Liquidity Crises and The Lender of Last Resort in a Monetary Economy

Tarishi Matsuoka & Makoto Watanabe

Tokyo Metropolitan Univ. & VU Amsterdam, Tinbergen Institute

June 25, 2020 @ U of Tokyo

Motivation

- "While there is considerable agreement on the need for a domestic lender of last resort, some disagreements persist about what the lender of last resort should do" (Fisher, 1999)
- Classical doctrine (Bagehot, 1873)
 - lend liquidity freely to illiquid but solvent financial institutions at a penalty rate
- Moral hazard problem
 - LLR may produce an incentive for banks to behave risky.
 - "since the Franklin National in 1974, the Fed has bailed out insolvent institutions which were deemed 'too big to fail'. This has led to moral hazard." (Bordo, 2014)

Conventional views

- "the penalty rate is a way of reducing moral hazard." (Solow, 1982)
- "the lender of last resort should seek to limit moral hazard by imposing costs on those who have made mistakes. Lending at a penalty rate is one way to impose such costs." (Fischer, 1999)

Motivation

Questions

- How does the existence of the LLR affect bank's portfolio choice?
- Does the LLR increase a probability of a crisis?
- Does the LLR induce financial institutions to take more risk?
- Does the penalty rate prevent moral hazard?

Objectives

- What We Do
 - To construct a monetary model where money and banking are essential.
 - To examine effects of the LLR on banks' portfolio and baking crises.
- How We Do
 - We extend Williamson (2012, AER) by introducing
 - aggregate uncertainty of money demand
 - risky asset
 - LLR

Key Ingredients

- Banking and liquidity (Williamson, 2012, 2016)
 - Non-monitored exchanges; money only
 - Monitored exchanges; money plus credit
- Aggregate uncertainty about the total demand for money, may impede the smooth functioning of banks' liquidity provision.

Key Ingredients

- Banking Crisis
 - bank reserve shortage and suspensions of convertibility
 - Champ, Smith, & Williamson (1996)

Related Literature

- Non-Monetary Banking Model with LLR
 - Flannery (1996), Freixas & Jorge (2007), Freixas, Parigi & Rochet (2000), Allen & Gale(1998, 2004), Allen, Carletti & Gale (2007), Heider, Hoerova, & Holthausen (2015), Acharya, Gromb & Yorulmazer, (2010)
- OLG model with Banking and LLR
 - Champ, Smith & Williamson (1996), Smith (2002), Antinolfi, Huybens & Keister (2001), Antinolfi & Keister (2006), Matsuoka (2012)
- Monetary Search with Banking
 - Berentsen, Camera, & Waller (2007), Ferraris & Watanabe (2008, 2011), Bencivenga & Camera (2011), Williamson (2012, 2016), Gu, Mattesini, & Wright (2013), Matsuoka & Watanabe (2017), Andolfatto, Berentsen & Martin (2017)

Matsuoka & Watanabe (TMU & VU, TI)

Liquidity Crises & LLR

Outline

- The Environment
- 2 Equilibrium without LLR (baseline)
- Introducing LLR
- Onclusions

The Environment

The Model

- Lagos & Wright (2005), Williamson (2012)
- Time: discrete, infinite; two sub-periods (day and night)
- Agents: buyers, sellers; homogeneous, unit mass, infinitely lived
- Goods: special goods, general goods (numéraire)

Preferences

- Discount factor $\beta \in (0,1)$
- Period utility:
 - buyer

$$u(q^b) + U(x) - h \tag{1}$$

seller

$$-q^s + U(x) - h \tag{2}$$

where:

- q^b : quantity of special good consumed
- q^s : quantity of special good produced
- x: quantity of general good consumed
- h: quantity of general good produced (if > 0)

Preferences

Assumptions

•
$$u'(q) > 0 > u''(q)$$
, $u(0) = 0$, $u'(0) = \infty$, and $u'(\infty) = 0$
• $\xi \equiv -\frac{qu''(q)}{u'(q)} > 0$ and $u'(q^*) = 1$

•
$$U'(x) > 0 > U''(x)$$
, and $U'(x^*) = 1$

Assets

- Fiat money:
 - ϕ : price of money in terms of general goods.
 - it grows (or shrinks) at a constant rate, $M_+=\pi M,\ \pi>\beta$
- Safe asset:
 - one unit of general good into R>1 units for sure next period.
 - $\beta R < 1$
- Risky asset:
 - one unit of general good into λR units with probability η and zero with probability $1-\eta$ next period,
 - $\lambda > 1$ and $\lambda \eta \leq 1$.
 - $(\lambda 1)R$: unobservable ("private benefit"); R: observable

Night market (Walrasian market)

- Agents can consume, produce and trade general goods.
- Any credit contracts are settled.
- Fiat money is traded at market price ϕ .
- Buyers (or banks) choose a portfolio.

Day Market (Decentralized Market)

- Search market (pairwise trade and bargaining)
- Buyers wish to consume special goods produced by sellers.
- Take-it-or-leave-it offer
- Non-monitored exchange (α)
 - No "memory"
 - money is essential as a medium of exchange
- Monitored exchange (1α)
 - Record-keeping & commitment
 - Money and Credit

Day Market (Decentralized Market)

- $\alpha \in (0,1)$ is a random variable
 - $F(\alpha)$: distribution function; $f(\alpha)$: density function
 - aggregate uncertainty about money demand ("liquidity shock")

Diamond-Dybvig Bank

- Buyers form a competitive bank
 - banks live for one period
 - zero profit
- Buyers deposit d > 0
- Given d, the bank chooses:
 - a portfolio (z,k,l)
 - $z = \phi m$: amount of real cash balances
 - k: amount of the safe asset
 - *l*: amount of the risky asset
 - $\bullet\,$ a consumption plan (q^n,q^m)
 - q^n : consumption of a non-monitored buyer
 - q^m : consumption of a monitored buyer

Timing

Equilibrium without the Lender of Last Resort

Banks Payment Plan (given d; z; k; l; α)

- In a monitored trade, $q^m = q^* (= u^{-1\prime}(1))$: efficient quantity
- The bank's problem

$$\max_{\theta \in [0,1]} \alpha u(q^n) + (1-\theta)\frac{z}{\pi}$$
(3)

subject to

$$\alpha q^n = \frac{\theta z}{\pi} \tag{4}$$

• θ : proportion of real cash reserves to non-monitored buyers

First order condition

$$\frac{z}{\pi} \left\{ u'(q^n) - 1 \right\} \ge 0 \quad (= \text{if } \theta < 1).$$
(5)

- Two situations are possible
 - $\theta < 1$: $q^n = q^*$ consumption smoothing.
 - $\theta = 1$: $q^n < q^*$ a banking crisis.

Consumption in a Non-Monitored trade

Lemma (Banks' Optimal Payment Plan)

Given cash reserves z > 0, the optimal payment plan of banks is described by $q^m = q^*$ and

$$q^{n}(\alpha) = \begin{cases} q^{*} & \text{if } 0 < \alpha < \alpha^{*}, \\ \frac{z}{\alpha \pi} & \text{if } \alpha^{*} \le \alpha < 1, \end{cases}$$

where $\alpha^* \equiv \frac{z}{\pi q^*} > 0$, and

$$\theta(\alpha) = \begin{cases} \frac{\alpha}{\alpha^*} & \text{if } 0 < \alpha < \alpha^*, \\ 1 & \text{if } \alpha^* \le \alpha < 1. \end{cases}$$

Bank's Portfolio Choice

• Given the total deposit d and the repayment plan $q^n=q^n(z,\alpha)$ and $\theta=\theta(z,\alpha),$ the banks' portfolio choice problem in the CM is

$$V(d) = \max_{z,k,l \ge 0} \int_0^1 \left[\alpha \left\{ u(q^n) + W(0,k,l,0) \right\} + (1-\alpha) \left\{ u(q^*) + W\left(\frac{(1-\theta)z}{(1-\alpha)\pi},k,l,q^*\right) \right\} \right] f(\alpha) d\alpha,$$

subject to

$$d = z + k + l.$$

Bank's Portfolio Choice

• The risky asset is not selected, i.e., l = 0, because $\eta \lambda R < R$.

• FOC $\frac{1}{\pi}\Upsilon(z) - R \ge 0 \quad (= \text{ if } z < d) \tag{6}$

where

$$\begin{split} \Upsilon(z) &\equiv F(\alpha^*) + \int_{\alpha^*}^1 u'\left(q^n\right) f(\alpha) d\alpha \\ \alpha^* &= \frac{z}{\pi q^*} \end{split}$$

Lemma (Banks' Optimal Portfolio Choice)

Given deposit d > 0, the optimal portfolio of banks is described by $k = d - z \ge 0$, l = 0, and

$$z = \begin{cases} z(d) & \text{if } \Upsilon(d) < \pi R, \\ d & \text{if } \Upsilon(d) \geq \pi R, \end{cases}$$

where $z(d) \in (0, d)$ is a solution to $\frac{1}{\pi} \Upsilon(z) = R$.

Deposit Choice

Deposit choice

$$\max_{d\geq 0} \ \{-d+\beta V(d)\},\$$

• The Euler equation

$$\frac{\pi}{\beta} = \Upsilon(d),$$

or

$$\frac{\pi}{\beta} = 1 + \underbrace{\int_{\alpha^*}^1 \left\{ u'\left(\frac{d}{\pi\alpha}\right) - 1 \right\} f(\alpha) d\alpha}_{\text{liquidity premium}}$$

(7)

Theorem (Monetary Equilibrium without LLR)

A monetary equilibrium exists without LLR, and is unique, in which

• $d_N = z_N \in (0, \pi q^*)$

- a banking crisis occurs with probability $1 F(\alpha^*) \in (0, 1)$
- the probability of a crisis is strictly increasing in inflation
- the level of deposits, d_N , is decreasing in inflation

The Friedman rule can eliminate a crisis and achieve the first best,

•
$$1 - F(\alpha^*) \to 0$$
 and $q^n \to q^*$ as $\pi \to \beta$

The Lender of Last Resort

The Lender of Last Resort

- During a day, the central bank opens a discount window
- The discount window loan is
 - an intraday cash loan with a gross interest rate $R^C \ (> \max\{\pi R, 1\})$
 - used for non-monitored buyers and repaid in the following CM
 - fully collateralized

Timing with LLR

The Lender of Last Resort

- Note: the safe and risky assets are substitute.
- Consider the two extreme cases;
 - one case with $k \ge 0 = l$; the other with $l \ge 0 = k$.
- Depositors compare the expected utilities of these two cases and choose the higher one in equilibrium.
- Assumption

$$\frac{1}{\pi} < \min\{\eta \underline{R}^C, R\},\$$

where $\underline{R}^C \equiv R/\{1 - \beta \eta (\lambda - 1)R\} > R$.

Safe Asset

Banks payment plan with Safe asset (given α , z > 0, k > 0 = l)

- Again, $q^m = q^* (= u^{-1\prime}(1))$: efficient quantity
- The bank's problem

$$\max_{\theta \in [0,1], b \ge 0} \alpha u(q^n) + (1-\theta)\frac{z}{\pi} - R^C b,$$

subject to

$$\begin{array}{rcl} \alpha q^n & = & \displaystyle \frac{\theta z}{\pi} + b \\ R^C b & \leq & Rk \end{array}$$

- θ : proportion of bank monetary reserve to non-monitored buyers
- b: real cash balances borrowing from the central bank

Liquidity Crises & LLR

Lemma (Banks' Optimal Payment Plan with LLR and Safe Asset)

Given z > 0, $k \ge 0 = l$, the optimal payment plan of banks with safe asset in the presence of LLR is described by $q^m = q^*$ and $\theta = \theta(\alpha)$ just the same as in Lemma 1, and

$$b(\alpha) = \begin{cases} 0 & \text{if } 0 < \alpha \le \alpha^{**}, \\ \alpha u^{-1\prime}(R^C) - \frac{z}{\pi} & \text{if } \alpha^{**} < \alpha < \alpha^{***}, \\ \frac{Rk}{R^C} & \text{if } \alpha^{***} \le \alpha < 1, \end{cases}$$
$$q^n(\alpha) = \begin{cases} q^* & \text{if } 0 < \alpha < \alpha^*, \\ \frac{z}{\alpha \pi} & \text{if } \alpha^* \le \alpha \le \alpha^{**}, \\ u^{-1\prime}(R^C) & \text{if } \alpha^{**} < \alpha < \alpha^{***}, \\ \frac{\frac{R^C}{\pi} z + Rk}{R^C \alpha} & \text{if } \alpha^{***} \le \alpha < 1, \end{cases}$$

where

$$\alpha^* \equiv \frac{z}{\pi q^*}, \quad \alpha^{**} \equiv \min\left\{\frac{z}{\pi u^{-1'}(R^C)}, 1\right\}, \quad \text{and} \quad \alpha^{***} \equiv \min\left\{\frac{\frac{R^C}{\pi}z + Rk}{R^C u^{-1'}(R^C)}, 1\right\}.$$

Consumption in a Non-Monitored trade

There are two cases.

() For $z = z(d) \in (0, d)$ (an interior solution), the Euler equation is

$$\frac{1 - \beta R}{\beta R} = \underbrace{\int_{\alpha^{***}}^{1} \left\{ \frac{u'(q^n)}{R^C} - 1 \right\} f(\alpha) d\alpha}_{\text{liquidity premium}}$$
(8)

② For z = d (the corner solution), the bank does not hold any long-term assets, it cannot borrow from the LLR, b = 0.

Proposition (Monetary Equilibrium with LLR and Safe Asset)

With the LLR and safe asset, a monetary equilibrium with bank deposit exists and is unique in which the cash reserves, denoted by z_S , and the bank deposit, denoted by d_S , satisfy

$$z_S = \begin{cases} z(d_S) < d_S & \text{for } R^C \in (\pi R, R^{C*}], \\ d_N & \text{for } R^C \in (R^{C*}, \infty), \end{cases}$$

with some critical value $R^{C*} \in (\pi R, \infty)$, and $z_S \leq z_N$ and $d_S \geq d_N$. Further, whenever $R^C < R^{C*}$, it holds that $\alpha^{***} < 1$.

Monetary Equilibrium with LLR and Safe Asset

Proposition (Effects of Inflation and Loan Rate)

Suppose that $\xi \equiv -\frac{qu''(q)}{u'(q)} > 0$ is not too big. Then, the interior solutions with the safe asset (z_S, d_S) satisfies

$$\frac{\partial z_S}{\partial \pi} < 0, \quad \frac{\partial d_S}{\partial \pi} > 0, \quad \frac{\partial z_S}{\partial R^C} > 0, \quad and \quad \frac{\partial d_S}{\partial R^C} < 0$$

Furthermore,

$$\begin{aligned} \frac{\partial \alpha^*}{\partial \pi} &< 0, \quad \frac{\partial \alpha^{**}}{\partial \pi} &< 0, \quad \frac{\partial \alpha^{***}}{\partial \pi} &= 0, \\ \frac{\partial \alpha^*}{\partial R^C} &> 0, \quad \frac{\partial \alpha^{**}}{\partial R^C} &> 0, \quad and \quad \frac{\partial \alpha^{***}}{\partial R^C} &= 0. \end{aligned}$$

Implications

- $\alpha^{***} < 1$
- \bullet *d* is higher
- z is lower

Corollary

The LLR is welfare improving, but increases the probability of a banking crisis.

Consumption in a Non-Monitored trade

Risky Asset

Banks payment plan with risky asset (given z, $l \ge 0 = k$)

- Essentially the same as before except that now with risky assets,
- private banks can honor their promise only when the project becomes successful (limited liability), which happens with probability η.
- expected payment rate is ηR^C rather than R^C

$$\max_{\theta \in [0,1], b \ge 0} \alpha u(q^n) + (1-\theta)\frac{z}{\pi} - \eta R^C b,$$

subject to

$$\begin{array}{rcl} \alpha q^n & = & \displaystyle \frac{\theta z}{\pi} + b \\ R^C b & < & Rl \end{array}$$

Proposition (Monetary Equilibrium with LLR and Risky Asset)

With the LLR and risky asset, a monetary equilibrium with bank deposit exists and is unique in which the cash reserve balances and the bank's deposit satisfy

$$z = \begin{cases} z_R \ (< d_R) & \text{for } R^C \in (\underline{R}^C, \hat{R}^{C*}], \\ z_N \ (= d_N) & \text{for } R^C \in (\hat{R}^{C*}, \infty), \end{cases}$$

with some critical value $\hat{R}^{C*} \in (\underline{R}^C, \infty)$, and $z_S < z_R$ and $d_R > d_N$ for any $\eta \in (0, 1)$. Further, whenever $R^C < \hat{R}^{C*}$, it holds that $\alpha_{\eta}^{***} < 1$.

Monetary Equilibrium with LLR and Risky Asset

Proposition (Effects of Inflation and Loan Rate)

Suppose that $\xi \equiv -\frac{qu''(q)}{u'(q)} > 0$ is not too big. Then, the interior solutions with the risky asset satisfies

$$\frac{\partial z_R}{\partial \pi} < 0, \quad \frac{\partial d_R}{\partial \pi} > 0, \quad \frac{\partial z_R}{\partial R^C} > 0, \quad and \quad \frac{\partial d_R}{\partial R^C} < 0$$

Furthermore,

$$\begin{aligned} \frac{\partial \alpha^*}{\partial \pi} &< 0, \quad \frac{\partial \alpha_{\eta}^{**}}{\partial \pi} &< 0, \quad \frac{\partial \alpha_{\eta}^{***}}{\partial \pi} &= 0, \\ \frac{\partial \alpha^*}{\partial R^C} &> 0, \quad \frac{\partial \alpha_{\eta}^{**}}{\partial R^C} &> 0, \quad and \quad \frac{\partial \alpha_{\eta}^{***}}{\partial R^C} &= 0. \end{aligned}$$

Asset Choice

Asset Choice

- Let us compare the two cases, with the safe and risky asset
- Deposit choice:

$$\max\{-d_S + \beta V^s(d_S), \ -d_R + \beta V^r(d_R)\}$$

Define

$$\Delta(R^{C}, \eta) \equiv (1 - \beta) [\{-d_{S} + \beta V^{s}(d_{S})\} - \{-d_{R} + \beta V^{r}(d_{R})\}].$$

$$\Delta > 0 \implies$$
 the safe asset is selected $\Delta < 0 \implies$ the risky asset is selected

Matsuoka & Watanabe (TMU & VU, TI)

Lemma

Proposition (Moral Hazard)

In a monetary equilibrium with LLR, the discount window is activated if and only if the lending rate is low, $R^C < \max\{R^{C*}, \hat{R}^{C*}\}$. Whenever the LLR lending is used, private banks will invest in a risky asset, rather than a safe asset, if the expected return of the risky asset is sufficiently high and the cost of holding the collateral is sufficiently small.

- Compared to safe asset, risky asset leads to
 - $\bullet \ {\rm higher} \ d$
 - $\bullet \ \ {\rm lower} \ z$
- \Rightarrow banking panics and banking defaults are closely intertwined!

Conclusion

- The LLR reduces bank's cash reserves and increases the likelihood of a banking crisis. However, the magnitude of a crisis is mitigated.
- The LLR may create moral hazard:
 - private banks may take more financial risks ex ante.
- The occurrence of moral hazard is determined mainly by
 - the expected return on the risky asset
 - asymmetric information about the quality of bank's assets
 - \Rightarrow
 - a penalty rate may not have enough powers against moral hazard.
 - a lower real interest rate on discount window loans can be preferred.

Extensions

• Liquidity Requirement

$$z \ge \kappa d, \quad \kappa \in [0,1].$$

- Constructive Ambiguity
 - "the task of curbing moral hazard appears to have been performed largely by constructive ambiguity," (Giannini, 1999, p.14)
 - "Constructive ambiguity supposedly constrains excessive risk taking by banks." (Schwartz, 2002, p.452)
 - Discount window lending is available with probability $\rho \in [0, 1]$.