-deviation
larger log living area. The depreciation rate is higher if housing services
are derived more from a depreciating structure rather than land, as in
the case of condominiums where landownership is generally shared.
Because the average structure size has changed significantly over time
and varies by location, rent depreciation rates can significantly differ
from the national average depreciation rate.

Third, the estimated depreciation rate changes significantly when
controlling for location characteristics, especially census tract fixed
effects. Because building ages are highly correlated with neighbor-
hoods, the lack of fine location controls leads to a biased estimate of
age coefficients. Furthermore, rent depreciation rates vary significantly
across census tracts after controlling for a battery of neighborhood char-
acteristics and census tract fixed effects. This neighborhood variation
is likely caused by unobserved property characteristics that are preva-
lent in a neighborhood. Some of these characteristics, such as building

2 For the distinction between net and gross depreciation, see Bokhari and
Geltner (2019). Additional data on maintenance would allow one to disentangle
the two forms of depreciation.

3 See https://www.wsj.com/articles/these-home-buyers-are-taking-a-
chance-on-las-vegas-11617899580.

functions and styles, are associated with depreciation. Thus, we find an
advantage of allowing depreciation rates to vary by neighborhood even
when observed neighborhood characteristics do not affect depreciation
rates.

Fourth, when we decompose age, period, and cohort effects using
the intrinsic estimator (IE) by Yang et al. (2004) and Yang et al. (2008),
the cohort effects are significant even after controlling for a battery of
property and neighborhood characteristics. Cohort effects refer to the
vintage of architectural style or construction technology of a partic-
ular time that may affect the deterioration of rental structures. The
age effects significantly decrease in magnitude, especially for condo-
miniums when we remove cohort effects. Following Francke and van
de Minne (2017), we interpret the attenuated age effects as represent-
ing physical deterioration because cohort effects capture both vintage
effects and the obsolescence of housing functions. The estimated physi-
cal deterioration is comparable between single-family residences and
condominiums. However, our estimate of functional obsolescence is
much lower for single-family residences, possibly because single-family
owners can upgrade housing more easily. The sum of physical deteri-
oration and functional obsolescence suggests that the total economic
depreciation rate for relatively new properties is 1.2% for single-family
residences and 1.8% for condominiums.

From a policy perspective, our findings suggest that the depreciation
rate heterogeneity and the estimation issues we demonstrate signifi-
cantly affect rent-inflation measurements. Failing to account for these
issues will result in biased inflation statistics and CPI computation. The
official inflation statistics would underestimate the local inflation rate
in a city where the composition of housing stock changed significantly
over the past three decades, possibly by gentrification. In such cities,
the housing stock is typically augmented by large condominiums at cen-
tral locations and new structures in suburban locations. Because these
properties have higher depreciation rates than the official depreciation
adjustment, the estimated inflation rate would be biased downward in
these cities.

Although the discrepancy in the inflation rate may be modest, it
accumulates into a great error over time. For example, once correct-
ing for the aging effect adjustment from 0.225% to 0.75% in the West
Urban CPI with a back-of-the-envelope calculation, we find a signifi-
cant divergence between the actual and official CPI that grows over
time when the inflation rate is slightly underestimated each year. As of
March 2020, the official CPI for cities in the West such as Las Vegas
could be underreported by approximately 4.5%. By contrast, following
a similar line of logic, we anticipate that inflation rates will be biased
upward in cities where the housing stock has become older.

Moreover, depreciation heterogeneity can affect the aggregate CPI.
As we show in Appendix A, the BLS first averages rents in a granu-
lar geographical unit, calculates a six-month average growth rate for
the geographical unit, and adjusts the growth rate with a single depre-
ciation rate for the entire city or region. Given the non-linearity of
the aggregation process, heterogeneity will affect the aggregate index
through Jensen’s inequality. As Lane et al. (1988) suggest, it is better to
adjust the rent growth rate for each survey unit with the unique depreci-
ation rate that reflects the property’s characteristics before aggregating
rent growth rates.

Our findings on depreciation heterogeneity also have a significant
implication for real estate investment analysis because an investor
needs to adjust the expected growth in market rents for the aging of
the same property. Using a constant average rent inflation rate will
result in overestimated rents for new properties and underestimated
rents for old properties. Long-term expected capital gains are deter-
mined by rental income growth because changes in interest rates cannot
drive capital gains in the long run (Ambrose et al., 2013; Eichholtz et
al., 2019). Rent depreciation directly decreases capital gains each year.
In contrast, rent depreciation increases the equilibrium income return
(i.e., cap rate). For example, our estimates imply that if a single-family
residence is new (1–5 years), then the property would be overvalued
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by approximately $3,000 (or 1.5%) when using the average deprecia-
tion rate instead of the age-group-specific depreciation rate in a direct
capitalization income valuation approach.4 In contrast, if the single-
family residence is older (51–55 years), then it would be undervalued
by approximately $8,600 (or 4.3%).5 Failing to account for large ini-
tial depreciation results in an overvaluation of new properties and an
undervaluation of old properties. Similarly, valuation will be distorted
for a different size, neighborhood, and property type. Thus, the rent
depreciation estimate is a critical input in investment analysis.

The rest of the paper is organized as follows. Section 2 discusses
the related literature. Section 3 provides an overview of the available
data and sample. Section 4 presents the empirical model along with the
corresponding results, including an analysis of heterogeneous effects.
Section 5 examines cohort effects. Section 6 concludes.

2. Depreciation concepts and the related literature

2.1. Inflation measurement

Measuring the cost of owner-occupied housing has long been a
challenge (e.g., Dougherty and Van Order, 1982; International Mone-
tary Fund et al., 2020). Because of its difficulty, the European Union
excludes owner-occupied housing from its Harmonized Index of Con-
sumer Prices estimates (Hill et al., 2020). The numerous other coun-
tries that include owner-occupied housing in the consumption bas-
ket take several approaches to measuring housing inflation. The three
major approaches are net acquisitions, user-cost, and rental equiva-
lence. (Diewert, 2009; Diewert et al., 2009; Diewert et al., 2020; Hill et
al., 2020).6

The acquisition approach attributes all of the expenditure to the
period of purchase even though durable goods will provide services
beyond the period of purchase. This approach is used for most durable
goods in many countries and for housing in Australia and New Zealand.
However, it does not measure the cost of living during each period. The
user-cost approach measures the cost of housing services by adding the
user-cost components such as interest, repairs, maintenance, property
taxes, and the decline in asset value (Himmelberg et al., 2005). How-
ever, the user-cost approach is not widely used partly because inter-
est as an input causes an endogeneity issue regarding monetary pol-
icy. The user-cost estimation also involves significant empirical chal-
lenges including the choice of the opportunity cost of capital and the
expected capital gains (e.g., Blackley and Follain, 1996; Garner and
Verbrugge, 2009; Verbrugge and Poole, 2010; Hill and Syed, 2016; Hill
et al., 2020).

The rental equivalence approach, which we focus on in this study,
has been used by many countries including the U.S., Mexico, Japan,
Germany, Switzerland, and South Africa (Hill et al., 2020). It measures
the cost of housing services based on owners’ equivalent rent imputed
from the rental price of equivalent houses. This approach is also rec-
ommended for national accounts (International Monetary Fund et al.,
2020). A major challenge is how to measure rents that accurately rep-
resent the opportunity cost of home ownership. An obvious issue is
that rental houses are often located in different neighborhoods from
owner-occupied houses. The Bureau of Labor Statistics (2018) makes

4 Lopez (2021) reports that the average price in residential transactions in
Las Vegas from 2008Q1 to 2018Q2 is approximately $201,000, implying a cap-
italization rate of 8.3% for a single-family residence that generates the aver-
age rental income of $1392 per month shown in our sample. Hence, $3,000 ≈
$201K− $1,392× 12∕(0.083+ .009−0.0076), where 0.9% is the average dep-
recation rate for the 1–5 age group and 0.76% is the overall average depreciate
rate for single-family residences.

5 −$8,600≈$201K−1,392×12/(0.083+0.0043−0.0076).
6 Other approaches include payment and opportunity cost (Diewert and

Nakamura, 2009), though we do not review them in this paper.

a careful reweighting of the rental housing sample to match the geo-
graphical distribution of owner-occupied housing. Another issue is that
the marginal rent determined in the rental housing market can be differ-
ent from rents observed in a survey because rents for sitting tenants can
deviate from the marginal rent (Diewert, 2009; Johnson, 2015; Bentley,
2018). Crone, Nakamura and Voith (2010) point out that the U.S. CPI
rent index omitted rent increases at the time of a tenant change until
the end of 1977, thereby biasing inflation estimates downward. More
recently, Ambrose et al. (2015) demonstrate that the CPI rent index still
has the same issue in the 2000s by showing the divergence between the
CPI rent index and their Repeat Rent Index constructed from newly con-
tracted leases for housing units in apartment complexes. Ambrose, Coul-
son and Yoshida (2018) discuss the effect of inflation measurement on
monetary policy. Our study also uses newly contracted leases because
they reflect the marginal rent determined in the market as Ambrose et
al. (2015) emphasize.

2.2. Rent depreciation

In the inflation measurement, the quality of goods must be held
constant. However, for the same housing unit, the housing structure
ages over repeat observations of rents. Thus, the rent inflation measure
needs to be adjusted for the age bias by adding the estimated deprecia-
tion rate to the observed rent changes (see Appendix A). The Bureau of
Labor Statistics (2018) uses the depreciation rates estimated using the
models proposed by Lane et al. (1988), Randolph (1988), and Campbell
(2006). Their studies are most directly related to ours. To measure the
age bias, they estimate a hedonic model that includes the building age,
age squared, and age interacted with the number of rooms, a rent con-
trol dummy, a detached housing dummy, and a dummy for units built
before 1900. The hedonic control variables include structural charac-
teristics (e.g., dishwasher, central air conditioning), services included
in rent (e.g., gas, electric), and neighborhood characteristics (e.g., pro-
portion of the white population, proportion with a college degree).
They estimate depreciation rates for 27 metropolitan areas. Their stud-
ies have several restrictions that we address in this study.

First, the depreciation rate is assumed to be a linear function of age
between 1900 and 1980 (i.e., log rents are assumed to be a quadratic
function of age). However, we demonstrate that depreciation rates
exhibit a more complex pattern. Second, they assume that the inclu-
sion of measured structural and neighborhood characteristics eliminates
cohort effects. They argue that assuming no cohort effect is better than
assuming no aging effect, but both effects can be significant. Third, they
control for the effect of detached housing only at the rent level and the
average depreciation rate. Thus, they assume all other hedonic coeffi-
cients are common for detached and non-detached housing. They also
assume that the age profile of rents is common to both detached and
non-detached housing.

Lane et al. (1988) estimate depreciation rates for selected metropoli-
tan areas, including New York (0.36%), Chicago (0.22%), Dallas
(0.14%), San Francisco (0.23%), and Washington, D.C. (0.17%). These
area-average depreciation rates are applied equally to all properties in
the same area. Malpezzi, Ozanne and Thibodeau (1987) estimate the
average rent depreciation for more locations using a log-linear rent
model with a polynomial age function and data from the American
Housing Survey. For the Las Vegas MSA, the rent depreciation estimates
that commingle single-family residences and condominiums range from
2.1% for new properties to 1.5% for older properties. More recent stud-
ies mention a rent depreciation issue but do not provide new estimates
(e.g., Gordon and van Goethem, 2007; Diewert et al., 2009; Verbrugge
et al., 2017).

Depreciation rates are also heterogeneous. Hill and Syed (2016) dis-
cuss how depreciation rates may differ for different segments of the
market in their effort to estimate the user-cost of housing. Verbrugge et
al. (2017) stress the importance of heterogeneity in rents across loca-
tions and identify a persistent relation between the change in rent and
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the change in the desirability of locations. Public intervention such as
rent controls and subsidies also affect depreciation (e.g., Walters, 2009).

Dixon et al. (1999) call for more elaborate studies on rental depre-
ciation as the basis for price depreciation. Because a house price is the
present discounted value of future rents (or the owner’s equivalent rent
for owned housing), rent depreciation and price depreciation are tightly
linked.

2.3. Price depreciation

Property depreciation usually refers to economic depreciation
defined as a decline in the asset price due to aging (Hulten and Wykoff,
1981). Asset price depreciation is closely related with rent depreciation.
In Appendix B, we develop a property valuation model built on depre-
ciating housing rents to demonstrate how rent depreciation rates are
related to value depreciation rates. Following DiPasquale and Wheaton
(1995), we decompose housing rents into land rents and structure rents.
We assume that land rents are constant over time after fluctuations
and trends in rents are removed, whereas structure rents depreciate
due to physical deterioration and functional obsolescence. The prop-
erty value—the present discounted value of future rents—depreciates
due to both rent depreciation and a shorter structure life. In general,
the property value depreciation rate is higher than the rent deprecia-
tion rate in an economy in which slowly depreciating structures account
for a significant part of the property value, as in the U.S. The opposite
relation can be observed when the rent depreciation rate is high and
land value is significant (e.g., Xu et al., 2018).

Most studies estimate the depreciation of property values partly
because property value data are more easily available than rental
rate data. Furthermore, to model depreciation, a cross-sectional hedo-
nic regression is commonly used because transaction data for differ-
ent properties with various ages are more easily available than panel
data for the same properties (e.g., Hulten and Wykoff, 1981; Goodman
and Thibodeau, 1995; 1997; 1998; Clapp and Giaccotto, 1998; Coulson
and McMillen, 2008; Yoshida and Sugiura, 2015; Bokhari and Geltner,
2018; Francke and van de Minne, 2017).

Other studies estimate value depreciation by combining the aggre-
gate flow investment data and real estate stock data, typically in the
National Accounts (e.g., Hulten and Wykoff, 1981; Hayashi, 1991;
Davis and Heathcote, 2005; Economic and Social Research Institute,
2011). These studies estimate the implicit depreciation rate in a stock
accumulation equation. The third method utilizes data on demolished
buildings (e.g., Yoshida, 2020). The building age at the time of demoli-
tion allows one to estimate the annual depreciation rate of a structure.

The estimated depreciation rates for the structure component of res-
idential property value fall within a relatively narrow range in the
U.S.: 1.36% (Leigh, 1980), 1.89% (Knight and Sirmans, 1996), and
1.94% (Harding et al., 2007). Based on the National Accounts, the rate
is 1.57% between 1948 and 2001 (Davis and Heathcote, 2005). The
depreciation rate for the entire property is lower than these rates due
to the non-depreciating land component.

2.4. Cohort effects and depreciation decomposition

Economic depreciation is caused by both physical
deterioration—wear and tear of the structure—and functional
obsolescence from technological progress and changes in consumer
tastes. External obsolescence caused by a change in neighborhood
characteristics can be combined with functional obsolesce and thus
affect economic depreciation (Wilhelmsson, 2008). For the purpose of
inflation measurement and national accounts, the relevant depreciation
concept is the total economic depreciation from both deterioration and
obsolescence.

Nonetheless, the decomposition of economic depreciation helps us
better understand the characteristics of depreciation. For an investor
or homeowner, for example, the distinction between physical deteri-
oration and functional obsolescence would influence decisions about
maintenance and capital improvement expenditures. However, it is not
easy to disentangle physical deterioration and functional obsolescence.
Many hedonic regression studies include period effects (i.e., time fixed
effects) that control for changes in market conditions but omit cohort
effects, which could result in a biased estimate of the depreciation rate
(Browning et al., 2012). Francke and van de Minne (2017) argue that
functional obsolescence is associated with the time of construction (i.e.,
cohort effects) because the functional characteristics of a house are
determined largely by the taste and technology prevalent at the time of
construction. At the same time, cohort effects include additional vintage
premia or discounts associated with construction qualities (Coulson and
McMillen, 2008).

A significant challenge to estimating the physical depreciation rate
net of functional obsolescence is perfect collinearity among age, period,
and cohort. A linear model cannot simultaneously account for these
three variables. Consequently, cohort effects are often omitted in depre-
ciation rate estimations (e.g., Randolph, 1988; Lane et al., 1988). How-
ever, it is not desirable to arbitrarily restrict cohort effects to zero. Alter-
natively, the econometricians can impose a specific functional form on
one of the three effects. A standard practice is to assume that log rents
are a quadratic function of age while keeping the other two effects flex-
ible. However, there is evidence that a quadratic function cannot rep-
resent the age function (e.g., Coulson and McMillen, 2008; Francke and
van de Minne, 2017).

Coulson and McMillen (2008) address this empirical challenge by
using the method proposed by McKenzie (2006), which can be consid-
ered a variant of constrained generalized linear models. Specifically,
they estimate the second differences of age, period, and cohort effects
with no normalization restrictions. Then, they recover the function for
each effect by integrating the second differences by setting an arbitrary
slope for a base segment of each function. However, this method is
sensitive to the arbitrary choice of the identifying constraint, which is a
common issue for any constrained linear model (Browning et al., 2012).

Francke and van de Minne (2017) address the multicollinearity
problem by imposing a constraint based on the economic decomposi-
tion of property value into structure and land. Their constraint is that
the age coefficient represents the physical deterioration of structures,
the cohort coefficient represents the sum of functional obsolescence
and vintage effects, and the time coefficient represents the effect of
land price and current construction costs. A key identifying assumption
is that functional obsolescence depends only on the time of construc-
tion. Rolheiser, van Dijk and van de Minne (2020) compare house price
returns across vintages in the Netherlands because vintage-associated
supply constraints can affect house price returns in later years. They
find that properties built before 1900 exhibit significantly higher price
appreciation during 2000 and 2017 than those build just prior to the
sample period after controlling for granular location fixed effects.

In our study, we use the IE method, which is widely used in demog-
raphy and epidemiological research to address collinearity among age,
period, and cohort (Yang et al., 2004; Yang et al., 2008). The IE
addresses the age-period-cohort multicollinearity problem using a prin-
cipal components regression method. The method essentially decom-
poses parameters and removes the component that causes the singular-
ity of regressors (i.e., the component corresponding to the eigenvalue
zero). The IE is consistent and unbiased and is more efficient than con-
strained linear estimators (Yang et al., 2004; Yang et al., 2008). Brown-
ing, Crawford and Knoef (2012) show that the IE and their maximum
entropy estimator provide more reasonable estimates than linear esti-
mators with arbitrary constraints.
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Table 1
Summary statistics by property type.

Panel A: Single-Family Residences (N = 188,219)
Variable Mean SD Q25 Q50 Q75

Contract Rent ($) 1,392 507 1,100 1,292 1,500
Building Age 14.8 10.2 8.0 12.0 19.0
Living Area (Size) Square-Footage 1,908 645 1,478 1,754 2,168
Lot Area Square-Footage 5,344 2,982 3,920 4,792 6,510
Bedrooms 3.4 0.7 3.0 3.0 4.0
Bathrooms 2.7 0.6 2.0 3.0 3.0
Fireplaces 0.50 0.61 0.00 0.00 1.00
Private Poold 0.13 0.33 0.00 0.00 0.00
Private Spad 0.09 0.28 0.00 0.00 0.00
Garage Car Spaces 2.05 0.58 2.00 2.00 2.00

Panel B: Condominiums (N = 89,324)
Variable Mean SD Q25 Q50 Q75

Contract Rent ($) 1,024 545 750 895 1,100
Building Age 17.7 10.4 10.0 15.0 24.0
Living Area (Size) Square-Footage 1,200 514 937 1,108 1,308
Lot Area Square-Footage 846 1,977 0 0 871
Bedrooms 2.0 0.7 2.0 2.0 2.0
Bathrooms 2.0 0.6 2.0 2.0 2.0
Fireplaces 0.37 0.51 0.00 0.00 1.00
Private Poold 0.00 0.07 0.00 0.00 0.00
Private Spad 0.02 0.13 0.00 0.00 0.00
Garage Car Spaces 0.65 0.80 0.00 0.00 1.00
Townhouse (TH)d 0.28 0.45 0.00 0.00 1.00

This table reports the mean, standard deviation (SD), 25th percentile (Q25), 50th
percentile (Q50), and 75th percentile (Q75) of select characteristics by property
type. The sample includes leased properties advertised for rent on the MLS in Clark
County, NV between 2009Q1 and 2019Q1. d denotes a dummy variable. The mean
of the dummy variables can be interpreted as the share of the sample for which the
dummy variable is 1.

3. Data

3.1. Sources

Our principal data source is the Las Vegas Realtors’ MLS, which is
a database of real estate listings powered by CoreLogic and updated
by real estate agents with membership to the Las Vegas Realtors.7 Real
estate agents commonly advertise property for sale or rent on behalf
of a property owner on the MLS because other real estate agents use
the same MLS to help buyers or tenants find property. Although the Las
Vegas Realtors’ MLS provides information on only local properties, it
feeds data to major online websites with a national presence such as
Zillow, Trullia, and Redfin. When real estate agents complete a transac-
tion (e.g., arrange a lease contract between a landlord and tenant), they
update the corresponding listing record in the MLS with details such as
the agreed price (or rental rate). The raw MLS rental data contain more
than 330,000 rental listings, of which approximately 288,000 resulted
in newly contracted leases.

We focus on the records of new rental contracts for single-family
and condominium properties in Clark County, NV, put on the mar-
ket between 2009Q1 and 2019Q1.8 New rental rates better reflect the
marginal rent determinied in the rental market (Ambrose et al., 2015).
For each new lease, we observe the initial contract rent amount, the
utility costs the tenant must pay (i.e., whether a lease is net or gross),
and whether a unit is equipped with appliances such as a washer

7 Las Vegas Realtors are formally known as the Greater Las Vegas Association
of Realtors. For further details, see https://www.lasvegasrealtor.com/.

8 We define a condominium as an individually owned unit within a multi-
family complex. We include individually owned units in townhouses, duplex,
triplex, and fourplex structures in the condominium sample because they are
not detached and by definition share a common wall or floor/ceiling with a
neighbor.

and a dryer. Furthermore, we observe standard property characteris-
tics such as the building’s age, living area size in square-footage, lot
area square-footage, bedrooms, and bathrooms. Neighborhood ameni-
ties (e.g., gated community, school zoning) are also observable. How-
ever, we enhance the MLS data by merging it with public assessor tax
records from Clark County, NV. We subsequently observe (as of March
2019) the assessed property value (i.e., structure, land), assessed qual-
ity (low, fair, average, good, very good, or excellent), property type
(i.e., single-family, condominium), and geographical location informa-
tion (e.g., longitude and latitude, census tract, etc…). Lastly, we col-
lect demographic characteristics at the census tract level from the
2014–2018 American Community Survey (5-year estimates).

3.2. Sample selection

We remove MLS observations that did not correctly report parcel
numbers (approximately 0.5% of the sample) because we rely on parcel
numbers to merge the MLS data with assessor records. To ensure that
outliers do not influence our results, we also exclude records on lease
contracts for residential properties with: 1) rents greater than $10,000
per month or less than $300 per month, 2) a living area larger than
6,000 square feet or smaller than 400 square feet, 3) a lot size larger
than 50,000 square feet, 4) more than five bedrooms, 5) more than
six bathrooms, 6) a garage that fits four or more cars, 7) more than
four fireplaces, 8) an age of 60 years or more, 9) a referral commis-
sion amount greater than $2,400, and 10) missing pertinent variables
for the study such as census tract. Our final sample comprises 188,219
new leases for single-family residences and 89,324 new leases for con-
dominiums, representing approximately 96% of all the new leases reg-
istered in the MLS rental database.

Table 1 provides the mean, standard deviation, and percentiles
(25th, 50th, and 75th) of the key characteristics by property type. A
dictionary that describes each variable is available in Table D.1 in
Appendix D, and the summary statistics for all variables in our sam-
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Table 2
Comparison of non-MLS and MLS Residences in Clark County, NV.

Variable Non-MLS MLS Difference t-stat d-stat

Land Value 24,242 21,788 −2454 −42.03∗∗∗ −0.13s

Structure Value 59,026 52,068 −6959 −38.97∗∗∗ −0.12s

Size (Square-Footage) 1938 1713 −224 −90.35∗∗∗ −0.28sm

Lot Acreage 0.14 0.09 −0.05 −143.66∗∗∗ −0.44m

Year Built 1996 1998 2 44.74∗∗∗ 0.14s

Bedrooms 3.18 3.09 −0.09 −31.53∗∗∗ −0.10s

Bathrooms 2.36 2.35 −0.01 −3.65∗∗∗ −0.01s

Fireplaces 0.49 0.38 −0.11 −57.26∗∗∗ −0.18s

Pool 0.19 0.09 −0.10 −85.40∗∗∗ −0.26sm

Quality: Low 0.19 0.15 −0.04 −30.93∗∗∗ −0.10s

Quality: Fair 0.39 0.48 0.09 60.70∗∗∗ 0.19s

Quality: Average 0.39 0.33 −0.06 −38.61∗∗∗ −0.12s

Quality: Good 0.04 0.03 −0.01 −14.93∗∗∗ −0.05s

Quality: Very Good 0.01 0.02 0.01 39.68∗∗∗ 0.12s

Quality: Excellent 0.00 0.00 0.00 −8.78∗∗∗ −0.03s

Property Type: Single Family 0.83 0.70 −0.13 −106.92∗∗∗ −0.33sm

Property Type: Condominium 0.10 0.21 0.12 114.93∗∗∗ 0.35sm

Property Type: Other (e.g., townhouse) 0.07 0.09 0.02 18.50∗∗∗ 0.06s

Unique Count of Properties: 494,493 130,967

This table reports the mean value of assessor characteristics for unique properties in Clark County, NV.
The Non-MLS sample consists of unique, non-commercial residences that were not listed for lease in
the MLS from 2009Q1 to 2019Q1. The MLS sample consists of unique residences in Clark County, NV
that were listed for lease in the MLS from 2009Q1 to 2019Q1. This table also reports the corresponding
statistics from a two-tailed mean difference test and Cohen’s d statistics. The quality and assessed values
for land and structure are as of March 2019. ∗∗∗ represents statistical significance at the 1% level. s,
sm, and m represent d-statistics that imply a small, small-to-medium, and medium-sized economic effect,
respectively.

ple are available in Table E.1 in Appendix E. The typical leased single-
family residence is 14.8 years old with a living area of 1908 square
feet, which often includes about three bedrooms, two to three bath-
rooms, and a two-car garage. A fifth of the single-family residences are
in a gated community, and more than 73% are located in a commu-
nity with covenants, conditions, and restrictions (e.g., rules generally
set by a homeowner’s association). The typical leased-condominium is
17.7 years old with a living area of 1200 square feet. However, approxi-
mately 54% of the condominiums are located in a gated community and
approximately 79% have community rules. Many of the condominium
communities provide amenities such as a community pool (82%), spa
(48%), clubhouse (35%), and gym (34%).

3.3. Representativeness

Since inflation measurements may rely on the principle that the
owners’ equivalent rent can be imputed from the rental price of equiv-
alent properties, we check whether our sample is representative of
the local housing stock by comparing unique properties in our sample
(MLS) with other non-commercial, residential properties (non-MLS) in
the Clark County tax assessor records that do not show up as leased in
the MLS.9 We focus on variables in the tax assessor records, includ-
ing the property’s assessed value and assessed quality as of March
2019. Table 2 reports the mean, mean difference, and corresponding
t-statistics of a two-tailed mean difference test along with Cohen’s d-
statistic for each variable. While the t-statistic provides information
on the statistical significance of a mean difference, Cohen’s d-statistic
provides a measure of the economic significance of the two-tailed t-
test (see Cohen, 2013). Commensurate with the d-statistic’s value, the

9 For a parallel comparison, we limit the non-MLS properties to single-family
residences, condominiums, and other attached residences such as townhouses,
duplexes, or triplexes that have a living area size between 400 and 6,000
square-feet, lot size less than 50,000 square-feet, fewer than six bedrooms,
fewer than seven bathrooms, less than five fireplaces, and are less than 60 years
old.

economic significance of a mean difference may be small (|d| = 0.2),
medium (|d| = 0.4), or large (|d| = 0.8) depending on the ratio of the
mean difference to pooled standard deviation.

Approximately 131,000 unique residential properties are in our MLS
sample and 494,493 are not in our MLS sample, implying that our sam-
ple accounts for approximately 21% of the single-family and condo-
minium stock in Clark County, NV. The assessed value for non-MLS
properties is approximately 12.7% higher than that of MLS properties.
Moreover, MLS properties appear to be of lower quality than non-MLS
properties, suggesting that real estate structures depreciate at a greater
rate when used as an investment vehicle. However, these differences
are inconsequential. Although the t-statistic from a mean difference
test is statistically significant for each variable in Table 2, the Cohen’s
d-statistics indicate that the mean difference for the assessed value,
assessed quality, and several other variables is small and not economi-
cally meaningful.

Figure F.1 in Appendix F plots the kernel density of the effective
year built for the entire population of single-family/condominium prop-
erties in Clark County and the population of MLS rental properties. As
Figure F.1 shows, the distributions of year-built are similar across the
two samples, which further mitigates concerns about whether the sam-
ple of MLS properties is representative of the local housing stock. There-
fore, using the MLS sample to determine the depreciation expenses that
make up part of the opportunity cost of home-ownership would be rea-
sonable for local inflation measurement purposes.

3.4. Location, rent, and age profile

We examine the location of rentals along with age and rent pat-
terns across the county. Fig. 1(a) plots the locations of single-family
and condominium rentals. Both types of housing are widely distributed
throughout the county, which encloses the Las Vegas MSA. Condo-
minium blocks and single-family blocks are located next to each other,
as shown in Fig. 1(b). Fig. 1(c) maps the distribution of rentals by struc-
ture age. The oldest buildings tend to be in the downtown Las Vegas
area, whereas newer structures are in the peripheries. Fig. 1(d) pro-
vides a heat map of the log contract rents, which inversely mirror the
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Fig. 1. Maps of Rental Lease Contracts in Clark County, NV. Panel (a) maps single-family residences and condominium leases in Clark County, NV from 2009Q1
to 2019Q1. The blue and red dots represent single-family and condominium leases, respectively. Panel (b) zooms in to a sample district. Panel (c) plots the age
distribution of single-family and condominiums, where darker colors indicate newer properties. Panel (d) plots the log rent distribution, where darker colors indicate
higher rents. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

building age heat map. The maps suggest a strong correlation between
price and age.

To take a first look at rent depreciation, we identify new properties
and partition those at least one year or older into ten-year age groups,
that is, 1–10 years, 11–20 years, and so on. Fig. 2 is a bar graph of
contract rents in hundreds by age group for single-family residences
and condominiums. The median contract rent generally decreases with
building age for both property types. For example, a new single-family
residence that is less than one year of age is leased for $1500 per month,
whereas a 60-year-old single-family residence is leased for $950 per
month, representing a 37% discount or an annual depreciation rate of
0.61% (or an approximately 0.76% depreciation rate if measured geo-
metrically). The variation in contract rents is much more substantial
for condominiums. New condominiums have a lease rate of $1400 per
month, whereas 60-year-old condominiums have a lease rate of $560
per month, implying a rental depreciation rate of approximately 1%
per year (or 1.5% geometrically).

4. Empirical analysis

4.1. Baseline model

Median age discounts are not accurate estimates of depreciation
rates because they do not account for housing and location character-
istics. For instance, rents are generally lower around the peripheries
where newer properties tend to be built. Moreover, other attributes
could also play a role in rents and affect depreciation estimates. To
account for variation in the observable characteristics and examine het-
erogeneity in rent depreciation across several dimensions, we estimate
a hedonic model:

ln Yit = f (Ai,Ci) + Xi𝛽 + 𝛼j + 𝜏t + 𝜖it , (1)

where lnYit denotes the natural log of the contract rent of property
i at time t, f(Ai,Ci) is a function of building age Ai and a vector of
property and neighborhood characteristics Ci, and Xi denotes the vector
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Fig. 2. Median Contract Rent by Building Age and Property Type. This figure reports median contract rent by the building age group for single-family and
condominium leases in Clark County, NV from 2009Q1 to 2019Q1. Median rents are reported in hundreds.

of controls that include several observable characteristics. 𝛼j denotes
location (census tract) fixed effects and 𝜏t denotes time (listing year-
quarter) fixed effects. Finally, 𝜖it denotes the error term.

Our objective is to estimate the rent depreciation rate, which is the
marginal effect of age on log rent: ∂f(Ai,Ci)∕∂Ai. To allow depreciation
to vary by characteristic, we interact building age with the characteris-
tic variables:

f (Ai,Ci) = AiCi𝛿, (2)

where Ai is a scalar, Ci is a vector of characteristics, and 𝛿 is a parameter
vector. In our main estimation, we use two specifications of Ci:

C1
i =

[
1 Ai Sizei

]
, (3)

C2
i =

[
Gg Sizei

]
, (4)

where Sizei denotes the demeaned log square-footage of the property’s
living area.10

Both specifications allow the depreciation rate to vary by age. In
the first specification, log rents are a quadratic function of age, as in
Lane et al. (1988) and Randolph (1988). In the second specification,
Gg denotes a set of indicator variables for 5-year age groups. That is,
Gg takes a value of one if a building’s age is in age group g, where
g = {0years,1–5years,6–10years,11–15years, · · ·}; it is zero otherwise.
Thus, the parameter vector 𝛿 for C2

i gives the age-group-specific depre-
ciation rates.

We also analyze whether depreciation rates vary significantly by
neighborhood characteristics by adding neighborhood variables to Ck

i
where k ∈ {1,2}:

C3,k
i = (Ck

i Neighborhoodj), (5)

10 For the condominium sample, we also use an indicator to control for town-
house, duplex, or triplex (TH) by including TH in equation (4). For every regres-
sion, we demean the living area square-footage using the appropriate sample
to ensure that 𝛿 in equation (2) describes the rental depreciation rate for the
averaged sized property in the sample.

C4,k
i = (Ck

i Tractj). (6)

In the third specification (equation (5)), Neighborhoodj denotes a vector
of neighborhood characteristics for census tract j, including the home-
ownership rate, share of population 65 years or older, Hispanic pop-
ulation share, non-Hispanic Black population share, Asian population
share, log population density per square-mile, and log median house-
hold income. We demean each variable in Neighborhoodj by the appro-
priate single-family or condominium subsample average value to ensure
that the level effect of age (which is embedded in 𝛿) represents that of
the average property or census tract in the sample.

In the fourth specification (equation (6)), Tractj denotes a set of
census tract indicator variables. Thus, both observed and unobserved
neighborhood characteristics can affect depreciation rates in equation
(1) through the interaction of Tractj with Age. We set the reference
census tract to the tract with the mean depreciation rate among all
census tracts for each property type subsample to ensure that estimates
with the other specifications are comparable.11

Put differently, we allow for non-constant depreciation rates by the
term A2

i for equations (3), (5) and (6) and AiGg for equations (4)–(6).
We also introduce level shifts by size (AiSizei), observable neighborhood
characteristics (AiNeighborhoodj), and unobservable neighborhood char-
acteristics (AiTractj).

To ensure that the age coefficients (𝛿) capture economic deprecia-
tion and not other factors that may correlate with both age and rent, Xi
includes a rich set of service, structure, and neighborhood characteris-
tics, which we list in Table D.1 in Appendix D. Many of these variables

11 We find the means census tract in a two step procedure. First, we run the
regression with the Tractj × Age interaction, allowing Stata to choose the ref-
erence group. Second, we manually find the census tract where the absolute
difference between the coefficient on the Tractj × Age interaction and the same
coefficient (but weighted by the share of rentals in the respective census tract)
from the first step is minimized. This mean census tract reference number is
4912 for single family residences and 2501 for condominiums.
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overlap with those in the existing depreciation models (e.g., Lane et al.,
1988; Randolph, 1988; Coulson and McMillen, 2008).

The service characteristics control for whether the tenant pays for
cable, gas, power, sewer, water, garbage disposal, or other services.
Among these services, Lane et al. (1988) account only for gas and
power. Since utilities makeup the operating expenses of rental property
that could be directly or indirectly shifted to tenants, by including indi-
cators for the expenses tenants must pay, we tease out the implicit effect
of triple net leases, modified gross leases, and full-service gross leases
on rents. Generally, the tenant pays for all the operating expenses in a
triple net lease, while the landlord pays for all the operating expenses
in a full-service gross lease. The modified gross lease is a mixture of
the other two lease types. Thus, the rental rate of a property in a triple
net lease may appear to be lower than in a full-service lease or modi-
fied gross lease if we do not account for the differences in the services
included in the rent (e.g., Wiley, 2014). Differences in rent across prop-
erty type could occur because rental contracts tend to be more net for
single-family residences. Table E.1 in Appendix E reports that tenants
pay for power (99%), gas (97%), water (95%), cable (81%), garbage
pickup (78%), and sewer (68%). In contrast, tenants in condominiums
are less likely to pay for water (38%), sewer (26%), and garbage pickup
(27%).12

The structure characteristics account for the natural log of the living
area square-footage, natural log of the lot square-footage, number of
bedrooms, number of bathrooms, number of fireplaces, number of car
spaces in the garage, and indicators of a private pool and/or spa. They
also account for categorical variables for the heating fuel type, cooling
fuel type, and installed appliances (i.e., dishwasher, washer, dryer). For
categorical variables, the most prevalent class is set as the base.

Lastly, the neighborhood characteristics flag whether a property is
located in an age-restricted community or gated community. They also
flag several community features (pool, spa, park, golf, basketball, gym,
rules) and the corresponding high school and junior high school dis-
tricts. According to Randolph (1988), neighborhood characteristics mit-
igate concerns that depreciation estimates could capture cohort effects.

4.2. Baseline results

Table 3 reports the results of separate ordinary least squares (OLS)
estimations of equation (1) for each property type (single-family resi-
dence or condominium). The odd columns show the coefficients of the
age function based on equation (3), whereas the even columns show the
age-group-specific coefficients based on equation (4). The dependent
variable is the log contract rent for leased properties and the standard
errors reported in parentheses are clustered by census tract location.
Building age is divided by 100 (and building age squared by 1000) to
observe the coefficients in percentage form, as in Coulson and McMillen
(2008). The coefficients for the suppressed variables are reported in
Appendix E, Table E.3.13

We see in column (1) of Table 3 that the coefficients on Building
Age/100 and Building Age2/1000 are −0.78 and 0.07, respectively.
Both coefficients are statistically significant at the 1% level. We eval-
uate the marginal effect of age on rent at age 15 (i.e., 𝛿1 + 0.2𝛿215),
which is close to the average age of a property in the sample. The annual
depreciation rate for the average single-family residence is approxi-
mately 0.57% and decreases in magnitude by approximately 0.07%
points for every additional five years of age. In contrast, column (2)

12 Table E.2 in the Appendix shows further variation across age groups in who
is responsible for paying various operating expenses or services, which could
affect observable differences in rent.

13 For all analyses, we use the “reghdfe” Stata package by Correia (2014,
2016), which iteratively removes “singleton” observations depending on the
categorical variables and fixed effects in the regression model. Removing the
singleton observations improves the precision of standard errors.

suggests that the depreciation rate of a single-family residence in the
11–15 years age group is higher, at a rate of 0.75%, which is statisti-
cally significant at the 1% level. Furthermore, the annual depreciation
rate varies non-linearly by age group. The annual depreciation rate is
0.9% between 1 and 5 years, but 0.38% between 56 and 60 years of age.
The two point estimates are statistically different from each other at the
1% level. To formally test if depreciation is heterogeneous, in Section E
of the Appendix (column (1) of Table E.8), we include the level effect of
Age and omit the 1–5 years age group in the non-parametric model. A
Wald test of joint significance across the 11 remaining age group inter-
actions with age produces an F-statistic of 14.7 (and p-value of 0.000),
rejecting the null hypothesis that the rent depreciation rate is constant
across all ages.

Fig. 3(a) plots the coefficients corresponding to columns (1) and
(2) along with 95% confidence intervals. The annual depreciation rate
monotonically decreases in magnitude as a property ages with both
specifications. Put differently, newer properties depreciate at a much
faster rate than older properties. The age-group-specific model shows
that the depreciation rate of a 1–5 years old property is 1.5 times higher
than that of a 21–25 years old property and 2.25 times higher than that
of a 56–60 years old property. Similarly, the depreciation rate plot from
the quadratic age model shows that a 5-year-old property depreciates at
a much faster rate than a 60-year-old property. This high initial depre-
ciation shown by both age functions is consistent with the findings by
Coulson et al. (2019) that the first year of use can have a rather dra-
matic effect on price in Las Vegas.

However, we observe a significant difference in the estimated depre-
ciation rates between the two age function specifications. In particular,
the difference between the linear and non-linear depreciation estimates
increases with age. Whereas the quadratic age function implies that rent
depreciation reverses and becomes positive for a 60-year-old property,
the age-group-specific model indicates that the annual depreciation rate
is approximately 0.38% for a property that is 60-years. At the bottom of
Table 3, we report the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) in each column to test the fit of each rent
model. The AIC and BIC measures are lower when using equation (4)
as the age function in column (2) than when using equation (3) as the
age function in column (1), rejecting the quadratic log model of rent
depreciation in favor of an age-group-specific model.

Condominiums depreciate at a significantly higher rate than single-
family residences, across all age profiles. Column (3) implies that the
average annual depreciation rate is 1.72% at age 15, or three times
the depreciation rate of single-family residences. The average age-
group-specific depreciation rate for condominiums in the 11-15-year-
old group is 1.91% and statistically significant at the 1% level. How-
ever, unlike for single-family residences, annual depreciation rates do
not seem to significantly vary by age group for condominiums. For
example, the depreciate rate estimate for condominiums 1–5 years of
age is not statistically different from that of condominiums 56–60 years
of age or other age groups. These results suggest that there are differ-
ences in the depreciation rate across property types.

We formally test whether the coefficients in the rent model are dif-
ferent across single-family and condominium rents in a two step pro-
cedure. First, we estimate equation (1) without the age function and
retrieve the residuals, separately for each property type. Second, we
regress each set of residuals on the age function being tested (i.e., equa-
tion (3) or (4)). A Chow test of equality on the coefficients of equa-
tion (3) across single-family residences and condominiums yields an
F-statistic of 4,810.55 (with a p-value of 0.000). Likewise, a Chow test
on equation (4) by property type yields an F-statistic of 5,597.57 (with
a p-value of 0.000). These two tests indicate that rent depreciation esti-
mates (whether linear or non-linear) differ by property type at the 1%
significance level.

Fig. 3(c) illustrates the coefficients across the age profiles for con-
dominiums by model, showing that the depreciation estimates for the
age-group-specific plot for the other age groups generally fall within

9



L.A. Lopez and J. Yoshida Regional Science and Urban Economics xxx (xxxx) xxx

Table 3
Annual rent depreciation rates.

Dep. var. ln(Rent) (1) (2) (3) (4)
Sample: SFR SFR COND COND

Age/100 −0.78∗∗∗

(0.04)
−2.14∗∗∗

(0.44)
Age2/1000 0.07∗∗∗

(0.01)
0.14∗∗

(0.06)
G(1–5 yrs) × (Age/100) −0.90∗∗∗

(0.07)
−1.50∗∗∗

(0.31)
G(6–10 yrs) × (Age/100) −0.86∗∗∗

(0.04)
−1.75∗∗∗

(0.24)
G(11–15 yrs) × (Age/100) −0.75∗∗∗

(0.04)
−1.91∗∗∗

(0.28)
G(16–20 yrs) × (Age/100) −0.67∗∗∗

(0.03)
−1.84∗∗∗

(0.29)
G(21–25 yrs) × (Age/100) −0.60∗∗∗

(0.03)
−1.75∗∗∗

(0.30)
G(26–30 yrs) × (Age/100) −0.57∗∗∗

(0.03)
−1.64∗∗∗

(0.25)
G(27–35 yrs) × (Age/100) −0.54∗∗∗

(0.03)
−1.56∗∗∗

(0.22)
G(36–40 yrs) × (Age/100) −0.49∗∗∗

(0.02)
−1.51∗∗∗

(0.20)
G(41–45 yrs) × (Age/100) −0.47∗∗∗

(0.03)
−1.52∗∗∗

(0.18)
G(46–50 yrs) × (Age/100) −0.46∗∗∗

(0.02)
−1.49∗∗∗

(0.19)
G(51–55 yrs) × (Age/100) −0.43∗∗∗

(0.03)
−1.49∗∗∗

(0.19)
G(56–60 yrs) × (Age/100) −0.38∗∗∗

(0.03)
−1.35∗∗∗

(0.17)
(Age/100) × ln(Size)dm −0.41∗∗∗

(0.04)
−0.42∗∗∗

(0.04)
−1.32∗∗∗

(0.21)
−1.30∗∗∗

(0.21)
(Age/100) × TH 0.81∗∗∗

(0.16)
0.81∗∗∗

(0.15)

Observations 188,216 188,216 89,318 89,318
Adjusted R2 0.88 0.89 0.86 0.86
AIC −342,009.09 −342,154.73 −101,151.37 −101,424.57
BIC −341,613.43 −341,657.61 −100,765.97 −100,945.17
Structure controls ✓ ✓ ✓ ✓
Neighborhood controls ✓ ✓ ✓ ✓
Service controls ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census Tract FE ✓ ✓ ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equation (1)
for single-family residences (columns 1 and 2) and condominiums (columns 3 and 4).
The age function is specified by equation (3) for columns (1) and (3), and equation (4)
for columns (2) and (4). The dependent variable is log contract rents. G(·) denotes an
indicator function for each age group. Variables with the dm superscript are demeaned.
Structure controls include log unit size, log lot area, bedrooms, bathrooms, fireplaces,
private pool, private spa, garage car spaces, heating fuel, cooling fuel, dishwasher, and
washer/dryer. Service controls include indicators of tenant payments for cable, gas, power,
sewer, water, garbage pickup, and other services. Neighborhood controls include age
restriction, gated community, community amenities such as pool, clubhouse, schools, and
a townhouse/duplex/triplex flag (TH). All regressions have a constant. Table D.1 in the
appendix provides definitions for each variable, and Table E.3 in the appendix reports the
suppressed coefficients of several characteristics. The properties were advertised for rent
on the MLS in Clark County, NV between 2009Q1 and 2019Q1. AIC stands for Akaike
information criterion, and BIC stands for Bayesian information criterion. Robust standard
errors are in parentheses and clustered by census tract. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

the 95% confidence interval of the depreciation rate of approximately
1.5% for age group 1–5 years. This lack of significance is partly due to
less precise estimates, possibly due to the smaller sample size of condo-
miniums than single-family residences or different cohort effects, as we
discuss later. However, a Wald test indicates that the age-group-specific
coefficients are critical at the 1% statistical significance level for con-

dominium rents (see Table E.9). Moreover, the AIC and BIC measures
(in columns (3) and (4) of Table 3) indicate that the age-group-specific
model produces a better fit than the linear depreciation model. Thus,
the depreciation rate profile from the age-group-specific model suggests
that a non-linear log depreciation model is a good approximation for
condominiums.
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Fig. 3. Rent Depreciation by Property Type, Age, and Size. This figure depicts the economic rent depreciation for single-family residences (panel a) and condominiums
(panel c) according to the model results in Table 3. Panels (b) and (d) report the age-group-specific depreciation rate at the mean log size, one-standard-deviation
above the mean log size, and one-standard-deviation below the mean log size for single-family residences and condominiums, respectively. On the horizontal axis,
building age corresponds to the end year of the age groups from 1 to 5 years, 6–10 years, and so on.

In addition to variations in depreciation across age groups and prop-
erty types, we observe a correlation between depreciation and property
size. The coefficients on the interactions between building age and size
(demeaned) in columns (1)–(4) in Table 3 are negative and statistically
significant at the 1% level, providing evidence of cross-sectional vari-
ation in the age profile. These findings imply that properties with a
larger structure depreciate faster than properties with a smaller struc-
ture because of a larger proportion of structure rent (see Appendix B).
This type of size variation is also observed in price depreciation (Him-
melberg et al., 2005). The coefficients on (Age/100) × ln(Size)dm sug-
gest that for every one-standard-deviation increase in the living area the
depreciation rate increases by approximately 0.13 percentage points for
a single-family residence and by 0.43 percentage points for condomini-
ums.

Fig. 3(b) and (d) depict the variation in depreciation rates by a one-
standard-deviation change in unit size from the mean log value based
on the age-group-specific depreciation estimates from columns (2) and
(4). Between ages 11 and 15 years, contract rents depreciate by approx-
imately 0.62% each year for a small 1,350 square-foot single-family res-
idence but by 0.87% for a large 2,500 square-foot residence. The depre-
ciation rate is 40% higher for large residences (Panel (b)). We observe
even greater variation with condominium leases (Panel (d)). For the
11–15 years age group, the rent depreciation rate is 1.48% for a small
800 square-foot condominium but 2.34% for a large 1,600 square-foot

condominium.14

In sum, we observe variation in depreciation estimates along the
dimensions of age group, property type, and living area size (square-
footage).15 Therefore, using the same depreciation rate to model rental
cash flows across various residential properties of different types or
ages or both could result in biased estimates of the local inflation rate,
home-ownership costs, and property values.

14 In the Appendix, we examine whether the floor-to-area ratio affects the
rents of single-family residences. The floor-to-area ratio (FAR) is a measure of
physical density and calculated as the living area square-footage divided by the
lot area square-footage (winsorized at the 1% tails). We find that FAR does not
impact the depreciation rate (see Table E.4). Thus, variation is not driven by the
physical density of a single-family property but is associated with the structure
size. This result can be because a high physical density is associated with high
land prices, which will decrease the proportion of structure rents to housing
rents. We cannot conduct this analysis for condominiums. The lot area is zero
for most condominiums because they often have only air-rights, causing FAR to
be undefined for 70% of the sample of condominium rentals.

15 In Appendix E, we replicate our baseline analysis using asking rents and a
sample that includes unsuccessful listings. The depreciation profile varies sim-
ilarly with asking rents for all properties (see Table E.5). We also re-estimate
our results using census-tract-time fixed effects and street name fixed effects
as in Rolheiser, van Dijk and van de Minne (2020). Although the census tract
fixed effects in equation (1) calibrate the model for time-in-variant attributes
that could affect rent, neighborhood characteristics may change over time. We
find slightly lower depreciation estimates, but the variation in the estimates are
qualitatively similar (see Table E.6).

11
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4.3. Depreciation heterogeneity by location

We probe the role of location in rent depreciation by estimating a
set of rent models that allow age effects to vary by location. Since rent
depreciation is proportional to the fraction of the structure rent relative
to the total rent (see Appendix B), rent depreciation may vary with
the underlying land rent. For example, in high land value locations,
rent depreciation could be low because the total rent paid is mostly for
the non-depreciating land. The opposite may occur in low land value
locations as the structure rent becomes a larger component of the total
rent.

We consider three alternative specifications for the parametric and
non-parametric depreciation functions, and estimate the rent depreca-
tion models by property type. For the first specification, we remove
the neighborhood characteristics and census tract fixed effects from
our baseline model (equation (1)) to better understand the impor-
tance of location controls. The second specification (equations (1) and
(5)) retains neighborhood characteristics and census tract fixed effects
and further adds interactions of building age with de-meaned demo-
graphic variables at the census tract level to examine how deprecia-
tion rates vary systematically across neighborhood profiles. The census
tract demographic variables are based on the 5-year estimates from
the 2014–2018 American Community Survey (home-ownership rate,
share of population 65 years or older, Hispanic population share, non-
Hispanic Black population share, Asian population share, log popula-
tion density per square-mile, and log median household income). The
third specification (equations (1) and (6)) allows depreciation rates to
vary by census tract using interaction terms between building age and
census tract indicators. For each property type subsample, the refer-
ence census tract is the tract with the mean depreciation rate among all
census tracts.

Table 4 reports the results for the first specification without neigh-
borhood controls. Column (1) shows that the average depreciation rate
reduces in magnitude to 0.52% and the age-squared term becomes sta-
tistically insignificant. In contrast, column (2) shows that the depre-
ciation rate for new single-family residences (1–5 years) increases to
1.16%, which is approximately 29% larger than the main result (col-
umn (2), Table 3). Single-family residences between 11 and 30 years
old appear to depreciate at slightly lower rates than previously esti-
mated, whereas older properties depreciate at similar rates. Columns
(3) and (4) provide the same analyses for condominiums. The average
condominium depreciation rate for each age profile slightly increases
in magnitude compared to the baseline estimates (columns (3) and (4),
Table 3) except for a few cases. These results suggest that the omis-
sion of location and neighborhood characteristics may result in mismea-
surement of the depreciation rate because the age coefficients include
locational variation in rents, which is correlated with building age, as
evident in Fig. 1.

More formally, we test for differences in the age function coeffi-
cients between each column in Table 3 and the corresponding column
in Table 4 using a Hausman test. To do so, we first condition out the
variables in equation (1) except for those that make up the age function
and neighborhood controls (including the census tract fixed effects).
We then estimate fixed and random effects models using the residu-
als as the dependent variable and the remaining controls as regressors.
The random effects model that excludes the neighborhood controls is
efficient under the null hypothesis, whereas the fixed effects model
that includes the neighborhood controls is consistent. We carry out the
Hausman test on the common variables (i.e., age function) separately
by property type and age function. Table E.7 in Appendix E reports the
Chi-squared statistics and corresponding p-values from a set of Haus-
man tests. Each test rejects the null hypothesis that there are no sys-
tematic differences in the age function coefficients with the inclusion of
neighborhood controls. Therefore, the inclusion of neighborhood con-
trols (and census tract fixed effects) are critical for both single-family
residences and condominiums irrespective of whether the rent depreci-

ation model is quadratic or age-group-specific. We obtain similar results
using a generalized Hausman test.

Table 5 reports the results for the second specification, in which
depreciation estimates vary by Census Variables. Columns (1) and (2)
show that for single-family residences, the average depreciation rate
for each age profile does not significantly change from the baseline esti-
mates (columns (1) and (2), Table 3) when we allow depreciation rates
to vary by observable neighborhood characteristics. This is by design
as the census variables are demeaned to preserve the age effects of the
average location and ensure consistency with the baseline estimates.
Rent depreciation seems to vary with deviations from the average 65+
population share and Hispanic share at a statistically significant level,
but not with the other census variables (i.e., home-ownership, Black
share, Asian share, population density, median household income).
However, the variation in depreciation rates with the two neighbor-
hood characteristics is not economically meaningful. A one-standard-
deviation increase in the share of either the 65+ year population or
Hispanic population is associated with only a 0.06 (=0.56×0.1) or 0.05
(=0.35×0.155) percentage points lower depreciation rate, respectively.
Moreover, a Wald test across all the interactions of census variables
with age (once factoring out the linear age trend) indicates that their
effects are not statistically significant at a conventional level (see col-
umn (3) of Table E.8).

In contrast, we observe statistically and economically significant
variations for condominiums. In Table 5, columns (3) and (4) indicate
that condominium rent depreciation is lower in locations with a high
home-ownership rate or population density but higher in locations with
a high Asian population share. Column (3) of Table E.9 reports a Wald
test across all the interactions of census variables with age that indicates
that their effects on rent depreciation are jointly significant at the 1%
level. A one-standard-deviation increase in the Asian population share
or a home-ownership rate is associated with a 0.25 (= −4.02 × 0.0642)
percentage points higher or 0.56 (= 2.86 × 0.197) percentage points
lower depreciation rate, respectively. Home-ownership rates are gener-
ally low in the central area and high in the surrounding areas. The Asian
share is also high in the southwest section of the metro. Thus, these vari-
ables may capture variations in depreciation rates between central and
suburban locations. Therefore, we do not find any meaningfully system-
atic regional variation based on observable demographic information.
The importance of census tract fixed effects and other neighborhood
controls is not due to demographic characteristics but likely due more
to unobserved characteristics such as building functions and styles of
an entire condominium complex.

Table 6 reports the results for the third specification that allows
depreciation rates to vary by location through Census Tract × Age inter-
actions. A joint significance test across all the Census Tract × Age inter-
actions for each regression indicates that they are statistically differ-
ent from zero at the 1% level when using either the single-family or
condominium samples, suggesting that they improve the fit of the rent
model. The joint significance tests hold even after removing the linear
age effect in the age-group-specific models (see Tables E.8 and E.9 in
Appendix E).

Fig. 4 summarizes the results by depicting the implied location spe-
cific depreciation rates for 11–15 years old properties using the coeffi-
cients on the age interactions with census tract. Lighter colors represent
the areas with higher depreciation rates, whereas darker colors repre-
sent lower depreciation rates. With a benchmark (median) deprecia-
tion rate for the Las Vegas MSA of 0.76% per year for single-family
residences and 1.5% per year for condominiums (see Section 3.D),
the regions with the lightest (darkest) colors represent areas where
depreciation would be underestimated (overestimated). Overall, the
results show that depreciation rates vary significantly within a city. In
Appendix E, we present the result of joint significance tests of homo-
geneity in the average rent depreciation rate of single-family residences
(Column (4) of Table E.8) and condominiums (Column (4) of Table E.9).
For each property type, we find that the variation in rent depreciation
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Table 4
Annual rent depreciation rates without neighborhood controls.

Dep. var.: ln(Rent) (1) (2) (3) (4)
Sample SFR SFR COND COND

Age/100 −0.52∗∗∗

(0.09)
−2.22∗∗∗

(0.36)
Age2/1000 0.02

(0.01)
0.16∗∗

(0.07)
G(1–5 yrs) × (Age/100) −1.16∗∗∗

(0.10)
−1.52∗∗∗

(0.46)
G(6–10 yrs) × (Age/100) −0.86∗∗∗

(0.08)
−2.00∗∗∗

(0.31)
G(11–15 yrs) × (Age/100) −0.61∗∗∗

(0.07)
−2.33∗∗∗

(0.41)
G(16–20 yrs) × (Age/100) −0.56∗∗∗

(0.07)
−1.92∗∗∗

(0.28)
G(21–25 yrs) × (Age/100) −0.54∗∗∗

(0.06)
−1.69∗∗∗

(0.22)
G(26–30 yrs) × (Age/100) −0.54∗∗∗

(0.05)
−1.86∗∗∗

(0.22)
G(31–35 yrs) × (Age/100) −0.56∗∗∗

(0.05)
−1.85∗∗∗

(0.23)
G(36–40 yrs) × (Age/100) −0.52∗∗∗

(0.04)
−1.57∗∗∗

(0.24)
G(41–45 yrs) × (Age/100) −0.50∗∗∗

(0.04)
−1.46∗∗∗

(0.25)
G(46–50 yrs) × (Age/100) −0.50∗∗∗

(0.03)
−1.57∗∗∗

(0.23)
G(51–55 yrs) × (Age/100) −0.47∗∗∗

(0.03)
−1.64∗∗∗

(0.24)
G(56–60 yrs) × (Age/100) −0.40∗∗∗

(0.04)
−1.40∗∗∗

(0.22)
(Age/100) × ln(Size)dm −0.37∗∗∗

(0.07)
−0.37∗∗∗

(0.07)
−2.03∗∗∗

(0.28)
−2.01∗∗∗

(0.28)
(Age/100) × TH 1.04∗∗∗

(0.19)
1.06∗∗∗

(0.19)

Observations 188,219 188,219 89,323 89,323
Adjusted R2 0.80 0.80 0.56 0.56
Structure controls ✓ ✓ ✓ ✓
Neighborhood controls
Service controls ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census Tract FE

This table reports the OLS estimates of the hedonic model specified by equation (1) for
single-family residences (columns 1–2) and condominiums (columns 3–4). The dependent
variable is log contract rents. G(·) denotes an indicator function for each age group. Vari-
ables with the dm superscript are demeaned. Structure controls include log unit size, log lot
area, bedrooms, bathrooms, fireplaces, private pool, private spa, garage car spaces, heat-
ing fuel, cooling fuel, dishwasher, and washer/dryer. Service controls include indicators of
tenant payments for cable, gas, power, sewer, water, garbage pickup, and other services.
Neighborhood controls include age restriction, gated community, community amenities
such as pool, clubhouse, schools, and a townhouse/duplex/triplex flag (TH). All regres-
sions have a constant. Table D.1 in the appendix provides definitions for each variable. The
properties were advertised for rent on the MLS in Clark County, NV between 2009Q1 and
2019Q1. Robust standard errors are in parentheses and clustered by census tract. ∗∗∗, ∗∗,
and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

by Census Tract is statistically significant at a conventional level.

5. Age, period, and cohort effects

In our preceding analysis of the age function, we followed Ran-
dolph (1988) and Lane et al. (1988) and did not account for cohort
effects while controlling for year-quarter period effects and neighbor-
hood fixed effects. Thus, the estimated economic depreciation rate is
comparable to the current age-bias adjustment in inflation. They argue
that cohort effects are likely negligible once controlling for service,
property, and neighborhood characteristics in rent depreciation mod-
els. Indeed, these variables in our baseline specification are significant.

Although neighborhood characteristics are likely to capture signif-
icant cohort effects, whether additional cohort effects are large is an
empirical question. Cohort effects may not be large relative to old Euro-
pean cities (Rolheiser, van Dijk and van de Minne, 2020), but there are
significant cohort effects for Chicago (see Coulson and McMillen, 2008),
which developed much more recently than European cities. One reason
is that construction technology and the material used for residential
development changes from one period to the next. Moreover, rents may
reflect preferences for certain architectural styles or vintage that likely
change over time. Las Vegas is a newer city than Chicago and Euro-
pean cities. Still, significant vintage effects can exist because of the past
changes in the construction market conditions. For example, units built
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Table 5
Annual rent depreciation rates with census variables.

Dep. var.: ln(Rent) (1) (2) (3) (4)
Sample SFR SFR COND COND

Age/100 −0.76∗∗∗

(0.04)
−1.85∗∗∗

(0.28)
Age2/1000 0.07∗∗∗

(0.01)
0.12∗∗∗

(0.04)
G(1–5 yrs) × (Age/100) −0.87∗∗∗

(0.07)
−1.23∗∗∗

(0.25)
G(6–10 yrs) × (Age/100) −0.83∗∗∗

(0.04)
−1.35∗∗∗

(0.19)
G(11–15 yrs) × (Age/100) −0.73∗∗∗

(0.04)
−1.53∗∗∗

(0.20)
G(16–20 yrs) × (Age/100) −0.66∗∗∗

(0.03)
−1.50∗∗∗

(0.19)
G(21–25 yrs) × (Age/100) −0.59∗∗∗

(0.03)
−1.46∗∗∗

(0.19)
G(26–30 yrs) × (Age/100) −0.57∗∗∗

(0.03)
−1.40∗∗∗

(0.16)
G(31–35 yrs) × (Age/100) −0.54∗∗∗

(0.03)
−1.34∗∗∗

(0.15)
G(36–40 yrs) × (Age/100) −0.51∗∗∗

(0.03)
−1.27∗∗∗

(0.14)
G(41–45 yrs) × (Age/100) −0.48∗∗∗

(0.03)
−1.28∗∗∗

(0.14)
G(46–50 yrs) × (Age/100) −0.48∗∗∗

(0.03)
−1.28∗∗∗

(0.14)
G(51–55 yrs) × (Age/100) −0.45∗∗∗

(0.04)
−1.22∗∗∗

(0.14)
G(56–60 yrs) × (Age/100) −0.40∗∗∗

(0.04)
−1.03∗∗∗

(0.15)
(Age/100) × ln(Size)dm −0.41∗∗∗

(0.04)
−0.41∗∗∗

(0.04)
−1.36∗∗∗

(0.21)
−1.35∗∗∗

(0.21)
(Age/100) × TH 0.59∗∗∗

(0.14)
0.58∗∗∗

(0.14)
(Age/100) × Home-ownershipdm 0.02

(0.14)
0.01

(0.13)
2.83∗∗∗

(0.64)
2.86∗∗∗

(0.64)
(Age/100) × Population 65+ sharedm 0.64∗∗

(0.29)
0.56∗

(0.30)
−0.46
(1.09)

−0.61
(1.18)

(Age/100) × Hispanic sharedm 0.30∗∗

(0.13)
0.34∗∗

(0.14)
0.30

(0.70)
0.27

(0.71)
(Age/100) × Black sharedm 0.26

(0.18)
0.19

(0.17)
−0.76
(1.06)

−0.96
(1.04)

(Age/100) × Asian sharedm −0.28
(0.18)

−0.20
(0.18)

−4.03∗∗∗

(1.50)
−4.02∗∗∗

(1.50)
(Age/100) × ln(Population density)dm 0.03

(0.02)
0.01

(0.02)
0.35∗∗∗

(0.12)
0.35∗∗∗

(0.13)
(Age/100) × ln(Median household income)dm 0.12

(0.12)
0.08

(0.11)
−0.34
(0.45)

−0.38
(0.45)

Observations 188,216 188,216 89,318 89,318
Adjusted R2 0.89 0.89 0.87 0.87
Structure controls ✓ ✓ ✓ ✓
Neighborhood controls ✓ ✓ ✓ ✓
Service controls ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census tract FE ✓ ✓ ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equation (1) for single-family resi-
dences (columns 1–2) and condominiums (columns 3–4). The dependent variable is log contract rents. G(·)
denotes an indicator function for each age group. Variables with the dm superscript are demeaned. Structure
controls include log unit size, log lot area, bedrooms, bathrooms, fireplaces, private pool, private spa, garage
car spaces, heating fuel, cooling fuel, dishwasher, and washer/dryer. Service controls include indicators of
tenant payments for cable, gas, power, sewer, water, garbage pickup, and other services. Neighborhood
controls include age restriction, gated community, community amenities such as pool, clubhouse, schools,
and a townhouse/duplex/triplex flag (TH). All regressions have a constant. Table D.1 in the appendix pro-
vides definitions for each variable. The properties were advertised for rent on the MLS in Clark County, NV
between 2009Q1 and 2019Q1. Robust standard errors are in parentheses and clustered by census tract. ∗∗∗,
∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 6
Census tract specific annual rent depreciation rates.

Dep. var.: ln(Rent) (1) (2) (3) (4)
Sample: SFR SFR COND COND

Age/100 −0.79∗∗∗

(0.07)
−1.59∗∗∗

(0.33)
Age2/1000 0.08∗∗∗

(0.01)
0.11∗∗∗

(0.04)
G(1–5 yrs) × (Age/100) −0.82∗∗∗

(0.08)
−1.42∗∗∗

(0.36)
G(6–10 yrs) × (Age/100) −0.81∗∗∗

(0.06)
−1.20∗∗∗

(0.29)
G(11–15 yrs) × (Age/100) −0.71∗∗∗

(0.05)
−1.40∗∗∗

(0.32)
G(16–20 yrs) × (Age/100) −0.66∗∗∗

(0.05)
−1.40∗∗∗

(0.35)
G(21–25 yrs) × (Age/100) −0.59∗∗∗

(0.04)
−1.33∗∗∗

(0.36)
G(26–30 yrs) × (Age/100) −0.56∗∗∗

(0.04)
−1.28∗∗∗

(0.34)
G(31–35 yrs) × (Age/100) −0.52∗∗∗

(0.03)
−1.22∗∗∗

(0.32)
G(36–40 yrs) × (Age/100) −0.48∗∗∗

(0.03)
−1.17∗∗∗

(0.30)
G(41–45 yrs) × (Age/100) −0.47∗∗∗

(0.04)
−1.18∗∗∗

(0.31)
G(46–50 yrs) × (Age/100) −0.48∗∗∗

(0.04)
−1.16∗∗∗

(0.31)
G(51–55 yrs) × (Age/100) −0.47∗∗∗

(0.04)
−1.08∗∗∗

(0.31)
G(56–60 yrs) × (Age/100) −0.42∗∗∗

(0.05)
−0.97∗∗∗

(0.32)
(Age/100) × ln(Size)dm −0.40∗∗∗

(0.04)
−0.40∗∗∗

(0.04)
−1.36∗∗∗

(0.21)
−1.36∗∗∗

(0.21)
(Age/100) × TH 0.50∗∗∗

(0.15)
0.50∗∗∗

(0.15)

Observations 188,216 188,216 89,318 89,318
Adjusted R2 0.89 0.89 0.88 0.88
Structure controls ✓ ✓ ✓ ✓
Neighborhood controls ✓ ✓ ✓ ✓
Service controls ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census Tract FE ✓ ✓ ✓ ✓
Census Tract FE x Age ✓ ✓ ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equation (1) for
single-family residences (columns 1–2) and condominiums (columns 3–4). The dependent
variable is log contract rents. G(·) denotes an indicator function for each age group. Vari-
ables with the dm superscript are demeaned. Structure controls include log unit size, log lot
area, bedrooms, bathrooms, fireplaces, private pool, private spa, garage car spaces, heat-
ing fuel, cooling fuel, dishwasher, and washer/dryer. Service controls include indicators of
tenant payments for cable, gas, power, sewer, water, garbage pickup, and other services.
Neighborhood controls include age restriction, gated community, community amenities
such as pool, clubhouse, schools, and a townhouse/duplex/triplex flag (TH). All regres-
sions have a constant. Table D.1 in the appendix provides definitions for each variable. The
properties were advertised for rent on the MLS in Clark County, NV between 2009Q1 and
2019Q1. Robust standard errors are in parentheses and clustered by census tract. ∗∗∗, ∗∗,
and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

during the headiest days of the housing boom (from 2003 to 2006) in
Las Vegas could be of lower quality, and if true, these properties could
be associated with a rent discount. Functional obsolescence can also be
significant in U.S. cities.

In this section, we provide additional insights into the source
of economic depreciation by separating physical deterioration from
functional obsolescence and vintage. We follow Francke and van de
Minne (2017) and estimate physical deterioration after removing cohort
effects from depreciation. They argue that once separating cohort and
period effects, age effects are a measure of the physical deterioration of
the structure, whereas cohort effects measure the impact of both func-
tional obsolescence and vintage effects. Furthermore, we take an addi-
tional step to decompose cohort effects into functional obsolescence and
vintage effects, although our data do not allow us to separate mainte-

nance from physical deterioration, as Francke and van de Minne (2017)
and Bokhari and Geltner (2019) do. Appendix C illustrates how we esti-
mate a constant average rate of functional obsolescence from cohort
effects. Negative cohort effects for earlier construction years are likely
to be caused by functional obsolescence, whereas random fluctuations
around the linear trend is likely to be vintage effects specific to partic-
ular construction years. We decompose cohort effects on log rents into
a linear trend and a mean-zero error term. Our assumption is that a
linear trend in cohort effects represents the average rate of functional
obsolescence over time.

We modify equation (1) as follows to include cohort effects:

ln Yit = Neighborhoodj𝛼 + Xi𝛽 + 𝛾a + 𝜏p + 𝜅c + 𝜖it , (7)
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Fig. 4. Rent Depreciation by Census Tract. This figure depicts location (census
tract) heterogeneity in the economic rent depreciation rate of 11–15-year-old
single-family residences in panel (a) and condominiums in panel (b) using the
estimated results in columns (2) and (4) in Table VI. The lightest shade repre-
sents the steepest depreciation rate, whereas the darkest shade represents the
lowest depreciation rate. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

where Neighborhoodj denotes the neighborhood characteristics specified
in equation (5), and X is the same set of controls as in equation (1). We
do not estimate census tract fixed effects because some census tracts
do not have a sufficient number of observations for all age-cohort com-
binations. An age effect 𝛾a denotes the coefficient for the 5-year age
group between a and a + 4 years old for a = {0,5,… ,60}, a period
effect 𝜏p denotes the coefficient for the 5-year period group between
list years p and p + 4 for p = {2005,2010,2015}, and a cohort effect
𝜅c denotes the coefficient for the 5-year cohort group between c and
c + 4 for c = {1945,1950,… ,2015}. The five-year grouping scheme is
standard practice and allows us avoid an under-identification problem
arising from too few observations in any age-period-cohort intersection
(see Yang et al., 2008).

However, it is an empirical challenge to estimate cohort effects with
period and age effects. We cannot simply add indicators for years built
to a linear model that already includes age and period because age
is a linear combination of the year built and the year leased, which

creates an identification problem (i.e., p − c = a).16 To address the per-
fect collinearity issue we discussed in Section 2, we use the age-period-
cohort (APC) model based on the IE method (Yang et al., 2004; Yang et
al., 2008). The IE is a generic method of decomposing age, period, and
cohort effects based on a principal component analysis.

To illustrate the IE method, let us define  ≡ ln Y −
Neighborhoodj𝛼 − X𝛽 and rewrite equation (7) as:

 = Z𝜃 + 𝜖, (8)

where 𝜃 = (𝛾0, 𝛾5,… , 𝛾55, 𝜏2005, 𝜏2010, 𝜅1945, 𝜅1950,… , 𝜅2010)′ by omit-
ting 𝛾60, 𝜏2015, and 𝜅2015. Matrix Z consists of a set of dummy variables
for age, period, and cohort groups. The ordinary least squares estimator
𝜃 = (Z′Z)−1Z′ is not defined well because of singularity of Z. How-
ever, because Z is one less than full column rank, the parameter space
of the regression model (8) can be decomposed into the direct sum of

16 We first define the age and cohort groups and derive period groups by
adding cohort and age (p = c + a). Thus, we allow some noise in period groups
because our primary focus is on age and cohort effects.
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Table 7
Intrinsic estimators.

Dep. var.: ln(Rent) (1) (2) (1) (2)
Sample: SFR COND (Continued) SFR COND

Age: 0–4 yrs 0.06∗∗∗

(0.01)
0.14∗∗∗

(0.02)
Cohort: 1945–1949 0.18∗∗∗

(0.05)
0.09

(0.15)
Age: 5–9 yrs 0.01∗

(0.01)
0.09∗∗∗

(0.02)
Cohort: 1950–1954 −0.06∗∗∗

(0.01)
−0.09∗

(0.05)
Age: 10–14 yrs −0.01∗∗

(0.00)
0.04∗∗∗

(0.01)
Cohort: 1955–1959 −0.08∗∗∗

(0.01)
−0.10∗∗∗

(0.04)
Age: 15–19 yrs −0.02∗∗∗

(0.00)
0.02∗

(0.01)
Cohort: 1960–1964 −0.03∗∗∗

(0.01)
−0.14∗∗∗

(0.03)
Age: 20–24 yrs −0.02∗∗∗

(0.00)
0.02∗∗∗

(0.01)
Cohort: 1965–1969 −0.06∗∗∗

(0.01)
−0.14∗∗∗

(0.03)
Age: 25–29 yrs −0.02∗∗∗

(0.00)
0.02∗∗∗

(0.01)
Cohort: 1970–1974 −0.02∗∗∗

(0.01)
0.04

(0.02)
Age: 30–34 yrs −0.01∗∗∗

(0.00)
−0.00
(0.01)

Cohort: 1975–1979 −0.02∗∗∗

(0.01)
0.00

(0.02)
Age: 35–39 yrs −0.02∗∗∗

(0.00)
−0.02
(0.01)

Cohort: 1980–1984 −0.02∗∗∗

(0.01)
−0.02
(0.02)

Age: 40–44 yrs −0.01∗∗∗

(0.00)
−0.05∗∗∗

(0.01)
Cohort: 1985–1989 0.01

(0.00)
−0.03∗∗

(0.01)
Age: 45–49 yrs 0.00

(0.01)
−0.05∗∗∗

(0.02)
Cohort: 1990–1994 0.01∗∗

(0.00)
−0.00
(0.01)

Age: 50–54 yrs −0.01∗∗

(0.01)
−0.18∗∗∗

(0.02)
Cohort: 1995–1999 0.03∗∗∗

(0.00)
0.04∗∗∗

(0.00)
Age: 55–59 yrs 0.04∗∗∗

(0.01)
−0.07∗∗∗

(0.02)
Cohort: 2000–2004 0.02∗∗∗

(0.00)
0.05∗∗∗

(0.00)
Age: 60–64 yrs 0.02

(0.01)
0.04

(0.05)
Cohort: 2005–2009 0.02∗∗∗

(0.00)
0.12∗∗∗

(0.01)
Period: 2005–2009 −0.04∗∗∗

(0.00)
−0.05∗∗∗

(0.00)
Cohort: 2010–2014 0.00

(0.00)
0.12∗∗∗

(0.01)
Period: 2010–2014 −0.05∗∗∗

(0.00)
−0.07∗∗∗

(0.00)
Cohort: 2015–2019 0.04∗∗∗

(0.01)
0.06∗∗∗

(0.02)
Period: 2015–2019 0.08∗∗∗

(0.00)
0.11∗∗∗

(0.00)
Observations 188,166 89,194
Property controls ✓ ✓
Census Variables ✓ ✓

This table reports the age, period, and cohort effects on the natural log of the contract rate based on
the IE method. The sample in column 1 (2) consists of leases for single-family residences (condomini-
ums). The properties were advertised for rent on the MLS in Clark County, NV between 2009Q1 and
2019Q1. Age, period, and cohort flag the structure age group, rent lease listing date, and the structure year-
built group, respectively. Property controls include log size square footage demeaned, log lot area square
footage, bedrooms, bathrooms, fireplaces, private pool, private spa, garage car spaces, heating fuel, cool-
ing fuel, dishwasher, washer/dryer, cable availability, tenant pay indicators (i.e., cable, gas, power, sewer,
water, garbage pickup, other services), age restriction, gated community, community amenities (pool, spa,
park, golf, basketball, clubhouse, gym, rules), high school, middle school, a townhouse/duplex/triplex flag
(TH, for the condominium sample), and a constant. Census variables include the home-ownership rate,
log median household income, log population density per square-mile, Hispanic population share, Non-
Hispanic Black population share, Asian population share, and Population 65+ share at the census-tract
level. Table D.1 in the appendix provides definitions for each variable. Standard errors are in parentheses.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

two linear subspaces that are perpendicular to each other. One subspace
corresponds to the unique zero eigenvalue of Z′Z, which is termed the
null subspace of Z. Because of orthogonality, the non-unique parameter
vector 𝜃 can be written as:

𝜃 = T + sT0, (9)

where T0 is a unique eigenvector of unit length in the null subspace
of Z, and s is a scalar corresponding to a specific set of parameter val-
ues. Vector T0 is independent of  and satisfies ZT0 = 0 because of the
singularity of Z. Parameter vector T is the intrinsic estimator (IE) corre-
sponding to the projection of the parameter vector 𝜃 onto the non-null
space of Z: T = (I − T0T′

0)𝜃.
We estimate IE parameters by applying a principal components

regression. We first apply an orthonormal matrix transformation to
Z′Z to produce the nonzero eigenvalues and corresponding eigenvec-
tors of the matrix. We use these eigenvectors to estimate the princi-
pal components regression model. Then, we transform the estimated
coefficients and the variance-covariance matrix of the principal com-

ponents regression model back to the space of age, period, and cohort
coordinates to make the coefficients interpretable. In the last step, we
impose the constraint that the sum of coefficients in each set is zero
(Σa𝛾a = Σp𝜏p = Σc𝜅c = 0) instead of omitting one reference category
from each set of indicator variables.17

Table 7 reports the estimated age, cohort, and period (list year)
effects in decimal form on log rents for single-family residences in col-
umn (1) and condominiums in column (2). The age coefficient rep-
resents relative log rents associated with the subject age group com-
pared with other groups. The age profile suggests that log rents gener-
ally decrease with age. For single-family residences and condominiums,
respectively, the relative log rents are 0.06 and 0.14 for the youngest
age group (0–4 years) but quickly decrease for older age groups. Thus,
the APC model confirms the existence of physical deterioration. The

17 We use the statistical software package for Stata by Schulhofer-Wohl and
Yang (2006). See Rutherford et al. (2010) for details on the procedure.
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Fig. 5. Decomposition of Economic Depreciation. This figure depicts the eco-
nomic depreciation of rents for single-family residences (panel (a)) and condo-
miniums (panel (b)) based on Table 7. The economic depreciation is the sum of
the physical deterioration and the functional obsolesce rates, where the physical
deterioration rate is calculated based on age effects and the functional obsolesce
rate is the slope of the linear trend in cohort effects. The age-group-specific esti-
mates (OLS) with a 95% confidence interval are based on Table E.11. On the hor-
izontal axis, building age corresponds to the beginning year for each age group
(5 for 5–9 years, 10 for 10–14 years, and so on).

table also shows that the variations in cohort effects are statistically sig-
nificant. Importantly, cohort effects tend to increase with cohort year
for both single-family residences and condominiums. Except for the
1945–1949 cohort, which has only a few observations, relative log rents
are negative for earlier cohorts and positive for more recent cohorts.
Cohort effects are robust to the inclusion of interactions between build-
ing age and census tract variables (see Table E.10 in the Appendix).

We use the estimated age and cohort effects in Table 7 to infer the
average annual rate of physical deterioration and functional obsoles-
cence. We calculate the annual rate of physical deterioration by divid-
ing the difference in age effects between the subject and first age group
by the mean age difference. For the rate of functional obsolescence, we
estimate the slope 𝛽 of the following equation using a weighted least
squares estimation with cohort frequency weights:

Cohort Effectk = 𝛼 − 𝛽Yeark + 𝜀,

where Yeark denotes the mean year built for cohort k, and 𝜀 represents
the mean-zero vintage effects. Using the single-family cohort effects
from column (1), we estimate a 𝛽 of 0.001 that is statistically significant
at the 1% level. For condominiums, 𝛽 equals 0.0049 and is also statis-
tically significant at the 1% level. Thus, we find significantly greater
obsolescence for condominiums: 0.1% per year for single-family resi-
dences and 0.5% for condominiums. The sum of the functional obso-

lescence and physical deterioration yields an estimate of the total eco-
nomic depreciation, excluding vintage effects.

Fig. 5 depicts the implied economic depreciation rates for proper-
ties from 5 to 64 years old based on the IEs for single-family resi-
dences (panel a) and condominiums (panel b). We use the initial age
group (0–4 years of age) as a reference group. As a benchmark, we
supperimpose the corresponding age-group-specific depreciation esti-
mates (with 95% confidence bounds) without cohort controls based on
an OLS model with census tract fixed effects.18 In panel (a) for single-
family residences, the physical deterioration rate from the APC model
begins at 1.14% per year for the 5–9 years age group and approaches a
value close to zero for older age groups (0.08% for the 60–64 years age
group). Adding the average functional obsolescence rate of 0.1% per
year, the total economic depreciation rates range from 1.24% to 0.18%.
Economic depreciation rates vary more significantly by age group with
the APC model. The APC-based economic depreciation tends to fall out-
side the 95% confidence interval of the OLS estimates. Thus, when we
do not separate cohort effects (labeled OLS in the figure), we tend to

18 We use the same building age groups as for the APC model. To increase
comparability between the OLS and APC estimates, we remove the non-age-
group-specific interaction terms from the OLS models. Table E.11 in Appendix E
reports the OLS regression results.
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overestimate the economic depreciation rate, except for the newest age
group.

In panel (b) for condominiums, the physical deterioration rates from
the APC model are consistent with those for single-family residences,
ranging from 1.3% for the 5–9 years age group to 0.17% for the 60–64
years age group. Thus, the variation in depreciation rates by property
type is not caused by physical deterioration. However, because the rate
of functional obsolescence of 0.5% per year is much higher for con-
dominiums, the total economic depreciation rate ranges from 1.8% to
0.67%. Similar to the single-family case, economic depreciation rates
vary more significantly by age group with the APC model. Although
the APC-based economic depreciation falls within the 95% confidence
interval of the OLS estimates due to large standard errors, the differ-
ences in point estimates are economically significant.

Overall, we find that high functional obsolescence for condomini-
ums can result in significantly high economic depreciation even if phys-
ical deterioration is comparable across different property types. Fur-
thermore, carefully controlling for cohort effects reveals the variation
in economic depreciation by age. Put differently, fine control of neigh-
borhood effects by census tract fixed effects will not completely take
care of cohort effects.

6. Conclusion

We use a unique data set of Las Vegas rental contracts and estimate
rent depreciation, which is an essential input to the estimation of infla-
tion rates. Rent depreciation is a form of economic depreciation that
captures the physical deterioration and functional obsolescence of a
residential structure. We demonstrate that rental depreciation rates are
higher for newer structures than older ones and decrease non-linearly
as they age. We also show that the rental depreciation rate increases
with unit size and varies by location within a metropolitan area. Fur-
thermore, the depreciation of condominium rents is significantly higher
than the rates for single-family residences. Using an IE method to
segment age, period, and cohort effects, we decompose the economic
depreciation and find that single-family residences and condominiums
have similar physical deterioration rates, whereas condominiums face

a greater rate of functional obsolescence than single-family residences.
The variation in depreciation significantly impacts inflation rates

because shelter is the largest component of the consumption basket. The
BLS adjusts for an aging-bias in rent inflation by using the area aver-
age depreciation rate estimated following Lane et al. (1988). However,
in contrast with our findings, their approach assumes that the depre-
ciation rate is a linear function of age, the inclusion of structural and
neighborhood characteristics eliminates cohort effects, and all hedonic
characteristics are common for detached and non-detached housing.
Under the BLS approach, rent depreciation rates for U.S. cities in the
West range from 0.19% to 0.25%. We estimate a much greater average
depreciation rate of 0.75% for single-family residences and 1.9% for
condominiums in a metropolitan area that epitomizes growing cities in
the West. The true rent depreciation rates may be even greater consid-
ering potential bias from the maintenance or survivorship of housing
units in our sample.

Our results imply a downward bias in local rates for areas with a
larger proportion of new and large properties. This bias would distort
consumption choice, corporate investment, monetary policy, and social
security related decisions. As the BLS considers changes in their current
approaches to better address the issue of age-bias in the Housing Sur-
vey (Campbell, 2006), we demonstrate challenges with estimating rent
deprecation rates and present a potential set of models that could be
applied for aging-bias adjustments.
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Appendix A. Impact of Rent Depreciation on Inflation Calculations

In principle, the rent and owners’ equivalent indices provide constant-quality measures of the housing services component of the CPI. They are
both constructed using data on observed rent changes over six month intervals of repeat observations of housing units from the Housing Survey
(Bureau of Labor Statistics, 2018). For instance, the unadjusted rent inflation for a single location is captured by

rt =
∑

i𝜔iRit∑
i𝜔iRit−6

(A.1)

where 𝜔i is the weight of housing unit i, Rit is the contract rent of the housing unit, and Rit−6 is the contract rent of the same housing unit six
months ago.

To avoid an aging bias from economic depreciation that occurs between time (t − 6) and (t), the BLS adjusts the current rent of each housing
unit upwards using an aging-bias adjustment factor D = 1

1−d where d is the average semi-annual depreciation rate for the area of the housing units
(Bureau of Labor Statistics, 2018).19 Hence, the constant-quality growth rate (or inflation) of housing services at time t is

go
t = rt × D − 1 (A.2)

where rt is defined by equation (A.1). An increase in the depreciation rate (d), increases the aging-bias adjustment factor (D), and in turn, implies
further growth in the price of housing services (go

t ). As the CPI is a function of housing services, the CPI’s growth would be higher, too.
The BLS estimates the depreciation rate d using the methodology proposed by Lane et al. (1988), who report an average rate of approximately

0.225%, ranging from 0.19% to 0.25% per year for cities in the West. By contrast, we estimate that the average depreciation rate for Las Vegas
(which is in the West region) is 0.75% for single-family residences in the 11–15 years age group (Column 2, Table 3). The average depreciation
estimate is larger if condominiums are included.

To examine how the CPI changes using an updated depreciation rate with a back-of-envelope approach, we measure a new service growth rate
(gn

t ) as:

gn
t = rt × Dn − 1 (A.3)

19 For further details, see https://www.bls.gov/opub/hom/cpi/pdf/cpi.pdf.
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where Dn = 1
1−dn and dn is set to the new depreciation rate for the area.

We then adjust the growth rate of the CPI (gAdjCPI
t ) over rolling six-month intervals as:

gAdjCPI
t = gCPI

t − wtgo
t + wtgn

t (A.4)

where wt is the relative importance of the shelter component. Equation (A.4) simplifies to

gAdjCPI
t = gCPI

t + wt(go
t + 1) dn − d

1 − dn (A.5)

when using equations (A.2) and (A.3).
To compute equation (A.5), we calculate gCPI

t using the CPI for all items in West Urban Cities (or CPI_t, CUUR0400SA0), and go
t using the

corresponding shelter component of the West Urban CPI at month t (or CUUR0400SAH1). Moreover, we set d in D equal to the semi-annual average
depreciation rate ((1 + .00225)1/2 − 1), and use our estimate of the average depreciation rate ((1 + .0075)1/2 − 1) from Table 3 for dn. Lastly, we
set the relative importance weight, wt , to be a constant of 0.36 for the purpose of exposition, which is the most recent relative importance weight
for shelter in the West.20 We then construct the implied Adjusted West CPI in levels and compare it with the actual West CPI.

Figure A.1(a) plots the actual and adjusted CPI for the West based on the existing and revised depreciation estimates, whereas Figure A.1(b)
plots the implied year-over-year change of each CPI measure from July 1999 to March 2021. As Figure A.1 illustrates, an error of merely 0.525%
in the depreciation rate will lead to a modest mismeasurement of rent inflation but accumulates into significant differences between the actual
and observed CPI. For example, our results suggest that the CPI as of March 2021 would be underestimated by about 4.4%, and this error will
incrementally grow every six months.

Fig. A.1 Inflation Adjustment for Rent Depreciation.

20 See https://www.bls.gov/cpi/tables/relative-importance/home.htm.
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Appendix B. Relationship between Rent Depreciation and Value Depreciation

This section demonstrates the relationship between depreciation rates for rents and asset values. Developing a valuation model that incorporates
depreciating cash flows is important to fully understand this relationship (Dixon et al., 1999). The valuation model is relevant for both commercial
properties and housing because an owned house can be valued as the present value of owners’ equivalent rents. Unlike Xu et al. (2018), we take
depreciating structure rents as a primitive and derive property value depreciation rates.

We model aging effects on rents and prices after removing time trends and fluctuations. Thus, we consider a stationary urban economy with
no real growth in income or city size in a discrete-time setting. We demonstrate a deterministic case because our focus is not on stochastic rent
fluctuations. The introduction of stochastic rents will not change the intuition because stochastic rents can be analogously priced with the stochastic
discount factor.

As DiPasquale and Wheaton (1995) conceptualize, housing rents comprise structure rents and land rents, which include both location and
agricultural rents. In a stationary economy, land rents, CL, are constant over time. The initial structure rent, CS1, is subject to depreciation at a
constant rate, d, because of physical deterioration and functional and technological obsolescence. The structure also has a finite life T (a priori
assumption). The structure rent CS(t) at time t = 1,… ,T is:

CS(t) = CS1(1 − d)t−1. (B.1)

The total housing rents C(t) is the sum of structure and land rents: C(t) = CS(t) + CL. Then, the rent depreciation rate is defined as:

dC = −d ln C(t)
dt

. (B.2)

As land rent does not depreciate, we have dC < d.
In this complete and stationary economy without a growth option, the land value L equals the present value of perpetual land rents:

∀t ∶ L(t) = CL
r

≡ L, (B.3)

where r denotes a constant discount rate under certainty.21 Similarly, the initial structure value S(0) equals the present discounted value of
depreciating structure rents with a finite life T:

S(0) = CS1
∑T

i=1
(1 − d)i−1

(1 + r)i . (B.4)

Thus, the structure value at time t equals:

S(t) = CS1(1 − d)t
r + d

[
1 −

(
1 − d
1 + r

)T−t
]
. (B.5)

The property value equals V(t) = S(t) + L.
The structure value depreciation rate, dS, is defined as:

dS = −d ln S(t)
dt

, (B.6)

and the property value depreciation rate is defined as:

dV = −d ln V(t)
dt

. (B.7)

Due to the non-depreciating land component, the property value depreciation rate is smaller than the structure value depreciation rate: dV < dS.
Figure B.1 depicts the graph of the rent depreciation rate (red dotted curve), the structure value depreciation rate (blue solid curve), and the

property value depreciation rate (dashed green curve) for different values of structure rent depreciation rate. The depreciation rate is evaluated for
a 10-year old structure that can operate until 50 years old. We set the initial proportion of land at 1∕3. The parameter values are: T = 50, t = 10,
CS1 = 1, S(0)∕L = 2, and r = 0.03.

The model demonstrates two key results. First, the curve for the structure value depreciation (the blue solid curve) is located above the structure
rent depreciation curve (the 45-degree line); that is, the structure value depreciation rate is always larger than the structure rent depreciation rate.
This result holds regardless of parameter values. There are two reasons for this result. First, when structure rent depreciation is large, the current
income is large relative to the present value of the remaining future rental income. Second, the structure value additionally decreases each period
because of a shorter remaining life of the structure. This second effect is often observed as an increase in cap rates or cap rate creep (Bokhari and
Geltner, 2018). The y-intercept represents the finite-life effect when structure rent depreciation is zero.

The second result is that the property value depreciation rate is larger than the rent depreciation rate for a reasonable range of structure rent
depreciation. In Figure B.1, the property depreciation rate is 1.8% when the rent depreciation rate is 0.7%. This case is consistent with the results in
existing studies (e.g., Himmelberg et al., 2005). In the right-hand side region where rent depreciation is large, the property value depreciation rate
becomes smaller than the rent depreciation rate because the land value becomes dominant as the structure value quickly depreciates. This region
corresponds to the estimation result in Xu et al. (2018) for the Beijing housing market, where both structure depreciation and land proportion are
large.

21 For a city with a growth option, the land value will be stochastic (Capozza and Helsley, 1990).
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Fig. B.1 The relationship between rent depreciation rate and value depreciation rates.

This figure depicts the rates of rent depreciation (dotted red curve), structure value depreciation (solid blue curve), and property value depre-
ciation (dashed green curve) for different values of structure rent depreciation rate. These curves are defined by equations (B.2), (B.6), and (B.7).
The parameter values are: T = 50, t = 10, CS1 = 1, S(0)∕L = 2, and r = 0.03.

Appendix C. Example of Functional Obsolescence and Cohort Effects

The following example illustrates how we estimate functional obsolescence from cohort effects. The example specifies how physical deterioration,
functional obsolescence, and vintage premia determine age and cohort coefficients in regressions.

First, suppose that building technology and consumer tastes change over time. As fundamental building functions and styles cannot be easily
updated, rents exhibit (latent) functional obsolescence for properties with outdated characteristics. For simplicity, suppose log rents are lower by
0.01 for a five-year earlier construction year; that is, relative to 1975, log rents are lower by 0.01 for the 1970 cohort and by 0.02 for the 1965
cohort, and so on. In addition, some vintages have mean-zero relative premia and discounts because of construction quality. Assume a 0.01 premium
for 1960 and 1970 and a 0.01 discount for 1955 and 1965. Finally, physical deterioration causes log rents to depreciate by 0.03 every five years;
that is, in a 1975 rental market, log rents are lower by 0.03 for 5-year-old buildings, 0.06 for 10-year old buildings, and so on. The following table
illustrates the three effects relative to 1975.

Year 1955 1960 1965 1970 1975

Obsolescence −0.04 −0.03 −0.02 −0.01 0
Vintage −0.01 0.01 −0.01 0.01 0

Age 20 15 10 5 0

Deterioration −0.12 −0.09 −0.06 −0.03 0

If we estimate a hedonic model without controlling for cohort effects, the age profile of log rents will reflect the sum of all three latent effects.

Age 20 15 10 5 0

Age coefficients −0.17 −0.11 −0.09 −0.03 0

Now suppose we can correctly separate cohort effects from age effects. Then, as Francke and van de Minne (2017) suggest, the age coefficients
will capture only physical deterioration, whereas cohort effects will capture both functional obsolescence and vintage effects.
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Age 20 15 10 5 0

Age coefficients −0.12 −0.09 −0.06 −0.03 0

Year 1955 1960 1965 1970 1975

Cohort effects −0.05 −0.02 −0.03 0 0

Without knowing the true functional form for obsolescence, correctly identifying obsolescence and vintage effects is not possible. However, by
imposing an assumption on the functional form, such as a log-linear form, we can estimate a constant rate of functional obsolescence. If the true
function does not take a log-linear form, the constant rate can still be interpreted as the average rate. In this particular example, a linear regression
of cohort effects on year gives a slope of approximately 0.01 for every five years. Thus, the estimated slope correctly identifies the constant rate of
obsolescence. The sum of deterioration and obsolescence (0.04 per five years) represents economic depreciation, excluding vintage effects.

Appendix D. Dictionary of Variables

Table D.1
Dictionary of Variables

Variable Definition

Market Outcomes
Contract Rent ($) Contractual rent on lease contract
Asking Rent ($) Asking rent on listing
Service Characteristics
Cable Available 1 if cable television is available, and 0 otherwise
Tenant Pays: Cable 1 if the tenant pays for cable, and 0 otherwise
Tenant Pays: Gas 1 if the tenant pays for gas, and 0 otherwise
Tenant Pays: Power 1 if the tenant pays for power, and 0 otherwise
Tenant Pays: Sewer 1 if the tenant pays for sewer, and 0 otherwise
Tenant Pays: Water 1 if the tenant pays for water, and 0 otherwise
Tenant Pays: Garbage 1 if the tenant pays for garbage pickup, and 0 otherwise
Tenant Pays: Other 1 if the tenant pays for other services, and 0 otherwise
Structure Characteristics
Age Building’s age measured as the listing year less built year
Living Area (Size) Square-Footage Square footage of non-garage floor space in property/unit
Lot Area Square-Footage Square footage of property’s lot
Bedrooms Number of bedrooms
Bathrooms Number of bathrooms
Fireplaces Number of fireplaces
Private Pool 1 if the property has a private pool, and 0 otherwise
Private Spa 1 if the property has a private spa, and 0 otherwise
Garage Car Spaces Number of car spaces in the garage
Heating Fuel: Electric 1 if the property uses only electric heating fuel, and 0 otherwise
Heating Fuel: Gas 1 if the property uses only gas fuel for heating, and 0 otherwise
Heating Fuel: Mixed 1 if the property uses electric/gas heating fuels, and 0 otherwise
Heating Fuel: Other 1 if the property uses other heating fuel type, and 0 otherwise
Cooling Fuel: Electric 1 if the property uses electric fuel for cooling, and 0 otherwise
Cooling Fuel: Gas 1 if the property uses gas fuel for cooling, and 0 otherwise
Cooling Fuel: Other 1 if the property uses other cooling fuel types, and 0 otherwise
Dishwasher 1 if the rental contract includes a dishwasher, and 0 otherwise
W/D: Washer and Dryer 1 if the rental contract includes both a washer and dryer, and 0 otherwise
W/D: Dryer Only 1 if the rental contract includes a dryer but not a washer, and 0 otherwise
W/D: Washer Only 1 if the rental contract includes a washer but not a dryer, and 0 otherwise
W/D: None 1 if the rental contract does not include a dryer or washer, and 0 otherwise
TH 1 if townhouse, triplex, or fourplex, and 0 otherwise
Neighborhood Characteristics
Age Restriction 1 if the neighborhood has an age restriction, and 0 otherwise
Gated Community 1 if the neighborhood is gated, and 0 otherwise
Community Pool 1 if the neighborhood has a community pool, and 0 otherwise
Community Spa 1 if the neighborhood has a community spa, and 0 otherwise
Community Park 1 if the neighborhood has a community park, and 0 otherwise
Community Golf 1 if the neighborhood has a community golf course, and 0 otherwise
Community Basketball 1 if the neighborhood has a community basketball court, and 0 otherwise
Community Clubhouse 1 if the neighborhood has a community clubhouse, and 0 otherwise
Community Gym 1 if the neighborhood has a community gym, and 0 otherwise
Community Rules 1 if the neighborhood has community rules, and 0 otherwise
High School Categorical variables for the high school assigned to neighborhood
Jr. High School Categorical variables for the jr. high school assigned to neighborhood
ACS Census Tract Variables
Home-ownership Home-ownership rate in the census tract
Population 65+ share Proportion of population that is 65 years or older in the census tract
Hispanic share Proportion of population that is Hispanic in the census tract
Black share Proportion of population that is non-Hispanic Black in the census tract
Asian share Proportion of population that is non-Hispanic Asian in the census tract
Population density Number of people per square mile in the census-tract
Median household income Median household income in the census tract
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Appendix E. Additional Tables

Table E.1
Summary Statistics for Residential Leases

Variables Single Family Residences (N = 188,219) Condominiums (N = 89,324)

Mean SD Q25 Q50 Q75 Mean SD Q25 Q50 Q75

Market Outcomes
Contract Rent ($) 1,392 507 1,100 1,292 1,500 1,024 545 750 895 1,100
Asking Rent ($) 1,397 509 1,100 1,295 1,500 1,032 666 750 895 1,100
Service Characteristics
Cable Availabled 0.91 0.29 1.00 1.00 1.00 0.94 0.24 1.00 1.00 1.00
Tenant Pays: Cabled 0.81 0.40 1.00 1.00 1.00 0.79 0.41 1.00 1.00 1.00
Tenant Pays: Gasd 0.97 0.16 1.00 1.00 1.00 0.76 0.43 1.00 1.00 1.00
Tenant Pays: Powerd 0.99 0.10 1.00 1.00 1.00 0.97 0.16 1.00 1.00 1.00
Tenant Pays: Sewerd 0.68 0.47 0.00 1.00 1.00 0.26 0.44 0.00 0.00 1.00
Tenant Pays: Waterd 0.95 0.21 1.00 1.00 1.00 0.38 0.49 0.00 0.00 1.00
Tenant Pays: Garbage Pickupd 0.78 0.41 1.00 1.00 1.00 0.27 0.44 0.00 0.00 1.00
Tenant Pays: Other Servicesd 0.79 0.41 1.00 1.00 1.00 0.27 0.44 0.00 0.00 1.00
Structure Characteristics
Age 14.8 10.2 8.0 12.0 19.0 17.7 10.4 10.0 15.0 24.0
Living Area (Size) Square Footage 1,908 645 1,478 1,754 2,168 1,200 514 937 1,108 1,308
Lot Area Square-Footage 5,344 2,982 3,920 4,792 6,510 846 1,977 0 0 871
Bedrooms 3.4 0.7 3.0 3.0 4.0 2.0 0.7 2.0 2.0 2.0
Bathrooms 2.7 0.6 2.0 3.0 3.0 2.0 0.6 2.0 2.0 2.0
Fireplaces 0.50 0.61 0.00 0.00 1.00 0.37 0.51 0.00 0.00 1.00
Private Poold 0.13 0.33 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00
Private Spad 0.09 0.28 0.00 0.00 0.00 0.02 0.13 0.00 0.00 0.00
Garage Car Spaces 2.05 0.58 2.00 2.00 2.00 0.65 0.80 0.00 0.00 1.00
Heating Fuel: Electricd 0.04 0.19 0.00 0.00 0.00 0.28 0.45 0.00 0.00 1.00
Heating Fuel: Gasd 0.96 0.20 1.00 1.00 1.00 0.71 0.45 0.00 1.00 1.00
Heating Fuel: Mixedd 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00
Heating Fuel: Otherd 0.00 0.03 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
Cooling Fuel: Electricd 0.99 0.12 1.00 1.00 1.00 0.99 0.11 1.00 1.00 1.00
Cooling Fuel: Gasd 0.02 0.12 0.00 0.00 0.00 0.01 0.11 0.00 0.00 0.00
Cooling Fuel: Otherd 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Dishwasherd 0.98 0.13 1.00 1.00 1.00 0.97 0.16 1.00 1.00 1.00
W/D: Washer and Dryerd 0.84 0.37 1.00 1.00 1.00 0.93 0.25 1.00 1.00 1.00
W/D: Dryer Onlyd 0.00 0.05 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
W/D: Noned 0.16 0.37 0.00 0.00 0.00 0.06 0.24 0.00 0.00 0.00
W/D: Washer Onlyd 0.00 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
THd . . . . . 0.28 0.45 0.00 0.00 1.00
Neighborhood Characteristics
Age Restrictiond 0.05 0.23 0.00 0.00 0.00 0.05 0.23 0.00 0.00 0.00
Gated Communityd 0.19 0.39 0.00 0.00 0.00 0.54 0.50 0.00 1.00 1.00
Community Poold 0.13 0.34 0.00 0.00 0.00 0.82 0.38 1.00 1.00 1.00
Community Spad 0.05 0.22 0.00 0.00 0.00 0.48 0.50 0.00 0.00 1.00
Community Parkd 0.04 0.18 0.00 0.00 0.00 0.13 0.33 0.00 0.00 0.00
Community Golfd 0.04 0.20 0.00 0.00 0.00 0.02 0.15 0.00 0.00 0.00
Community Basketballd 0.02 0.15 0.00 0.00 0.00 0.03 0.18 0.00 0.00 0.00
Community Clubhoused 0.06 0.24 0.00 0.00 0.00 0.35 0.48 0.00 0.00 1.00
Community Gymd 0.03 0.17 0.00 0.00 0.00 0.34 0.47 0.00 0.00 1.00
Community Rulesd (HOA) 0.73 0.45 0.00 1.00 1.00 0.79 0.40 1.00 1.00 1.00

This table reports the mean, standard deviation (SD), 25th percentile (Q25), 50th percentile (Q50), and 75th percentile (Q75) of property charac-
teristics by property type. The sample includes leased properties advertised for rent on the MLS in Clark County, NV between 2009Q1 and 2019Q1.
Table D.1 in the appendix provides definitions for each variable. The d superscript denotes dummy variable. The mean of dummy variables can be
interpreted as the share of the sample where the dummy variable equals 1.
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Table E.2
Payment of Operating Expenses by Age Group

Age Group Gas Power Water Sewer Disposal Cable Other

Panel A: Single-Family Residences

G(0 yr) 0.98 0.99 0.96 0.70 0.80 0.80 0.77
G(1–10 yr) 0.98 0.99 0.95 0.66 0.78 0.78 0.82
G(11–20 yr) 0.99 0.99 0.96 0.70 0.80 0.81 0.81
G(21–30 yr) 0.97 0.99 0.95 0.68 0.78 0.79 0.80
G(31–40 yr) 0.92 0.99 0.95 0.65 0.76 0.78 0.79
G(41–50 yr) 0.81 0.98 0.93 0.62 0.71 0.74 0.80
G(51–60 yr) 0.80 0.98 0.93 0.61 0.72 0.73 0.76

Panel B: Condominiums

G(0 yr) 0.85 0.95 0.65 0.47 0.61 0.61 0.80
G(1–10 yr) 0.74 0.97 0.34 0.22 0.25 0.26 0.80
G(11–20 yr) 0.85 0.97 0.39 0.27 0.29 0.29 0.79
G(21–30 yr) 0.71 0.97 0.34 0.25 0.22 0.22 0.79
G(31–40 yr) 0.64 0.98 0.50 0.34 0.32 0.32 0.77
G(41–50 yr) 0.57 0.98 0.57 0.32 0.35 0.35 0.76
G(51–60 yr) 0.35 0.97 0.31 0.21 0.20 0.20 0.66

This table reports the share of lease contracts (by property type and age groups) that require
the tenant to pay for the named operating expense. The operating expenses are specified in
the column headers. Panel A summarizes lease contracts of single-family homes, while Panel B
summarizes those of condominiums.

Table E.3
Suppressed Coefficients from Table III - Annual Rent Depreciation Rates

Dep. Var.: ln(Rent) (1) (2) (3) (4)
Sample: SFR SFR COND COND

ln(Size)dm 0.45∗∗∗

(0.01)
0.45∗∗∗

(0.01)
0.54∗∗∗

(0.09)
0.53∗∗∗

(0.09)
ln(Lot Area) 0.11∗∗∗

(0.01)
0.11∗∗∗

(0.01)
−0.00
(0.00)

−0.00
(0.00)

Bedrooms 0.02∗∗∗

(0.00)
0.02∗∗∗

(0.00)
0.05∗∗∗

(0.01)
0.05∗∗∗

(0.01)
Bathrooms 0.02∗∗∗

(0.00)
0.02∗∗∗

(0.00)
0.06∗∗∗

(0.01)
0.06∗∗∗

(0.01)
Fireplaces 0.03∗∗∗

(0.00)
0.02∗∗∗

(0.00)
0.00

(0.01)
0.00

(0.01)
Garage Car Spaces 0.04∗∗∗

(0.00)
0.03∗∗∗

(0.00)
0.05∗∗∗

(0.01)
0.05∗∗∗

(0.01)
Private Poold 0.15∗∗∗

(0.00)
0.15∗∗∗

(0.00)
0.08∗∗∗

(0.02)
0.07∗∗∗

(0.02)
Private Spad 0.05∗∗∗

(0.00)
0.05∗∗∗

(0.00)
0.02∗

(0.01)
0.02∗

(0.01)
Heating Fuel: Electricd −0.00

(0.00)
−0.00
(0.00)

−0.01
(0.01)

−0.01
(0.01)

Heating Fuel: Mixedd 0.03∗∗∗

(0.01)
0.03∗∗∗

(0.01)
0.02∗

(0.01)
0.02∗

(0.01)
Heating Fuel: Otherd 0.00

(0.01)
0.00

(0.01)
−0.04
(0.03)

−0.04
(0.03)

Cooling Fuel: Gasd 0.00
(0.00)

0.00
(0.00)

0.02∗∗

(0.01)
0.02∗∗

(0.01)
Cooling Fuel: Otherd −0.03

(0.02)
−0.03
(0.02)

0.04
(0.03)

0.04
(0.03)

Dishwasherd 0.02∗∗∗

(0.00)
0.02∗∗∗

(0.00)
0.05∗∗∗

(0.01)
0.05∗∗∗

(0.01)
W/D: Dryer Onlyd −0.01∗∗∗

(0.01)
−0.01∗∗∗

(0.01)
0.01

(0.02)
0.00

(0.02)
W/D: Noned −0.01∗∗∗

(0.00)
−0.01∗∗∗

(0.00)
−0.01
(0.01)

−0.01
(0.01)

W/D: Washer Onlyd −0.01∗

(0.01)
−0.01∗

(0.01)
0.02

(0.02)
0.03

(0.02)
Cable Availabled 0.01∗∗∗

(0.00)
0.01∗∗∗

(0.00)
0.01∗∗∗

(0.00)
0.01∗∗∗

(0.00)
Tenant Pays: Cabled 0.00∗∗∗

(0.00)
0.00∗∗∗

(0.00)
−0.00
(0.00)

−0.00
(0.00)

(continued on next page)
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Table E.3 (continued)

Dep. Var.: ln(Rent) (1) (2) (3) (4)
Sample: SFR SFR COND COND

Tenant Pays: Gasd −0.01∗∗∗

(0.00)
−0.01∗∗∗

(0.00)
−0.02∗∗∗

(0.01)
−0.02∗∗∗

(0.01)
Tenant Pays: Powerd −0.02∗∗∗

(0.00)
−0.02∗∗∗

(0.00)
−0.11∗∗∗

(0.01)
−0.11∗∗∗

(0.01)
Tenant Pays: Sewerd −0.00∗∗∗

(0.00)
−0.00∗∗∗

(0.00)
−0.00
(0.00)

−0.00
(0.00)

Tenant Pays: Waterd −0.01∗∗∗

(0.00)
−0.01∗∗∗

(0.00)
0.00

(0.00)
0.00

(0.00)
Tenant Pays: Garbage Pickupd −0.01∗∗∗

(0.00)
−0.01∗∗

(0.00)
−0.01
(0.02)

−0.01
(0.02)

Tenant Pays: Serviced −0.00
(0.00)

−0.00
(0.00)

0.01
(0.02)

0.01
(0.02)

Age Restrictiond 0.01
(0.00)

0.01
(0.00)

0.01∗∗

(0.00)
0.01∗∗

(0.00)
Gated Communityd 0.03∗∗∗

(0.00)
0.03∗∗∗

(0.00)
0.01

(0.01)
0.01

(0.01)
Community Poold 0.01∗

(0.00)
0.00

(0.00)
0.01∗

(0.00)
0.01∗

(0.00)
Community Spad 0.00

(0.00)
0.00

(0.00)
0.01∗∗∗

(0.00)
0.01∗∗∗

(0.00)
Community Parkd 0.01∗∗∗

(0.00)
0.01∗∗∗

(0.00)
0.02∗∗∗

(0.00)
0.02∗∗∗

(0.00)
Community Golfd 0.03∗∗∗

(0.01)
0.03∗∗∗

(0.01)
0.03∗

(0.02)
0.03∗

(0.01)
Community Basketballd 0.02∗∗∗

(0.00)
0.02∗∗∗

(0.00)
0.00

(0.01)
0.00

(0.01)
Community Clubhoused 0.03∗∗∗

(0.00)
0.03∗∗∗

(0.00)
−0.01
(0.00)

−0.00
(0.00)

Community Gymd 0.02∗∗∗

(0.01)
0.02∗∗∗

(0.01)
0.03∗∗∗

(0.01)
0.03∗∗∗

(0.01)
Community Rulesd −0.01∗∗∗

(0.00)
−0.01∗∗∗

(0.00)
−0.00
(0.00)

−0.00
(0.00)

THd −0.18∗∗∗

(0.05)
−0.19∗∗∗

(0.05)

Observations 188,216 188,216 89,318 89,318
Adjusted R2 0.88 0.89 0.86 0.86
Age Function Quadratic Spline Quadratic Spline
High/Middle School ✓ ✓ ✓ ✓

This table reports the OLS coefficient estimates that were suppressed in Table 3. Additional controls not
reported include high school and middle school categories. Robust standard errors are in parentheses
and clustered by census tract. ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.
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Table E.4
Annual Rent Depreciation Rates with FAR Interaction

Dep. Var.: ln(Rent) (1) (2)
Sample: SFR SFR

Age/100 −1.25∗∗∗

(0.07)
Age/1000 0.19∗∗∗

(0.01)
G(1–5 yrs) × (Age/100) −1.27∗∗∗

(0.10)
G(6–10 yrs) × (Age/100) −1.19∗∗∗

(0.07)
G(11–15 yrs) × (Age/100) −1.05∗∗∗

(0.06)
G(16–20 yrs) × (Age/100) −0.94∗∗∗

(0.05)
G(21–25 yrs) × (Age/100) −0.82∗∗∗

(0.05)
G(26–30 yrs) × (Age/100) −0.73∗∗∗

(0.04)
G(31–35 yrs) × (Age/100) −0.58∗∗∗

(0.04)
G(36–40 yrs) × (Age/100) −0.48∗∗∗

(0.04)
G(41–45 yrs) × (Age/100) −0.41∗∗∗

(0.04)
G(46–50 yrs) × (Age/100) −0.35∗∗∗

(0.03)
G(51–55 yrs) × (Age/100) −0.31∗∗∗

(0.04)
G(56–60 yrs) × (Age/100) −0.22∗∗∗

(0.04)
(Age/100) × FARdm 0.04

(0.12)
0.08

(0.12)

Observations 188,203 188,203
Adjusted R2 0.82 0.82
Structural ✓ ✓
Neighborhood ✓ ✓
Services ✓ ✓
Year-Quarter FE ✓ ✓
Census Tract FE ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equa-
tion (1) for single-family residence rentals. The dependent variable is log con-
tract rents. G(·) denotes an indicator function for each age group. Variables
with the dm superscript are demeaned. FAR is the natural log of the floor
area to lot size square-footage. Structure controls include log unit size to lot
area ratio (FAR), bedrooms, bathrooms, fireplaces, private pool, private spa,
garage car spaces, heating fuel, cooling fuel, dishwasher, and washer/dryer.
Service controls include indicators of tenant payments for cable, gas, power,
sewer, water, garbage pickup, and other services. Neighborhood controls
include age restriction, gated community, and community amenities such as
pool, clubhouse, schools. All regressions have a constant. Table D.1 in the
appendix provides definitions for each variable. The properties were adver-
tised for rent on the MLS in Clark County, NV between 2009Q1 and 2019Q1.
Robust standard errors are in parentheses and clustered by census tract. ∗∗∗,
∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table E.5
Annual Rent Depreciation Rates using Asking Rents

Dep. Var.: ln(Asking Rent) (1) (2) (3) (4)
Sample: SFR SFR COND COND

Age/100 −0.82∗∗∗

(0.05)
−2.30∗∗∗

(0.43)
Age2/1000 0.08∗∗∗

(0.01)
0.15∗∗∗

(0.06)
G(1–5 yrs) × (Age/100) −0.95∗∗∗

(0.07)
−1.60∗∗∗

(0.32)
G(6–10 yrs) × (Age/100) −0.90∗∗∗

(0.04)
−1.88∗∗∗

(0.24)
G(11–15 yrs) × (Age/100) −0.78∗∗∗

(0.04)
−2.04∗∗∗

(0.27)
G(16–20 yrs) × (Age/100) −0.70∗∗∗

(0.03)
−1.96∗∗∗

(0.28)
G(21–25 yrs) × (Age/100) −0.62∗∗∗

(0.03)
−1.88∗∗∗

(0.29)
G(26–30 yrs) × (Age/100) −0.58∗∗∗

(0.03)
−1.75∗∗∗

(0.25)
G(31–35 yrs) × (Age/100) −0.55∗∗∗

(0.03)
−1.67∗∗∗

(0.21)
G(36–40 yrs) × (Age/100) −0.50∗∗∗

(0.03)
−1.59∗∗∗

(0.18)
G(41–45 yrs) × (Age/100) −0.47∗∗∗

(0.03)
−1.60∗∗∗

(0.17)
G(46–50 yrs) × (Age/100) −0.46∗∗∗

(0.02)
−1.58∗∗∗

(0.17)
G(51–55 yrs) × (Age/100) −0.42∗∗∗

(0.03)
−1.58∗∗∗

(0.18)
G(56–60 yrs) × (Age/100) −0.38∗∗∗

(0.03)
−1.41∗∗∗

(0.16)
(Age/100) × ln(Size)dm −0.40∗∗∗

(0.04)
−0.40∗∗∗

(0.04)
−1.40∗∗∗

(0.22)
−1.39∗∗∗

(0.22)
(Age/100) × TH 0.85∗∗∗

(0.16)
0.85∗∗∗

(0.15)

Observations 217,308 217,308 105,372 105,372
Adjusted R2 0.88 0.88 0.86 0.86
Property controls ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census Tract FE ✓ ✓ ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equation (1) using equa-
tion (3) for the age function in columns (1) and (3), and equation (4) in columns (2) and (4). The
dependent variable is the log of the contract rent. G(·) represents for an indicator function for each
age group (1–5 years, 6–10 years, and so on) where the reference groups are properties under 1
year of age. Age is divided by 100, Age2 is divided by 1,000, and dm implies demeaned. Property
controls include log size square footage demeaned, log lot area square footage, bedrooms, bath-
rooms, fireplaces, private pool, private spa, garage car spaces, heating fuel, cooling fuel, dishwasher,
washer/dryer, cable availability, tenant pay indicators (i.e., cable, gas, power, sewer, water, garbage
pickup, other services), age restriction, gated community, community amenities (pool, spa, park,
golf, basketball, clubhouse, gym, rules), high school, middle school, a townhouse/duplex/triplex
flag (TH, for the condominium sample), and a constant. Table D.1 in the appendix provides defi-
nitions for each variable. The sample in columns (1)–(2) comprises rental listings for single-family
residences, whereas the sample in columns (3)–(4) comprises rental listings for condominiums. The
sample includes properties advertised for rent on the MLS in Clark County, NV between 2009Q1 and
2019Q1, even if the property was not leased (i.e., the listing was “withdrawn” or “expired”). Robust
standard errors are in parentheses and clustered by census tract. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table E.6
Annual Rent Depreciation Rates using Granular Location FEs

Dep. Var.: ln(Rent) (1) (2) (3) (4)
Sample: SFR SFR COND COND

G(1–5 yrs) × (Age/100) −0.50∗∗∗

(0.06)
−0.57∗∗∗

(0.05)
−1.62∗∗∗

(0.34)
−2.05∗∗∗

(0.23)
G(6–10 yrs) × (Age/100) −0.47∗∗∗

(0.05)
−0.57∗∗∗

(0.04)
−1.94∗∗∗

(0.32)
−2.16∗∗∗

(0.21)
G(11–15 yrs) × (Age/100) −0.42∗∗∗

(0.05)
−0.50∗∗∗

(0.04)
−2.19∗∗∗

(0.37)
−2.27∗∗∗

(0.24)
G(16–20 yrs) × (Age/100) −0.38∗∗∗

(0.05)
−0.46∗∗∗

(0.04)
−2.06∗∗∗

(0.36)
−2.21∗∗∗

(0.24)
G(21–25 yrs) × (Age/100) −0.36∗∗∗

(0.05)
−0.41∗∗∗

(0.04)
−1.95∗∗∗

(0.37)
−2.08∗∗∗

(0.22)
G(26–30 yrs) × (Age/100) −0.35∗∗∗

(0.04)
−0.38∗∗∗

(0.04)
−1.79∗∗∗

(0.30)
−2.02∗∗∗

(0.20)
G(31–35 yrs) × (Age/100) −0.34∗∗∗

(0.04)
−0.38∗∗∗

(0.04)
−1.67∗∗∗

(0.24)
−2.00∗∗∗

(0.19)
G(36–40 yrs) × (Age/100) −0.35∗∗∗

(0.05)
−0.38∗∗∗

(0.04)
−1.58∗∗∗

(0.20)
−1.97∗∗∗

(0.18)
G(41–45 yrs) × (Age/100) −0.33∗∗∗

(0.05)
−0.39∗∗∗

(0.04)
−1.57∗∗∗

(0.18)
−1.96∗∗∗

(0.19)
G(46–50 yrs) × (Age/100) −0.35∗∗∗

(0.04)
−0.41∗∗∗

(0.04)
−1.62∗∗∗

(0.19)
−1.82∗∗∗

(0.17)
G(51–55 yrs) × (Age/100) −0.34∗∗∗

(0.04)
−0.38∗∗∗

(0.03)
−1.68∗∗∗

(0.19)
−1.70∗∗∗

(0.17)
G(56–60 yrs) × (Age/100) −0.30∗∗∗

(0.04)
−0.34∗∗∗

(0.04)
−1.45∗∗∗

(0.16)
−1.56∗∗∗

(0.14)
(Age/100) × ln(Size)dm −0.37∗∗∗

(0.03)
−0.34∗∗∗

(0.03)
−1.36∗∗∗

(0.22)
−1.31∗∗∗

(0.20)
(Age/100) × TH 0.83∗∗∗

(0.16)
0.64∗∗∗

(0.12)

Observations 181,696 183,342 87,749 88,537
Adjusted R2 0.92 0.92 0.87 0.89
Property controls ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓
Census Tract × Year-Quarter FE ✓ ✓
Street Name FE ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equation (1) using equation (4) for
the age function. The dependent variable is the log of the contract rent. G(·) represents for an indicator
function for each age group (1–5 years, 6–10 years, and so on) where the reference groups are properties
under 1 year of age. Age is divided by 100, and dm implies demeaned. Property controls include log
size square footage demeaned, log lot area square footage, bedrooms, bathrooms, fireplaces, private pool,
private spa, garage car spaces, heating fuel, cooling fuel, dishwasher, washer/dryer, cable availability,
tenant pay indicators (i.e., cable, gas, power, sewer, water, garbage pickup, other services), age restric-
tion, gated community, community amenities (pool, spa, park, golf, basketball, clubhouse, gym, rules),
high school, middle school, a townhouse/duplex/triplex flag (TH, for the condominium sample), and a
constant. Table D.1 in the appendix provides definitions for each variable. The sample in columns (1)–(2)
comprises leases for single-family residences, whereas the sample in columns (3)–(4) comprises leases
for condominiums. The properties were advertised for rent on the MLS in Clark County, NV between
2009Q1 and 2019Q1. Robust standard errors are in parentheses and clustered by census tract. ∗∗∗, ∗∗,
and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table E.7
Hausman Tests on inclusion of Neighborhood Controls

SFR COND

Linear Non-Linear Linear Non-Linear

Chi-squared 11,684.49 15,692.38 1,017.59 5,695.14
P-value 0.000 0.000 0.000 0.000

This table reports the Chi-squared and p-value of the Chi-squared statistic for
multiple Hausman tests that compare the age function coefficients between a
random and fixed effects model. The tests are executed by property type and
age function. The null hypothesis is that there are no systematic differences
in the age function coefficients.
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Table E.8
Annual Rent Depreciation Rates with Tests—Single Family Residences

Dep. Var.: ln(Rent) (1) (2) (3) (4)
Sample: SFR SFR SFR SFR

Age/100 −0.90∗∗∗

(0.07)
−1.16∗∗∗

(0.10)
−0.87∗∗∗

(0.07)
−0.82∗∗∗

(0.08)
G(6–10) × (Age/100) 0.04

(0.04)
0.30∗∗∗

(0.06)
0.04

(0.04)
0.02

(0.04)
G(11–15) × (Age/100) 0.15∗∗∗

(0.05)
0.55∗∗∗

(0.08)
0.14∗∗∗

(0.05)
0.11∗∗

(0.05)
G(16–20) × (Age/100) 0.22∗∗∗

(0.05)
0.60∗∗∗

(0.09)
0.21∗∗∗

(0.05)
0.17∗∗∗

(0.05)
G(21–25) × (Age/100) 0.30∗∗∗

(0.06)
0.62∗∗∗

(0.09)
0.27∗∗∗

(0.06)
0.23∗∗∗

(0.06)
G(26–30) × (Age/100) 0.33∗∗∗

(0.06)
0.62∗∗∗

(0.10)
0.30∗∗∗

(0.06)
0.26∗∗∗

(0.06)
G(31–35) × (Age/100) 0.36∗∗∗

(0.06)
0.60∗∗∗

(0.10)
0.32∗∗∗

(0.06)
0.31∗∗∗

(0.06)
G(36–40) × (Age/100) 0.40∗∗∗

(0.06)
0.64∗∗∗

(0.10)
0.36∗∗∗

(0.06)
0.34∗∗∗

(0.06)
G(41–45) × (Age/100) 0.43∗∗∗

(0.06)
0.66∗∗∗

(0.10)
0.38∗∗∗

(0.06)
0.36∗∗∗

(0.06)
G(46–50) × (Age/100) 0.44∗∗∗

(0.06)
0.66∗∗∗

(0.10)
0.39∗∗∗

(0.07)
0.34∗∗∗

(0.07)
G(51–55) × (Age/100) 0.46∗∗∗

(0.06)
0.69∗∗∗

(0.10)
0.41∗∗∗

(0.07)
0.35∗∗∗

(0.07)
G(56–60) × (Age/100) 0.52∗∗∗

(0.07)
0.76∗∗∗

(0.10)
0.47∗∗∗

(0.07)
0.41∗∗∗

(0.07)
(Age/100) × ln(Size)dm −0.42∗∗∗

(0.04)
−0.37∗∗∗

(0.07)
−0.41∗∗∗

(0.04)
−0.40∗∗∗

(0.04)
(Age/100) × Home-ownershipdm 0.01

(0.13)
(Age/100) × Population 65+ sharedm 0.56∗

(0.30)
(Age/100) × Hispanic sharedm 0.34∗∗

(0.14)
(Age/100) × Black sharedm 0.19

(0.17)
(Age/100) × Asian sharedm −0.20

(0.18)
(Age/100) × ln(Population density)dm 0.01

(0.02)
(Age/100) × ln(Median household income)dm 0.08

(0.11)
Observations 188,216 188,219 188,216 188,216
Adjusted R2 0.89 0.80 0.89 0.89
F-stat (age group interactions) 14.705 7.243 8.726 7.248
P-value (age group interactions) 0.000 0.000 0.000 0.000
F-stat (census tract interactions) . . 1.71 2.1e+05
P-value (census tract interactions) . . 0.105 0.000
Structural ✓ ✓ ✓ ✓
Neighborhood ✓ ✓ ✓
Services ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census Tract FE ✓ ✓ ✓
Census Tract FE × Age ✓

This table reports the OLS estimates of the hedonic model specified by equation (1) for single-family residence rentals.
The dependent variable is log contract rents. G(·) denotes an indicator function for each age group. Variables with the
dm superscript are demeaned. Structure controls include log unit size, log lot area, bedrooms, bathrooms, fireplaces,
private pool, private spa, garage car spaces, heating fuel, cooling fuel, dishwasher, and washer/dryer. Service controls
include indicators of tenant payments for cable, gas, power, sewer, water, garbage pickup, and other services. Neighbor-
hood controls include age restriction, gated community, community amenities such as pool, clubhouse, schools, and a
townhouse/duplex/triplex flag (TH). All regressions have a constant. Table D.1 in the appendix provides definitions for
each variable. The properties were advertised for rent on the MLS in Clark County, NV between 2009Q1 and 2019Q1.
Robust standard errors are in parentheses and clustered by census tract. ∗∗∗, ∗∗, and ∗ indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.
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Table E.9
Annual Rent Depreciation Rates with Tests—Condominiums

Dep. Var.: ln(Rent) (1) (2) (3) (4)
Sample: COND COND COND COND

Age/100 −1.50∗∗∗

(0.31)
−1.52∗∗∗

(0.46)
−1.23∗∗∗

(0.25)
−1.42∗∗∗

(0.36)
G(6–10) × (Age/100) −0.25∗

(0.15)
−0.48
(0.29)

−0.12
(0.17)

0.22
(0.15)

G(11–15) × (Age/100) −0.41∗∗∗

(0.15)
−0.81∗∗∗

(0.28)
−0.30∗∗

(0.15)
0.02

(0.13)
G(16–20) × (Age/100) −0.34∗∗

(0.15)
−0.40
(0.33)

−0.28∗

(0.15)
0.02

(0.11)
G(21–25) × (Age/100) −0.25

(0.16)
−0.17
(0.39)

−0.23
(0.15)

0.09
(0.11)

G(26–30) × (Age/100) −0.14
(0.16)

−0.33
(0.32)

−0.18
(0.16)

0.14
(0.12)

G(31–35) × (Age/100) −0.06
(0.17)

−0.33
(0.30)

−0.11
(0.17)

0.20∗

(0.12)
G(36–40) × (Age/100) −0.01

(0.18)
−0.04
(0.31)

−0.04
(0.18)

0.25∗∗

(0.12)
G(41–45) × (Age/100) −0.02

(0.20)
0.07

(0.31)
−0.06
(0.18)

0.24∗∗

(0.12)
G(46–50) × (Age/100) 0.01

(0.21)
−0.05
(0.31)

−0.05
(0.19)

0.26∗∗

(0.13)
G(51–55) × (Age/100) 0.01

(0.22)
−0.12
(0.32)

0.01
(0.20)

0.34∗∗

(0.15)
G(56–60) × (Age/100) 0.15

(0.22)
0.12

(0.33)
0.20

(0.21)
0.45∗∗∗

(0.17)
(Age/100) × ln(Size)dm −1.30∗∗∗

(0.21)
−2.01∗∗∗

(0.28)
−1.35∗∗∗

(0.21)
−1.36∗∗∗

(0.21)
(Age/100) × TH 0.81∗∗∗

(0.15)
1.06∗∗∗

(0.19)
0.58∗∗∗

(0.14)
0.50∗∗∗

(0.15)
(Age/100) × Home-ownershipdm 2.86∗∗∗

(0.64)
(Age/100) × Population 65+ sharedm −0.61

(1.18)
(Age/100) × Hispanic sharedm 0.27

(0.71)
(Age/100) × Black sharedm −0.96

(1.04)
(Age/100) × Asian sharedm −4.02∗∗∗

(1.50)
(Age/100) × ln(Population density)dm 0.35∗∗∗

(0.13)
(Age/100) × ln(Median household income)dm −0.38

(0.45)

Observations 89,318 89,323 89,318 89,318
Adjusted R2 0.86 0.56 0.87 0.88
F-stat (age group interactions) 2.342 1.975 2.59 2.134
P-stat (age group interactions) 0.009 0.03 0.004 0.018
F-stat (census tract interactions) . . 7.91 2.3e+05
P-stat (census tract interactions) . . 0.000 0.000
Structural ✓ ✓ ✓ ✓
Neighborhood ✓ ✓ ✓
Services ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
Census Tract FE ✓ ✓ ✓
Census Tract FE × Age ✓

This table reports the OLS estimates of the hedonic model specified by equation (1) for condominium rentals. The
dependent variable is log contract rents. G(·) denotes an indicator function for each age group. Variables with the dm
superscript are demeaned. Structure controls include log unit size, log lot area, bedrooms, bathrooms, fireplaces, private
pool, private spa, garage car spaces, heating fuel, cooling fuel, dishwasher, and washer/dryer. Service controls include
indicators of tenant payments for cable, gas, power, sewer, water, garbage pickup, and other services. Neighborhood
controls include age restriction, gated community, and community amenities such as pool, clubhouse, schools. All
regressions have a constant. Table D.1 in the appendix provides definitions for each variable. The properties were
advertised for rent on the MLS in Clark County, NV between 2009Q1 and 2019Q1. Robust standard errors are in
parentheses and clustered by census tract. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

31



L.A. Lopez and J. Yoshida Regional Science and Urban Economics xxx (xxxx) xxx

Table E.10
Intrinsic Estimators with Location × Age Effects

Dep. Var.: ln(Rent) (1) (2) (1) (2) (1) (2)
Sample: SFR CONDO Continued SFR CONDO Continued SFR CONDO

Age: 0–4 yrs 0.02∗∗

(0.01)
−0.06∗∗∗

(0.02)
Cohort: 1945–1949 0.19∗∗∗

(0.05)
0.15

(0.15)
Homeownership −0.06∗∗∗

(0.00)
−0.85∗∗∗

(0.01)
Age: 5–9 yrs −0.03∗∗∗

(0.01)
−0.09∗∗∗

(0.02)
Cohort: 1950–1954 −0.01

(0.01)
0.05

(0.05)
Population 65+ share −0.02∗∗

(0.01)
1.01∗∗∗

(0.02)
Age: 10–14 yrs −0.04∗∗∗

(0.01)
−0.11∗∗∗

(0.01)
Cohort: 1955–1959 −0.05∗∗∗

(0.01)
0.02

(0.04)
Hispanic share −0.23∗∗∗

(0.01)
−0.19∗∗∗

(0.02)
Age: 15–19 yrs −0.05∗∗∗

(0.00)
−0.11∗∗∗

(0.01)
Cohort: 1960–1964 −0.02∗

(0.01)
0.04

(0.03)
Black share −0.18∗∗∗

(0.01)
−0.23∗∗∗

(0.03)
Age: 20–24 yrs −0.03∗∗∗

(0.00)
−0.08∗∗∗

(0.01)
Cohort: 1965–1969 −0.05∗∗∗

(0.01)
−0.01
(0.03)

Asian share −0.17∗∗∗

(0.01)
−0.07∗∗

(0.03)
Age: 25–29 yrs −0.02∗∗∗

(0.00)
−0.04∗∗∗

(0.01)
Cohort: 1970–1974 −0.01∗

(0.01)
0.09∗∗∗

(0.02)
ln(Population density) 0.01∗∗∗

(0.00)
−0.06∗∗∗

(0.00)
Age: 30–34 yrs −0.00

(0.00)
−0.02∗∗∗

(0.01)
Cohort: 1975–1979 −0.01∗

(0.01)
0.05∗∗

(0.02)
ln(Median household
income)

0.10∗∗∗

(0.00)
0.27∗∗∗

(0.00)
Age: 35–39 yrs −0.00

(0.00)
0.00

(0.01)
Cohort: 1980–1984 −0.02∗∗∗

(0.01)
−0.00
(0.02)

Homeownership ×
(Age/100)

−0.11∗∗∗

(0.02)
3.06∗∗∗

(0.05)
Age: 40–44 yrs 0.01

(0.01)
0.02

(0.01)
Cohort: 1985–1989 0.00

(0.00)
−0.04∗∗∗

(0.01)
Population 65+ share ×
(Age/100)

0.09∗∗

(0.04)
−3.55∗∗∗

(0.12)
Age: 45–49 yrs 0.02∗∗∗

(0.01)
0.05∗∗∗

(0.02)
Cohort: 1990–1994 −0.00

(0.00)
−0.05∗∗∗

(0.01)
Hispanic share ×
(Age/100)

0.35∗∗∗

(0.02)
−0.83∗∗∗

(0.07)
Age: 50–54 yrs 0.01∗

(0.01)
−0.01
(0.02)

Cohort: 1995–1999 0.01∗∗∗

(0.00)
−0.04∗∗∗

(0.01)
Black share × (Age/100) 0.52∗∗∗

(0.04)
0.16

(0.10)
Age: 55–59 yrs 0.07∗∗∗

(0.01)
0.16∗∗∗

(0.02)
Cohort: 2000–2004 0.01∗∗∗

(0.00)
−0.06∗∗∗

(0.00)
Asian share × (Age/100) 0.24∗∗∗

(0.05)
−1.95∗∗∗

(0.15)
Age: 60–64 yrs 0.04∗∗∗

(0.01)
0.29∗∗∗

(0.05)
Cohort: 2005–2009 −0.01∗∗

(0.00)
−0.02∗∗

(0.01)
ln(Population density) ×
(Age/100)

−0.05∗∗∗

(0.00)
0.19∗∗∗

(0.01)
Period: 2005–2009 −0.04∗∗∗

(0.00)
−0.08∗∗∗

(0.00)
Cohort: 2010–2014 −0.03∗∗∗

(0.00)
−0.04∗∗∗

(0.01)
ln(Median household
income) × (Age/100)

−0.00
(0.00)

−0.31∗∗∗

(0.01)
Period: 2010–2014 −0.05∗∗∗

(0.00)
−0.07∗∗∗

(0.00)
Cohort: 2015–2019 0.00

(0.01)
−0.13∗∗∗

(0.02)
Period: 2015–2019 0.09∗∗∗

(0.00)
0.14∗∗∗

(0.00)

Observations 188,166 89,194
Constant ✓ ✓
Property controls ✓ ✓

This table reports the age, period, and cohort effects on the natural log of the contract rate based on the IE method. The sample in column 1 (2) comprises leases for single-family
residences (condominiums). The properties were advertised for rent on the MLS in Clark County, NV between 2009Q1 and 2019Q1. Age, period, and cohort flag the structure
age group, rent lease listing date, and the structure year-built group, respectively. Property controls include log size square footage, log lot area square footage, bedrooms,
bathrooms, fireplaces, private pool, private spa, garage car spaces, heating fuel, cooling fuel, dishwasher, washer/dryer, cable availability, tenant pay indicators (i.e., cable, gas,
power, sewer, water, garbage pickup, other services), age restriction, gated community, community amenities (pool, spa, park, golf, basketball, clubhouse, gym, rules), high
school, middle school, a townhouse/duplex/triplex flag (TH, for the condominium sample), and a constant. Table D.1 in the appendix provides definitions for each variable.
Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table E.11
Supplemental Rent Regressions

Dep. Var.: ln(Rent) (1) (2)
Sample: SFR CONDO

G(0–4 yrs) × (Age/100) −0.95∗∗∗

(0.08)
−1.26∗∗∗

(0.33)
G(5–9 yrs) × (Age/100) −0.95∗∗∗

(0.05)
−1.53∗∗∗

(0.23)
G(10–14 yrs) × (Age/100) −0.82∗∗∗

(0.04)
−1.77∗∗∗

(0.27)
G(15–19 yrs) × (Age/100) −0.73∗∗∗

(0.04)
−1.73∗∗∗

(0.28)
G(20–24 yrs) × (Age/100) −0.64∗∗∗

(0.03)
−1.61∗∗∗

(0.29)
G(25–29 yrs) × (Age/100) −0.58∗∗∗

(0.03)
−1.48∗∗∗

(0.26)
G(30–34 yrs) × (Age/100) −0.53∗∗∗

(0.03)
−1.34∗∗∗

(0.22)
G(35–39 yrs) × (Age/100) −0.49∗∗∗

(0.03)
−1.26∗∗∗

(0.20)
G(40–44 yrs) × (Age/100) −0.45∗∗∗

(0.03)
−1.21∗∗∗

(0.19)
G(45–49 yrs) × (Age/100) −0.42∗∗∗

(0.02)
−1.17∗∗∗

(0.19)
G(50–54 yrs) × (Age/100) −0.39∗∗∗

(0.02)
−1.30∗∗∗

(0.17)
G(55–59 yrs) × (Age/100) −0.31∗∗∗

(0.03)
−1.08∗∗∗

(0.16)
G(60–64 yrs) × (Age/100) −0.29∗∗∗

(0.04)
−0.81∗∗∗

(0.23)

Observations 188,163 89,190
R2 0.88 0.85
Constant ✓ ✓
Property controls ✓ ✓
Year-Quarter FE ✓ ✓
Census Tract FE ✓ ✓

This table reports the OLS estimates of the hedonic model specified by equa-
tion (1) using equation (4)—but without an age interaction with size or
TH—for the age function. The dependent variable is the log of the contract
rent. G(·) stands for an indicator function for each age group (0–4 years, 5–9
years, 10–14 years, and so on); the 0–4 years age group is set as the reference
group. Property controls include log size square footage demeaned, log lot
area square footage, bedrooms, bathrooms, fireplaces, private pool, private
spa, garage car spaces, heating fuel, cooling fuel, dishwasher, washer/dryer,
cable availability, tenant pay indicators (i.e., cable, gas, power, sewer, water,
garbage pickup, other services), age restriction, gated community, commu-
nity amenities (pool, spa, park, golf, basketball, clubhouse, gym, rules), high
school, middle school, a townhouse/duplex/triplex flag (TH, for the condo-
minium sample), and a constant. Table D.1 in the appendix provides defini-
tions for each variable. The sample in column 1 comprises leases for single-
family residences, whereas the sample in column 2 comprises leases for con-
dominiums. The properties were advertised for rent on the MLS in Clark
County, NV between 2009Q1 and 2019Q1. Robust standard errors are in
parentheses and clustered by census tract. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Appendix F. Additional Figures

Fig. F.1 Kernel Distribution of Year-Built.

This figure displays the kernel density plot of the effective year built for the entire population of residential properties in Clark County as of
2019Q1 (All Housing Units) and the population of unique residential properties in the MLS sample (MLS Rental Units).
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