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Abstract

This paper develops a general method of solving rational expectations models with
higher order beliefs. Higher order beliefs are crucial in an environment with dispersed
information and strategic complementarity, and the equilibrium policy depends on in-
finite higher order beliefs. It is generally believed that solving this type of equilibrium
policy requires an infinite number of state variables (Townsend, 1983). This paper proves
that the equilibrium policy rule can always be represented by a finite number of state
variables if the signals observed by agents follow an ARMA process, in which case we
obtain a general solution formula. We also prove that when the signals contain endoge-
nous variables, a finite-state-variable representation of the equilibrium may not exist.
The key innovation in our method is to use the factorization identity and Wiener filter
to solve signal extraction problems conditional on infinite signals. This method can be
used in a wide range of applications.
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1 Introduction

In many economic models with information frictions, an agent’s payoff depends on her own
actions, the actions of others, and some unknown economic fundamentals. Rational behaviors
not only depend on an agent’s beliefs on economic fundamentals, but also depend on higher
order beliefs, that is, agents’ beliefs of others’ beliefs, agents’ beliefs of others’ beliefs of others’
beliefs, and so on. If the economic fundamentals are persistent over time and hence the past
information is worth keeping track of, forecasting all the higher order beliefs would require an
infinite number of priors of them, which would amount to an infinite number of state variables.
This type of problem is known as the infinite regress problem, and has been explored by a
large number of works.1

The difficulty of solving models with higher order beliefs lies in the fact that inferring others’
action requires the functional form of the policy rule in the first place, but the policy rule is
the solution to the inference problem. As argued in Townsend (1983), if an agent assumes
that other agents keep track of n state variables, he in turn needs to keep track of n +

1 state variables (the prior of the economic fundamental and the n priors of others’ state
variables). Therefore, the equilibrium policy rule does not permit a finite-state representation.
In terms of higher order beliefs, to predict k−th order belief requires at least k state variables,
and to predict all the higher order beliefs requires infinite state variables. In light of these
considerations, it is generally believed that an infinite number of state variables are needed
to solve this type of model.

In this paper, we pursue the following question. With higher order beliefs, is it really impos-
sible to find a small set of state variables that are sufficient statistics for agents to make the
optimal inference? If possible, how do we find these state variables and what are the laws of
motion for these variables? If it does require an infinite number of state variables, how do we
approximate the true solution with a finite number of state variables?

Our first main result is that given a linear rational expectations model, when observed signals
follow ARMA processes, the equilibrium policy rule always allows a finite-state representation.
In applications with exogenous information, the ARMA signal structure is a common spec-
ification. Like in standard problems with common information, solving for the equilibrium

1A partial list of these works includes Chari (1979), Townsend (1983), Singleton (1987), Sargent (1991),
Kasa (2000), Woodford (2003), Lorenzoni (2009), Angeletos and La’O (2010), Hellwig and Venkateswaran
(2009), Rondina and Walker (2017), and so on.
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requires finding the fixed point in a functional space. Unlike in standard models, when higher
order beliefs are involved, it is difficult to determine the sufficient state variables in the first
place. Given this difficulty, we start from the state space that is spanned by the entire history
of signals. This implies that solving for the equilibrium requires solving for a lag polynomial
with an infinite number of coefficients. Our work is based on Whiteman (1983) and Kasa
(2000). The idea is to transform the problem which solves for a lag polynomial into a simpler
problem which solves for an analytic function. When signals follow an ARMA process, we
prove that the equilibrium policy rule, the lag polynomial, is also of the ARMA form. There-
fore, there exists finite-state representation for the equilibrium policy rule. The intuition for
the finite-state representation is that agents do not directly care about each of the higher
order beliefs, but they only care about a specific linear combination of all the higher order
beliefs. The latter requires less information and admits a finite-state representation.

We extend the work of Kasa (2000) and others in two important ways. First, we do not
restrict the number of signals to being equal to the number of shocks. A necessary step in
the inference problem with infinite sample is to find the Wold (fundamental) representation
for the signal process. Previous works rely on the Blaschke matrices to find the fundamental
representation, which require that the number of signals equals the number of shocks.2 We
adopt a different approach for finding the Wold representation. We show that one can first
convert the signal process into its state-space, and then use the innovation representation
and factorization identity to solve for the Wold representation conveniently. This procedure
works for any information structure that follows an ARMA process: it is not restricted by
the number of signals or the number of shocks. In general signal extraction problems, there
are more shocks than signals, as discussed in Nimark (2017). This restriction that there has
to be the same number of signals as shocks is indeed violated in many applications, such as
Woodford (2003), Angeletos and La’O (2010) and Angeletos and La’O (2013). When this
restriction is actually satisfied, agents often learn ‘too much’, in the sense that the prediction
error is not long-lasting, because there are insufficient numbers of noisy shocks to really confuse
them, unless assuming a confounding shock process in the first place.3 In both Kasa (2000)
and Acharya (2013), agents can learn the true state of the economy after one period. When
there are more shocks than signals, agents never fully learn the true state of the economy
and the prediction error is typically persistent. As a result, the model economy features more

2See Rondina and Walker (2017), Kasa, Walker, and Whiteman (2014) and Acharya (2013) for example.
Walker (2007) solved a special signal process with more shocks than signals.

3In Rondina and Walker (2017), they assume a non-invertible shock process.
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relevant and richer dynamics.

Secondly, we allow agents to solve a general signal extraction problem. The majority of
existing literature that applies the frequency-domain technique only studies a pure forecasting
problem. That is, only future values of signals are pay-off relevant. To forecast future signals,
one can simply use the Hansen-Sargent formula. In the examples presented in this paper,
agents need to solve a generic signal extraction problem conditional on infinite observables.
The Hansen-Sargent formula does not apply in these environments. Instead, we apply the
Wiener-Hopf prediction formula, which is well suited for these types of problems and includes
Hansen-Sargent formula as a special case. Applying the Wiener-Hopf prediction formula in the
univariate case has been discussed in Sargent (1987) and applied in Rondina (2008). In this
paper, we extend the application to multivariate case, and establish a number of its general
properties under ARMA signal structure.

We illustrate our method in various applications where economic fundamentals or noises are
persistent. In the first application, we explore the classcial static beauty contest model as in
Morris and Shin (2002), where asymmetric information and strategic complementarity make
higher order beliefs relevant. We obtain a sharp analytical solution, agents to show the inertia
induced by higher order uncertainty, which was analyzed numerically by Woodford (2003) and
Angeletos and La’O (2010). In the second application, we compare the static beauty contest
model with dynamic beauty contest models, in which the best reponse features forward-
looking or backward-looking behavior. These models are common when agents need to make
intratemporal decisions, and we show how the the persistence of agents’ action depends on the
horizon of their strategic motive. In the third application, we extend the model in Angeletos
and La’O (2013) with persistent shocks. Different from the last two applications, each agent
cares about their idiosyncratic fundamental and interacts with a random agent every period.
These features complicate the inference problem, but our method delivers the result and can
be compared with the solution based on the heterogeneous-prior assumption in Angeletos
and La’O (2013). In the first three applications, agents share the same best response and
the equilibrium is symmetric. In the last application, we consider the case where agents
differ in their best responses, and therefore have different policy rules. Even thought these
applications provide a number of novel results, they have not taken full advantage of our
method. In Huo and Takayama (2017), we show that the method can be applied to more
complicated quantitative models.

The result on finite-state representation can be applied for cases where agents solve their
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inference problem given an exogenous ARMA signal process. We also explore cases when
agents observe signals that contain information which is endogenously determined in the
equilibrium. We label them as problems with endogenous information. The equilibrium with
endogenous information imposes an additional cross-equation restriction, in the sense that the
perceived law of motion has to be consistent with the realized law of motion. The endogenous
variable that appears in the signal has an information role as well.

Our second main result is that we provide examples with endogenous information, in which the
equilibrium cannot be represented by finite state variables.4 In the model, agents can observe
the past aggregate action with noises, and the aggregate action actually follows an infinite
order process. This result is somewhat surprising given that the exogenous driving force of
the economy is very simple. It should be clear that it is not because of the infinite higher
order beleifs that agents have to keep track of infinite state variables. For each individual,
they still take the signal process as exogenously given, even though the signals contain an
equilibrium object. From our first main result, once the endogenous variable follows a finite
ARMA process, the individual policy rule has a finite-state representation. If the endogenous
variable does not follow a finite ARMA process, the signal received by agents cannot follow a
finite ARMA process. Note that in Kasa (2000) and other papers where the number of signals
is the same as the number of shocks, the equilibrium permits a finite-state representation even
with endogenous information. When we allow for a more general information process, this
result does not hold any more.

This finding is interesting from a theoretical point of view, but it also implies that finding
the exact solution is no longer possible. To solve the problem with endogenous information,
we approximate the law of motion of the endogenous variable that shows up in signals by
an ARMA process. Note that this ARMA approximation method is different from Sargent
(1991) and others in an important way. Even though we approximate the law of motion of
the endogenous variable, each individual still faces the infinite regress problem. Using our
method, each individual’s policy rule is solved exactly.

Related literature Our paper is closely related to the literature that attempts to solve the
infinite regress problem. Broadly speaking, there are two approaches to solving the infinite
regress problem. The first approach is to short-circuit the infinite regress problem by modifying
the original problems. For example, by assuming that information becomes public after certain

4Chari (1979) proved a similar impossibility theory.
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periods, the relevant state space is finite and one can use the Kalman filter. A partial list of
literature that employs this method includes Townsend (1983), Hellwig and Venkateswaran
(2009), Lorenzoni (2009), Bacchetta and Wincoop (2006), Perez and Drenik (2015). This
assumption is unsatisfying from a modeling perspective, and it is proved by Walker (2007),
Kasa (2000) and Pearlman and Sargent (2005) that the approximate solution can be very
different from the true solution. Another type of approximation is developed by Nimark
(2008) and Nimark (2017). The idea is that quantitatively only a finite order of higher order
beliefs matter for the equilibrium, based on the observation that the effects of higher order
beliefs diminish as the order increases. This method provides important insights into the
nature of the higher order beliefs, but this method can be difficult to implement when the
degree of strategic complementarity is strong, or when the model is complicated to express the
policy rule in terms of higher order beliefs. Sargent (1991) approximated the equilibrium via
the ARMA process. The forecasting problem is transformed into fitting vector ARMA models,
which is particularly useful when agents do not need to solve a pure forecasting problem.

The second approach is to solve the infinite regress problem exactly without approximation.
Kasa (2000) first uses the frequency-domain method to solve the Townsend (1983) original
problem and found that agents actually share the same belief and there is no infinite regress
problem. Walker (2007), Rondina and Walker (2017), and Kasa, Walker, and Whiteman
(2014) apply the frequency-domain method to study various asset pricing models proposed by
Futia (1981) and Singleton (1987). Acharya (2013) applies this method to study the effects
of noises on business cycles. These papers assume that the number of shocks equals the
number of signals in order to obtain a closed form solution when there exists endogenous
information. Huo and Pedroni (2017) obtains a simple solution to static beauty contest
models with general information structure. Our paper complements this line of literature.
For exogenous information, a much broader class of models can be solved by our method.

Our applications in this paper complement the literature on macroeconomics with higher order
beliefs. We obtain analytical solutions for models closely related to Woodford (2003), Angele-
tos and La’O (2010), Nimark (2017), and Angeletos and La’O (2013). We believe our method
is also useful in solving models similar to Lorenzoni (2009), Hellwig and Venkateswaran (2009),
Graham and Wright (2010) and others. In our companion paper (Huo and Takayama, 2017),
we study a business cycle model driven by confidence shocks. We characterize how information
frictions affect the persistence and variance of output, and show that the confidence shock
could be an important factor in explaining business cycles.
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The rest of the paper is organized as follows. Section 2 sets up a two-player model to in-
troduce higher order beliefs and the infinite regress problem. Section 3 presents the main
results. We first show how to jointly use the Kalman filter and the Wiener-Hopf prediction
formula to form the optimal expectation with entire history of signals. This enable us to
obtain a finite-state representation for a rational expectations model with higher order beliefs.
Section 4 presents several applications with persistent information where analytical solutions
are available. Section 5 explores the case in which the signals contain an endogenous variable.
We prove that the equilibrium policy rule does not have a finite-state representation in this
environment. Section 6 concludes.

2 A Two-Player Model

In this section, we present a simple two-player model with the infinite regress problem. This
model naturally assigns an important role to infinite higher order beliefs, and numerous vari-
ations of it have been used in the literature. We use this model to define some concepts that
will become useful in Section 3.

2.1 Model setup

Consider a game between two agents i and j. Time is discrete and lasts forever. In period
t, agents’ payoff depends on a common persistent economic fundamental ξt. In addition,
the payoff features strategic complementarity or substitutability, and it also depends on the
action of the other agent. Information frictions prevent agents from perfectly observing ξt or
the action of the other agent.

We assume that the best response of agent i, denoted by yit, has to satisfy

yit = E[ξt|Ωit] + αE[yjt|Ωit], (2.1)

where α ∈ (0, 1) determines the strength of strategic complementarity and Ωit denotes the
information set of agent i at time t. We consider a symmetric scenario in which agent j uses
the same best response and has the same information structure as agent i. Note that agents
make a purely static decision every period, and the link across different periods is only through
the information set. There are various micro-foundations that lead to this specification, such
as Woodford (2003) and Angeletos and La’O (2010). For now we only focus on this abstract
form and discuss its general properties. The information structure of the model is specified
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as follows.

Signal process We assume that ξt follows a covariance stationary ARMA (p, q) process

ξt =

p∑
k=1

ρkξt−k +

q∑
k=0

θkηt−k,

where ηt ∼ N (0, ση). As opposed to observing ξt directly, agents receive n signals that are
related to ξt. These signals are simply the sum of ξt and some idiosyncratic noises

xit ≡


x1it
...
xnit

 =


ξt + ε1it

...
ξt + εnit

 , (2.2)

where ετit ∼ N (0, σ2
τ ) for τ ∈ {1, . . . , n}. The information set of agent i at time t contains all

the signals he has received up to time t

Ωit =

{
xit,xit−1,xit−2, . . .

}
. (2.3)

Agent j receives signals of ξt that are corrupted by her idiosyncratic noises ετjt. As a result,
these two agents do not share the same information set. To simplify notation, we will use
Eit[ · ] to denote the conditional expectation operator E[ · | Ωit] from now on.

The information structure and the best response we have specified above are very special. We
will relax these assumptions in the next section.

2.2 Higher order beliefs

The best response of agent i is given by equation (2.1), and the same rule applies to agent j,

yjt = Ejt[ξt] + αEjt[yit]. (2.4)

We can repeatedly substitute equation (2.4) into equation (2.1), and vice versa, which leads
to

yit = Eit[ξt] + αEit[yjt]

= Eit[ξt] + αEit [Ejt[ξt] + αEjt[yit]]
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= Eit[ξt] + αEitEjt[ξt] + α2EitEjt[yit]

= Eit[ξt] + αEitEjt[ξt] + α2EitEjtEit[ξt] + α3EitEjtEit[yjt]
...

=
∞∑
k=0

αk Ek+1
it [ξt], (2.5)

where Ekit[ξt] stands for k-th order belief. These higher order beliefs are defined recursively as
follows

E1
it[ξt] = Eit[ξt]

E2
it[ξt] = EitEjt[ξt]

Ekit[ξt] = EitEjtEk−2it [ξt], for k = 3, 5, 7, . . .

Ekit[ξt] = EitEjtEk−2it [ξt], for k = 4, 6, 8, . . .

Crucially, agents have heterogeneous information sets, and the law of iterated expectations
does not apply. Hence, the optimal action yit depends on all the higher order beliefs. Mathe-
matically, the means of all these higher order beliefs can be calculated by the standard Kalman
filter, but there are an infinite number of such objects to be calculated. One may think that
if a certain pattern of these higher order beliefs is found, these beliefs may be summarized in
a compact way. This approach works for a static system, such as in Morris and Shin (2002).
However, it does not work in general, due to a growing complexity with the order of beliefs.
Forecasting all of these higher order beliefs requires an infinite number of priors of these be-
liefs, and these priors are functions of the entire history of agents’ signals. As a result, it
is generally believed that the policy rule has to include the entire history of signals as state
variables.

It should be clear that higher order beliefs is a particular representation of agents’ optimal
action. Agents do not have to use all higher order beliefs to determine their optimal action.
If the laws of motion of other agents’ actions are known, then a first order belief about the
fundamental and others’ actions will be sufficient. In fact, this is the approach we will take
in this paper. Still, higher order beliefs are very helpful in understanding some properties of
the effects of dispersed information.
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2.3 Equilibrium

By the higher order belief representation of the best response, it is clear that the optimal
policy is linear in the signals as it is ultimately a result of optimal forecasting. The linear
policy rule of agent i belongs to the space spanned by square-summable linear combinations
of current and past realizations of xit. We use Hx

t to denote this space. The optimal action is
a linear combination of current and past signals

yit =
∞∑
k=0

h1kx
1
it−k +

∞∑
k=0

h2kx
2
it−k + . . .

∞∑
k=0

hnkx
n
it−k, (2.6)

and it is obvious that yit ∈ Hx
t . In standard models without higher order beliefs, the policy

rule still depends on the entire history of signals, but a finite number of state variables can
be easily found to effectively summarize the past information. In contrast, due to the infinite
higher order beliefs, it is very difficult to figure out whether there exists a finite number of
state variables in the first place (even though later on we prove that this is indeed the case)
and the laws of motion of these state variables given they exist. In principle, agents have to
keep track of the entire history of signals.

To fix the language, we fist define the casual and noncasual stationary lag polynomials.

Definition 2.1. φ(L) is a non-casual stationary lag polynomial if

φ(L) =
∞∑

k=−∞

φkL
k, (2.7)

and {φk}∞k=−∞ ∈ `2. φ(L) is a casual-stationary lag polynomial if it does not contain L with
negative powers

φ(L) =
∞∑
k=0

φkL
k. (2.8)

More compactly, we can use lag polynomials to describe the policy rule

yit = h1(L)x1it + h2(L)x2it + . . .+ hn(L)xnit = h(L)xit. (2.9)

In equilibrium, agents cannot use signals realized in the future, and hence the policy rule h(L)

should be casual-stationary lag polynomials. The definition of the equilibrium is straightfor-
ward.
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Definition 2.2. Given the signal process (2.2), the equilibrium of model (2.1) is a causal-
stationary policy rule h(L) =

[
h1(L) h2(L) . . . hn(L)

]
, such that

yit = Eit[ξt] + α Eit[yjt],

where

yit = h(L)xit, yjt = h(L)xjt.

To solve for the equilibrium policy rules h(L), the difficulty lies in how to solve the inference
problem

Eit [yjt] = Eit [h′(L)xjt] ,

in which the variable to be predicted is with infinite states. The Kalman filter requires the
predicted variable to have finite states, and therefore it is inapplicable for this type of the
problem. In contrast, the Wiener filter can solve the inference problem that is conditional
on infinite observables, and it allows the predicted variable to have infinite states (the details
of these two filters are discussed in the next section). The next section will show, after
solving Eit[yjt], it turns out that h(L) are of finite ARMA type, and it allows a finite-state
representation.

3 Methodology: General Linear Rational Expectations Models

In this section, we develop the method that solves the general rational expectations models
with higher order beliefs. We first lay out the structure of the model and the signal process.
We then show how to prove our main results in steps. In this section, we focus on symmetric
equilibrium in which all agents share the same information an payoff structure, and therefore
use the same policy rule. However, the method and the finite-state representation result
extends to models where agents have heterogeneous payoff or information structures (see
subsection 4.4 for an example).

3.1 Rational expectations models

We focus our attention on Gaussian-linear models in which all the variables depend on the
underlying Gaussian shocks in a linear way. The input of a rational expectations model
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includes two parts: the signal process and a system of equations describing the conditions
which all the variables need to satisfy. There are three kinds of variables involved here:
an individual agent’s own choice variables, the choice variables chosen by other agents, and
exogenous variables.

Signal process Assume that the signals observed by an individual agent follows

xt =


x1t
...
xnt

 =


M11(L) . . . M1m(L)

... . . . ...
Mn1(L) . . . Mnm(L)



s1t
...
smt

 = M(L)st, (3.1)

where the signal xt is a stochastic n× 1 vector and the shock st is a stochastic m× 1 vector.
We normalize the co-variance matrix of st to be an identity matrix. The natural requirement
is that Mij(L) is causal stationary. The information set is Ωt = xt = {xt,xt−1,xt−2, . . .}.

Choice variable We assume that each individual agent has r choice variables, which are
functions of their signals:

yt =


y1t
...
yrt

 =


h11(L) . . . h1n(L)

... . . .
...

hr1(L) . . . hrn(L)



x1t
...
xnt

 = h(L)xt. (3.2)

Here, h(L) is the matrix of equilibrium policy rules we need to solve. We only require that
each element in h(L) is causal stationary, but do not impose that h(L) admits a finite ARMA
representation in the first place (even though we prove this is indeed the case later).

Endogenous variables related to other agents’ actions The optimal policy may depend
on other agents’ actions or depend on some aggregate endogenous variables. With information
frictions, these variables may not be observed perfectly, but matter for agents’ payoff. Let ỹt

denote the vector of endogenous variables which are chosen by other agents. In this section,
we focus on symmetric equilibrium in which all agents use the same policy rule. They are
related to the choice variable yt in the following way

ỹt = h(L)M(L)Λst (3.3)
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If Λ is an identity matrix, then others’ action will be the same as the action of the particular
individual, yt. However, the actions of others may only depend on a subset of st and depend
on shocks other than st. The matrix Λ selects the shocks that also affect other agents, which
are common shocks in the economy. For the shocks that are uncorrelated with st, the best
forecasts of those shocks conditional on {xt} are simply zero.

Model Assume the optimal action yt needs to satisfy the following linear system in equilib-
rium

E
[
P(L)yt + Q(L)ỹt + R(L)st

∣∣∣∣xt] = 0. (3.4)

These matrices P(L)r×r,Q(L)r×r and R(L)r×m depend on structural parameters that result
from optimal conditions and resource constraints, and they are not related to agents’ en-
dogenous choices. These matrices are allowed to be non-casual stationary. This system of
equations incorporates the possibilities that the choice variables yt depend on the past, the
current and the future values of the endogenous variables of others, the exogenous variables,
and her own actions. This specification includes the majority of applications that one may
encounter.

Special case with Common Information Model (3.4) includes two special cases in which
all agents share the same information and there is no need to infer others’ action. Even though
agents share the same information, they may not necessarily observe the underlying states.

1. Perfect information.

E
[
P(L)yt + Q(L)yt + R(L)st

∣∣∣∣st] = 0. (3.5)

In standard real business cycle models and New Keynesian models without information
frictions, the underlying shocks {st} are observed directly by agents. That is, the space
spanned by shocks is the same as the space spanned by signals, Hs

t = Hx
t . Meanwhile,

because all the shocks are observed directly, the actions of other agents are also known
perfectly. As a result, the expectations can be calculated easily.
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2. Imperfect information, but no need to compute higher order beliefs 5

E
[
P(L)yt + Q(L)yt + R(L)st

∣∣∣∣xt] = 0. (3.6)

This is the case in which information frictions still exist, i.e., Hx
t ⊂ Hs

t , but there is no
need to infer others’ choices. Agents only need to infer the exogenous variables R(L)st,
and standard Kalman filter will be sufficient in solving the problem.

In both of these two cases, all agents’ signals are driven by the same shocks, and therefore,
Λ = I. This property is important in determining the persistence of the policy rule which will
be discussed in subsection 3.4.

The solution to model (3.4) is defined as follows

Definition 3.1. Given the signal process (3.1), an equilibrium is a matrix of causal stationary
lag polynomials h(L) such that

1. The policy rule h(L) solves

E
[
P(L)h(L)xt + Q(L)ỹt + R(L)st

∣∣∣∣xt] = 0

2. Others’ action ỹt is consistent with h(L)

ỹt = h(L)M(L)Λst

In this section, we aim to answer the following questions:

1. Under what conditions does a unique solution to this model exist?

2. Supposing there indeed exists a solution h(L) that solves the model, how to find the
formula of h(L)?

3. Does the solution admit a finite-state representation that allows agents to summarize
the past information using a small set of sufficient statistics?

5This case is also discussed in Baxter, Graham, and Wright (2011).
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To answer these questions, we further make the following assumptions.

Assumption 3.1. The signal xt follows a finite ARMA process, i.e., each element of M(L)

is a rational function of the lag operator L

Mij(L) =
aij(L)

bij(L)
=

∑qij
k=0 αijkL

k∑pij
k=0 δijkL

k
, (3.7)

and all the roots of bij(L) is within the unit circle.

Assumption 3.2. The elements in matrices P(L), Q(L), and R(L) are rational functions of
the lag operator L. Furthermore,

P(L) =
P̂(L)∏d

k=1(L− βk)
, Q(L) =

Q̂(L)∏d
k=1(L− βk)

, R(L) =
R̂(L)∏d

k=1(L− βk)
, (3.8)

where |βk| < 1 and the expansions of P̂(L), Q̂(L), R̂(L) are casual lag polynomials.

Assumption 3.1 and 3.2 essentially assume that M(L), P(L), Q(L), and R(L) are all of a finite
ARMA structure. The potential inside poles {βk} capture the possibility that agents’ best
response depend on their own future actions, others’ future actions, or future fundamentals.6

Under these assumptions, Theorem 1 answers the first two questions, and Proposition 3.3
gives a positive answer to the third question. In short, these results imply that higher order
beliefs do not necessarily create infinite state variables. It is always possible to use a small
set of variables to summarize past information, given that the signals follow finite ARMA
processes.

The proofs of our main results are quite lengthy and involve a number of building blocks. The
main steps that lead to Theorem 1 and Proposition 3.3 are listed below

Step 1: Under Assumption 3.1, find the state-space and Wold representation of the signal
process.

Step 2: Use Wiener filter to solve the inference problem in model (3.4).

Step 3: Transform the infinite-dimension problem of solving the sequences of coefficients in
the lag polynomials into the finite-dimension problem of solving a system of analytic functions.

6Note that it is not necessary the case that P(L), Q(L), and R(L) share the same inside poles. One can
always set P̂(L), Q̂(L), and R̂(L) to remove the poles.
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Step 4: Find the finite-state representation of the equilibrium policy rule.

3.2 State-space representation, Factorization Identity, and Wold representation

We need the Wold representation of the signal process for the following reason. All the predic-
tion is conditional on the observed signals, but ultimately, the linear projection is on the space
spanned by shocks. The original underlying shocks {st} contain more information than the
signals {xt}, and the prediction conditional on {st} is different from the prediction conditional
on {xt}. The Wold representation provides a new sequence of shocks {wt}. Different from
the underlying shocks {st}, the space spanned by the signals {xt} is equivalent to the space
spanned by {wt}, and we can conduct the linear projection on {wt}. Given a finite ARMA
signal process, we present how to find its state-space representation and Wold representation
using the factorization identity.

Lemma 3.1. Under Assumption 3.1, the signal process admits at least one state-space repre-
sentation, in which the state equation is

Zt = FZt−1 + Φst,

and the observation equation is

xt = HZt,

In addition, the eigenvalues of F all lie inside the unit circle.

Proof. See Appendix A.2 for proof.

This lemma states that any finite ARMA process has at least one state-space representation.
However, it is often the case that there are many different state-state representations for the
same ARMA process. More generally, the state equation can be written as

Zt = FZt−1 + Φst,

and the observation equation can be written as

xt = HZt + Ψst.
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Lemma 3.1 only provides one of the state-space representation with the feature that there
is no shock in the observation equation. Even though the state space representation is not
unique, all different representations lead to the same forecast eventually.

Suppose that there exits B(L) and {wt} such that

xt = M(L)st = B(L)wt, (3.9)

where B(L) is invertible,7 and wt is serially uncorrelated shocks with co-variance matrix V,
then we say xt = B(L)wt is a fundamental representation of xt. The Wold representation
is a particular fundamental representation. Since B(L) is invertible, xt contains the same
information as wt, i.e., Hx

t = Hw
t . Further, equation (3.9) implies that the auto-correlation

generating function can be obtained using both representations

ρxx(z) = M(z)M′(z−1) = B(z)VB′(z−1). (3.10)

Therefore, find the fundamental representation is equivalent to find the canonical factorization
of the auto-correlation generating function . The following theorem provides the canonical
factorization for the state-space representation of the signal process xt, which uses the factor-
ization identity.

Theorem (Canonical Factorization). Let F denote an matrix whose eigenvalues are all inside
the unit circle; let Q′Q be positive definite matrix; let H denote an arbitrary matrix. Let P

satisfy
P = F[P−PH′(HPH′ + ΨΨ′)−1HP]F′ + ΦΦ′

and K be defined as
K = PH′(HPH′ + ΨΨ′)−1

Then

1. The eigenvalues of F− FKH are all inside the unit circle.

2. The canonical factorization is

ρxx(z) = H[I− Fz]−1ΦΦ′[I− Fz−1]−1H′

7This is equivalent to that the determinant of B(z) does not contain any roots (zeros) within the unit
circle.
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= [I + H(I− Fz)−1FKz][HPH′ + ΨΨ′][I + K′F′(I− F′z−1)−1H′z−1]

≡ B(z)VB′(z−1).

3. B(z) is
B(z) = I + H[I− Fz]−1FKz,

the inverse of B(z) is

B(z)−1 = I−H[I− (F− FKH)z]−1FKz,

and the co-variance matrix V is

V = HPH′ + ΨΨ′

Proof. The proof is in Hamilton (1994).

The proof utilizes the forecasting formula in the steady-state Kalman filter. The requirement
that all the eigenvalues of F lie inside the unit circle guarantees I−Fz is invertible. The eigen-
values of F−FKH are related to the Kalman gains and are very important in understanding
the prediction problem, which essentially determines the persistence of the forecasts.

3.3 Wiener-Hopf prediction formula

Now we turn to the inference problems incorporated in equation (3.4). The following theorem
states the Wiener-Hopf prediction formula. Note that this prediction formula does not hinge
on whether the signal follows a finite ARMA process or not.

Theorem (Wiener-Hopf). Suppose the multivariate co-variance stationary signal process fol-
lows

xt = M(L)st,

and ft is a univariate co-variance stationary process

ft = ψ(L)st.

where ψ(L) =
∑∞

k=−∞ψkL
k is a non-casual stationary lag polynomial. Then the optimal
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linear prediction of ft conditional on {xt} is

E
[
ft|xt

]
=

[
ψ(L)M′(L−1)B′(L−1)−1

]
+

V−1B(L)−1xt, (3.11)

where B(L) and V are given by the Canonical Factorization Theorem.

Proof. See Appendix A.3 for proof.

If we further assume that the signal follows a finite ARMA process, we can obtain a sharper
and more specific prediction formula.

Proposition 3.1. Under Assumption 3.1,

M′(L−1)B′(L−1)−1 =
1

Πu
k=1(L− λk)

G(L) (3.12)

where G(L) is a polynomial matrix in L, and {λk}uk=1 are non-zero eigenvalues of F− FKH

which all lie inside the unit circle. Suppose the univariate random variable ft follows

ft =
a(L)∏d

τ=1(L− βτ )
st,

where a(L) is a casual stationary polynomial. The prediction formula for ft is 8

E
[
ft | xt

]
=

a(L)∏d
τ=1(L− βτ )

M′(L−1)ρxx(L)−1xt (3.13)

−
u∑
k=1

a(λk)G(λk)V
−1B(L)−1

(L− λk)
∏

τ 6=k(λk − λτ )
∏d

τ=1(λk − βτ )
xt (3.14)

−
d∑

k=1

a(βk)G(βk)V
−1B(L)−1

(L− βk)
∏k

τ=1(βk − λτ )
∏d

τ 6=k(βk − βτ )
xt (3.15)

Proof. See Appendix A.4 for proof.

The key in applying the Wiener-Hopf prediction formula is to find the Wold representation
for xt or the canonical factorization for M(L). When the number of signals equals the number

8Here, we do not consider the case with repeated roots. It is straightforward to add those but make the
expression cumbersome.
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of shocks, M(L) is a square matrix. Suppose M(L) is invertible, then M(L) itself is a funda-
mental representation and the Wiener-Hopf prediction formula can be applied directly. This
corresponds to the case when the signals fully reveal the underlying states. If M(L) is a square
but not an invertible matrix, then there exists at least one inside root of the determinant of
M(L). In this case, the fundamental representation can be found by multiplying the Blaschke
matrices to flip the inside roots outside the unit circle. Kasa (2000), Rondina and Walker
(2017), Kasa, Walker, and Whiteman (2014) and Acharya (2013) all use this method to find
the Wold representation.

In most signal extraction problems, the number of shocks is larger than the number of signals.
In this case, M(L) is a non-square matrix and is not invertible. To find the canonical factor-
ization of M(L) is more involved, but can be achieved by using the Canonical Factorization
Theorem.

It is common in the existing literature to restrict the number of signals to being the same as
the number of shocks so that the Blaschke matrix is applicable in finding the Wold represen-
tation. This is mainly because a square system can be helpful to obtain analytic results when
information is endogenous. However, this restriction often leaves some informative variables
to be observed without noise. As a result, the true state of the economy is revealed too quickly.
For example, Kasa (2000), Sargent (1991) and Pearlman and Sargent (2005) all show that in
Townsend (1983), agents share the same belief about the common demand shock and there is
no forecast the forecasts of others problem. Also, the forecast error only exists for one period,
and agents figure out the demand shock fairly quickly. The one period delay is due to the fact
that output is predetermined. Similarly, in Acharya (2013), agents observe the last period’s
aggregate output perfectly, and effects of aggregate noise only last for one period because
agents can infer the underlying shock accurately by observing aggregate output. Rondina and
Walker (2017) and Kasa, Walker, and Whiteman (2014) both have square observation matrix.
To prevent the price from fully revealing the information, they need to abandon the standard
AR(1) process and assume a non-invertible process for the fundamental.

A lot of interesting models naturally require that there are more shocks than signals, such as
Singleton (1987), Woodford (2003), Lorenzoni (2009), Angeletos and La’O (2010), Angeletos
and La’O (2013) and so on. In this paper, we show that by using the factorization identity, the
Wold representation is readily available for any finite ARMA process. Joint with the Wiener
filter, we can solve the signal extraction problem.
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3.4 System of analytic functions and a finite-state representation

To write it more compactly for future derivation, define

φ(L) ≡ vec(h(L)). (3.16)

φ(L) effectively collapse all the lag polynomials to be solved into a rn× 1 vector.

After we apply the Wiener filter, solving for φ(L) in model (3.4) still requires solving sequences
of infinite coefficients in the lag polynomials, which is an infinite dimension problem. By the
Riesz-Fisher Theorem, instead of solving the sequences of infinite coefficients, we can solve for
a finite number of analytic functions instead, as shown in the following proposition.

Proposition 3.2. Under Assumption 3.1 and 3.2, there exists a solution φ(L) to model (3.4)
if and only if there exists a vector analytic function φ(z) that solves

T(z)φ(z) = D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=1

]
(3.17)

where T(z)rn×rn is given by

T(z) ≡ P(z)⊗ (M(z−1)M′(z)) + Q(z)⊗ (M(z−1)ΛM′(z)) (3.18)

and D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=1

]
rn×1

is given by

D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=1

]
≡ −vec(M(z−1)R′(z))

+
u∑
k=1

vec(B(z−1)G′(λk)R̂
′(λk))

(z − λk)
∏

τ 6=k(λk − λτ )
∏d

τ=1(λk − βτ )
+

d∑
k=1

vec(B(z−1)G′(βk)R̂
′(βk))

(z − βk)
∏k

τ=1(βk − λτ )
∏d

τ 6=k(βk − βτ )

+(Ir ⊗B(z−1))
u∑
k=1

Q̂(λk)⊗G′(λk)ΛM′(λk)

(z − λk)
∏

τ 6=k(λk − λτ )
∏d

τ=1(λk − βτ )
φ(λk)

+(Ir ⊗B(z−1))
d∑

k=1

P̂(βk)⊗G′(βk)M
′(βk) + Q̂(βk)⊗G′(βk)ΛM′(βk)

(z − βk)
∏k

τ=1(βk − λτ )
∏d

τ 6=k(βk − βτ )
φ(βk) (3.19)

Proof. See Appendix A.5 for proof.

To solve for φ(z), we utilize the Cramer’s rule. Different from solving a system of linear
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equations, one needs to make sure φ(z) represents a stationary process. To proceed, we first
determine the set of constants {{φ(λk)}uk=1, {φ(βk)}dk=1} that are generated when applying the
Wiener-Hopf prediction formula. As discussed in Whiteman (1983), these constants should be
set to remove the poles of φ(z) that are inside the unit circle, which makes sure that φ(z) is
an analytic function. The number of free constants that can be used to eliminate the poles of
φ(z) may be smaller than the cardinality of {{φ(λk)}uk=1, {φ(βk)}dk=1}, because some of these
constants enter equation (3.17) in a linearly dependent way. The following lemma gives the
actual number of free constants.

Lemma 3.2. Define N1 as

N1 =
u∑
k=1

rank

(
Q̂(λk)⊗G′(λk)ΛM′(λk)

)
+

d∑
k=1

rank

(
P̂(βk)⊗G′(βk)M

′(βk)+Q̂(βk)⊗G′(βk)ΛM′(βk)

)
.

There exists a N1 × 1 constant vector ψ such that

D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=1

]
= D1(z)ψ + D2(z), (3.20)

where D1(z) is with full column rank and ψ is a linear combination of ({φ(λk)}uk=1, {φ(βk)}dk=1).

Proof. See Appendix A.6 for proof and the construction of D1(z), D2(z), and ψ.

The roots of T(z) are crucial in obtaining the solution and in understanding its property.

1. Denote {ζ1, . . . , ζN2} as the N2 roots of det[T(z)] that lie inside the unit circle.

2. Denote {ϑ−11 , . . . , ϑ−1N3
} as the N3 roots of det[T(z)] that lie outside the unit circle.

The existence of a solution hinges on whether there are enough free constants to eliminate
all the inside roots of det[T(z)]. The persistence of φ(z) depends on the outside roots of
det[T(z)].

Theorem 1 (General solution formula). Assume Assumption 3.1 and 3.2 hold. U1 and U2
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are constructed such that

U1ψ + U2 ≡


det

[
D1(ζ1)ψ + D2(ζ1) T2(ζ1) . . . Trn(ζ1)

]
...

...
...

det

[
D1(ζN2)ψ + D2(ζN2) T2(ζN2) . . . Trn(ϑN2)

]
 .

1. If N1 < N2, there is no solution.

2. If N1 = N2 = rank(U1), there exists a unique solution φ(z). For i ∈ {1, . . . , rn}

φi(z) =

det

[
T1(z) . . . Ti−1(z) D1(z)ψ + D2(z) Ti+1(z) . . . . . . Trn(z)

]
det

[
T(z)

] ,

and

ψ = −U−11 U2,

3. If N1 > N2 or N1 = N2 > rank(U1), there exists an infinite number of solutions.

Proof. See Appendix A.7 for proof.

Theorem 1 gives the existence and uniqueness condition for the solution. It also delivers the
exact formula of the solution. The following proposition further shows that the solution can
always be represented in a recursive way.

Proposition 3.3 (Finite-state representation). Under Assumption 3.1 and 3.2, if there exists
a solution φ(L) to model (3.4), then φ(L) is a rational function of lag operator L

φ(L) =
φ̂(L)∏N3

k=1(1− ϑkL)
(3.21)

where φ̂(L) is a lag polynomial matrix with finite degree.

Given a particular signal realization {xt}−1t=−∞, there exists a finite set of state variables zt,
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such that the choice variables yt have a finite-state representation

yt = Γzzt−1 + Γxxt, (3.22)

where the law of motion of zt and the initial state are given by

zt = Υzzt−1 + Υxxt, (3.23)

z−1 = (I−ΥzL)−1 Υxx−1. (3.24)

Proof. See Appendix A.8 for proof.

This result implies that when signals follow finite ARMA processes, higher order beliefs do not
create infinite state variables. It is always possible to use a small set of variables to summarize
the necessary information in the past. An important property is that the persistence of the
policy rule is completely characterizes by the roots of the determinant of T(z), and these roots
are determined by the interaction between the model primitives (P(L) and Q(L)) and the
signal process (M(L)). This is in contrast with common information models.

Comparison with Common Information Case The special cases discussed in subsec-
tion 3.1 have the feature that all agents’ signals are driven by the same shocks, and it follows
that Λ = I. The matrix T(z) in equation (3.18) turns out to be

T(z) = (P(z) + Q(z))⊗ (M(z−1)M′(z)), (3.25)

and its determinant is

det[T(z)] = det[P(z) + Q(z)] det[M(z−1)M′(z)] (3.26)

The roots {ϑ−11 , . . . , ϑ−1N3
} that determines the persistence of the policy rule either come from

the primitive part of the model P(z)+Q(z) or from the signal process M(z−1)M′(z). Crucially,
there is no interaction between the model and the signal in determining {ϑk}. In contrast,
when Λ 6= I, the determinant of T(z) is jointly determined by P(z),Q(z), and M(z), which
is what separates the dispersed information model from the representative agent model.
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Innovation form and signal form The solution we discussed in Section 3.4 is in terms of
signals, and it can also be represented in terms of the underlying shocks {st}

yt = d(L)st. (3.27)

We label the solution in terms of signals as signal form and the solution in terms of underlying
shocks as innovation form. On one hand, the signal form is typically easier to solve, because
the dimension of the problem in signal form is smaller than the dimension of the problem in
innovation form. On the other hand, it is more straightforward to characterize the equilibrium
using the innovation form. The following proposition shows that one can work with either of
them.

Proposition 3.4. Under Assumption 3.1 and 3.2, there exists a solution in signal form,

yt = h(L)xt, (3.28)

if and only if there exists a solution in innovation form

yt = d(L)st, (3.29)

where h(L) and d(L) satisfy

d(L) = h(L)M(L),

vec(h(L)) = vec(ρ′xx(L)−1M(L−1)d′(L))−
u∑
k=1

vec(B′(L)−1V−1G′(λk)d
′(λk))

(L− λk)
∏

τ 6=k(λk − λτ )
.

Proof. See Appendix A.9 for proof.

If M(L) is not invertible, the space spanned by signals is a subset of the space spanned by
shocks. It should be clear that whether we use the innovation form or the signal form, {yt}
always lies in the space spanned by current and past signals because agents can only condition
their choice on their observables, that is, {yt} ⊂ Hx

t ⊂ Hs
t .
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4 Application

In this section, we use the method developed in Section 3 to solve some stylized problems.
These problems are commonly adopted in the literature, and are useful in illustrating how to
use our method.

4.1 Application I: Static Beauty Contest Model

We first consider the static beauty contest model. A continuum of agents choose their actions
according to the following best response function

yit = Eit[ξt] + αEit[yt], (4.1)

and the aggregate action yt is given by

yt =

∫
yit. (4.2)

This type of best response can be derived directly from a quadratic utility function as in
Morris and Shin (2002), and can be the result of linearized macro models as in Woodford
(2003) or Angeletos and La’O (2010). We label this type of best response as a static beauty
contest model for the reason that past or future actions do not enter agents’ best response
function. In equation (3.4), this model structure implies that P(L) and Q(L) are constant
matrices instead of lag polynomial matrices.

Now we introduce the shocks and signals. Suppose that the economic fundamental ξt follows
an AR(1) process

ξt = ρξt−1 + σηηt. (4.3)

Agents do not observe the fundamental perfectly. They receive two signals about the fun-
damental. The first signal is a public signal observed by all agents, and the second signal is
private that can only be observed by agent i.

x1it = ξt + σεεt, x2it = ξt + σuuit.
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More compactly, the signal structure can be represented as

xit = M(L)sit =

[
ση

1−ρL σε 0
ση

1−ρL 0 σu

] ηtεit
uit

 , sit ∼ N (0, I) (4.4)

For the inference problem, the corresponding state-space representation is

zit = ξt = ρ︸︷︷︸
F

ξt−1 +
[
ση 0 0

]
︸ ︷︷ ︸

Φ

 ηtεit
uit

 , xit =

[
1

1

]
︸︷︷︸

H

zit +

[
0 σε 0

0 0 σu

]
︸ ︷︷ ︸

Ψ

 ηtεit
uit

 . (4.5)

Besides the best response function, this information structure also resembles those in Morris
and Shin (2002), Woodford (2003), and Angeletos and La’O (2010). Morris and Shin (2002)
study how the precision of the public signal σε affects the social welfare, while Angeletos
and La’O (2010) interpret εt as animal spirits and study how these shocks shape aggregate
fluctuations. In Woodford (2003), agents only receive a private signal about the fundamental,
which is equivalent to set σε to infinity. Woodford (2003) and Angeletos and La’O (2010)
use a guess-and-verify approach to solve the model, and we provide the analytic solution in a
systematic way.

Given the equilibrium policy rule yit = h(L)xit, the aggregate action is

yt =

∫
h(L)M(L)sit = h(L)M(L)Λsit, (4.6)

where the matrix that selects the common shocks ηt and εt is given by

Λ =

1 0 0

0 1 0

0 0 0

 . (4.7)

In the static beauty contest model, P (L) = 1, Q(L) = −α and R(L) =
[

ση
1−ρL 0 0

]
. By

Proposition 3.3, the inverse of the persistence of the policy rule ϑ, is the outside root of
det[T(z)], where T(z) is given by

T(z) = M(z)(I− αΛ)M′(z−1). (4.8)
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So far, all the elements to be used in Proposition 3.2 are at hand. The following proposition
specifies the finite-state representation of the equilibrium policy rule

Proposition 4.1. Given the signal process (4.4) and α ∈ (0, 1), the equilibrium policy rule in
model (4.1) is given by

h1(L) =
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
, (4.9)

h2(L) =
ϑ

ρσ2
u(1− ρϑ)

1

1− ϑL
, (4.10)

where

ϑ =
1

2

(1

ρ
+ ρ+

(1− α)σ2
ε + σ2

u

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

(1− α)σ2
ε + σ2

u

ρσ2
εσ

2
u

)2

− 4

 (4.11)

The finite-state representation is

yit = ϑyit−1 +
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

x1it +
ϑ

ρσ2
u(1− ρϑ)

x2it (4.12)

yt = ϑyt−1 +
ϑ

ρ(1− ρϑ)

(1− α)σ2
ε + σ2

u

(1− α)σ2
εσ

2
u

ξt +
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

σεεt (4.13)

Proof. See Appendix A.10 for proof.

The individual policy rule follows an AR(1) process, which inherits the property of the under-
lying fundamental. As expected, the weights assigned to the signals are adjusted according to
their relative informativeness. In addition, the first signal affects all agents in the economy,
each individual agent will respond to it more strongly. As the strength of the strategic comple-
mentarity increases (α increases), the instantaneous response to the first signal, 1

1−α
ϑ

ρσ2
ε (1−ρϑ)

,
also becomes larger.

Crucially, the persistence of agents’ endogenous action is governed by the endogenous variable
ϑ, and it is the key to understand the nature of the equilibrium. Woodford (2003) emphasizes
that higher order beliefs generate inertia of agents’ action, which displays a hump-shaped
response to the fundamental shock. In equation (4.11), given ρ, as ϑ increases, the peak of the
impulse response of yt shifts to the right. If ϑ is small enough, then hump-shaped response
may disappear. The following proposition characterizes ϑ.
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Proposition 4.2. Assume that α ∈ (0, 1), ρ ∈ (0, 1), σε > 0, and σu > 0. Then ϑ satisfies

1. 0 < λ < ϑ < ρ, where λ is given by

λ =
1

2

(1

ρ
+ ρ+

σ2
ε + σ2

u

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

σ2
ε + σ2

u

ρσ2
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2. ϑ is increasing in α and
lim
α→0

ϑ = λ

3. ϑ is increasing in σε, σu, and ρ.

Here, ϑ is bounded from above by the persistence of ξt, and it is also bounded from below by
λ, where 1− λ is the Kalman gain when using the Kalman filter to predict ξt. Note that ϑ is
increasing in α. This is because higher order beliefs become more important in shaping the
behavior of yt. With a large α, it is more likely for yt to have a hump-shaped response.
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Figure 1: Impulse Response of Aggregate Action

Parameters: α = 0.5, ρ = 0.95, ση = 1, σε = 4.

We use a numerical example to illustrate the properties of the model when varying the degree
information frictions. We choose different values for the variance of the idiosyncratic shock
σ2
u. As shown in Figure 1a, the hump-shaped response of yt to ηt shock is more pronounced

when information frictions becomes larger. Figure 1b compare the responses of yt to the
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fundamental shock and the common noise shock. The response to the common noise shock
follows an AR(1) process, and the persistence is determined by ϑ. These patterns are in line
with the findings in Woodford (2003) and Angeletos and La’O (2010).

4.2 Application II: Dynamic Beauty Contest Model

In this section, we explore the beauty contest modes with dynamic consideration in their payoff
structure. For example, when consumers making a saving-consumption decision, or when firms
setting their prices subject to nominal rigidities, they need to look forwards or backwards to
solve their optimization problems. Particularly, we compare three types of models.

1. Forward-looking model, with Q(L) = −αL−1

yit = Eit[ξt] + αEit[yt+1]. (4.15)

2. Static model, with Q(L) = −α

yit = Eit[ξt] + αEit[yt]. (4.16)

3. Backward-looking model, with Q(L) = −αL

yit = Eit[ξt] + αEit[yt−1]. (4.17)

As in subsection 4.1, we still assume that the fundamental follow an AR(1) process (4.3). In
order to highlight how the persistence of the policy rule varies in these models, we assume
that agents only observe one private signal about the fundamental

xit = ξt + σuuit. (4.18)

The following proposition gives the analytical solution to these models

Proposition 4.3. Given the signal process (4.18) and assume that α ∈ (0, 1), the equilibrium
policy rules are
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1. Forward-looking model
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2. Static model
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3. Backward-looking model
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Furthermore, the ranking of the persistence is

ϑb > ϑs > ϑf . (4.22)

Proof. See Appendix A.11.

This proposition first confirms that the finite-state property of the equilibrium policy rule still
holds with dynamic beauty contest models, and the complexity of the required state variables
is similar to the static model. In terms of the persistence of the policy rule, they all depend
on the degree of complementarity α, but different models are affected by α in different ways.
The backward-looking model exhibits the highest persistence and the forward-looking model
exhibits the lowest persistence. Intuitively, when agents care more about the past aggregate
action, they will naturally assign a higher weight on past signals.
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The aggregate action in all the three models can be represented as

yt = ϑyt−1 + κξt.

Figure 2 shows that how the persistence ϑ and the instantaneous response κ change as the
degree of complementarity α changes. In all three models, the persistence ϑ is increasing in
α, and the backward-looking model always has the highest persistence. The instantaneous
response also increases with α, but the ranking across the three models changes with different
values of α.
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Figure 2: Effects of α on Aggregate Action

Parameters: ρ = 0.95, ση = 1, σu = 4.

4.3 Application III: Independent Value Model with Random Matching

Applicaiton I and II consider the case where each agent interacts with the average of a con-
tinuum of other agents. In this section, we adopt the model environment in Angeletos and
La’O (2013) in which an agent meets a different player every period. In the baseline model of
Angeletos and La’O (2013), it is assumed that there is no persistent shock. This assumption
does not affect their qualitative prediction, and it helps to avoid the infinite regress problem.
However, this assumption prevents the model from exploring more relevant learning problems.
Here, we extend Angeletos and La’O (2013) to allow persistent shocks in the model.

Assume that there is a continuum of agents in the economy. An individual agent i is endowed
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with a permanent fundamental ai, drawn from a normal distribution N (0, σ2
a). At the begin-

ning of each period, an agent i is randomly matched with another agent indexed by m(i, t).
Agent i’s optimal response is given by

yit = ai + α Eit[ym(i,t)t], (4.23)

where α controls the degree of strategic complementarity, and ym(i,t)t is the action of agent
i’s match in period t. Angeletos and La’O (2013) provides the micro-foundation for this best
response in a decentralized trading and production setting.

Besides her own fundamental, agent i receives two signals every period

x1it = am(i,t) + σεεit, (4.24)

x2it = x1m(i,t)t + ξt + σuuit, (4.25)

where εit and uit are both idiosyncratic noises, and ξt is a common noise. The fundamental of
i’s match is am(i,t), and from i’s perspective, it is also an i.i.d shock that follows N (0, σ2

a). As
emphasized by Angeletos and La’O (2013), agent i’s forecast about am(i,t) is pinned downed
by i’s first signal alone, and not affected by the second signal. However, agent i’s forecast of
x1m(i,t)t and all the higher order beliefs are affected by the common noise ξt. In aggregate, ξt
can generate aggregate flucutations, and can be interopreted as sentiments. In Angeletos and
La’O (2013), ξt is an i.i.d shock, but we instead assume that ξt follows a persistent process.

ξt = ρξt−1 + σηηt. (4.26)

In equilibrium, agent i’s action is given by

yit = haai + h1(L)x1it + h2(L)x2it. (4.27)

For this particular application, we need to solve for a constant ha and two lag polynomials
h1(L) and h2(L). Note that ai is included for two reasons: first, it enters agent i’s best response
directly; second, ai enters agent m(i, t)’s signal, and it also helps to predict i’s match’s action
ym(i,t)t.

Different from the applications discussed in subsection 4.1 and 4.2, agent i has to form higher
order beliefs about a random player m(i, t) every period. Our method developed in section 3
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can still be applied to solve this model.

Proposition 4.4. Assume that α ∈ (0, 1). The finite-state representation of the equilibrium
policy rule in model (4.23) is given by

yit = ϑyit−1 + ha(1− ϑ)ai + ϕ(x1it − ϑx1it−1) +
αϕϑ
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The aggregate yt is given by

yt = (ϑ+ ρ)yt−1 − ρϑyt−2 +
αϑϕ
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u

ηt (4.32)

Proof. See Appendix A.13 for proof.

Comparing with heterogeneous prior In the literature, a convenient device to avoid the
infinite regress problem is to assume that agents have heterogeneous prior. The heterogeneous
prior assumption works as follows. Agent i observes both ξt and am(i,t)t perfectly. However,
agent i believes her match m(i, t) observes ai with bias ξt. Given that agent i’s policy rule is

yit = f1ai + f2am(i,t) + f3ξt,

then agent i believes that the action of her match is

ym(i,t)t = f1am(i,t) + f2(ai + ξt) + f3ξt.

In the heterogeneous prior equilibrium, the aggregate action is

yt =
α2

(1− α2)(1− α)
ξt. (4.33)
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Quantitatively, by assuming heterogeneous prior, yt is perfectly correlated with ξt, while in our
model with common prior, the persistence of aggregate action is endogenously determined by
the structural parameter α and the information related parameters, and it is always different
from the the persistence of ξt. A numerical example is shown in Figure 3. The solution
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Figure 3: Effects of σε on Aggregate Action

Parameters: ρ = 0.95, ση = 1, σa = 3, σu = 1, α = 0.5.

under heterogeneous prior assumption is independent of the degree of information frictions by
construction. The method we provide to solve the infinite regress problem retains the notion
of rationality. Interestingly, by varying σε, the aggregate action changes in a non-monotonic
way. The size of the response maximizes when σε takes an intermediate value.

4.4 Application IV: Heterogeneous Payoff Structure

Previous applications share a common feature which is all agents adopt the same best response
and only differ from each other in terms of information sets. More generally, agents who
interact with each other may be asymmetric in their payoff functions, and may depend on
others’ action to a different extend. A notable example is an economy with a network structure,
where agents may care more about other agents who are closer to themselves. There has been
a growing interest in these types of applications, and we show that our method is flexible
enough to deal with them in this subsection.

Consider an economy with two agents. These two agents care about each other’s action, but
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the degree of complimentary may not be the same. The best responses for agent 1 and 2 are

y1t = (1− ω1)E1t[ξt] + ω1E1t[y2t], (4.34)

y2t = (1− ω2)E2t[ξt] + ω2E2t[y1t]. (4.35)

This structure can be extended to a N -player economy in a straightforward way. In previous
applications, a single parameter α is sufficient to summarize the dependence on others’ action,
while in the current setting with asymmetric players, it is necessary to use the matrix ω to
summarize the cross-dependence among different players

ω =

[
0 ω1

ω2 0

]
. (4.36)

If we interpret the the model economy as a network, this matrix ω can also be thought as a
weighted adjacency matrix.

For the information structure, we assume that each player i observes a noisy signal about the
fundamental

xit = ξt + σuuit. (4.37)

and the fundamental follows an AR(1) process (4.3). In equilibrium, agent i’s action is yit =

hi(L)xit. Due to the fact that the two agents’ best responses differ from each other, their
equilibrium policy rules h1(L) and h2(L) will not be the same. For the special case in which
ω1 = ω2, the two agents become symmetric and the solution is the same as the static beauty
contest game in subsection 4.2.

The interaction between the adjacency matrix and the information frictions is our focus in
this model economy. The following proposition characterizes this interaction.

Proposition 4.5. Given the signal process (4.37) and assume that |ω1ω2| ∈ (0, 1), the equi-
librium policy rules are
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Proof. See Appendix A.12 for the proof.

This proposition shows that the policy rules of both agents take an ARMA (2,1) form. Notably,
the parameters ϑ1 and ϑ2 that determine the persistence of the actions are the same, which
indicates that the actions of the two agents synchronize in the long run. Meanwhile, ω1 and
ω2 do not enter ϑ1 and ϑ2 separately, and they affect ϑ1 and ϑ2 only through the product
ω1ω2 which is propositional to the eigenvalues of ω. If ω1 6= ω2, the responses of the actions
in the short run will be different, captured by the MA part in the policy rules.
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Figure 4: Effects of τu on Aggregate Action

Parameters: ρ = 0.95, ση = 1, σu = 4. ω1 = 0.1, ω2 = 0.9 in panel A, ω1 = 0.5 in panel B

Figure 4 provides a numerical example. With ω1 = 0.1 and ω2 = 0.9, agent 1 wants to be
close to the fundamental ξt, while agent 2 wants to be close to agent 1’s action. As shown
in panel A, after a shock to the fundamental, both agents have the same forecasts about the
fundamental. Agent 1’s action y1t is close to the forecast about the fundamental, while agent
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2’s action is much more dampened due to the uncertainty about agent 1’s action, and agent
1’s belief about her own action, and so on. The difference in best response functions translates
into the difference in actions, but the two agents’ action synchronizes as time goes on. Panel
B in Figure 4 shows how the actions vary with the degree of complementarities. We fix ω1 to
0.5 and set ω2 to different values. First, the volatilities of both agents’ action decrease with
ω1ω2. This is simply due to that higher order beliefs play a more important role when the
degree of complementarity is large. Second, the correlation between the two agents’ action
peaks when ω1 = ω2, and decreases as the distance between ω1 and ω2 becomes larger.

5 Endogenous Information

So far we have only discussed the cases where the signal process is exogenously determined
and independent of agents’ actions. This section we consider the case where an observed signal
contains endogenous information.

An important theme of the literature on dispersed information is the role of the endogenous
signal in coordinating beliefs and revealing information. Kasa (2000) and Pearlman and
Sargent (2005) show that by observing prices in other industries, agents share the same beliefs.
Walker (2007) and Rondina and Walker (2017) show that whether the price in the asset
market reveals the state of the economy depends on whether the underlying shock follows
a confounding process or not. However, most of the studies with endogenous information
restrict their attention to the case in which the number of signals equals the number of shocks
and agents observe the endogenous variable without noise to obtain analytic solution. In this
section, we will analyse the role of endogenous information when there are more shocks than
signals, and the endogenous variable cannot be observed perfectly.

5.1 Infinite state variables

In this subsection, we will provide an example to show that the finite-state representation result
developed in previous sections will not hold when the signals contain endogenous variables.
The model we use is a modification of the one used in Angeletos and La’O (2010). Assume
that there is a continuum of agents and each agent uses the following independent value best
response

yit = ξit + αEit[yt]. (5.1)
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Agents observe their own fundamental ξit perfectly, which depends on both an aggregate
component ξt and an idiosyncratic component εit

ξit = ξt + σεεit. (5.2)

As usual, we assume that the aggregate component ξt follows an AR(1) process

ξt = ρξt−1 + σηηt. (5.3)

In terms of the information set, agents receive two signals each period, xit =
[
x1it x2it

]
. Their

own idiosyncratic fundamental ξit is an exogenous signal about the aggregate fundamental ξt.
We denote x1it = ξit. In addition, agents also observe a second signal, which is the aggregate
action yt with an idiosyncratic noise uit

x2it = yt + σuuit. (5.4)

The aggregate action yt is endogenously determined by all the individual agents’ choices, while
at the same time, it enters agents’ information set and affects the optimal choice of agents.
In this case, we find it is more convenient to define the equilibrium with the innovation form.

Definition 5.1. The equilibrium is a causal-stationary policy rule φ(L) = {φε(L), φu(L), φη(L)},
and the law of motion ϕ(L) for aggregate yt, such that

1. Agent i’s information set Ωit =

{
x1it, x

2
it, x

1
it−1, x

2
it−1, . . .

}
is determined by

x1it = ξt + σεεit, (5.5)

x2it = ϕ(L)ηt + σuuit, (5.6)

2. Individual rationality

yit = ξit + αEit[yt] = φε(L)εit + φu(L)uit + φη(L)ηt. (5.7)

3. Aggregate consistency

yt = ϕ(L)ηt =

∫
yit = φη(L)ηt. (5.8)

The equilibrium with endogenous information involves two fixed points, the individual ratio-
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nality and the consistency in terms of the signal process. Our preferred interpretation of the
equilibrium conditions is the following. Whether or not the information set contains endoge-
nous aggregate variables, each individual agent will behave competitively and take the signal
process as exogenously given. For any ϕ(L) in the signal process (5.6), one can solve the
exogenous information equilibrium that satisfies conditional 1 and 2. If ϕ(L) follows a finite
ARMA process, the exogenous information equilibrium permits a finite-state representation.
Condition 3 further selects a particular process ϕ(L) that is simultaneously consistent with
agents’ choices. It requires that agents perceived law of motion of the aggregate yt is the same
as the actual law of motion of the aggregate yt. This can be viewed as an additional cross-
equation restriction in the sense that agents perception is in line with the reality generated
by their own action.

The following proposition guarantees that there exists an equilibrium with endogenous infor-
mation.

Proposition 5.1. If α ∈ (0, 1), then there exists an equilibrium of the model in Definition
5.1.

Proof. See Appendix A.14 for proof.

This proposition only proves the existence of the equilibrium, but it is silent on whether
the agents need to keep track of infinite number of state variables or not. With exogenous
information, we have shown that the equilibrium always permits a finite-state representation
provided that the signals follow a finite ARMA process. In contrast, the following theorem
shows that with endogenous information, the aggregate yt does not follow a finite ARMA
process. As a result, the equilibrium cannot have a finite-state representation.

Theorem 2. If α ∈ (0, 1), the equilibrium of the model in Definition 5.1 does not have a
finite-state representation.

Proof. See Appendix A.15 for proof.

The proof of this theorem shows that if assuming the perceived aggregate yt follows a finite
ARMA process, the implied actual aggregate yt cannot be the same as the perceived aggregate
yt. With endogenous information, if we assume the perceived yt follows an AR(1) process, the
implied actual yt follows an ARMA (2, 1) process. If we assume perceived yt follows ARMA
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(2, 1), the actual yt will follow an ARMA (4, 2) process. Iterating this process, the aggregate
yt follows an infinite ARMA process in the limit.

This is a somewhat surprising result. Kasa (2000) and Pearlman and Sargent (2005) show
that in the Townsend (1983) model, there is actually no infinite regress problem and the
equilibrium permits a finite-state representation. Similarly, in Rondina and Walker (2017) and
Acharya (2013), the equilibrium policy rule has a finite-state representation as well. Pearlman
and Sargent (2005) suspects that to resuscitate the infinite regress problem, there should be
more shocks than signals. Theorem 2 proves that in our model with endogenous information,
agents need to keep track of infinite state variables in equilibrium. Chari (1979) proved a
similar impossibility theorem for a particular univariate case, and we prove this theorem in a
multivariate system.

The reason for the infinite state variables, however, is not only due to the infinite higher order
beliefs. When the signals follow an exogenous ARMA process, the infinite regress problem
does exist but the equilibrium rule always has a finite-state representation. With endogenous
information, each individual still treats the signal process as exogenous. If the perceived law
of motion for yt is a finite ARMA process, we return to the case covered by Theorem 1: each
individual needs to solve the infinite regress problem, but the number of state variables is
finite. With endogenous information, what complicates the issue is that the signal process
itself cannot be represented as a finite ARMA process, but this is independent of the infinite
regress problem faced by each individual.

Compared with the literature, the equilibrium policy rule in Kasa (2000), Rondina and Walker
(2017) and Acharya (2013) all follows an ARMA process, even though the signals contain
endogenous information. The key difference is that they assume the number of signals equals
the number shocks, i.e., the signals xt = M(L)st with M(L) being a square matrix. In this
case, one can use the Blaschke matrix to obtain the Wold representation without knowing
the exact signal process. The cost of this assumption is that the signal process cannot be
too complicated. In Acharya (2013) or Kasa (2000), the endogenous variable that has an
information role is observed without noise, and the forecast error is transitory. In our model,
because there are more shocks than signals, agents can never infer the shocks perfectly, and
the forecast error is persistent.
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5.2 Computation

The infinite-state result is theoretically interesting, but it excludes the possibility of obtaining
the exact solution. Here we provide a tractable algorithm that can approximate the true
solution. The idea is to use a low order ARMA process to approximate endogenous aggregate
actions that enter the information set. This will enable us to use the Winer-Hopf prediction
formula.

1. Assume that the information process is given by

x1it = ξt + σεεit,

x2it = ϕ(0)(L)ηt + σuuit

where ϕ(0)(L) follows a finite ARMA process

ϕ(0)(L) = σy
Πq
k=0(L− θk)

Πp
k=1(1− ρkL)

2. Given the signal process, we can use the method in Section 3 to solve for the policy
rule φ = {φε(L), φu(L), φη(L)} in the exogenous information equilibrium. The implied
actual aggregate yt follows

yt = φη(L)ηt.

3. Compute the difference between the perceived law of motion and actual law of motion,
‖ϕ(0) − φη‖9. If ‖ϕ(0) − φη‖ is larger than the tolerance level, set the new law of motion
that enters the signal process as ϕ(1)(L) = φη(L) and repeat 1 to 3.

Crucially, in step 2, agents’ perceived law of motion of yt is φη(L) rather than ϕ(0)(L). ϕ(0)(L)

only specifies the law of motion of the signal process. In this step, we still solve a fixed point
problem with exogenous information, and agents’ perceived law of motion and the actual law
of motion of yt are the same. Alternatively, one can assume that the perceived law of motion
of yt is simply ϕ(0)(L). In this case, the perceived law of motion and the actual law of motion
of yt are different. We call this alternative strategy as naive strategy. We show that our
procedure is much more efficient than this alternative strategy.

9It is natural to use the `2 norm.
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Sargent (1991) also uses an ARMA process to approximate the signal process, but our method
differs from his in an important way. In Sargent (1991), only the forecasts of future signals are
pay-off relevant. Once the law of motion of the signal is specified, agents do not need to solve
the signal extraction problem and there is no need to forecast the forecasts of others. In our
case, although the signal process is given, agents still face the infinite regress problem. Step
2 in the algorithm makes sure that each individual always performs their optimal prediction.

Compared with Nimark (2017), our method has the following advantages. The first advantage
is that our method requires fewer state variables. Nirmark’s method needs to keep track of
a relatively large number of higher order beliefs to accurately approximate the policy rule.
In our numerical example, it requires to keep track of the higher order beliefs up to order
30 to achieve the same accuracy as our ARMA (4,2) approximation. The second advantage
is that our method is applicable in more general environments. Nirmark’s method relies
on the assumption that the best response of agents’ action or aggregate law of motion can
be represented by a weighted average of higher order beliefs. This representation can be
difficult to obtain when the best reponse is complicated (see the quantitative model in Huo
and Takayama (2017) for example). Our method does not rely on this assumption. The
benefit of using Nirmark’s method is that one can apply the Kalman filter for the inference
problem and stay in the time domain without switching to the Wiener filter. In addition,
Nirmark’s method has a natural behavioral interpretation with bounded rationality.

Example We solved the example in section 5.1 numerically. We assume the initial guess of
ϕ(0)(L) = 1

1−α
1

1−ρL , which is consistent with the perfect information solution. The left panel
in Figure 5 shows the iterations using the procedure discussed in this section. As can be seen,
after two iterations, the law of motion of yt almost converges. In contrast, as shown in the
right panel of Figure 5, if one uses the alternative naive strategy by assuming yt = ϕ(0)(L)ηt, it
takes more than 15 iterations to achieve the similar accuracy. Our preferred strategy requires
a much smaller number of state variables and is more efficient. Given the existence of the
equilibrium, this method can easily extend to other more complicated environments when
there does not exist a finite-state representation.
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(a) Compute exogenous info equilib-
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(b) Alternative naive strategy

Figure 5: IRF in Endogenous Information Equilibrium

Parameters: ρ = 0.95, α = 0.8, ση = 1, σu = σε = 4.

6 Conclusion

In this paper, we have shown how to solve general rational expectations models with higher
order beliefs. When the signal follows an ARMA process, we prove that the policy rule always
admits a finite-state representation. It turns out the infinite regress problem does not require
infinite state variables, because the total effects of the higher order beliefs can be summarized
by a small set of variables. We provide a procedure that gives an explicit solution formula.
The key of our method is to apply the Kalman filter to obtain the Wold representation of
the signal process, and then use the Wiener filter to solve the inference problems. We also
prove that when the signal process contains endogenous information, the equilibrium policy
rule may not have a finite-state representation, which is in some sense the ‘true’ infinite
regress problem. This is due to the fact that cross-equation restriction imposes an additional
equilibrium condition that the perceive law of motion of an endogenous variable has to be
the same as the law of motion that is generated by agents’ actions. We provide a tractable
algorithm that can approximate the true solution accurately with a small number of state
variables. Various applications are easily solved by our method. We expect that the method
we develop in this paper can be applied in a much broader class of models, especially in the
areas of macroeconomics and financial economics with dispersed information.
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Appendix

A Proof of Theorems and Propositions

A.1 Riesz-Fisher Theorem

Theorem (Riesz-Fisher). Let {cτ} be a square-summable sequence of complex numbers for which
∑∞

τ=−∞ |cτ |2 <
∞. Then there exists a complex-valued function g(z), defined at least on the unit circle in the complex plane
such that

g(z) =
∞∑

τ=−∞
cτz

τ ,

where the infinite series converges in the mean square sense that

lim
n→∞

∮ ∣∣∣∣∣
n∑

τ=−n
cτz

τ − g(z)

∣∣∣∣∣
2
dz

z
= 0

where the integral is a contour integral on the unit circle. The function g(z) is square-integrable∣∣∣∣ 1

2πi

∮
|g(z)|2dz

z

∣∣∣∣ <∞
The function g(z) is called the z transform of the sequence {cτ}.

Conversely, given a square-integrable g(z), there exists a square- summable sequence {cτ} where

cτ =
1

2πi

∮
g(z)z−τ−1dz.

Furthermore, suppose {cτ} be a one-side square-summable sequence for which
∑∞

τ=0 |cτ |2 <∞. Then there exists
an analytic function g(z) on the open unit disk such that

g(z) =
∞∑
τ=0

cτz
τ .

Conversely, given an analytic function on the unit disk, there exists a one-side square-summable sequence {cτ}
where

cτ =
1

2πi

∮
g(z)z−τ−1dz.

Proof. The proof of this theorem is referred to Sargent (1987) and Kasa (2000).
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A.2 Proof of Lemma 3.1

Proof. There can be many different state-space representations and we only give one of them here, which is
sufficient to prove the claim. Hamilton (1994) shows how to represent a univariate ARMA process in state space,
and what we construct below is a natural extension to the multivariate case.

Without loss of generality, we normalize δij0 = 1. Let uij = max{pij , qij + 1}, and u =
∑n

i=1

∑m
j=1 uij . Fu×u is

constructed in the following way

F =



F11 0 0 . . . . . . . . . 0

0 F12 0 . . . . . . . . . 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . F1m . . . . . . 0
...

...
...

...
. . .

...
...

0 0 0 . . . . . . Fnm−1 0

0 0 0 . . . . . . 0 Fnm


. (A.1)

The element Fij in F is a uij × uij matrix

Fij =



δij1 δij2 . . . δijuij−1 δijuij

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . 0 0

0 0 . . . 1 0


.

Q is a u×m matrix with the following form

Q =



Q11

Q12

...
Q1m

...
Qnm−1

Qnm


, (A.2)
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and each element Qij in Q is a uij ×m matrix

Qij =


0 . . . 1 . . . 0

0 . . . 0 . . . 0
... . . .

... . . .
...

0 . . . 0 . . . 0

 , (A.3)

where 1 is at the j-th column.

H is a n× u matrix with the following form

H =


H11 . . . H1m 0 . . . 0 . . . 0 . . . 0

0 . . . 0 H21 . . . H2m . . . 0 . . . 0
... . . .

...
... . . .

...
. . . 0 . . . 0

0 . . . 0 0 . . . 0 . . . Hn1 . . . Hnm

 (A.4)

The element Hij in H is a 1× uij matrix

Hij =
[
αij0 αij1 . . . αijuij−1

]
.

Let Zt follows
Zt = FZt−1 + Qst.

We have
xt = M(L)st = HZt

To show that the eigenvalues of F lie inside the unit circle, we can iterate the Zt to obtain

Zt =
∞∑
j=0

FjLjQst = (I− FL)−1Qst

If the eigenvalues of F lies outside the unit circle, then Zt is not co-variance stationary, which contradicts the
assumption that xt is co-variance stationary.

A.3 Proof of Wiener-Hopf Theorem

Proof. A formal proof can be found in Whittle (1983). Here we provide a sketch of the proof.

Suppose the prediction is based on all the realization of the signals x∞ instead of xt. The optimal linear prediction
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of ft is

E[ft|x∞] = ρfx(L)ρxx(L)−1xt.

This formula is the same as that in OLS regression. ρfx measures the correlation between ft and xt, adjusted
by ρxx. Given the fundamental representation

xt = B(L)wt,

the prediction is equivalent to the prediction conditional on w∞ and the prediction formula can be written as

E[ft|x∞] =E[ft|w∞]

=ρfx(L)ρxx(L)−1xt,

=ρfx(L)B′(L−1)−1V−1B(L)−1B(L)wt,

=ρfx(L)B′(L−1)−1V−1wt.

Now imagine the prediction is conditional on only current and past signals xt, which is equivalent to conditional
on wt. Since wt is serially uncorrelated, the best forecast of wk for k > t is zero. Note that ρfx(L)B′(L−1)−1

contains negative powers of L and the best forecast of wk for k > t is zero, the optimal prediction for ft is simply

E[ft|xt] =E[ft|wt]

=[ρfx(L)B′(L−1)−1]+V−1wt,

=[ρfx(L)B′(L−1)−1]+V−1B(L)−1xt.

Recall that B(L) is invertible, so B(L)−1 contains only positive powers of L.

A.4 Proof of Proposition 3.1

Proof. From Canonical Factorization Theorem, we have that

B(L)−1 = I−H [I− (F− FKH)L]−1 FKL,

and from Lemma 3.1 it follows that

Zt = (I− FL)−1 Qst, and, xt = HZt,

which implies
xt = H (I− FL)−1 Qst.
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By definition, it follows that
M(L) = H (I− FL)−1 Q.

Hence,

B(L)−1M(L) =
(
I−H [I− (F− FKH)L]−1 FKL

)
H (I− FL)−1 Q

= H
(
I− [I− (F− FKH)L]−1 FKHL

)
(I− FL)−1 Q

= H
(
I− [I− (F− FKH)L]−1 ((I− FL) + FKHL− (I− FL))

)
(I− FL)−1 Q

= H
(
I− I + [I− (F− FKH)L]−1 (I− FL)

)
(I− FL)−1 Q

= H [I− (F− FKH)L]−1 (I− FL) (I− FL)−1 Q

=
H Adj (I− (F− FKH)L) Q

det (I− (F− FKH)L)

=
H Adj (I− (F− FKH)L) Q∏u

k=1 (1− λkL)
,

where {λk}uk=1 are the non-zero eigenvalues of F− FKH. The last equality follows from the fact that

det (I− (F− FKH)L) = Lv det
(
IL−1 − (F− FKH)

)
= LvL−(v−u)

u∏
k=1

(
L−1 − λk

)
=

u∏
k=1

(1− λkL) ,

where v is the dimension of F. It follows that,

M′ (L−1)B′(L−1)−1 =
Q′Adj

(
I− (F′ −H′K′F′)L−1

)
H′∏u

k=1 (1− λkL−1)

=
Q′Adj (IL− (F′ −H′K′F′)) H′L

Lv−u
∏u
k=1 (L− λk)

,

≡ G(L)∏u
k=1 (L− λk)

By the Wiener-Hopf Theorem, the prediction formula is

E
[
ft | xt

]
=

[
ψ(L)M′(L−1)B′(L−1)−1

]
+

V−1B(L)−1xt

and by assumption and previous derivation,

M′ (L−1)B′(L−1)−1 =
G(L)∏u

k=1 (L− λk)
,

ψ(L) =
a(L)∏d

τ=1(L− βτ )
.
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The following result is useful for analysing the plus operator. Suppose g(z) is a rational function of z that does
not contains negative powers of z in expansion and |ξk| < 1, then

[
g(z)

(z − ξ1) · · · (z − ξ`)

]
+

=
g(z)

(z − ξ1) · · · (z − ξ`)
−
∑̀
k=1

g(ξk)

(z − ξk)Πτ 6=k(ξk − ξτ )

Based on this result, we have[
ψ(L)M′(L−1)B′(L−1)−1

]
+

=
a(L)∏d

τ=1(L− βτ )
M′(L−1)B′(L−1)−1

−
u∑
k=1

a(λk)G(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

−
d∑

k=1

a(βk)G(βk)

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

Note that
ρxx(z) = M(z)M′(z−1) = B(z)VB′(z−1).

The result then follows straightforwardly.

A.5 Proof of Proposition 3.2

Proof. By Proposition 3.1, the forecast about Et[P(L)yt] can be written as

Et[P(L)yt] = Et

P(L)


y1t
...
yrt


 = Et

P(L)


φ(L)′A1M(L)st

...
φ(L)′ArM(L)st


 = Et



∑r

i=1 P1i(L)φ(L)′AiM(L)st
...∑r

i=1 Pri(L)φ(L)′AiM(L)st




By Proposition 3.1, it follows that the forecast about Pji(L)yit is given by

Et[Pji(L)φ(L)′AiM(L)st] =Pji(L)φ(L)′AiM(L)M′(L−1)ρxx(L)−1xt

−
u∑
k=1

Pji(λk)φ(λk)
′AiM(λk)G(λk)V

−1B(L)−1

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

xt

−
d∑

k=1

Pji(βk)φ(βk)
′AiM(βk)G(βk)V

−1B(L)−1

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

xt
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The forecast about Q(L)ỹt and R(L)st can be obtained in a similar way. Collecting all terms and using the fact
that M(L)M′(L−1) = ρxx(L), the system of equations becomes

r∑
i=1


φ(L)′Ai(P1,i(L)In +Q1,i(L)M(L)ΛM′(L−1)ρxx(L)−1)

...
φ(L)′Ai(Pr,i(L)In +Qr,i(L)M(L)ΛM′(L−1)ρxx(L)−1)

xt =



(
−R1(z)M

′(z−1)ρxx(z)−1 +
∑u

k=1
R̂1(λk)G(λk)V

−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

k=1
R̂1(λk)G(βk)V

−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

+
∑r

i=1

∑u
k=1

(P̂1,i(λk)φ
′(λk)AiM(λk)+Q̂1,i(λk)φ

′(λk)AiM(λk)Λ)G(λk)V
−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

i=1

∑d
k=1

(P̂1,i(βk)φ
′(βk)AiM(βk)+Q̂1,i(βk)φ

′(βk)AiM(βk)Λ)G(βk)V
−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

)
xt

...(
−Rr(z)M

′(z−1)ρxx(z)−1 +
∑u

k=1
R̂r(λk)G(λk)V

−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

k=1
R̂r(λk)G(βk)V

−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

+
∑r

i=1

∑u
k=1

(P̂r,i(λk)φ
′(λk)AiM(λk)+Q̂r,i(λk)φ

′(λk)AiM(λk)Λ)G(λk)V
−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

i=1

∑d
k=1

(P̂r,i(βk)φ
′(βk)AiM(βk)+Q̂r,i(βk)φ

′(βk)AiM(βk)Λ)G(βk)V
−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

)
xt


This has to be true for all the possible realizations of {xt}. Note that

r∑
i=1


(
φ(L)′Ai(P1,i(L)In +Q1,i(L)M(L)ΛM′(L−1)ρxx(L)−1)

)′
...(

φ(L)′Ai(Pr,i(L)In +Qr,i(L)M(L)ΛM′(L−1)ρxx(L)−1)
)′


=

r∑
i=1

(Pi(L)⊗ In)(e′i ⊗ In)φ(L) +

r∑
i=1

(Ir ⊗ ρ′xx(L)−1M(L−1)ΛM′(L))(Qi(L)⊗ In)(e′i ⊗ In)φ(L)

=

r∑
i=1

(Pi(L)e′i(L)⊗ In)φ(L) + (Ir ⊗ ρ′xx(L)−1M(L−1)ΛM′(L))

(
r∑
i=1

Qi(L)e′i ⊗ In

)
φ(L)

=(P(L)⊗ In)φ(L) + (Q(L)⊗ ρ′xx(L)−1M(L−1)ΛM′(L))φ(L)
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

(
−R1(z)M

′(z−1)ρxx(z)−1 +
∑u

k=1
R̂1(λk)G(λk)V

−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

k=1
R̂1(λk)G(βk)V

−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

+
∑r

i=1

∑u
k=1

(P̂1,i(λk)φ
′(λk)AiM(λk)+Q̂1,i(λk)φ

′(λk)AiM(λk)Λ)G(λk)V
−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

i=1

∑d
k=1

(P̂1,i(βk)φ
′(βk)AiM(βk)+Q̂1,i(βk)φ

′(βk)AiM(βk)Λ)G(βk)V
−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

)′
...(

−Rr(z)M
′(z−1)ρxx(z)−1 +

∑u
k=1

R̂r(λk)G(λk)V
−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

k=1
R̂r(λk)G(βk)V

−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

+
∑r

i=1

∑u
k=1

(P̂r,i(λk)φ
′(λk)AiM(λk)+Q̂r,i(λk)φ

′(λk)AiM(λk)Λ)G(λk)V
−1B(z)−1

(L−λk)
∏
τ 6=k(λk−λτ )

∏d
τ=1(λk−βτ )

+
∑r

i=1

∑d
k=1

(P̂r,i(βk)φ
′(βk)AiM(βk)+Q̂r,i(βk)φ

′(βk)AiM(βk)Λ)G(βk)V
−1B(z)−1

(L−βk)
∏k
τ=1(βk−λτ )

∏d
τ 6=k(βk−βτ )

)′


= −(Ir ⊗ ρ′xx(L)−1M(L−1))vec(R′(L))

+

u∑
k=1

(Ir ⊗B′(L)−1V−1G′(λk))vec(R̂′(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

+
d∑

k=1

(Ir ⊗B′(L)−1V−1G′(βk))vec(R̂′(βk)

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

+

u∑
k=1

(P̂(λk)⊗B′(L)−1V−1G′(λk)M
′(λk))φ(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

+

d∑
k=1

(P̂(βk)⊗B′(L)−1V−1G′(βk)M
′(βk))φ(βk)

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

+

u∑
k=1

(Q̂(λk)⊗B′(L)−1V−1G′(λk)ΛM′(λk))φ(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

+

d∑
k=1

(Q̂(βk)⊗B′(L)−1V−1G′(βk)ΛM′(βk))φ(βk)

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

Multiplying Ir ⊗ ρ′xx(L) to both sides yields(
P(L)⊗ ρ′xx(L) + Q(L)⊗M(L−1)ΛM′(L)

)
φ(L)

=− vec(M(L−1)R′(L)) +

u∑
k=1

vec(B(L−1)G′(λk)R̂
′(λk))

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

+
d∑

k=1

vec(B(L−1)G′(βk)R̂
′(βk))

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

+ (Ir ⊗B(L−1))
u∑
k=1

P̂(λk)⊗G′(λk)M
′(λk) + Q̂(λk)⊗G′(λk)ΛM′(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

φ(λk)

+ (Ir ⊗B(L−1))
d∑

k=1

P̂(βk)⊗G′(βk)M
′(βk) + Q̂(βk)⊗G′(βk)ΛM′(βk)

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

φ(βk)

By Riesz-Fischer Theorem, it is equivalent to the following system of functional equations

T(z)φ(z) = D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=0

]

By the Riesz-Fisher Theorem, there exists φ(L) that solves model (3.4) if and only if there exists a vector analytic
function φ(z) that solves equations (3.17).
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A.6 Proof of Lemma 3.2

Proof. Consider the part related to φ(λk) for example. There exist matrices Φk,1 and Φk,2 such that

P̂(λk)⊗G′(λk)M
′(λk) + Q̂(λk)⊗G′(λk)ΛM′(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

=
1

L− λk
Φk,1Φk,2

where Φk,1 is with full column rank and Φk,2 is with full row rank. The rank of Φk,1 and Φk,2 are the same as
the rank of P̂(λk)⊗G′(λk)M

′(λk) + Q̂(λk)⊗G′(λk)ΛM′(λk).

Similarly, for the part related to φ(βk), there exist matrices Ψk,1 and Ψk,2 such that

P̂(βk)⊗G′(βk)M
′(βk) + Q̂(βk)⊗G′(βk)ΛM′(βk)

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

=
1

L− βk
Ψk,1Ψk,2

where Ψk,1 is with full column rank and Ψk,2 is with full row rank.

Now we can rewrite D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=0

]
as

D

[
z, {φ(λk)}uk=1, {φ(βk)}dk=0

]
= D1(z)ψ + D2(z)

where

D1(z) = (Ir ⊗B(z−1))
[

Φ1,1

z−λ1 . . .
Φu,1

z−λu
Ψ1,1

z−β1 . . .
Ψd,1

z−λd

]
D2(z) = −vec(M(L−1)R′(L)) +

u∑
k=1

vec(B(L−1)G′(λk)R̂
′(λk))

(L− λk)
∏
τ 6=k(λk − λτ )

∏d
τ=1(λk − βτ )

+
d∑

k=1

vec(B(L−1)G′(βk)R̂
′(βk))

(L− βk)
∏k
τ=1(βk − λτ )

∏d
τ 6=k(βk − βτ )

ψ =



Φ1,2φ(λ1)
...

Φu,2φ(λu)

Ψ1,2φ(β1)
...

Ψd,2φ(βd)


Note that the dimension ψ is N1 × 1, where

N1 =

u∑
k=1

rank

(
Q̂(λk)⊗G′(λk)ΛM′(λk)

)
+

d∑
k=1

rank

(
P̂(βk)⊗G′(βk)M

′(βk) + Q̂(βk)⊗G′(βk)ΛM′(βk)

)
.
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Furthermore, D1(z) is with full column rank.

A.7 Proof of Theorem 1

Proof. By Cramer’s rule, the i-th element of φ(z) that solves equation (3.17) is given by

φi(z) =

det

[
T1(z) . . . Ti−1(z) D1(z)ψ + D2(z) Ti+1(z) . . . . . . Trn(z)

]
det[T(z)]

By Assumption 3.2 and Proposition 3.1, the functions in T(z), D1(z), and D2(z) are all rational functions with
finite degree. As a result, whether φi(z) is an analytic function or not is equivalent to whether φi(z) has poles
within the unit circle or not.

The inside poles of φi(z) are either the inside roots of det[T(z)], i.e., {ζ1, . . . , ζN2}, or the inside poles of

φ̂i(z) ≡ det

[
T1(z) . . . Ti−1(z) D1(z)ψ + D2(z) Ti+1(z) . . . . . . Trn(z)

]
.

By construction, the only poles of φ̂i(z) are {λk}uk=1 and {βk}dk=1. However, {λk}uk=1 and {βk}dk=1 cannot be
poles of φi(z) because these poles are generated from the Wiener-Hopf prediction formula, and by Proposition
3.1, these poles are already eliminated by {{φ(λk)}uk=1, {φ(βk)}dk=1}. Therefore, we only need to consider the
inside roots of det[T(z)].

For any ζi, we have det[T(ζi)] = 0 and there exits `i such that

T`i(ζi) =
∑
k 6=`i

ϕikTk(ζi)

Suppose that

det
[
T1(ζi) . . . T`i−1(ζi) D1(ζ1)ψ + D2(ζ1) T`i+1(ζi) . . . Trn(ζi)

]
= 0. (A.5)

For any j 6= `i, we have

det
[
T1(ζi) . . . D1(ζi)ψ + D2(ζi)︸ ︷︷ ︸

j-th column

. . . T`i(ζi)︸ ︷︷ ︸
`i-th column

. . . Trn(ζi)
]

=
∑
k 6=`i

det
[
T1(ζi) . . . D1(ζi)ψ + D2(ζi)︸ ︷︷ ︸

j-th column

. . . ϕikTk(ζi)︸ ︷︷ ︸
`i-th column

. . . Trn(ζi)
]

= 0.
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This implies that if equation (A.5) holds, then for all j ∈ {1, . . . , rn}, ζi is the root of the determinant

det
[
T1(ζi) . . .D1(ζ1)ψ + D2(ζ1)︸ ︷︷ ︸

j-th column

. . . Trn(ζi)
]

= 0.

Consequently, ζi cannot be a pole of φ(z).

Without loss of generality, assume that `i = 1. To choose ψ to remove all poles of φ(z), consider the following
problem,

U1ψ + U2 ≡


det

[
D1(ζ1)ψ + D2(ζ1) T2(ζ1) . . . Trn(ζ1)

]
...

...
...

det

[
D1(ζN2)ψ + D2(ζN2) T2(ζN2) . . . Trn(ϑN2)

]
 .

If there exists ψ such that
U1ψ + U2 = 0, (A.6)

then {ζi}N2
i=1 are not poles of φ(z).

1. If N1 < N2, then there are more equations than unknowns. There does not exist ψ such that equation
(A.6) holds. As a result, there is no solution to (3.17).

2. If N1 = N2 = rank(U2), then there exists a unique ψ that solves (A.6). Therefore, {ζi}N2
i=1 are not poles

of φ(z).

3. If N1 > N2 or N1 = N2 > rank(U2), there are infinite solutions to (A.6). As a result, there are infinite
number of analytic functions φ(z) that solves (3.17).

A.8 Proof of Proposition 3.3

Proof. By Assumption 3.2 and Proposition 3.1, the functions in T(z), D1(z), and D2(z) are all rational functions
with finite degree. If there exists a solution to (3.4), φ(z) is a rational function with finite degree. The inside
poles of φ(z) are removed by proper choices of {{φ(λk)}uk=1, {φ(βk)}dk=1}, and the remaining poles can only be
the outside roots of det[T(z)], which are {ϑ−11 , . . . , ϑ−1N3

}.

Denote M̃(L) ≡ h(L), x̃t ≡ yt, and s̃t ≡ xt. By Lemma 3.1, there exists a state space representation of yt,
which is given by

zt = F̃zt−1 + Q̃xt (A.7)

yt = H̃zt (A.8)
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where F̃, Q̃ and H̃ can be constructed according to (A.1) to (A.4) respectively. Define

Γx = Q̃, Γz = F̃, (A.9)

Υx = Q̃, Υz = F̃, (A.10)

and we obtain the finite-state representation. Note that the eigenvalues of Γz all lie inside the unit circle. The
law of motion of zt can be written as

zt = (I−ΥzL)−1Υxxt (A.11)

Therefore, given {xt}−1t=−∞,
z−1 = (I−ΥzL)−1Υxx−1 (A.12)

A.9 Proof of Theorem 3.4

Proof. Suppose there exists a solution in signal form

yt = h(L)xt.

By the definition of the signal process (3.1), it follows that

yt = h(L)M(L)st.

Because yt = h(L)xt is a solution to model (3.4), yt = h(L)M(L)st represents the same process and is also a
solution model (3.4).

Reversely, suppose there exists a solution in innovation form

yt = d(L)st.

Since yt always lies in the space spanned by current and past signals, it follows that

d(L)st = Et[d(L)st] = h(L)xt.

By Proposition 3.1,

vec(h(L)) = vec(ρ′xx(L)−1M(L−1)d′(L))−
u∑
k=1

vec(B′(L)−1V−1G′(λk)d
′(λk))

(L− λk)
∏
τ 6=k(λk − λτ )

.

58



A.10 Proof of Proposition 4.1

Proof. By the Canonical Factorization Theorem, the prior variance of the state ξt and the Kalman gain matrix
satisfies

P = F[P−PH′(HPH′ + ΨΨ′)−1HP]F′ + ΦΦ′

K = PH′(HPH′ + ΨΨ′)−1

Using the state-space representation in equation (4.5), P will be a scalar. Denote κ ≡ P−1 as the prior precision
about ξt, it is easy to verify that

σ2uσ
2
εκ

2 = [(1− ρ2)σ2uσ2ε − σ2uσ2η − σ2εσ2η]κ+ (σ2u + σ2ε )σ
2
η

K =
[
σ2u(σ2uσ

2
εκ+ σ2u + σ2ε )

−1 σ2ε (σ
2
uσ

2
εκ+ σ2u + σ2ε )

−1
]

The forecast about the fundamental ξt is given by

Eit[ξt] = σ2uσ
2
εκ(σ2uσ

2
εκ+ σ2u + σ2ε )

−1ρEit−1[ξt−1] + (σ2uσ
2
εκ+ σ2u + σ2ε )

−1(σ2ux
1
it + σ2εx

2
it)

Define τ1 = σ2
ε
σ2
η
, τ1 = σ2

u
σ2
η
, and λ = σ2uσ

2
εκ(σ2uσ

2
εκ+ σ2u + σ2ε )

−1ρ, and it follows that

λ =
1

2

(1

ρ
+ ρ+

τ1 + τ2
ρτ1τ2

)
−

√(
1

ρ
+ ρ+

τ1 + τ2
ρτ1τ2

)2

− 4


The Wold representation is

B(z)−1 =
1

1− λz

[
1− τ2ρ+λτ1

τ1+τ2
z τ1(λ−ρ)

τ1+τ2
z

τ2(λ−ρ)
τ1+τ2

z 1− τ1ρ+λτ2
τ1+τ2

z

]
,

V−1 =
1

ρ(τ1 + τ2)

[
τ1ρ+λτ2

τ1
λ− ρ

λ− ρ τ2ρ+λτ1
τ2

]
,

Assuming yit = h1(L)x1it + h2(L)x2it, it follows that

yt = (h1(L) + h2(L))ξt + h1(L)εt.

By Proposition 3.1, we have

Eit[ξt] =

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1it

x2it

]
,
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and

Eit[yt] =

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1it

x2it

]

+

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1it

x2it

]

+

 τ1
τ1+τ2

h1(L) +
τ2
λ
ρ
(L−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(L)−
τ2
λ
ρ
(λ−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(λ)

− τ1
τ1+τ2

h1(L) +
τ1
λ
ρ
(L−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(L)−
τ1
λ
ρ
(λ−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(λ)

′ [x1it
x2it

]

The model requires that
yit = Eit[ξt] + αEit[yt],

which leads to the following system of analytic functions

C(z)

[
h1(z)

h2(z)

]
= d(z, h(λ))

where h(λ) = h2(λ), and

C(z) =


1− α λ

ρτ1
z

(1−λz)(z−λ) − α
(

τ1
τ1+τ2

+
τ2
λ
ρ
(z−ρ)(1−ρz)

(τ1+τ2)(1−λz)(z−λ)

)
−α λ

ρτ1
z

(1−λz)(z−λ)

−α λ
ρτ2

z
(1−λz)(z−λ) − α

(
− τ1
τ1+τ2

+
τ1
λ
ρ
(z−ρ)(1−ρz)

(τ1+τ2)(1−λz)(z−λ)

)
1− α λ

ρτ2
z

(1−λz)(z−λ)

 ,

d(z, h(λ)) =

[
d1(z, h(λ))

d2(z, h(λ))

]
=

[
1

1−λz
λ

(1−ρλ)ρτ1 − α
λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)
1

1−λz
λ

(1−ρλ)ρτ2 − α
λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)

]
.

Note that

detC(z) =
(1− α)λ(z − ϑ)(1− ϑz)

ϑ(1− λz)(z − λ)

The inside root of the determinant of C(z) is

ϑ =

(
1
ρ + ρ+ (1−α)τ1+τ2

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α)τ1+τ2

ρτ1τ2

)2
− 4

2
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Using Cramer’s rule,

h1(z) =

det


d1(z) −α λ

ρτ1
z

(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

.

The numerator is

det


d1(z) −α λ

ρτ1
z

(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)

{
λ(z − λ)

(1− ρλ)ρτ1
− α λ

2

ρτ1

1

1− ρλ
(1− ρz)h(λ)

}
.

To make sure h1(z) does not have poles in the unit circle, we need to choose h(λ) to remove the pole at ϑ, which
requires

h(λ) =
ϑ− λ

αλ(1− ρϑ)
.

Therefore,

h1(z) =
ϑ

ρτ1(1− α)(1− ρϑ)

1

1− ϑz
,

and similarly,

h2(z) =
ϑ

ρτ1(1− ρϑ)

1

1− ϑz

A.11 Proof of Proposition 4.3

Proof. The signal process is

xit = M(L)sit =
[

ση
1−ρL σu

] [ ηt
uit

]
The corresponding fundamental representation is

B(z) =
1− λz
1− λz

, V =
σ2uρ

λ

where λ is

λ =
1

2

(1

ρ
+ ρ+

σ2η
ρσ2u

)
−

√(
1

ρ
+ ρ+

σ2η
ρσ2u

)2

− 4


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which satisfy
M(z)M′(z−1) = B(z)VB′(z−1)

It is straightforward to verify that

G(z) =

[
σηz

σu

]

Forward-looking Model We start with the forward-looking model in which

P (L) = 1, Q(L) = −αL−1, R(L) =
[

ση
1−ρL 0

]
, Λ =

[
1 0

0 0

]

The system of equation is

T (z) =
−ρσ2u

(
z2 −

(
1
ρ +

σ2
η

σ2
u

1
ρ + ρ

)
z + 1 +

σ2
η

σ2
u

α
ρ

)
(1− ρz)(z − ρ)

=
−ρσ2u(z − ζ1)(z − ζ2)

(1− ρz)(z − ρ)

D(z, h(λ)) =
σ2η(z − λ)

(1− ρλ)(1− ρz)(z − ρ)
− α

σ2ηλ

(1− ρλ)(z − ρ)
h(λ)

To have a unique solution, it has to be that |ζ1| < 1 and |ζ2| > 1. Note that when α < 1,

z2 −

(
1

ρ
+
σ2η
σ2u

1

ρ
+ ρ

)
z + 1 +

σ2η
σ2u

α

ρ

∣∣∣∣
z=1

= 2−
(
ρ+

1

ρ

)
− (1− α)

σ2η
ρσ2u

< 0

which guarantees there exists a unique solution. Multiply (1− ρz)(z − ρ) to both sides and set h(λ) such that

σ2η(z − λ)

1− ρλ
− α

σ2ηλ(1− ρz)
(1− ρλ)

h(λ) = 0

∣∣∣∣
z=ζ1

This leads to that

h(z) = −
σ2η
σ2u

1

ρ(1− ρζ1)
1

z − ζ2

Defining ϑf ≡ ζ−12 , it follows that

h(z) =
σ2η
σ2u

ϑf

ρ
(

1− ρϑf − α
σ2
η

σ2
u
ϑf

) 1

1− ϑfz
(A.13)

where

ϑf =
1

2
(

1 +
σ2
η

σ2
u

α
ρ

)
(1

ρ
+ ρ+

σ2η
ρσ2u

)
−

√(
1

ρ
+ ρ+

σ2η
ρσ2u

)2

− 4

(
1 +

σ2η
σ2u

α

ρ

)
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Static Model The static model is the same as Application I. The result is that

h(z) =
σ2η
σ2u

ϑs
ρ(1− ρϑs)

1

1− ϑsz

where

ϑs =
1

2

(1

ρ
+ ρ+

(1− α)σ2η
ρσ2u

)
−

√(
1

ρ
+ ρ+

(1− α)σ2η
ρσ2u

)2

− 4


Backward-looking Model In the backward-looking model,

P (L) = 1, Q(L) = −αL, R(L) =
[

ση
1−ρL 0

]
, Λ =

[
1 0

0 0

]

The system of equation is

T (z) =
−(ρσ2u + ασ2η)

(
z2 − σ2

η+σ
2
u(1+ρ

2)

ρσ2
u+ασ

2
η
z + ρσ2

u
ρσ2
u+ασ

2
η

)
(1− ρz)(z − ρ)

=
−(ρσ2u + ασ2η)(z − ζ1)(z − ζ2)

(1− ρz)(z − ρ)

D(z, h(λ)) =
σ2η(z − λ)

(1− ρλ)(1− ρz)(z − ρ)
− α

σ2ηλ
2

(1− ρλ)(z − ρ)
h(λ)

To have a unique solution, it has to be that |ζ1| < 1 and |ζ2| > 1. Note that when α ∈ (0, 1),

z2 −
σ2η + σ2u(1 + ρ2)

ρσ2u + ασ2η
z +

ρσ2u
ρσ2u + ασ2η

∣∣∣∣
z=1

= −
(1− α)σ2η + ρσ2u

(
ρ+ 1

ρ − 2
)

ρσ2u + ασ2η
< 0

which guarantees there exists a unique solution. Multiply (1− ρz)(z − ρ) to both sides and set h(λ) such that

σ2η(z − λ)

1− ρλ
− α

σ2ηλ
2(1− ρz)

(1− ρλ)
h(λ) = 0

∣∣∣∣
z=ζ1

This leads to that

h(z) = −
σ2η

(ρσ2u + ασ2η)

1

1− ρζ1
1

z − ζ2

Defining ϑb ≡ ζ−12 , it follows that

h(z) =
ϑbσ

2
η

ρσ2u + ασ2η − ρ2σ2uϑb
1

1− ϑbz
(A.14)

where

ϑb =
1 +

ασ2
η

ρσ2
u

2

(σ2η + σ2u(1 + ρ2)

ρσ2u + ασ2η

)
+

√(
σ2η + σ2u(1 + ρ2)

ρσ2u + ασ2η

)2

− 4

(
ρσ2u

ρσ2u + ασ2η

)
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Comparison Recall that ϑ−1f is a root of

z2 −

(
1

ρ
+
σ2η
σ2u

1

ρ
+ ρ

)
z + 1 +

σ2η
σ2u

α

ρ

while ϑ−1s is a root of

z2 −

(
1

ρ
+
σ2η
σ2u

1

ρ
+ ρ−

σ2η
σ2u

α

ρ

)
z + 1

Note that

z2 −

(
1

ρ
+
σ2η
σ2u

1

ρ
+ ρ

)
z + 1 +

σ2η
σ2u

α

ρ

∣∣∣∣
z=ϑ−1

s

=
σ2η
σ2u

α

ρ
(1− ϑ−1s ) < 0

Therefore, ϑf < ϑs.

To compare ϑs and ϑb, recall that ϑ−1b is a root of

z2 −
σ2η + σ2u(1 + ρ2)

ρσ2u + ασ2η
z +

ρσ2u
ρσ2u + ασ2η

=
ρσ2u

ρσ2u + ασ2η

((
1 +

σ2η
σ2u

α

ρ

)
z2 −

(
1

ρ
+
σ2η
σ2u

1

ρ
+ ρ

)
z + 1

)

Note that (
1 +

σ2η
σ2u

α

ρ

)
z2 −

(
1

ρ
+
σ2η
σ2u

1

ρ
+ ρ

)
z + 1

∣∣∣∣
z=ϑ−1

s

=
σ2η
σ2u

α

ρ
ϑ−1s (ϑ−1s − 1) > 0

Therefore, ϑs < ϑb.

A.12 Proof of Proposition 4.5

Proof. For agent i, the signal process is

xit = M(L)sit =
[

ση
1−ρL σu

] [ ηt
uit

]

Similar to the Proof A.11, the corresponding fundamental representation is

B(z) =
1− λz
1− λz

, V =
σ2uρ

λ

where λ is

λ =
1

2

(1

ρ
+ ρ+

σ2η
ρσ2u

)
−

√(
1

ρ
+ ρ+

σ2η
ρσ2u

)2

− 4


which satisfy

M(z)M′(z−1) = B(z)V B′(z−1)
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It is straightforward to verify that

G(z) =

[
σηz

σu

]
Now consider agent i’s forecast problem. Let j be the index of the other agent, and the forecasts are given by

Eit[ξt] =
σ2η

(1− ρλ)
V −1

1

1− λL
xit

Eit[yjt] =

(
σ2ηhj(L)L

L− λ
−
σ2ηhj(λ)λ(1− ρL)

(1− ρλ)(L− λ)

)
V −1

1

1− λL
xit

The best response requires that

V (z − λ)(1− λz)hi(z)− ωiσ2ηzhj(z) = (1− ωi)
σ2η(z − λ)

(1− ρλ)
− ωi

σ2ηhj(λ)λ(1− ρz)
(1− ρλ)

For agent j, a similar equilibrium equation can be derived. Combining the two agents’ best response leads to

T(z)

[
h1(z)

h2(z)

]
= D(z, h1(λ2), h2(λ1))

where

T(z) =

[
V (z − λ)(1− λz) −ω1σ

2
ηz

−ω2σ
2
ηz V (z − λ)(1− λz)

]

D(z, h1(λ), h2(λ)) =

σ2
η(z−λ)
(1−ρλ) − ω1

σ2
ηh2(λ)λ(1−ρz)

(1−ρλ)
σ2
η(z−λ)
(1−ρλ) − ω2

σ2
ηh1(λ)λ(1−ρz)

(1−ρλ)


The determinant of T(z) is given by

det[T(z)] = V 2(z − λ)(1− λz)(z − λ)(1− λz)− ω1ω2σ
4
ηz

2

= σ4uρ
2(z − ϑ1)(z − ϑ−11 )(z − ϑ2)(z − ϑ−12 )

=
σ4uρ

2

ϑ1ϑ2
(z − ϑ1)(1− ϑ1z)(z − ϑ2)(1− ϑ2z)

We can characterize ϑ1 and ϑ2 in the following way. First notice that(
ϑ1 +

1

ϑ1

)
+

(
ϑ2 +

1

ϑ2

)
= 2

(
λ+

1

λ

)
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(
ϑ1 +

1

ϑ1

)(
ϑ2 +

1

ϑ2

)
=

(
λ+

1

λ

)2

−
ω1ω2σ

4
η

ρ2σ4u

then we have

ϑ1 +
1

ϑ1
=

(
λ+

1

λ

)
−
√
ω1ω2σ

2
η

ρσ2u
, ϑ2 +

1

ϑ2
=

(
λ+

1

λ

)
+

√
ω1ω2σ

2
η

ρσ2u

and

ϑ1 =
1

2

(1

ρ
+ ρ+

(1−√ω1ω2)σ
2
η

ρσ2u

)
−

√(
1

ρ
+ ρ+

(1−√ω1ω2)σ2η
ρσ2u

)2

− 4


ϑ2 =

1

2

(1

ρ
+ ρ+

(1 +
√
ω1ω2)σ

2
η

ρσ2u

)
−

√(
1

ρ
+ ρ+

(1 +
√
ω1ω2)σ2η
ρσ2u

)2

− 4


To determine h1(λ) and h2(λ), we need to set

det

σ2
η(z−λ)
(1−ρλ) − ω1

σ2
ηh2(λ)λ(1−ρz)

(1−ρλ) −ω1σ
2
ηz

σ2
η(z−λ)
(1−ρλ) − ω2

σ2
ηh1(λ)λ(1−ρz)

(1−ρλ) V (z − λ)(1− λz)

 = 0

when evaluated at z = ϑ1 and z = ϑ2. After some algebra, we have

h1(L) =
σ2η
σ2u

ϑ1ϑ2
ρ(1− ϑ1ϑ2)

1
ρ

(
(1− ω1) + (1−ω1ω2)

(1−ρϑ1)(1−ρϑ2)
σ2
η

σ2
u

)
−
(

(1− ω1) + (1−ω1ω2)ϑ1ϑ2
(1−ρϑ1)(1−ρϑ2)

σ2
η

σ2
u

)
L

(1− ϑ1L)(1− ϑ2L)

h2(L) =
σ2η
σ2u

ϑ1ϑ2
ρ(1− ϑ1ϑ2)

1
ρ

(
(1− ω2) + (1−ω1ω2)

(1−ρϑ1)(1−ρϑ2)
σ2
η

σ2
u

)
−
(

(1− ω2) + (1−ω1ω2)ϑ1ϑ2
(1−ρϑ1)(1−ρϑ2)

σ2
η

σ2
u

)
L

(1− ϑ1L)(1− ϑ2L)

A.13 Proof of Proposition 4.4

Proof. Note that x1m(i,t)t = ai + εm(i,t)t, the signal process can be equivalently rewritten as

x1it = am(i,t) + σεεit

x̂2it = x2m(i,t)t − ai = ξt + σεεm(i,t)t + σuuit,

ξt = ρξt−1 + ηt.

Denote the policy rule using this transformed signals as

yit = gaai + g1(L)x1it + g2(L)x̂2it
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In the end, the policy rule using the original signals can be found by

ha = ga − g2(1)

h1(L) = g1(L)

h2(L) = g2(L).

Note that the two signals are independent of each other, and we can find the Wold representation for each of
them separately. The canonical representation for x̂2it is

B(z) =
1− λz
1− ρz

,

V =
ρ(σ2ε + σ2u)

λσ2η
,

where

λ =
1

2

ρ+
1

ρ
+

σ2η
ρ(σ2ε + σ2u)

−

√(
1

ρ
+ ρ+

σ2η
ρ(σ2ε + σ2u)

)2

− 4

 .
The prediction of ym(i,t)t is

Eit[ym(i,t)t] = Eit[gaam(i,t) + g1(L)(am(m(i,t),t) + σεεm(i,t)t) + g2(L)(σuu(m(i,t)t) + σεεm(m(i,t),t) + ξt)],

where

Eit[am(i,t)] =
σ2a

σ2a + σ2ε
x1it

Eit[am(m(i,τ),τ)] = ai if τ = t, otherwise 0

Eit[σεεm(i,τ)τ ] =
λσ2εσ

2
η

ρ(σ2ε + σ2u)

1− ρL
1− λL

x̂2it if τ = t, otherwise 0

Eit[um(i,t)t] = 0

Eit[σεεm(m(i,τ),τ)] =
σ2ε

σ2a + σ2ε
x1it if τ = t, otherwise 0

Eit[g2(L)ξt] =

(
Lg2(L)

L− λ
− λ(1− ρL)g2(λ))

(1− ρλ)(L− λ)

)
V −1

1− λL
x̂2it.

The best response requires that

gaai + g1(L)x1it + g2(L)x̂2it

=ai + α

[
ga

σ2a
σ2a + σ2ε

x1it + g1(0)ai + g1(0)
λσ2εσ

2
η

ρ(σ2ε + σ2u)

1− ρL
1− λL

x̂2it
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+

(
Lg2(L)

L− λ
− λ(1− ρL)g2(λ))

(1− ρλ)(L− λ)

)
V −1

1− λL
x̂2it + g2(0)

σ2ε
σ2a + σ2ε

x1it

]
,

which leads to

ga = 1 + αg1(0)

g1(0) = αga
σ2a

σ2a + σ2ε
+ αg2(0)

σ2ε
σ2a + σ2ε

g2(z) = αg1(0)
λσ2εσ

2
η

ρ(σ2ε + σ2u)

1− ρz
1− λz

+ α

(
zh2(z)

z − λ
− λ(1− ρz)h2(λ))

(1− ρλ)(z − λ)

)
V −1

1− λz
.

The third equation can be written as

−(z − ϑ)

(
z − 1

ϑ

)
g2(z) = αg1(0)

σ2εσ
2
η

ρ(σ2ε + σ2u)
(1− ρz)(z − λ)− αV

−1(1− ρz)g2(λ)

(1− ρλ)

where

ϑ =
1

2

1

ρ
+ ρ+

(1− α)σ2η
ρ(σ2ε + σ2u)

−

√(
1

ρ
+ ρ+

(1− α)σ2η
ρ(σ2ε + σ2u)

)2

− 4

 . (A.15)

Use g2(λ) to removes the inside root ϑ, we have

g1(z) = g1(0) =
α

1− α2 + σ2
ε
σ2
a

(
1− α2 ϑ

ρ

σ2
εσ

2
η

σ2
ε+σ

2
u

)
ga = 1 + αg1(0)

g2(z) =
αϑg1(0)σ2εσ

2
η

ρ(σ2ε + σ2u)

1− ρz
1− ϑz

A.14 Proof of Proposition 5.1

Proof. Let φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2 denote an arbitrary policy rule. The norm of φ can de defined as

‖φ‖ =

√√√√σ2ε

∞∑
k=0

φ21k + σ2u

∞∑
k=0

φ22k + σ2η

∞∑
k=0

φ23k.

The individual action is then given by

yit = φε(L)εit + φu(L)uit + φη(L)ηt.
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Given φ, define the signal process as

x1it = ξt + σεεit,

x2it = φη(L)ηt + σuuit,

where we have already used the equilibrium condition that yt = φη(L)ηt. The optimal linear forecast conditional
on the signals is denoted as

Eit[yt] = φ̂ε(L)εit + φ̂u(L)uit + φ̂η(L)ηt.

Note that the individual optimality requires that

φε(L)εit + φu(L)uit + φη(L)ηt = ξt + σεεit + αEit[yt].

Define the operator T : `2 × `2 × `2 → `2 × `2 × `2 as

T (φ) = {σε + αφ̂ε, αφ̂u, σηφξ + αφ̂η}

where φξ ≡ {1, ρ, ρ2, . . .} denotes the coefficients of the lag polynomial of ξt. The equilibrium is a fixed point
of the operator T . For the existence of the fixed point, we will rely on the Schauder’s fixed point theorem. To
apply this theorem, we need to show that φ always belongs to a compact space. It turns out a higher order belief
representation of individual’s action is sufficient to prove it. By consecutive iteration, we have

yit = ξit + αEit[yt]

= ξit + αEit
[∫

yjt

]
= ξit + αEit [ξt] + α2Eit

[∫
Ejt[yjt]

]
...

= ξit +
∞∑
k=1

αkEkit[ξt]

By the law of total variance, the variance of Ekit[ξt] is less than the variance of ξt. Therefore, no matter what
the signal process is, the variance of yit is bounded. Therefore, the policy rule has to belong to a compact space
bounded by the norm of ξt, and the operator T is a bounded continuous operator. This completes the proof.
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A.15 Proof of Theorem 2

Proof. We first layout the structure of the proof, then we enter the details of each step.

1. Assume the law of aggregate yt has a finite ARMA representation in condition 1 of definition 5.1.

ϕ(L) =
a(L)

b(L)
, (A.16)

where a(L) and b(L) are finite polynomials in L.

2. Solve agents optimal policy φ = {φ1, φ2, φ3} in a partial equilibrium with exogenous information. The
partial equilibrium consists of two conditions

• Each individual makes inference conditional on the following signal process

x1it = ξt + σεεit

x2it = ϕ(L)ηt + σuuit

• The policy rule φ satisfies that

yit = ξit + α Eit [yt] ,

where

yit = φε(L)εit + φu(L)uit + φη(L)ηt,

yt = φη(L)ηt.

Note that in this partial equilibrium, agents reply on exogenous information, but their optimal policy rule
does depend on others’ action. Also note that we do not require φη(L) = ϕ(L). Solving this partial
equilibrium is similar to the problem in Section 3.

3. Show ϕ(L) cannot be the same as φη(L). That is, condition 3 of definition 5.1 cannot be satisfied.

Now we move to the details of each step.

Step 1 Under the finite ARMA representation assumption, the signal process is given by

xit = M(L)sit =

[
σε 0 1

1−ρL
0 σu

a(L)
b(L)

]εituit
ηt


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The state-space and fundamental representation are

xit = H(I− FL)−1Q

M(L)M′(L−1) = B(L)V−1B′(L−1)

Step 2 By Proposition 3.1, the forecast about yt = φη(L)ηt is given by

Eit[φη(L)ηt] =
[[

0 0 φη(L)
]
M′(L−1)B′(L−1)−1

]
+

V−1B(L)−1M(L)sit.

As shown in the proof A.4, there exists finite degree polynomial matrices G(L) and K(L) such that

M′(L−1)B′(L−1)−1 =
G(L)∏d

k=1(L− λi)
(A.17)

V−1B(L)−1M(L) =
K(L)∏d

k=1(1− λiL)
(A.18)

where {λi}di=1 are non-zero eigenvalues of F− FKH in the associated steady-state Kalman filter problem.

The forecast about the aggregate action in the partial equilibrium is

Eit[yt] = Eit[φη(L)ηt] =
[[

0 0 φη(L)
]

M′(L−1)B′(L−1)−1
]
+

V−1B(L)−1M(L)sit

= φη(L)
[
0 0 1

]
M′(L−1)ρxx(L)−1M(L)sit −

d∑
k=1

[
0 0 φη(λk)

]
G(λk)

(L− λk)
∏
τ 6=k(λk − λτ )

K(L)∏d
k=1(1− λiL)

sit

The partial equilibrium condition for φη(z) is

φη(z)

1− α
[
0 0 1

]
M′(z−1)(M(z)M′(z−1))−1M(z)

0

0

1




=
1

1− ρz
− α

d∑
k=1

[
0 0 φη(λk)

]
G(λk)

(z − λk)
∏
τ 6=k(λk − λτ )

K(z)∏d
k=1(1− λiz)

0

0

1


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Step 3 First note that10

[
0 0 1

]
M′(z−1) =

[
z
z−ρ

a(z−1)
b(z−1)

]
, M(z)

0

0

1

 =

[
1

1−ρz
a(z)
b(z)

]
,

and

(M(z)M′(z−1))−1

=
(1− ρz)(z − ρ)b(z)b(z−1)

(1− ρz)(z − ρ)b(z)b(z−1) + a(z)a(z−1)(z − ρ)(1− ρz) + zb(z)b(z−1)

[
1 + a(z)a(z−1)

b(z)b(z−1)
− a(z−1)

(1−ρz)b(z−1)

− za(z)
(z−ρ)b(z) 1 + z

(z−ρ)(1−ρz)

]
.

It is then straightforward to show that

1− α
[
0 0 1

]
M′(z−1)(M(z)M′(z−1))−1M(z)

0

0

1


=

(1− ρz)(z − ρ)b(z)b(z−1) + a(z)a(z−1)(z − ρ)(1− ρz) + zb(z)b(z−1)− α(a(z)a(z−1)(z − ρ)(1− ρz) + zb(z)b(z−1))

(1− ρz)(z − ρ)b(z)b(z−1) + a(z)a(z−1)(z − ρ)(1− ρz) + zb(z)b(z−1)

=
p(z)

c
∏d
k=1(1− λiz)(z − λi)

where p(z) ≡ (1−ρz)(z−ρ)b(z)b(z−1) +a(z)a(z−1)(z−ρ)(1−ρz) + zb(z)b(z−1)−α(a(z)a(z−1)(z−ρ)(1−ρz) +

zb(z)b(z−1)) and the denominator follows from equation (A.17) and (A.18).

Now we can derive φη(z) as

φη(z) =
c
∏d
k=1(1− λiz)(z − λi)

p(z)

 1

1− ρz
− α

d∑
k=1

[
0 0 φη(λk)

]
G(λk)

(z − λk)
∏
τ 6=k(λk − λτ )

K(z)∏d
k=1(1− λiz)

0

0

1




Note that neither λi or λ−1i can be the poles of φη(z). The poles of φη(z) can only be the roots of p(z) or ρ−1

from 1
1−ρz . In order to have φη(z) = ψ(z), it must be the case that the roots of b(z) are the poles of φη(z). Note

that when α = 1,

p(z) = (1− ρz)(z − ρ)b(z)b(z−1)).

10M(z)M′(z−1) =

[
1 + z

(z−ρ)(1−ρz)
a(z−1)

(1−ρz)b(z−1)
za(z)

(z−ρ)b(z) 1 + a(z)a(z−1)
b(z)b(z−1)

]
.
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Therefore, if α 6= 1, it cannot be the case that φη(z) = ϕ(z).
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