The Zero Lower Bound and Estimation Accuracy

Tyler Atkinson Alexander W. Richter Nathaniel A. Throckrtan

First Draft: May 7, 2018
This Draft: June 3, 2019

ABSTRACT

During the Great Recession, many central banks loweredb&cy rate to its zero lower
bound (ZLB), creating a kink in the policy rule and callinganquestion linear estimation
methods. There are two promising alternatives: estimatéyarfonlinear model that accounts
for precautionary savings effects of the ZLB or a piecewisedr model that is much faster
but ignores the precautionary savings effects. This papepares the accuracy of the two
methods using artificial datasets. We find the predictiorth@honlinear model are typically
more accurate than the piecewise linear model, but therdiftes are usually small. There are
far larger gains in accuracy from estimating a richer, lesspecified piecewise linear model.
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1 INTRODUCTION

Using Bayesian methods to estimate linear dynamic stoclgesteral equilibrium (DSGE) models
has become common practice in the literature over the lageads. Many central banks also use
these models for forecasting and counterfactual simulatidhe estimation procedure sequentially
draws parameters from a proposal distribution, solves theéaingiven that draw, and then evalu-
ates the likelihood function. With linearity and normallgtlibuted shocks, the model solves in a
fraction of a second and it is easy to exactly evaluate thadilikod function with a Kalman filte.
The financial crisis and subsequent recession compelleg oeriral banks to take unprece-
dented action to reduce their policy rate to its zero lowemut(ZLB), calling into question linear
estimation methods. The ZLB constraint presents a chal&rgempirical work because it creates
a kink in the central bank’s policy rule. The constraint higags existed, but when policy rates
were well above zero and the likelihood of hitting the coaisirwas negligible, it was reasonable
toignore it. The lengthy period of near zero policy ratesrélie last decade and the increased like-
lihood of future ZLB events due to estimates of a lower ndtati@ has forced researchers to think
more carefully about the ZLB constraint and its implicaida.g., Laubach and Williams, 2016).
There are two promising estimation methods used in theatitee that account for the ZLB
constraint in DSGE models. The first method estimates a fdhjinear model with an occasion-
ally binding ZLB constraint (e.g., Gust et al., 2017; Plagttal., 2018; Richter and Throckmorton,
2016). This method provides the most comprehensive tredtaig¢he ZLB constraint but is nu-
merically intensive. It uses projection methods to solertbnlinear model and a particle filter to
evaluate the likelihood function for each draw from the pdst distribution (henceforth, NL-PE).
The second method estimates a piecewise linear versior oithlinear model (e.g., Guerrieri
and lacoviello, 2017). The model is solved using the OccBailiox developed by Guerrieri and
lacoviello (2015). The likelihood is evaluated using areirsion filter, which solves for the shocks
that minimize the distance between the data and the moddilgions. The benefit of this method
(henceforth, OB-IF) is that it is nearly as fast as estingaanlinear model with a Kalman filter
while still capturing the kink in the decision rules creatgdthe ZLB. However, OB-IF differs
from NL-PF in a potentially important way. Households do actount for the possibility that the
ZLB may bind in the future when it does not currently bind, ehis inconsistent with survey data.

1Schorfheide (2000) and Otrok (2001) were the first to useetimesthods to generate draws from the posterior
distribution of a linear DSGE model. See An and Schorfhe2®®7) and Herbst and Schorfheide (2016) for examples.

2Several papers examine the effects of the ZLB constraintatibratednonlinear model using projection methods
similar to ours (e.g., Aruoba et al., 2018; Fernandezavirde et al., 2015; Gavin et al., 2015; Keen et al., 2017;
Mertens and Ravn, 2014; Nakata, 2017; Nakov, 2008; Ngo, ZRithter and Throckmorton, 2015; Wolman, 2005).

3The inversion filter also removes the interest rate as anredisie and sets the monetary policy shock to zero
when the ZLB binds, whereas the particle filter estimatesdtghocks given the data. This difference is important
to the extent that monetary policy shocks impact the econaftitile ZLB. However, in practice, the particle filter
typically estimates monetary policy shocks close to zeremitine ZLB binds, suggesting there is little it can identify.



This paper compares the accuracy of the two estimation rdetie specify a true parameter-
ization of a medium-scale nonlinear model with an occasiphinding ZLB constraint, solve the
model with a projection method, and generate a large sanijplatasets. The datasets either con-
tain no ZLB events or a single event with various durationgrtderstand the influence of the ZLB
on the posterior estimates. For each dataset, we use NL-dPBBHAF to estimate a small-scale,
but nested, version of the medium-scale model that gersettadedata. We also estimate the linear
model with a Kalman filter (henceforth, Lin-KF), since it wiage most common method before the
Great Recession. The small-scale model excludes feattites medium-scale model that others
have shown are empirically important. The difference betwthe two models—referred to as
misspecification—account for the practical reality thatnabdels are misspecified. It also sheds
light on the merits of estimating a simpler, more misspedifiraodel with NL-PF, versus a richer,
less misspecified, model with OB-IF that is numerically veogtly with fully nonlinear methods.

We find NL-PF and OB-IF produce similar parameter estimabesontrast, the predictions
and forecasting performance of NL-PF are typically moreueaie than OB-IF. For example, the
estimates of the notional interest rate (the rate the ddrdrk would set in the absence of the ZLB
constraint), the expected ZLB duration, the probabilityacf quarter or longer ZLB event, and
forecasts of the policy rate are closer to their actual \&lUde increase in accuracy, however, is
often small because the precautionary savings effectsedftl8 and the effects of other nonlin-
earities are weak in canonical models. The benefits also eathea steep increase in estimation
time. The model takes roughly a week to estimate with NL-PiSuga couple hours with OB-IF.

These results suggest that OB-IF may provide an adequaséitsitds for NL-PF, but there are
two important caveats. One, our analysis focuses exclysirethe ZLB constraint. Other con-
straints could create inaccuracies that provide a strgnggfication for the computational burden
of NL-PF. Two, OB-IF only captures nonlinearities from osicaally binding constraints. OB-IF
could not account for nonlinear features such as stochasttility, non-convex adjustment costs,
endogenous regime-switching, default, Bayesian learrdnd non-Gaussian shock distributions.
Our results will provide a useful benchmark for future wdrkttexamines these nonlinear features.

Model misspecification has a much larger impact on accutaay the estimation method. It
biases many of the parameter estimates and often createfcsigt differences between the pre-
dictions of the estimated models and the data generatingepso(DGP). These results suggest
researchers are better off reducing misspecification bgnashg a richer piecewise linear model
than a simpler but computationally less intensive nonlimeadel when the ZLB binds in the data.
This important finding could open the door to promising newkaan the implications of the ZLB.

Our paper is the first to compare different estimation methbdt account for the ZLB con-
straint. Others compare nonlinear estimation methodsn&ati methods. Fernandez-Villaverde
and Rubio-Ramirez (2005) show that a neoclassical growithetrestimated with NL-PF predicts



moments closer to the true moments than the estimates frarKEiusing two artificial datasets
and actual data. The primary source of nonlinearity in thrdel is high risk aversion. Hirose and
Inoue (2016) generate artificial datasets from a linear ietere the ZLB constraint is imposed
using anticipated monetary policy shocks and then applyKEnto estimate the model without
the constraint. They find the estimated parameters, impakg@nses, and structural shocks be-
come less accurate as the frequency and duration of ZLB ®ustrease in the data. Hirose and
Sunakawa (2015) extend that work by generating data frormnear model and re-examine the
bias. None of these papers introduce misspecification iwhian important aspect of our analysis.
We also build on recent empirical work that analyzes the icagibns of the ZLB constraint
(e.g., Gust et al., 2017; liboshi et al., 2018; Plante e8l18; Richter and Throckmorton, 2016).
These papers use NL-PF to estimate a nonlinear model sitoitaurs using actual data from the
U.S. or Japan that includes the ZLB period. Our contribuisotm examine the accuracy of these
nonlinear estimation methods and show under what conditioey outperform other approaches.
The measurement error (ME) in the observation equation efitter is a key aspect of the
estimation procedure that could potentially affect theuagcy of the parameter estimates. Unlike
the inversion filter, the particle filter requires positiveEMariances to prevent degeneracy—a
situation when the likelihood is inaccurate. The literathias used a wide range of different values,
with limited investigation on how they impact accuracy. Gamet al. (2014) show the downside
of introducing ME is that the posterior distributions of separameters do not contain the truth
in a DSGE model estimated with Lin-KF. Cuba-Borda et al. @0ghow that ME in the particle
filter reduces the accuracy of the likelihood function usaralibrated model with an occasionally
binding borrowing constraint. Our analysis provides a pt&dly important role for ME because
it includes model misspecification. We find larger ME variemamprove the accuracy of some
parameters, but the benefits are more than offset by desrigetse accuracy of other parametérs.
The paper proceeds as follonwBection 2describes our DGP and how we construct our artificial
datasetsSection Joutlines the estimated model and estimation meth8dstion 4shows our pos-
terior estimates and several measures of accuracy for stinfa¢ion methodSection Sconcludes.

2 DATA GENERATING PROCESS

To test the accuracy of recent estimation methods that atéouthe ZLB constraint, we generate
a large number of artificial datasets from a medium-scale Keynesian model with capital and
an occasionally binding ZLB constraint. Our model is the sas the one in Gust et al. (2017),
except it removes government spending, inflation inderatiad the investment efficiency shotk.

4Herbst and Schorfheide (2018) develop a tempered pariigletfiat sequentially reduces the ME variances. They
assess accuracy against the Kalman filter on U.S. data witeaImodel and find it outperforms the untempered filter.
SAppendix E.7shows how the addition of government spending to the DGP stiated model affects our results.



2.1 HRMS The production sector consists of a continuum of monopcéily competitive inter-
mediate goods firms and a final goods firm. Intermediate firen [0, 1] produces a differentiated
good,y(f), according tay;(f) = (viki_1(f))*(azns(f))1=%, wheren( f) is the labor hired by firm
f andk(f) is the capital rented by firrfi. a; = z,a,_; is productivity and is the capital utilization
rate, which are both common across firms. Deviations fronstbady-state growth rate, follow

Zt:2+0z5z,ta €ZNN(0,]_) (l)

The final goods firm purchases output from each intermediatetéi produce the final good,
Y = [fol ye(f) 0110 qf 1%/ =1 "'whered, > 1 is the elasticity of substitution. Dividend max-
imization determines the demand for intermediate géog (f) = (p:(f)/p:) "% y;, wherep, =
[fol pe(f)1 0 df]/(1=%) is the price level. Following Rotemberg (1982), interméglirms pay a
price adjustment costd;? (f) = v, (pe(f)/(Fpe—1(f))—1)%y: /2, wherep, > 0 scales the cost and
7 is the steady-state gross inflation rate. Given this cost, fichoosesy,(f), k.—1(f), andp;(f)
to maximize the expected discounted present value of fulividends £, >/~ , ¢ xdx(f), subject
to its production function and the demand for its productewy, : = 1, gi1+1 = B(\e/ A1) IS
the pricing kernel between periodandt + 1, ¢, = Hfi;l ¢j—1,5, andd,(f) = pe(f)ye(f)/pe —
wing(f) — r¥uk,_1(f) — adjf (f). In symmetric equilibrium, the optimality conditions rexuto

Yy = (Utkt—1>a(atnt>1_a7 (2)
wy = (1 — a)megy /ny, 3)
Tf = amcy/(viki—1), (4)

(/T — 1) (7 /7) = 1 = 0, + Opymey + Bpp Ey[(Ae/ Mer) (Tean /T — 1) (W41 /T) Y1 /ye),  (B)

wherer; = p;/p:—1 is the gross inflation rate. I, = 0, the real marginal cost of producing a unit
of output (nc;) equalsd, — 1)/6,, which is the inverse of the markup of price over marginat.cos

2.2 HouseHoLDS Each household consists of a unit mass of members who supfayed-
tiated types of laborp(¢), at real wage ratev(¢). A perfectly competitive labor union bundles
the labor types to produce an aggregate labor product; [fol ny (0)Ow=1/0w 40100/ (0=1) "where
0., > 1 is the elasticity of substitution. Dividend maximizatioatdrmines the demand for labor
typel, ny(€) = (wy(£) w;) =% n;, wherew, = [ [ w,(¢)'~%=d¢]'/(=%) is the aggregate real wage.
The households chooge;, n;, by, x4, ki, v }52, t0 maximize expected lifetime utility given by
Eo Y72, B log(er — het—y) — Xfol n()'dl/(1 + n)], whereg is the discount factory deter-
mines steady-state labar/n is the Frisch labor supply elasticityjs consumptiong® is aggregate
consumptioni is the degree of external habit persistersas the real value of a privately-issuéd
period nominal bond is investment, and, is an expectation operator conditional on information



available in period). Following Chugh (2006), the nominal wage rate for each dappe is sub-
ject to an adjustment cosid;j” (£) = @, (w] (£) — 1)%y,/2, wherew! (¢) = maw(0)/(Tzwi_1(€)) is
nominal wage growth relative its steady-state. The costilifing the capital shocky, is given by

up = 7 (exp(o, (v; — 1)) = 1) /0y, (6)
wherec, > 0 scales the cost. Given the two costs, the household’s bedgstraint is given by
Cr A o+ by (431) + uikor + [, adj(O)dl = [ w,()ny(O)dl + rFvgke—y + b1 /7 + db,

wherei is the gross nominal interest raié,is the capital rental rate, antis a real dividend from
ownership of intermediate firms. The nominal bohds subject to a risk premium, that follows

st = (1= ps)S+ psSi—1 + 0ses1, 0 < ps < 1, €5 ~N(0,1), (7

wheres is the steady-state value. An increase;ibboosts saving, which lowers periediemand.
Households also face an investment adjustment cost, savhef Imotion for capital is given by

ki= 18k +x,(1—v(x) —1)%/2), 0<§ <1, 8)

wherez{ = z;/(zZx,_1) is investment growth relative to its steady-state anel 0 scales the cost.
The first order conditions to each household’s constraimgithization problem are given by

ry = exp(oy, (v — 1)), ©)

At = ¢ — hey 4, (10)

w] = xni\, (11)

1= BE[(Ae/ A1) (seie/Ti1)], (12)

@ = BE((A\e/Aex1) (M1 V1 — wegr + (1= 0)qer)], (13)

=gl —v(z] - 1)2/2 —v(z] — Dzf] + 5V2Et[()\t/)\t+1)Qt+1(x?+1)2(1'?+1 —1)], (14)
Pu(w] — Dwf = [(1 — Oy)w; + ewwtf]”t/yt + BSDwEt[()\t/)\tJrl)(wtgﬂ - 1)wtg—|—1yt+l/yt]a (15)

wherel/ ) is the marginal utility of consumption,is Tobin’s g, andy/ is the flexible wage rate.

Monetary Policy The central bank sets the gross nominal interest rasecording to

i = max{1,1i}'}, (16)
it = (i) (@m /7) " (g [ (5 2) %) 7 exploigin), 0 < pi < 1, & ~N(0,1),  (17)

wherey9?% is real GDP (i.e., output;, minus the resources lost due to adjustment cegig,and



adj™, and utilization costs),” is the gross notional interest rateandt are the target values of
the inflation and nominal interest rates, afydand¢, are the responses to the inflation and output
growth gaps. A more negative net notional rate indicatestiigacentral bank is more constrained.

Competitive Equilibrium The aggregate resource constraint and real GDP definiteogiaen by

¢+ 1 =y ¥, (18)
Yy =1 = p(m /T = 1)*/2 = pu(w! —1)*/2]y; — wkir. (19)

The model does not have a steady-state due to the unit romddiugtivity, a;. Therefore, we define
the variables with a trend in terms of productivity (i.8;,= x,/a;). The detrended equilibrium
system is provided i\ppendix A A competitive equilibrium consists of sequences of quan-
tities, {c, §u, 577, 20, y?, g, by, £4520, Prices,{wy, @), w7, iy, i, 7wy, Ay, Ur, g, @, 7, My 1524, and
exogenous variablegs;, z:}:°,, that satisfy the detrended equilibrium system, given ttitai
conditions{¢_4,4" |, k_1,7_1,%_1, S0, 20, ei0}, and three sequences of shocks,;, €5+, )72, .

Subjective Discount Factor Ié; 0.9949 Rotemberg Price Adjustment Cost ¢, 100
Frisch Labor Supply Elasticity 1/7 3 Rotemberg Wage Adjustment Cost ¢, 100
Price Elasticity of Substitution 6, 6 Capital Utilization Curvature o 5
Wage Elasticity of Substitution 6, 6 Inflation Gap Response O 2
Steady-State Labor Hours n 0.3333 Output Growth Gap Response Dy 0.5
Steady-State Risk Premium 5 1.0058 Habit Persistence h 0.8
Steady-State Growth Rate z 1.0034 Risk Premium Persistence Ps 0.8
Steady-State Inflation Rate T 1.0053 Notional Rate Persistence Pi 0.8
Capital Share of Income e 0.35 Productivity Growth Shock SD o 0.005
Capital Depreciation Rate 0 0.025 Risk Premium Shock SD Os 0.005
Investment Adjustment Cost v 4 Notional Interest Rate Shock SD o; 0.002

Table 1: Parameter values for the data generating process.

2.3 FARAMETER VALUES Table 1shows the model parameters for the DGP. The parameters
were chosen so our DGP is characteristic of recent U.S. ddia. steady-state growth rate)(
inflation rate ), risk-premium §), and capital share of incoma) are equal to the time averages
of per capita real GDP growth, the percent change in the GDO#idinprice deflator, the Baa
corporate bond yield relative to the yield on the 10-Yeara$tey rate, and the Fernald (2012)
utilization-adjusted quarterly-TFP estimates of the taghare of income from 1988Q1-2017Q4.
The subjective discount facto?, is set t00.9949, which is the time average of the values im-
plied by the steady-state Euler equation and the federadlsfuate. The corresponding annualized
steady-state nominal interest ratei8%, which is consistent with the sample average and current
long-run estimates of the federal funds rate. The leisugéepence parametey, is set so steady-
state labor equal$/3 of the available time. The capital depreciation rate is aéL®25. Both



values are ubiquitous in the literature. The elasticitiesubstitution between intermediate goods
and labor types, andd,,, are set t@, which correspond to 20% average markup in each sector
and match the values used in Gust et al. (2017). The Frisshi@ty of labor supply,l/n, is set
to 3 to match the macro estimate in Peterman (2016). The investagustment cost parameter,
v, and capital utilization curvature,,, are consistent with the estimates in Gust et al. (2017). The
price and wage adjustment cost parametggsand,,, are both set ta00, which correspond to
Phillips curve slopes di.050 and0.027. Estimates for the monetary responses to the inflation and
output growth gapsp, and¢, vary in the literature, ranging from5-2.5 and0-1 (Aruoba et al.,
2018; Gust et al., 2017). We sgt = 2.0 and¢, = 0.5, which are in the middle of those ranges.
The persistence parameters and shock standard deviateosstdo values that are in line with
the estimates from Aruoba et al. (2018) and Gust et al. (2008 most consequential parameters
are the risk premium persistence and shock standard daviagicause they have the largest impact
on the expected frequency and duration of ZLB events. Whereof those parameters increase,
households place more weight on outcomes where the cerand tannot respond to adverse
shocks by lowering the nominal interest rate, which inoesdabe downward bias from the ZLB.

2.4 SOLUTION AND SIMULATION METHODS We solve the nonlinear model with the policy
function iteration algorithm described in Richter et al012), which is based on the theoretical
work on monotone operators in Coleman (1991). We discrétieendogenous state variables and
approximate the exogenous statgsz;, ande; ; using theN-state Markov chain in Rouwenhorst
(1995). The Rouwenhorst method is attractive becauseytregjuires us to interpolate along the
dimensions of the endogenous state variables, which mhkesotution more accurate and faster
than quadrature methods. To obtain initial conjecturesifemonlinear policy functions, we solve
the level-linear analogue of our nonlinear model with SB{8002) gensys algorithm. Then we
minimize the Euler equation errors on every node in the Spéee and compute the maximum
distance between the updated policy functions and thelmitinjectures. Finally, we replace the
initial conjectures with the updated policy functions atetate until the maximum distance is
below the tolerance level. Ség@pendix Bfor a more detailed description of the solution method.
We generate data for output growth, the inflation rate, apahtihminal interest rate by simulat-
ing the model using the nonlinear policy functions, so theestables are given by, = [v7, 4, 7).
Each simulation is initialized with a draw from the ergodistdbution and contain$20 quarters,
similar to what is often used when estimating models withialctiata. We use samples from the
DGP with either no ZLB events or a single ZLB event thai’s, 10%, 15%, 20%, and25% of the
sample. Our sample IR0 quarters, so the ZLB events are eitliet 2, 18, 24, or 30 quarters long.
The longest events reflect the recent experiences of sonameely economies, such as the U.S.
and Japan. We creai6 datasets for each ZLB duratioAppendix E.Gprovides more information.



3 ESTIMATION METHODS

The medium-scale model is costly to estimate with globalhmés, which causes researchers to
work with smaller models. To account for this reality, we glate data from the fully nonlinear
model and test the accuracy of different estimation metloods small-scale nonlinear model that
does not include capital or sticky wages. Therefore, thiemeséd model contains misspecifica-
tion. The medium-scale model that generates our data ceafp the small-scale model when
a = ¢, = 0andd,, — oo. The equilibrium system includes)( (5), (7), (10), (12), (16), (17), and

Ye = gy, (20)

Wy = megyy /Ny, (21)

wy = xn A, (22)

e =yi", (23)

i = [1 = pp(m/7 = 1) /2y (24)

Once again, we remove the trend in productivity and provigedetrended equilibrium system in
Appendix A The competitive equilibrium includes sequences of qtiasti{ ¢, j;, 577, v, ns 2,
prices, {1y, is, i, T, A, mc 152, and exogenous variablegs;, z }5°,, that satisfy the detrended
system, given the initial condition§¢_,, ", so, 20, €0}, @nd shock sequences,. ;, s, i+ 152 -
We estimate the small-scale model with Bayesian methodsed&ah dataset, we draw param-
eters from a proposal distribution, solve the model cooddl on the draw, and filter the data to
evaluate the likelihood function within a random walk Megtatis-Hastings algorithm. Within this
framework, we test the accuracy of two promising estimatmathods that account for the ZLB.
The first method estimates the fully nonlinear model with giglea filter (NL-PF). We solve
the model with the same algorithm we used to generate ouselatarlo filter the data, we follow
Algorithm 14 in Herbst and Schorfheide (2016) and adapt ts&dobootstrap particle filter de-
scribed in Fernandez-Villaverde and Rubio-Ramirez {2@06 include the information contained
in the current observation, so the model better matchesregtoutliers in the data. NL-PF is well-
equipped to handle the nonlinearities in the data, but ilsis the most computationally intensive.
NL-PF requires solving the fully nonlinear model and perforg a large number of simulations to
evaluate the likelihood function for each draw in the randeatk Metropolis-Hastings algorithm.
Appendix Cprovides a more detailed description of the estimationrélym and the particle filter.
The second method estimates a piecewise linear versiom ofahlinear model with an inver-
sion filter. To solve the model, we use the OccBin toolbox tyed by Guerrieri and lacoviello
(2015). The algorithm separates the model into two reginesne regime, the ZLB constraint
is slack, and the decision rules from the unconstraine@tinedel are used. In the other regime,



the ZLB binds and backwards induction within a guess andwerethod solves for the decision
rules. For example, if the ZLB binds in the current periodjrahal conjecture is made for how
many quarters the nominal interest rate will remain at th& Zgtarting far enough in the future,
the algorithm uses the decision rules for when the ZLB doé$®imal and iterates backward to the
current period. The algorithm switches to the decisiongtite the ZLB regime when the simu-
lated nominal interest rate indicates that the ZLB bindse $imulation implies a new guess for
the ZLB duration. The algorithm iterates until the implied&duration equals the previous guess.
The advantage of using the piecewise linear model is thafves very quickly. On average,
the nonlinear model tak&s6 seconds to solve (using Fortran with 16 cores), whereasé¢oewise
linear model takes a fraction of a second. Furthermore, dméimear solution time exponentially
increases with the size of the model, whereas the modelttiaslifect on the solution time in the
piecewise linear model. However, it is numerically too bosd apply a particle filter. For each
particle, the piecewise linear solution requires a longugiosimulation to return to the regime
where the ZLB does not bind, whereas only a 1-period updaiedgded with the nonlinear solution.
To speed up the filter, Guerrieri and lacoviello (2017) feIBair and Taylor (1983) and use an
inversion filter that requires only one simulation. The ms¥en filter solves for the shocks that
minimize the distance between the observables and theagnivmodel predictions each period.
The piecewise linear model estimated with the inversioarfl©OB-1F) makes one potentially
important simplifying assumption. Households do not aotar the possibility that the ZLB may
bind in the future when it does not currently bind. That mdamsseholds ignore the effects of the
ZLB in states of the economy where it is likely to bind in theanéuture because the algorithm
uses the unconstrained linear decision rules. The queistimhether this simplification creates
large enough differences between the two methods to jusigEyigher estimation time of NL-PF.
As a benchmark, we estimate the linear analogue of the remrlimodel using Sims’s (2002)
gensys algorithm to solve the model and a Kalman filter touatal the likelihood function (Lin-
KF). Unlike the other two methods, this method ignores th® Zbnstraint, but it is much easier
to implement and was the most common method used in thetliterbefore the Great Recession.
For each estimation method, the observation equation endy x; = Hs; + &, wheres;
is a vector of variablesH is an observable selection matrix, afids a vector of measurement
errors (MEs). The inversion filter solves for the shocks thatimize the distance between the
observablesx;, and their model predictiong]s;, so there is no ME up to a numerical tolerance.
With a Kalman filter or particle filte; ~ N(0, R), whereR is a diagonal matrix of ME variancés.

Slreland (2004) allows for correlated MEs, but he finds a raaimess cycle model’s out-of-sample forecasts
improve when the ME covariance matrix is diagonal. Guei@uintana (2010) finds that introducingd. MEs and
fixing the variances ta0% or 20% of the standard deviation of the data improves the empificahd forecasting
properties of a New Keynesian model. Fernandez-Villagendd Rubio-Ramirez (2007) estimate the ME variances,
but Doh (2011) argues that approach can lead to complicalienause the ME variances are similar to bandwidths in
nonparameteric estimation. Given those findings, we usagodal ME covariance matrix and fix the ME variances.

9



We are free to set the ME variances to zero when we use the IKdiftex, since the number of
observables is equal to the number of shocks. The partitde tilowever, always requires positive
ME variances to avoid degeneracy. Unfortunately, there isamsensus on how to set these values,
despite their potentially large effect. We consider thrakies for the ME varianceg%, 5%, and
10% of the variance in the data. These values encompass thesfvalees used in the literature.

Parameter Dist. Mean (SD) Mean (SD) Paemet Dist. Mean (SD)
©p Norm 100 0.8 o, IGam 0.005
(25) (0.1) (0.005)
O Norm 2.0 0.8 O IGam 0.005
(0.25) (0.1) (0.005)
by Norm 0.5 0.8 o; IGam 0.002
(0.25) (0.1) (0.002)

Table 2: Prior distributions, means, and standard deviatid the estimated parameters.

Table 2displays information about the prior distributions of thetimated parameters. All
other parameter values are fixed at their true values. Tloe reans are set to the true parameter
values to isolate the influence of other aspects of the esimprocedure, such as the solution
method and filter. Different prior means would most likelyeat the accuracy of the estimation
and contaminate our results. The prior standard devigtiwhieh are consistent with the values in
the literature, are relatively diffuse to give the algamitflexibility to search the parameter space.

Our estimation procedure has three stages. First, we coadnode search to create an initial
variance-covariance matrix for the estimated paramefBng covariance matrix is based on the
parameters corresponding to th&h percentile of the likelihoods from,000 draws. Second, we
perform an initial run of the Metropolis-Hastings algornttwith 25,000 draws from the posterior
distribution. We burn off the firsi,000 draws and use the remaining draws to update the variance-
covariance matrix from the mode search. Third, we conducta fun of the Metropolis-Hastings
algorithm. We obtair50,000 draws from the posterior distribution and then record thamdraw.

The algorithm is programmed in Fortran and the datasetsuaranrparallel across several su-
percomputers. Each dataset uses one core with OB-IF anlEimshereas NL-PF uses cores
because the solution is parallelized. For example, a sapgrater with80 cores can simultane-
ously run80 datasets with OB-IF but only datasets with NL-PF. To increase the accuracy of the
particle filter, we evaluate the likelihood function on eadre. Since NL-PF usels cores, we
obtain16 likelihoods and determine whether to accept a draw baseldeomédian likelihood. This
key step reduces the variance of the likelihoods from sefedtsf The filter use40,000 particles.

’Some papers set the MiEandard deviationto 20% or 25% of the sample standard deviations, which is equivalent
to setting the MEvariancesto 4% or 6.25% of the sample variances (e.g., An and Schorfheide, 2007; RB@hl;
Herbst and Schorfheide, 2016; van Binsbergen et al., 2@itAger work directly sets the ME varianceslt@% or 25%
of the sample variances (e.g., Bocola, 2016; Gust et al.7;2ante et al., 2018; Richter and Throckmorton, 2016).
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NL-PF (16 Cores) OB-IF (1 Core) Lin-KF (1 Core)

0Q 30Q 0Q 30Q 0Q 30Q
Seconds per draw 6.7 8.4 0.035 0.096 0.002 0.002
(6.1,7.9) (7.5,9.5) (0.031,0.040)  (0.051,0.135)  (0.002,0.004)  (0.001,0.003)
Hours per dataset 148.8 186.4 0.781 2.137 0.052 0.049
(134.9,176.5)  (167.6,210.7)  (0.689,0.889)  (1.133,3.000)  (0.044,0.089)  (0.022,0.067)

Table 3: Average an(b, 95) percentiles of the estimation times by method and ZLB darsiti the data.

Table 3shows the computing times for each estimation method. Weadépert the average and
(5,95) percentiles of the combined solution and filter times acoos$50 posterior mean estimates.
These draws are independent and representative of ottves th@m the posterior distribution. We
then show hours per dataset, which are extrapolated byptyittg seconds per draw 80,000
draws and dividing by,600 seconds per hour. We report times for NL-PF, OB-IF, and LK
datasets where the ZLB never binds and datasets with onea8@qéLB event. NL-PF is run on
16 cores and the other methods use a single core. The estimtiates depend on the hardware, but
there are two interesting takeaways. One, OB-IF is sligsitlyer than Lin-KF, but it only takes a
few hours to run on a single core. Two, NL-PF requires sigaifity more time than OB-IF, but it
ran in about a week with6 cores, so it is possible to estimate the nonlinear model corkstation.

4 POSTERIORESTIMATES AND ACCURACY

The section begins by showing the accuracy of the param&tierates for each estimation method.
We then compare the filtered estimates of the notional isteede, expected frequency and dura-
tion of the ZLB, responses to a severe recession, and faneggerformance across the methods.

4.1 RRAMETER ESTIMATES We measure parameter accuracy by calculating the norrdalize
root-mean square-erroNRMSE) for each estimated parameter. For paramgi@nd estimation
methodh, the error is the difference between the parameter estifortiataset:, 6, , and the
true parameteéj. Therefore, th&NRMSE for parametey and estimation metholdis given by

NRMSE! = Gi\/ S O — 0%,

where N is the number of datasets. TR&ISE is normalized by, to remove differences in the
scales of the parameters and measure the total error. Weatgaute the coverage ratio given by
. N . . N
CRj, = &> i1 H(Q?,Z,k < ;) x H(e?,?:,/k > 0;),

- N

wherel is an indicator function ané*” denodes the(th percentile of the posterior distribution.
This statistic shows how likely it is for the posterior dibtrtion to contain the true parameter value.
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Ptr  Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q
©p 100 151.1 188.4 142.6 183.4 151.4 191.6
(134.2,165.8) (174.7,202.7) (121.1,157.3) (169.2, 198.5) (134.0, 165.7) (175.3,204.1)
{0.52,0.02} {0.89,0.00} {0.44,0.08} {0.84,0.00} {0.52,0.00} {0.92,0.00}
h 0.8 0.66 0.68 0.64 0.63 0.66 0.67
(0.62,0.70) (0.64,0.71) (0.61,0.67) (0.60, 0.67) (0.62,0.69) 50.63, 0.70)
{0.18,0.00} {0.16,0.00} {0.20,0.00} {0.21,0.00} {0.18,0.00} 0.17,0.00}
Ds 0.8 0.76 0.81 0.76 0.82 0.76 0.82
0.72,0.80 0.78,0.84 0.73,0.81 0.79,0.86 0.72,0.80 0.78,0.86
fo 06,0 70% fo 03,0 90% fo 05,0 82% fo 04,0 78% fo.oe, 0 74% 50.04, 0.78%
Di 0.8 0.79 0.80 0.76 0.77 0.79 0.84
EO 75,0 82% 50.75, 0 84% 50.71, 0.79% 50.73, 0.81% 50.75, 0.82% 50.80, 0.88%
0.03,0.96 0.03,0.96 0.06, 0.52 0.05,0.66 0.03,0.98 0.06, 0.56
o, 0.005 0.0032 0.0040 0.0051 0.0059 0.0032 0.0043
(0.0023,0.0039)  (0.0030,0.0052)  (0.0044, 0.0058)  (0.0050,0.0069)  (0.0023,0.0039)  (0.0030, 0.0057)
{0.37,0.00} {0.23,0.58} {0.09,0.92} {0.22,0.30} {0.36,0.00} {0.20,0.68}
os 0.005 0.0052 0.0050 0.0051 0.0046 0.0053 0.0047
(0.0040, 0.0066)  (0.0039, 0.0062)  (0.0042,0.0063)  (0.0036,0.0056)  (0.0040,0.0067)  (0.0037, 0.0061)
{0.15,0.92} {0.13,0.96} {0.13,0.92} {0.15,0.82} {0.15,0.92} {0.15,0.92}
o;  0.002 0.0017 0.0015 0.0020 0.0020 0.0017 0.0016
(0.0014,0.0020)  (0.0013,0.0019)  (0.0018,0.0023)  (0.0019,0.0024)  (0.0015,0.0020)  (0.0014,0.0019)
{0.17,0.48} {0.24,0.20} {0.08,0.90} {0.09,0.90} {0.16,0.50} {0.20,0.28}
On 2.0 2.04 2.13 2.01 1.96 2.04 1.73
51.88, 2.193L 51.94, 2.31%L 51.84, 2.16% 51.77, 2.14%L 51.88, 2.20%L 51.52, 1.91%L
0.06, 0.98 0.09,0.92 0.06, 0.98 0.06, 0.98 0.06, 0.98 0.15,0.78
Dy 0.5 0.35 42 .32 . .35 .32
: §0.21, 0.54% §0.27, 0.62% §0.17, 0.48% §0.27, 0.61% §0.22, 0.54% 50.17, 0.47%
0.36, 0.80 0.28,0.98 0.41,0.68 0.25,0.98 0.35,0.80 0.40,0.76
b)) 1.90 2.08 1.53 1.91 1.88 2.28

Table 4: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

Table 4shows the parameter estimates by specification (first cohmader) and the duration
of the ZLB (second column header). The percentage appeondsath specification header corre-
sponds to the size of the ME variances. Each cell includeatheage (first row),5, 95) percentiles
(second row)NRMSE (third row, first value), and the coverage ratio (third roegend value§.

Across all specifications, the Rotemberg price adjustmesit garametery,) has the highest
NRMSE and it becomes less accurate when the ZLB binds in the dataufWward bias is driven by
misspecification, since the small-scale model used fomesiton does not include sticky-wages. In
the small-scale model, the response of marginal costs ttksh® much larger than in the medium-
scale model, so the estimatesf are higher than the true value to flatten the Phillips curve.
Another inaccuracy is a downward bias in the estimates oit Ipglosistence /(). The response
of output growth to shocks is too small due to the lack of itmesnt in the small-scale model.
Lowering h increases the response to shocks, although at the expelweecofpersistence. Risk
premium persistencep() and the monetary response to the output growth ggpdlso have a
downward bias in the datasets without a ZLB event, buttRes much higher than the near-zero

8For conciseness, we focus on datasets without a ZLB eventhaise with a 30 quarter event, but the estimates
for the datasets with intermediate ZLB durations, as wethad.in-KF-0% estimates, are provided &ppendix E.2
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values forp, andh. Also, the bias op, and¢, decreases using datasets with a 30 quarter event.
The NL-PF5% estimates of the productivity growth and monetary policyahstandard devi-
ations ¢, ando;) are biased downward, while the OB-Bs estimates are roughly consistent with
their true values. In the datasets without a ZLB event, L+, produces identical estimates
to NL-PF5%, suggesting the bias is due to the positive ME variancesarfitter. The impor-
tance of the ME variances is likely driven by the filter asierplarge shocks to ME rather than the
structural shocks, reducing their estimated volatilitpwver, in datasets with a 30 quarter event,
NL-PF-5% is more likely to contain the true risk premium parametersahdo,) than OB-1F0%.
While the average estimates are similar, ¢He is 0.90 for p, with NL-PF-5%, compared td.78
with OB-IF-0%. Foro, theCRs are).96 with NL-PF-5% and0.82 with OB-IF-0%. This is notable
because these two parameters have the largest effect aetfuehcy and duration of ZLB events.
The bottom row otable 4shows the sum of thERMSE across the parameters. These values
provide an aggregate measure of parameter accuracy. lmtheeds that are not influenced by
the ZLB, OB-IF0% is more accurate than NL-P¥4. The results for Lin-KF5% show the lower
accuracy of NL-PF% is driven by positive ME variances and that the ZLB is the dmiportant
nonlinearity in the model. When the ZLB binds, it reduces dloeuracy of every specification,
largely due to a single parameter,.® Long ZLB events have the smallest effect on the accuracy
of NL-PF-5%. Datasets with a 30 quarter ZLB event reduce accurady. Ii/relative to datasets
without a ZLB event. For comparison, the accuracy decrdagess8 with OB-1F-0% and by0.30
with Lin-KF-0%. However, NL-PF5% is less accurate than OB-IF4 due to the positive ME
variances. In other words, NL-PF4 is the best equipped to handle ZLB events in the data, but the
loss in accuracy from the positive ME variances in the plarfiter may outweigh those benefits.

Misspecification The absence of sticky wages and other frictions from thegkatarating process
are important drivers of the parameter estimates in thelsoale model. Here we explore the
effect of misspecification on only the OB-IF estimates siadeing sticky wages substantially
increases the computational cost of NL-PF. The first two roolsi of table Srepeat the OB-IF-
0% estimates of the small-scale model, while the middle cokisimow the effect of reducing
misspecification on the OB-1B% estimates by including sticky wag&sThe right two columns
show the OB-IF% estimates using the medium-scale model that generatesatagaliminating
all misspecification except nonlinearities not capturedhsy OccBin solution. For the last two
cases, we fix the parameters that are not estimated in thé scas model to their true valués.

In datasets with a 30 quarter ZLB event, adding sticky wagdaces the sum of tiéRMSE

9Appendix E.3shows there is a small but similar decrease in accuracy dggwdien there is no misspecification.

10The equilibrium system is the same as the small-scale meregpt 43) and @4) are replaced with28), (32),
(40), and a real GDP definition that accounts for sticky wages, {i7" = [1—,(m; /7 —1)2 /2 — pu (wf —1)2 /2]7).

HAppendix E.Ifurther explores the estimated bias by reprodutadde 4with 0, andh fixed at their true values.
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Ptr  Truth OB-IF-0% OB-I1F-0%-Sticky Wages OB-IF-%-DGP

0Q 30Q 0Q 30Q 0Q 30Q
©p 100 142.6 183.4 100.1 129.8 101.4 128.4
(121.1,157.3) (169.2, 198.5) (76.9,119.6) (105.5, 152.3) (80.1,120.7) (109.0, 148.1)
{0.44,0.08} {0.84,0.00} {0.13,1.00¥ {0.33,0.58} {0.12,0.98Y {0.31,0.46}
h 0.8 0.64 0.63 0.82 0.80 0.81 0.77
(0.61,0.67) (0.60, 0.67) (0.78,0.86) (0.77,0.85) (0.75,0.85) 50.72, 0.84)
{0.20,0.00} {0.21,0.00} {0.04,0.82} {0.03,0.88} {0.04,1.00} 0.06,0.78}
Ds 0.8 0.76 0.82 0.82 0.84 0.80 0.82
0.73,0.81 0.79,0.86 0.76,0.86 0.80,0.88 0.76,0.85 0.79,0.86
fo.os, 0.82% fo 04, 0.78% f0.04, 0.90% fo 06,0 58% fo 03,0 96% Eo 04,0 80%
i 0.8 0.76 0.77 0.80 0.80 0.79 0.79
p EO 71, 0.79% EO 73, 0.81% 50.77, 0.83% 50.77, 0.84% 50.75, 0.82% 50.75, 0.83%
0.06, 0.52 0.05,0.66 0.02,0.98 0.03,0.92 0.03,0.98 0.03,0.92
o, 0.005 0.0051 0.0059 0.0038 0.0047 0.0047 0.0055
(0.0044, 0.0058)  (0.0050,0.0069)  (0.0031,0.0044)  (0.0039,0.0055)  (0.0039,0.0054)  (0.0047, 0.0066)
{0.09,0.92} {0.22,0.30} {0.24,0.16} {0.12,0.72} {0.11,0.78} {0.15,0.70}
os 0.005 0.0051 0.0046 0.0085 0.0074 0.0060 0.0051
(0.0042, 0.0063)  (0.0036,0.0056)  (0.0056,0.0134)  (0.0050,0.0107)  (0.0043,0.0084)  (0.0039, 0.0068)
{0.13,0.92} {0.15,0.82} {0.81,0.44} {0.60, 0.58} {0.30,0.88} {0.19,0.92}
o;  0.002 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.{0018, o.oois) (0.{0019, 0.00§4) (0.{0018, 0.00§2) (0.{0018, o.oois) (0.{0018, 0.00§2) (O.{0018, 0.00§4)
0.08,0.90 0.09,0.90 0.08, 0.84 0.08,0.92 0.08,0.92 0.09,0.88
o 2.0 . 1.96 1.91 1.81 1.92 1.81
1.84,2.16 1.77,2.14 1.74,2.04 1.63,1.99 1.72,2.08 1.62,2.03
fo.oe‘, 0.98% fo.oe‘, 0.98% fo.oz 1.00% fo.ll, 0.72% fo.oe‘, 1.00% 50.11, 0.70%
0.5 .32 0.44 0.40 .50 0.41 0.50
& Eo.n, 0.48% §0.27, 0.61% é0.24, 0.58% é0.33, 0.73% é0.24, 0.57% 50.32, 0.74%
0.41,0.68 0.25,0.98 0.28,0.96 0.23,0.98 0.26,0.96 0.24,0.96
b)) 1.53 1.91 1.71 1.59 1.03 1.23

Table 5: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

from 1.91 to 1.59. That is a clear improvement over NL-P&% and is driven by more accurate
estimates ofp, andh that dominate the lower accuracy ®f. TheCR for ¢, andh also signifi-
cantly increases. This is consistent with the claim thatdilas ofy, andh in table 4is primarily
due to the lack of sticky wages, which destabilize marginatg and inflation. The amplification
of shocks still remains too low, now for both inflation and mutt which leads to an upward bias
in o, rather than a downward bias in TheNRMSE for o, is much higher and th€R declines.
Making the estimated model consistent with the DGP imprakiegparameter estimates even
further. The sum of th&/RMSE declinesl.59 to 1.23 when the ZLB binds for 30 quarters. The
primary reason is becauseg is closer to its true value. TRERMSE in o is significantly lower
and theCR is much higher. Also, all of the true parameter values arempassed by thé, 95)
percentiles of the estimates, except the estimate,dfas a large upward bias in the 30 quarter
datasets. This indicates the increase in the bigs af the ZLB duration increases is solely driven
by sample selection, not model misspecification. Overall,results suggest it is more beneficial
to reduce misspecification and estimate a richer model wBhIF©Othan a smaller model with
NL-PF. Nonlinear methods more accurately capture the dyssai the ZLB, but computational
limitations often require excluding important featureshod model, like sticky wages and capital.
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Ptr  Truth NL-PF-2 NL-PF-5% NL-PF-10%

0Q 30Q 0Q 30Q 0Q 30Q
©p 100 150.2 192.0 151.1 188.4 149.5 182.7
(133.5,165.3) (176.5,207.1) (134.2,165.8) (174.7,202.7) (132.6, 163.8) (168.6, 197.3)
{0.51,0.02} {0.93,0.00} {0.52,0.02} {0.89,0.00} {0.50,0.02} {0.83,0.02}
h 0.8 0.66 0.67 0.66 0.68 0.66 0.68
(0.62,0.69) (0.64,0.71) (0.62,0.70) (0.64,0.71) (0.61,0.70) 50.65, 0.72)
{0.18,0.00} {0.17,0.00} {0.18,0.00} {0.16,0.00} {0.17,0.00} 0.15,0.00}
Ds 0.8 0.76 0.81 0.76 0.81 0.76 0.81
0.71,0.79 0.78,0.84 0.72,0.80 0.78,0.84 0.72,0.79 0.79,0.85
50.06, 0.60% 50.03, 0.92% fo 06,0 70% fo 03,0 90% fo 06,0 76% Eo 03,0 88%
Di 0.8 0.77 0.79 0.79 0.80 0.80 0.81
0.73,0.80 0.75,0.83 0.75,0.82 0.75,0.84 0.77,0.84 0.76,0.85
50.05, 0.76%» 50.03, 0.96%» 50.03, 0.96%» 50.03, 0.96%» 50.03, 0.96%» 50.03, 0.94%»
o, 0.005 0.0038 0.0043 0.0032 0.0040 0.0027 0.0038
(0.0031,0.0043)  (0.0035,0.0052)  (0.0023,0.0039)  (0.0030,0.0052)  (0.0020,0.0035)  (0.0025, 0.0050)
{0.25,0.16} {0.18,0.60} {0.37,0.00} {0.23,0.58} {0.46,0.00} {0.28,0.62}
os 0.005 0.0052 0.0051 0.0052 0.0050 0.0051 0.0049
(0.0039, 0.0065)  (0.0040,0.0061)  (0.0040, 0.0066)  (0.0039,0.0062)  (0.0041,0.0065)  (0.0037,0.0061)
{0.15,0.88} {0.13,0.92} {0.15,0.92} {0.13,0.96} {0.14,0.94} {0.14,0.92}
o; 0.002 0.0019 0.0018 0.0017 0.0015 0.0015 0.0013
(0.0017,0.0021)  (0.0016,0.0021)  (0.0014,0.0020)  (0.0013,0.0019)  (0.0012,0.0018)  (0.0011,0.0017)
{0.10,0.70} {0.14,0.62} {0.17,0.48} {0.24,0.20} {0.25,0.28} {0.34,0.12}
On 2.0 2.01 2.14 2.04 2.13 2.06 2.12
51.847 2.163l 51.96, 2.31%l 51.88, 2.193l 51.94, 2.31%l 51.89, 2.21%l 51.92, 2.283l
0.06, 0.98 0.09,0.90 0.06, 0.98 0.09,0.92 0.07,0.98 0.08,0.96
Dy 0.5 31 0.39 .35 42 41 .46
: Eo.m, 0.48% §0.24, 0.60% §0.21, 0.54% éo.zz 0.62% é0.26, 0.59% 50.30, 0.66%
0.42,0.64 0.32,0.92 0.36, 0.80 0.28,0.98 0.27,0.98 0.24,1.00
b)) 1.79 2.01 1.90 2.08 1.95 2.13

Table 6: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

ME Variances Table 6shows the parameter estimates & RRIMSEs for NL-PF with three dif-
ferent ME variances2%, 5% (baseline), and0%. Without model misspecification, lowering the
ME variances would increase the accuracy of the paramdieratss as long as the effective sam-
ple of particles is large enough. In our setup, the preseho@sspecification creates a potential
tradeoff. On the one hand, lower ME variances force the mimdalatch sharp swings in the data,
which could help identify the parameters. On the other hhigther ME variances give the model a
degree of freedom to account for important differences betwhe estimated model and the DGP.
We find higher ME variances increase the sum of i&MSE. In datasets with 30 quarter
ZLB events, it increases from01 to 2.13 when the ME variances increase fr@¥ to 10%. For
o. ando;, higher ME variances push the estimates lower, away froimtiue values. Once again,
this result is likely driven by the filter incorrectly asarlg movements in the data to ME rather
than the structural shocks. This loss in accuracy as the Mianges increase is partially offset
by the increase in the accuracy of most other parameterém&ist of¢, with all datasets and
estimates o, with datasets where the ZLB binds for 30 quarters improvertbst. These results
show that ME variances are important for accuracy. In sorses;ahey may compensate for model
misspecification. In our setup, however, larger ME variaria/e a net negative effect on accuracy.
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4.2 NOTIONAL INTERESTRATE ESTIMATES We measure the accuracy of the notional rate by
calculating the average MSE across periods when the ZLB binds. For perioahd estimation
methodh, the error is the difference between the filtered notiontd tmsed on the parameter
estimates for datasét i}, ,, and the true notional ratg;. The RMSE for methodn is given by

RMSE!" = 1 Zivﬂ Zﬁii_l(i?hk — )%

wheret is the first period the ZLB binds andis the duration of the ZLB event. There is no reason
to normalize thdR MSE since the units are the same across periods and we do not soss atates.
Estimates of the notional interest rate are of keen intdcegblicymakers for two key rea-
sons. One, they summarize the severity of the recessiorhambiminal interest rate policymakers
would like to set in the absence of the ZLB, which help inforetidions about implementing un-
conventional monetary policy. Two, estimates of the natlaate help determine how long the
ZLB is expected to bind, which is necessary to issue forwandance. The notional rate is also
the only latent endogenous state variable in the modelshadtidirectly linked to an observable.

1.75
| NL-PF-2% [N NL-PF-5% [ NL-PF-10% [ |OB-IF-0% |

1.5+ 1.46 141 1

130 1.32 1.36 ]

1.26 1.27 1.29

1.25

1.19

1.15

0.75
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0.25

6Q 12Q 18Q 24Q 30Q

Figure 1:RMSE of the notional interest rate across ZLB durations in tha dRates are net annualized percentages.

Figure 1shows the accuracy of the notional rate for our baseline ogstiNL-PF5% and OB-
IF-0%. We also show the how different ME variances in the partidlerfaffect accuracy. We do
not present the results for Lin-KF because they are unirdtis®. Since the linear model does not
distinguish between the notional and nominal rates anddh@&mal rate is an observable, the error
in the linear model equals the absolute value of the noti@atalwhen the ZLB binds in the data.

Regardless of the ZLB duration, NL-PF% provides more accurate estimates of the notional
rate than OB-IR3%. Depending on the ZLB duration, the average difference éebnthe two
methods ranges fror.1 to 0.25 annualized percentage point&ppendix E.5shows the RMSE
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is higher with OB-IF6% because the estimate of the notional rate is more likely tabdme the
true value. Nevertheless, the differences in the estinsatesot big enough to have a meaningful
impact on policy prescriptions. Increasing or decreadiegME variances also has a modest effect.

4.3 EXPECTEDZLB DURATION AND PROBABILITY In addition to estimates of the notional in-
terest rate, two commonly referenced statistics in thedlitee are the expected duration and prob-
ability of the ZLB constraint. These statistics determihe impact of a ZLB event in the model
and are frequently measured against survey dataire 2shows the accuracy of the two statistics.

(a) Estimated vs. Actual Expected ZLB Durations
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Figure 2: Estimated and actual ZLB statistics. The soliddimre mean estimates and the shaded areas capture the
(5,95) percentiles across the datasets. The dashed line shows thkeerstimated values would equal the actual values.

The top panel compares the expected ZLB durations givendraenpeter estimates from the
small-scale model to the actual expected ZLB durations fiteerDGP given the true parameters.
The expected ZLB durations are computed as the averagesa6r680 simulations of a model ini-
tialized at the filtered states (or actual states for the D@re the ZLB binds. The solid lines are
the mean expected ZLB durations in the small-scale model péioling across the different ZLB
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states and datasets. The shaded areas af@,i®) percentiles of the durations. The estimated
expected ZLB duration equals the actual expected ZLB canrationg the dashed 45 degree line.

When the actual expected ZLB duration is relatively showt, NL-PF5% and OB-IFO% ex-
pected ZLB durations are close to the truth. As the actuatebgal duration lengthens, both es-
timates become less accurate. The NL&#F95th percentile continues to encompass the actual
expected durations. However, once the actual value excaedgiarters, there is 6% chance
or higher of under-estimating the actual expected duratitim OB-1F-0%. Furthermore, the OB-
IF-0% mean expected duration is typically at least one quarterteshthan the NL-PF% mean
estimate'? These results are likely driven by model misspecificatisrtha presence of capital and
sticky wages in the DGP makes the ZLB more persistent thameiestimated small-scale model.

The Lin-KF0% estimated ZLB durations are always significantly shortaceithat method
does not permit a negative notional rate when filtering thia.d&'he only instance when Lin-
KF-0% produces an expected ZLB duration beyond one year is wheecthrgomy is in a severe
downturn and the actual expected duration is extremely.|®hg Lin-KF-0% estimates are a lower
bound on the OB-IB% estimates since the solutions are identical when the ZLB doébind.

The bottom panel is constructed in a similar way as the tolpaxcept the horizontal and
vertical axes correspond to the actual and estimated pildppadf a ZLB event that lasts for at
least four quarters. The probability is calculated in alipgs where the ZLB does not bind in the
data. We do not show the results for Lin-KI% because the probability of a four quarter ZLB event
is always near zero. NL-P§% and OB-IF9% underestimate the true probability, but the mean
NL-PF-5% estimates are slightly closer to the actual probabilities the95th percentile almost
encompasses the truth. Changing the ME variances in thiglpdiiter has no discernable effect
on the estimates. These results illustrate the precauyicaaings effects of the ZLB, which are
not captured by OB-IBY%. However, they do not provide overwhelming support for NE-F%.

4.4 ReCESSIONRESPONSES To illustrate the economic implications of the differencesc-
curacy, we compare simulations of the small-scale mode@rgour parameter estimates to simu-
lations of the DGP given the true parameters. The simulatéoe initialized in steady state and
followed by four consecutivé.5 standard deviation positive risk premium shocks, whichegates
a10 quarter ZLB event in the DGP.A risk premium shock is a proxy for a change in demand be-
cause it affects households’ consumption and saving decsiPositive shocks cause households
to postpone consumption, which reduces current outputthrowe focus on this particular shock
because it is the primary mechanism for generating ZLB evarthe DGP and estimated modél.

2Prior to instituting date-based forward guidance in 201tLeBChip consensus forecasts revealed that people
expected the ZLB to bind for three quarters or less. Afteftineard guidance, the expectation rose to seven quarters.

13The simulations are reflective of the Great Recession. TheruCongressional Budget Office estimate of the
output gap in 2009Q2 is'5.9%, roughly equivalent to the output (level) gap in the truewdation in the fourth period.

“Appendix E.4shows impulse responses to a productivity growth and mopptdicy shock in a severe recession.
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Figure 3: Recession responses. The solid line is the truglafion, the dashed line is the mean estimated simulation,

and the shaded area contains (Bg95) percentiles across the datasets. The simulations aralirgiil in steady state
and followed by foun.5 standard deviation positive risk premium shocks. All valaee net annualized percentages.

Figure 3shows the simulated paths of the output growth gap, inflatitey and notional interest
rate in annualized net percentages. The NL5PFsimulations are shown in the left column and
the OB-IF0% simulations are in the right column. The true simulationtef DGP (solid line) is
compared to the mean estimated simulation of the smaléseatlel (dashed line). Té, 95) per-
centiles account for differences in the simulations actbegparameter estimates for each dataset.

Model misspecification leads to significantly muted respsnelative to the true simulatidf.
None of the estimated simulations for NL-BF or OB-IF-0% can replicate the size of the neg-
ative output growth gap, decline in inflation, or policy reape at the beginning of the true simu-

5Appendix E.3eproduces the responses without misspecification to coitfis the source of the muted responses.
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lation. Both estimation methods also underestimate thatdur of the ZLB event. However, the
NL-PF-5% mean simulations of the three variables and the ZLB duraiencloser to the truth

than the OB-IF3% simulations. Unlike OccBin, the fully nonlinear solutioaptures the expec-

tational effects of going to the ZLB, which puts downwardgs@e on output and inflation and
improves accuracy. Although NL-P5% is closer to the truth than OB-16%, once again these
differences are fairly small and may not justify the sigrafidy longer estimation time.

4.5 FORECASTPERFORMANCE Anotherimportant aspect of any model is its ability to fasic
We examine the forecasting performance of each estimatithad in the quarter immediately
preceding a severe recession that causes the ZLB to bindodiheforecasts are inaccurate since
severe recessions are rare. However, there are potemtigdtyrtant differences between the fore-
cast distributions, which assign probabilities to the mnfpotential outcomes in a given period.
The tails of the distribution are particularly importanto fheasure the accuracy of the forecast
distribution of variablej, we compute the continuous rank probability sc@ar& PS) given by

CRPSka,tﬂ— = fftot: [Fm,k’,t(jt-‘r’r)]2djt+7' + fji-r[l - Fm,k,t(jt-i—T)det-l—Ta

wherem indicates whether the forecast distribution comes fronx@® or an estimated modéi,
is the dataset,is the forecast datéy,, ;. : (j.+-) iS the cumulative distribution function (CDF) of the
T-quarter ahead forecast, apd. is the true realization. ThERPS measures the accuracy of the
forecast distribution by penalizing probabilities asgdiio outcomes that are not realized. It also
has the same units as the forecasted variables, which aperentages, and reduces to the mean
absolute error if the forecast is deterministic. A small&PS indicates a more accurate forec#st.
For each dataset, we calculat€BPS for the small-scale model given the parameter estimates
and the medium-scale model that generates the data. Toxamate the forecast distribution for
a given model, we first initialize the forecasts at the filteséate (or actual state for the DGP) one
qguarter before the ZLB binds in the data. Then we draw randuocks and simulate the model
for 8 quarters]0,000 times. Using the simulations, we approximate the CDF of thedast dis-
tribution 8-quarters ahedd.Finally, we average th€RPS for a given model across the datasets.
Figure 4shows the mea@RPS across the datasets for the DGP and each estimation method.
The horizontal axis denotes the ZLB duration in the data. @uaodel misspecification, none of
the estimation methods perform as well as the DGP. The DGRtHasast &.5 percentage point
advantage over the estimated models, regardless of theakiezl variable or ZLB duration in the
data. Interestingly, th€RPS is similar across the estimation methods. The differencesrest
pronounced for the nominal interest rate forecasts in dtgaghere the ZLB binds for 30 quarters.

16Appendix Dshows the CDF for a specific dataset to illustrate what eachepresents in th€RPS calculation.
1"\We obtain similar results with a four quarter forecast hamizas well as with th®MSE of the point forecast.
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Figure 4: MearCRPS of 8-quarter ahead forecasts. Forecasts are made onerchefdee the ZLB binds in the data.

The NL-PF5% CRPS is only 179% of the DGPCRPS, compared ta99% for OB-IF-0% and
211% for Lin-KF-0%. The NL-PF5% forecasts of the inflation rate are also consistently more
accurate than the other estimation methods. However, taabs the differences in accuracy are
small relative to the DGP. These findings are consistent aithprevious results. NL-PE% has
an advantage over OB-16%, but it is small and may not be worth the added computationstisc

5 CONCLUSION

During the Great Recession, many central banks lowered ploéicy rate to its ZLB, creating a
kink in the policy rule and calling into question linear eséition methods. There are two promising
alternatives: estimate a fully nonlinear model that act®tor the expectational effects of going to
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the ZLB or a piecewise linear model that is faster but igntinesexpectational effects. This paper
compares the accuracy of the two methods. We find the predgtf the nonlinear model are
typically more accurate than the piecewise linear modélthmidifferences are often small. There
are far larger gains in accuracy from estimating a riches haisspecified piecewise linear model.
Our results suggest that researchers are better off usaug\ise linear models rather than
a simpler but properly solved nonlinear model when exangiine empirical implications of the
ZLB constraint. However, it is important to caution thatther research is needed to examine
whether our findings in the ZLB context are generalizabletb@osettings. It is also important to
emphasize that the nonlinear model is considerably mosatitr. While the piecewise linear and
nonlinear models can handle any combination of occasipialding constraints, only the non-
linear model can account for other nonlinear features esipéd in the literature (e.g., stochastic
volatility, asymmetric adjustment costs, non-Gaussiarcks, search frictions, time-varying pol-
icy rules, changes in steady states). Our results will sesv@n important starting point for future
research that explores these nonlinear features or makas@as in nonlinear estimation methods.
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A DETRENDEDEQUILIBRIUM SYSTEM
Medium-Scale Model The detrended system includds,((6), (7), (9), (16), (17) and

a, 1l—a

Y = (Ut];?t—l/zt) ny
Tf = Oémctztgt/(vt/;?t—l)a
Wy = (1 — a)megge/na,
w{ = mzpy ) (T2W0e—1),
HY = 1= gp(m/7 = 1)°/2 = pulw] = 1)*/2]§ — uki—1/,
vl = =i ) ™),
A =& — héi_1/z,
12){ = Xn?:\t,
Ct + Tt = Y,
r) = 2% )(ZT4-1),
o = (1= 8)(ke—1/2) + (1 — v(af — 1)%/2),
1= BE[(A/Ng1) (seit/ (zer1mi41))],
@ = BE((Ne/ X)) (rfp1vesn — wpgn + (1= 8)quan) /2041),

L=q[l—v(@!—1)%/2—v(={ - Daf] + 5V2Et[%+1(:\t/:\t+1)($§+1)2($tg+1 —1)/z41],
(/T — 1)( /) = 1 = O + Opmcy + Bop Er[(Ae/ A1) (meg1 /7 — 1) (meg1 /7) (g1 /5],
pw(w! — Dwf = [(1 — 0u) 0 + 0] 104/t + Bow Bl (M /M) (Wl — Dl (Ges1/52)).

The variables aré, n, &, k. §, 9%, u, v, w9, 29, y9, @', @, r*, 7, ,i", ¢, me, X, z, ands.
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Small-Scale Model The detrended system includds,((7), (16), (17), (30), (31), (36), (39), and

Yr = ng,
Wy = megle /N,
B = [1— oplme/7 —1)% /2,
Wy = xny i,
~ ~gdp'

Ct = Yi

The variables aré, n, §. 9%, 49, . 7.4, i", me, \, z, ands.
) 7y7y 7y ) M ) M ) M )

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear eguilm system as
E[f(St41,5t, €t41) |2, 0] = 0,
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wheref is a vector-valued functior, is a vector of variables;; = [es 4, €.+, €:4) IS @ vector of
shocksg; is a vector of statex{ = [¢;_1, i} 4, K1, Fp1, W1, St 2, e;) for the model with cap-
ital andz; = [¢;—1, 4} 4, st, 21, ;4] for the model without capital), andlis a vector of parameters.

There are many ways to discretize the exogenous state kewjay z;, ande; ;. We use the
Markov chain in Rouwenhorst (1995), which Kopecky and Su1.0) show outperforms other
methods for approximating autoregressive processes. dteds onc,_,, i} 4, ki1, 71, and
w1 are respectively set t&2.5%, +6%, +£8%, +15%, +4% of their deterministic steady state.
These bounds were chosen so the grids co®@its of the simulated values for each state vari-
able and ZLB duration. We discretize the states ihvenly-spaced points, except for capital
and the risk premium which uséd and13 points, respectively. The product of the points in each
dimension,D, represents the total nodes in the state spare-(16,823,807 for the model with
capital andD = 31,213 for the model without capital). The realizationffon noded is denoted
z:(d). The Rouwenhorst method provides integration no@les; (m), z:+1(m), € ++1(m)], with
weights,p(m), form € {1,..., M }. Since the exogenous variables evolve according to a Markov
chain, the number of future realizations is the same as #te gariables(13,7,7) or M = 637.

The vector of policy functions is denotgd, and the realization on nodegis denotedbf,(d)
(pf, = [Ci(ze), TP (21), ni(2Z1), @:(21), v1(2)] fOr the capital model angf, = [¢:(z;), 7/’ (z;)] for
the model without capital, where’**(z;) = m,(z,)/7). Our choice of policy functions, while not
unique, simplifies solving for the other variables in the ln@ar system of equations given

The following steps outline our global policy function iéion algorithm:

1. Use Sims’s (200)ensys algorithm to solve the level-linear model without the ZLBneo
straint. Then map the solution to the discretized stateesfmainitialize the policy functions.

2. Oniterationy € {1,2,...} and each nodé € {1, ..., D}, use Chris Sims’ssol ve to find
pf,(d) to satisfyE[f(-)|z,(d), V] ~ 0. Guesf,(d) = pf,_,(d). Then apply the following:
(a) Solve for all variables dated at timegivenpf,(d) andz;(d).

(b) Linearly interpolate the policy functionsf;_,, at the updated state variables, (),
to obtainpf, ., (m) on every integration nodey € {1,..., M}.

(c) Given{pf, ,(m)}_,, solve for the other elements sf. ; (m) and compute

m=1"
E[f (st+1,50(d), £01)|20(d), 0] & 30y 6(m) f(s1(m), 50(d), €11(m)).
Whencsol ve converges, saif;(d) = pf,(d).

3. Repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{|pf; — pf;_,|}. When that
criterion is satisfied, the algorithm has converged to amapmate nonlinear solution.
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C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to esténthe model irsection 3with
artificial data of120 quarters. To measure how well the model fits the data, we tiseraghe
adapted particle filter described in Algorithm 14 in Herbsd &chorfheide (2016), which modifies
the basic bootstrap filter in Stewart and McCarty (1992) anct@n et al. (1993) to better account
for the outliers in the data, or the inversion filter recentbed by Guerrieri and lacoviello (2017).

C.1 METROPOLISHASTINGS ALGORITHM The following steps outline the algorithm:

1. Generate artificial data consisting of the output grovéth, ghe inflation rate, and the nomi-
nal interest ratex; = [y/, m, i/, whereN, = 3 is the number of observable variables.

2. Specify the prior distributions, means, variances, anthids of each element of the vector
of N, estimated paramete= [¢,, ¢r, ¢y, h, ps, pi, 02,05, 0:]'.

3. Find the posterior mode to initialize the preliminary kigtolis-Hastings step.

(@) Foralli € {1,..., N,,}, whereN,, = 5,000, apply the following steps:

i. Draw 6; from the joint prior distribution and calculate its densiglue:
log (27" = S~ log p(0; 4 15, 02),

wherep is the prior density function of parametewith meany.; and variancerj?.

i. Solve the model giverd;. Follow Appendix Bfor the nonlinear model and use
OccBin for the PW linear model. Repeat 3(a)i if the algorithoes not converge.

iii. Obtain the model log-likelihoodlog (74!, Apply the particle filter described in
section C.2o the nonlinear model and the inversion filter to the PW lineadel.

iv. The posterior log-likelihood i&og (7" = log (7" + log (0%

(b) Calculatemax(log 2°*, ... log 6’}%) and find the corresponding parameter vedr,

4. Approximate the covariance matrix for the joint postedistribution of the parameters,,
which is used to obtain candidate draws during the prelimiMetropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. 8tdw®e N,, .., = (1 — p) N,
draws in aN,,, .., X N, matrix,©, and defing® = © — S §, . /N,., ..

(b) Calculatex = ©'6 /Num.sup @nd verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hags algorithm.
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(@) Foralli € {0,..., Ny}, whereN, = 25,000, perform the following steps:

i. Draw a candidate vector of parametgis?, where

N(éo,COZ) fori = 0,

N(#;_1,¢3) fori > 0.

92’ cand ~

We setcy = 0 and tune to target an overall acceptance rate of roughlyt.
ii. Calculate the prior density valulyg (*"", of the candidate draw""?, as in 3(a)i.
iii. Solve the model giveréf“"d. If the algorithm does not converge repeat 5(a)i.
iv. Obtain the model log-likelihood valugyg /°%!, using the methods in 3(a)iii.

v. Accept or reject the candidate draw according to

(Beamd log feand) if § = 0,
(6:,1og £;) = { (Beamd log ¢5and) if min(L, 65974 /0, ) > 4,

A~

(0;—1,10g ;1) otherwise

wherew is a draw from a uniform distributionlJ[0, 1], and the posterior log-
likelihood associated with the candidate drawois(¢*? = log (7" 4 log (%!,

(b) Burn the firstlV, = 5,000 draws and use the remaining sample to calculate the mean

draw,6°® = S°¥4 . 0;/(Ny— Ny), and the covariance matrix’®. We follow step

4 to calculate=®® but use allV, — N, draws instead of just the uppgth percentile.

6. Conduct a final run of the Metropolis-Hastings algorithyrépeating step 5, wher¥,; =
50,000, 6, = 65", andy; = 35®), The final posterior mean estimates ére " 6;/N,.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition of; from Appendix Bis referred
to as the state vector, which should not be confused withtétte gariables for the nonlinear model.

1. Initialize the filter by drawind e, ,}?__,, forall p € {0, ..., N,} and simulating the model,
whereN, is the number of particles. We initialize the filter with thedi state vectos, ,,,

which is approximately a draw from the model’s ergodic dbsttion. We setV,, = 40,000.
2. Fort € {1,...,T}, sequentially filter the nonlinear model as follows:

(@) Forp € {1,...,N,}, draw shocks from an adapted distributien, ~ N(&;, I'), where
&, maximizesp(&;|s;)p(s¢|8;—1) ands,_; = E;V:”l st—1,/ N, is the mean state vector.

i. Use the model solution to update the state vesiogivens;_; and a guess faf;.
Defines} = Hs;, whereH selects the observable variables from the state vector.
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ii. Calculate the measurement errgr= s} —x;, which is assumed to be multivariate
normally distributedp(&|s;) = (27)%2|R|~/? exp(—& R71¢,/2), whereR =

diag(c?, 4,02, .02 ;) is a diagonal matrix of measurement error variances.

me,y9’ Y me,m ¥ me,i

iii. The probability of observing the current stasg, conditional ors;_1, is given by
p(si|si—1) = (2m) 732 exp(—2]5,/2).

iv. Maximizep(&|s;)p(si|si_1) o< exp(—&R™¢,/2) exp(—£,&;/2) by solving for the
optimalz;. We use MATLAB'’sf m nsear ch routine converted to Fortran.
(b) Use the model solution to predict the state veetgy, givens,_; , ande; .
(c) Calculatet,;, = sﬁp — x;. The unnormalized weight on partiglas given by

_ P(&ilStp)P(StplSt-1p) eXp(—fé’pR_1€t7p/2) eXp(_gi,pgt,p/m
tp — 0.8 —; — .
9(StplSt—1,p,Xt) exp(—(etp — &)/ (Erp — €1)/2)

Without adaptations; = 0 andw;, = p(&]s:,), @s in a basic bootstrap particle filter.
The time¢ contribution to the model log-likelinood &% = Y™™ w, /N,

(d) Normalize the weightd}; , = w;,/ Z;V:Pl wgp. Then use systematic resampling with
replacement from the swarm of particles as described ingitea (1996) to get a set
of particles that represents the filter distribution andhuodite {st,p}j,vil accordingly.

3. The model log-likelihood igog (% = ST log £,

Aruoba et al. (2018) apply the same methodology to a New Kagnenodel with sunspot shocks.
See Herbst and Schorfheide (2016) for a comprehensivesdigcuof the different particle filters.

D CONTINUOUSRANK PROBABILITY SCORE(CRPS) EXAMPLE

Figure 5shows an example of the 8-quarter ahead forecast distribafithe nominal interest rate
given the parameter estimates from NL-FF- We picked a dataset where the ZLB binds for six
guarters, from perio@0 to 95 in the sample. The forecasts are initialized at the filtetatesn
period89, immediately before the ZLB first binds, and the forecastritistion is approximated
based o 0,000 simulations. Due to a strong tendency for the forecastsviert¢o the stochastic
steady state, the mean forecast for the nominal interestigat32%. However, the probability
density function (PDF) in the left panel shows a significamiber of forecasts remain near or at
the ZLB, even after 8 quarters. The true realization equal$’, which means there is signifi-
cant probability mass under the PDF above and below the alueev The right panel shows the
cumulative distribution function (CDF) of the forecasthiel’RPS for this dataset and estimation
method is closely related to the shaded area, which has tie saits as the forecasted variable.
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Figure 5: Example forecast distribution in the period befitee ZLB binds in the data.

E ADDITIONAL RESULTS

First, we examine the sources of the bias in the estimatdsedfdbit persistence and price adjust-
ment cost parameters. Second, we report the parameteagssifor datasets with ZLB events be-
tween 0 and 30 quarters long. Third, we show how misspedditaffects the parameter estimates
and impulse responses using generated data from our sca#limodel. Fourth, we plot impulse
responses to a productivity growth and monetary policy khwleen the ZLB binds. Fifth, we
compare the filtered paths of the notional interest ratethSixe provide additional statistics about
the ZLB events in our datasets. Finally, we examine how gowent spending affects our results.

E.1 RRICE ADJUSTMENT COST AND HABIT PERSISTENCE In table 4 estimates of the price
adjustment cost4,) and habit persistencé) parameters have some of the largeRIMSEs, even
in datasets without a ZLB event. These parameters areatiiticoutput and inflation dynamics, so
understanding the source of the bias is important for imé&tipg our results. The small-scale model
lacks important shock amplifiers for output, such as sticlg@s and variable capital utilization.
Therefore, the response of output growth is too small whemtbdel is parameterized with the true
values. Conversely, the lack of sticky wages means margosdt are overly volatile and inflation
is too sensitive to shocks. If misspecification impacteddsponses of output growth and inflation
in the same direction, the estimated shock size would hage affected. Instead, estimateshof
are lower than the true value, amplifying the response gfiuEstimates ap,, are biased upward,
flattening the price Phillips curve and stabilizing inflatidespite overly volatile marginal costs.
Another potentially important source of the bias is the pessfication in the aggregate re-
source constraint. Movements in wage adjustment costgataglization costs and other terms
could be interpreted as price adjustment costs throughgarastimate ofp,. However, that is
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unlikely to drive the bias in estimates ¢f andh. The NL-PF&5% and Lin-KF5% estimates of
v, andh are very similar, despite the absence of price adjustmests @0 the aggregate resource
constraint in the linear model (i.ej, = 4/ = ¢,). Therefore, the upward bias in, is not the
result of price adjustment costs absorbing the gap betwaeesuenption and output in the DGP.
The middle columns ofable 5 where only sticky wages are added to the small-scale model,
support these conclusions. In particular, in datasetsowith ZLB event, there is virtually no bias
in the OB-IF0% estimates ofy, andh, but there is a large upward biasd. When sticky wages
are added, the volatility of output growth is still too smdile to the absence of investment and
capital utilization, but the volatility of inflation is nowrpportionally too small as wellr, increases
to match the dynamics of the output and inflation data, whitdy, remain close to their true
values. In the right two columns tdible 5 the full model is estimated and is close to the truth.

Ptr  Truth NL-PF-%%, OB-IF-0% Lin-KF-5%
0Q 30Q 0Q 30Q 0Q 30Q
Ds 0.8 0.43 0.52 0. 0.44 0.43 0.55
Eo.sz 0.50% §0.40, 0.68% EO 31,0. 47% EO 26, 0. 71% EO 35, 0. 50% 50.40, 0.77§
0.47,0.00 0.37,0.04 0.52,0.00 0.48, 0.04 0.47,0.00 0.33,0.12
Di 0.8 0.74 0.75 0.69 0.68 0.74 0.79
0.69,0.78 0.71,0.81 0.65,0.73 0.62,0.73 0.70,0. 0.73,0.84
Eo.og, 0.26%» Eo 07, 0. 52% Eo 15,0. 00% Eo 16,0. 00% Eo 09, 0. 30% go 05, 0. 86%
o, 0.005 0.0052 0.0062 0.0086 0.0107 0.0053 0.0078
(0.0041,0.0067)  (0.0037,0.0134)  (0.0069, 0.0099)  (0.0071,0.0163)  (0.0041,0.0067)  (0.0042,0.0138)
{0.17,0.88} {0.54,0.82} {0.73,0.00} {1.28,0.00} {0.17,0.86} {0.83,0.44}
os 0.005 0.0166 0.0196 0.0183 0.0239 0.0169 0.0169
(0.0139,0.0212)  (0.0113,0.0261)  (0.0143,0.0230)  (0.0085,0.0355)  (0.0141,0.0216)  (0.0065, 0.0257)
{2.37,0.00} {3.04,0.12} {2.71,0.00} {4.15,0.04} {2.42,0.00} {2.59,0.12}
o; 0.002 0.0018 0.0016 0.0021 0.0021 0.0018 0.0017
(0.0015,0.0022)  (0.0014,0.0021)  (0.0019,0.0023)  (0.0019,0.0025)  (0.0015,0.0022)  (0.0015,0.0020)
{0.13,0.64} {0.21,0.38} {0.09,0.78} {0.11,0.78} {0.13,0.64} {0.16,0.44}
On 2.0 2.04 2.03 1.96 1.84 2.01 1.64
1.81,2.23 1.84,2.33 1.70,2.21 1.53,2.24 1.78,2.22 1.41,1.89
Eo.m, 0.96%» Eo.m, 0.90% Eo.os, 0.96%» §0.14, 0.80%» Eo 07,0. 98% go 19, 0. 44%
Dy 0.5 0.23 0.29 0.13 0.20 0.24 0.19
0.11,0.40 0.14,0.50 0.05, 0.22 0.05,0.35 0.11,0.41 0.08,0.36
§0.56,0.32%» Eo 49.0. 54% §0.75,0.02% §0.65,0.10% Eo 56.0. 30% go 64, 0. 18%»
> 3.86 4.80 5.02 6.96 3.91 8

Table 7: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

Lastly, we fixedy, andh to their true values and re-estimated each specificatitable 7
reports the results, which show how other parameters adjugiarticular,o, is now3 to 4 times
higher than its true value and drops to roughly half of its true value. TR&RMSEs for o, are
by far the largest of any parameter and ths are all neaf. In this exerciseh cannot fall to
compensate for the missing frictions, so the size of thepigknium shocks must increase. This
effect, in addition to not allowing, to increase to compensate for the lack of sticky wages, egluc
too much inflation volatility. Therefore, the estimate akipremium persistenceg,, falls. Unlike
its shock size, its persistence affects the inflation respamore than the output growth response.
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Ptr  Truth 0Q 6Q 12Q 18Q 24Q 30Q
NL-PF-5%
©p 100 151.1 161.0 172.1 180.6 187.2 188.4
(134.2,165.8) (143.2,179.3) (153.8,193.4) (161.3,201.4) (167.0,204.5) (174.7,202.7)
{0.52,0.02} {0.62,0.00} {0.73,0.00} {0.81,0.18} {0.88,0.00} {0.89,0.00}
h 0.8 0.66 0.66 0.67 0.67 0.68 0.68
0.62,0.70 0.61,0.71 0.62,0.71 0.63,0.71 0.64,0.72 0.64,0.71
§0.18, 0.00%» §0.17, 0.00%» <§0.17, 0.00% §0.16, 0.00% §0.15, 0.00% «go 16, 0.00%
s 0.8 0.76 0.77 0.79 0.80 0.81 0.81
p (0.72, 0.80) (0.74,0.81) (0.75,0.82) (0.77,0.84) (0.78,0.83) (0.78,0.84)
{0.06,0.70} {0.04,0.86} {0.03,0.98} {0.03,0.92} {0.02,0.96} {0.03,0.90}
i 0.8 0.79 0.79 0.79 0.80 0.80 0.80
p 50.75, 0.822L 50.75, 0.822L 50.77, 0.82% EO 76, 0.83% 50.76, 0.84% EO 75, 0.84%
0.03,0.96 0.04, 0.90 0.02,1.00 0.03,0.94 0.03,0.94 0.03,0.96
o, 0.0050 0.0032 0.0032 0.0034 0.0037 0.0038 0.0040
(0.0023,0.0039)  (0.0023,0.0041)  (0.0024,0.0044)  (0.0027,0.0049)  (0.0027,0.0047)  (0.0030, 0.0052)
{0.37,0.00} {0.38,0.08} {0.34,0.18} {0.29,0.38} {0.28,0.46} {0.23,0.58}
os 0.0050 0.0052 0.0052 0.0051 0.0051 0.0050 0.0050
(0.0040, 0.0066)  (0.0042, 0.0068)  (0.0040,0.0060)  (0.0034,0.0064)  (0.0041,0.0064)  (0.0039, 0.0062)
{0.15,0.92} {0.15,0.92} {0.13,0.98} {0.18,0.86} {0.12,1.00} {0.13,0.96}
o; 0.0020 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015
(0.0014,0.0020)  (0.0014,0.0019)  (0.0014,0.0019)  (0.0013,0.0019)  (0.0013,0.0018)  (0.0013, 0.0019)
{0.17,0.48} {0.18,0.40} {0.21,0.30} {0.24,0.26} {0.25,0.20} {0.24,0.20}
- 2.0 2.04 2.06 2.12 2.13 2.10 2.13
¢ (1.88,2.19) (1.87,2.24) (1.94,2.33) (1.90,2.41) (1.84,2.33) (1.94,2.31)
{0.06,0.98} {0.07,0.96} {0.08,0.92} {0.10,0.94} {0.09,0.90} {0.09,0.92}
Dy 0.5 0.35 0.39 0.41 0.40 0.41 0.42
0.21,0.54 0.22,0.61 0.27,0.60 0.26,0.54 0.26,0.61 0.27,0.62
Eo 36,0 8021 Eo 31,0 92% Eo 27,1 ooi Eo 27,0 92% Eo 27,0 98%» Eo 28,0 98%»
b)) 1.90 1.96 1.99 2.12 2.09 2.08
OB-IF-0%
©p 100 142.6 152.5 164.5 174.7 183.1 183.4
(121.1,157.3) (131.3,170.7) (140.8, 185.5) (153.9, 202.0) (165.3,204.1) (169.2,198.5)
{0.44,0.08} {0.54,0.02} {0.66,0.00} {0.76,0.00} {0.84,0.00} {0.84,0.00}
h 0.8 0.64 0.64 0.63 0.63 0.63 0.63
§0.61, 0.67% §0.61, 0.68% §0.60, 0.67% §0.61, 0.67% §0.59, 0.67% §0.60, 0.67%
0.20,0.00 0.20,0.00 0.21,0.00 0.21,0.00 0.21,0.00 0.21,0.00
s 0.8 0.76 0.77 0.80 0.81 0.82 0.82
p (0.73,0.81) (0.73,0.81) (0.76,0.83) (0.78,0.85) (0.80, 0.85) (0.79, 0.86)
{0.05,0.82} {0.04,0.92} {0.03,0.96} {0.03,0.86} {0.03,0.76} {0.04,0.78}
i 0.8 0.76 0.75 0.76 0.76 0.76 0.77
p 0.71,0.79 0.71,0.80 0.73,0.79 0.68,0.80 0.72,0.81 0.73,0.81
Eo.oa, 0.52% 50.07, 0.50% Eo 06,0 54% Eo 06,0 58%» Eo.oa, 0 58%» Eo.os, 0 66%»
o, 0.0050 0.0051 0.0053 0.0056 0.0059 0.0060 0.0059
(0.0044,0.0058)  (0.0048,0.0068)  (0.0047,0.0066)  (0.0051,0.0079)  (0.0051,0.0074)  (0.0050, 0.0069)
{0.09, 0.92} {0.13,0.82} {0.19,0.60} {0.24,0.54} {0.25,0.46} {0.22,0.30}
os  0.0050 0.0051 0.0051 0.0048 0.0047 0.0045 0.0046
(0.0042,0.0063)  (0.0041,0.0063)  (0.0039,0.0058)  (0.0031,0.0058)  (0.0037,0.0053)  (0.0036, 0.0056)
{0.13,0.92} {0.14,0.96} {0.13,0.90} {0.18,0.76} {0.15,0.80} {0.15,0.82}
o; 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.0018,0.0023)  (0.0018,0.0023)  (0.0018,0.0022)  (0.0018,0.0024)  (0.0018,0.0023)  (0.0019, 0.0024)
{0.08,0.90} {0.07,0.90} {0.07,0.98} {0.09,0.82} {0.08,0.88} {0.09,0.90}
- 2.0 2.01 1.96 1.99 1.97 1.94 1.96
¢ 1.84,2.16 1.77,2.16 1.78,2.16 1.73,2.23 1.69,2.19 1.77,2.14
Eo.oa, 0.98% 50.07, 0.98% Eo.oa, 0.98%» Eo 08, 0.96%» Eo 08, 0.90%» Eo 06, 0.98%
Oy 0.5 0.32 0.35 0.39 0.36 0.41 0.44
0.17,0.48 0.18,0.53 0.24,0.56 0.20,0.52 0.21,0.62 0.27,0.61
50.41, 0.68%» 50.37, 0.76%» 50.30, 0 90%» Eo 35,0 80%» Eo 20, 0.90%» Eo 25,0 98%»
b)) 1.53 1.63 1.71 2.01 1.99 1.91

Table 8: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.
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Ptr  Truth 0Q 6Q 12Q 18Q 24Q 30Q
Lin-KF-0%
©p 100 143.0 153.3 167.2 177.5 186.3 186.9
(125.9, 157.7) (134.2,168.4) (147.0,196.6) (157.1,204.9) (165.6, 204.5) (168.5,201.1)
{0.44,0.04} {0.54,0.00} {0.69,0.00} {0.79,0.00} {0.87,0.00} {0.88,0.00}
h 0.8 0.64 0.64 0.64 0.64 0.64 0.63
0.61,0.68 0.60,0.68 0.60,0.67 0.62,0.67 0.60,0.67 0.60,0.67
§0.20, 0.00%» §0.20, 0.00%» <§0.20, 0.00% §0.20, 0.00% §0.20, 0.00% §0.21, 0.00%
Ds 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74, 0.80) (0.76,0.83) (0.76,0.84) (0.80, 0.85) (0.80, 0.85)
{0.06,0.74} {0.04,0.88} {0.03,1.00} {0.03,0.92} {0.03,0.82} {0.04,0.78}
Di 0.8 0.76 0.77 0.78 0.79 0.80 0.81
0.73,0.79 0.72,0.80 0.75,0.81 0.74,0.84 0.77,0.85 0.77,0.85
Eo.oa, 0 62% Eo 05,0 70% Eo 04,0 92% Eo 03,0 88% Eo 03,0 90% Eo 03,0 90%
o, 0.0050 0.0049 0.0051 0.0055 0.0057 0.0060 0.0059
(0.0043,0.0054)  (0.0045,0.0058)  (0.0048,0.0066)  (0.0051,0.0067)  (0.0049,0.0071)  (0.0051,0.0068)
{0.07,0.90} {0.08,0.88} {0.16,0.56} {0.17,0.50} {0.23,0.32} {0.21,0.28}
os 0.0050 0.0052 0.0051 0.0048 0.0048 0.0045 0.0045
(0.0043,0.0064)  (0.0042,0.0062)  (0.0040,0.0058)  (0.0035,0.0059)  (0.0038,0.0053)  (0.0036, 0.0052)
{0.14,0.86} {0.14,0.96} {0.12,0.96} {0.15,0.86} {0.15,0.78} {0.15,0.86}
o; 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019
(0.0018,0.0022)  (0.0018,0.0022)  (0.0018,0.0023)  (0.0016,0.0022)  (0.0017,0.0022)  (0.0017, 0.0022)
{0.07,0.96} {0.07,0.88} {0.08,0.88} {0.08,0.82} {0.08,0.88} {0.08,0.88}
On 2.0 2.01 1.96 1.85 1.78 1.65 1.69
(1.85,2.15) (1.71,2.17) (1.60, 2.07) (1.51,2.04) (1.42,1.92) (1.46,1.89)
{0.06,0.98} {0.07,1.00} {0.10,0.94} {0.14,0.76} {0.19,0.44} {0.17,0.64}
Dy 0.5 0.32 0.32 0.28 0.26 0.25 0.28
50.18, 0.48%L EO 20, 0.523L EO 11, 0.48% EO 14, 0.43% EO 15, 0.37% EO 17, 0.44%
0.40,0.72 0.41,0.60 0.48,0.50 0.51,0.32 0.51,0.32 0.47,0.44
b)) 1.49 1.62 1.89 2.10 2.30 2.24
Lin-KF-5%
©p 100 151.4 161.1 174.8 183.1 191.1 191.6
(134.0, 165.7) (142.0, 179.5) (153.7,198.6) (163.0, 208.5) (172.1,210.9) (175.3,204.1)
{0.52,0.00} {0.62,0.00} {0.76,0.00} {0.84,0.00} {0.92,0.00} {0.92,0.00}
h 0.8 0.66 0.66 0.67 0.67 0.67 0.67
0.62,0.69 0.61,0.71 0.62,0.71 0.63,0.70 0.64,0.71 0.63,0.70
~§0.18, 0.00%» ~§0.18, 0.00%» «Eo 17, 0.00% <§0.17, 0.00% «Eo 16, 0.00% §0.17, 0.00%
Ds 0.8 0.76 0.78 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74,0.81) (0.75,0.83) (0.78,0.85) (0.79,0.85) (0.78,0.86)
{0.06,0.74} {0.04,0.92} {0.03,1.00} {0.03,0.00} {0.03,0.88} {0.04,0.78}
Di 0.8 0.79 0.80 0.81 0.83 0.83 0.84
50.75, 0.822L 50.75, 0.832L 50.78, 0.84% EO 78, 0.86% EO 80, 0.88% EO 80, 0.88%
0.03,0.98 0.04,0.96 0.03,0.94 0.04,0.00 0.05,0.70 0.06,0.56
o, 0.0050 0.0032 0.0033 0.0036 0.0040 0.0042 0.0043
(0.0023,0.0039)  (0.0025,0.0041)  (0.0027,0.0045)  (0.0029,0.0052)  (0.0029,0.0054)  (0.0030, 0.0057)
{0.36,0.00} {0.36,0.12} {0.31,0.32} {0.24,0.00} {0.22,0.66} {0.20,0.68}
os  0.0050 0.0053 0.0052 0.0051 0.0050 0.0048 0.0047
(0.0040, 0.0067)  (0.0042,0.0068)  (0.0041,0.0062)  (0.0033,0.0063)  (0.0039,0.0059)  (0.0037, 0.0061)
{0.15,0.92} {0.15,0.90} {0.14,0.94} {0.18,0.00} {0.12,0.96} {0.15,0.92}
o; 0.0020 0.0017 0.0016 0.0017 0.0016 0.0016 0.0016
(0.0015,0.0020)  (0.0014,0.0019)  (0.0014,0.0020)  (0.0012,0.0019)  (0.0014,0.0020)  (0.0014, 0.0019)
{0.16,0.50} {0.20,0.20} {0.17,0.44} {0.22,0.00} {0.19,0.32} {0.20,0.28}
o 2.0 2.04 2.00 1.89 1.83 1.72 1.73
51.88, 2.202L 51.72, 2.212L El 67, 2.09% 51.62, 2.09% 51.52, 1.93% 51.52, 1.91%
0.06,0.98 0.07,1.00 0.08,1.00 0.11,0.00 0.16,0.78 0.15,0.78
Oy 0.5 0.35 0.36 0.33 0.31 0.31 0.32
‘ 50.22, 0.54% 50.21, 0.56% EO 14, 0.54% EO.lS, 0.50% 50.19, 0.45% 50.17, 0.47%
0.35,0.80 0.36, 0.84 0.42,0.70 0.43,0.00 0.42,0.66 0.40,0.76
b)) 1.88 2.01 2.11 2.27 2.28 2.28

Table 9: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.
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E.2 SHORTERZLB DURATIONS The paper focuses on the accuracy of NL-PF and OB-IF in
datasets with either no ZLB events or a single 30 quartertevEhis section shows the results
when the ZLB binds for durations that are shorter than 30tgumrWe show th& RMSE for each
estimated parameter as well as the sum oiNR&ISE to measure overall accurackable 8shows

the results with NL-PF% and OB-IF0%, while table 9focuses on Lin-KF3% and Lin-KF5%.

No Misspecification: DGP and Estimation Use Small-Scale &lod

Ptr  Truth NL-PF-%% OB-IF-0% Lin-KF-5%
0Q 30Q 0Q 30Q 0Q 30Q
©p 100 96.8 109.8 94.3 110.6 103.7 128.5
(81.6,109.9) (89.5,130.3) (81.8,108.3) (95.3,125.1) (92.6,118.4) (111.2,145.3)
£0.09, 0.96Y {0.15,0.907 10.11,0.96} 10.15,0.967 10.09, 0.98Y {0.30,0.46}
h 0.8 0.79 0.79 0.79 0.79 0.80 0.79
0.76,0.82 0.77,0.82 0.75,0.82 0.77,0.82 0.76,0.83 0.76,0.82
fo.oz,o.gﬁ fo.oz,o.gﬁ fo.oz,o.gﬁ fo.oz,o.%% fo.oz,o.%% 50.03,0.92%
Ds 0.8 0.80 0.83 0.81 0.84 0.82 7
0.76,0.83 0.78,0.86 0.76,0.85 0.80,0.87 0.77,0.86 0.83,0.91
50.03,0.9&» 50.04,0 60% 50.04,0.95% Eo 06,0.58%» 50.05,0 90% 50.10,0 10%
pi 0.8 0.82 0.82 0.79 0.79 0.82 0.86
0.79,0.84 0.78,0.85 0.77,0.82 0.74,0.82 0.79,0.84 0.83,0.88
Eo 03, 0.88% §0.03, 0 80%» Eo.oz 0.98% §0.03, 0.90% §0.03, 0.94% 50.08, 0.26%
o, 0.005 ( 0.0037 ' 0.0035 ' 0.0051 ' 0.0052 ' 0.0038 ' 0.0034 )
0.0029,0.0046)  (0.0025,0.0045)  (0.0044,0.0056)  (0.0043,0.0061)  (0.0029,0.0046)  (0.0026,0.0044
{0.27,0.24} {0.33,0.18} {0.08,0.98} {0.11,0.86} {0.26,0.28} {0.33,0.16}
os 0.005 0.0047 0.0043 0.0049 0.0046 0.0047 0.0036
0.0035,0.0058)  (0.0032,0.0058)  (0.0039,0.0060)  (0.0034,0.0057)  (0.0034,0.0059)  (0.0027,0.0046
( {0.19,0.90} ) {0.22,0.72} ) {0.16,0.86} ) {0.17,0.80} ) {0.21,0.90} ) {0.32,0.38} )
o; 0.002 0.0016 0.0014 0.0020 0.0019 0.0016 0.0015
(0.0013,0.0020)  (0.0010,0.0018)  (0.0017,0.0022)  (0.0016,0.0022)  (0.0013,0.0019)  (0.0012,0.0017)
{0.20,0.24} {0.31,0.18} {0.07,0.90} {0.10,0.78} {0.20,0.24} {0.27,0.10}
On 2.0 2.00 2.01 1.95 1.80 1.97 1.62
1.81,2.21 1.82,2.20 1.74,2.14 1.58,2.06 1.76,2.18 1.42,1.86
Eo.o& 0.96% Eo.o& 1.00%» Eo.o& 1.00%» éo.u, 0.76% éo.m, 0.96% 50.20, 0.38%
0.5 0.45 0.48 0.46 0.52 0.46 0.50
% é0.29,0.61% éo.zs,o.m% éo.so,o.as% é0.32,0.73% éo.sl,o.agi 50.34,0.66%
0.22,1.00 0.18,1.00 0.21,1.00 0.23,1.00 0.22,1.00 0.19,1.00
b)) 1.12 1.35 0.78 0.99 1.14 1.82

Table 10: Average5, 95) percentiles, andNRMSE, CR}. X is the sum of th&lRMSE across the parameters.

E.3 No MISsPECIFICATION Table 10compares the parameter estimates after removing model
misspecification. Since it is numerically very expensivestimate the medium-scale model used
to generate the data with NL-PF, we created new datasetstfreramall-scale model. The sum
of the NRMSE shows about0% of the error is due to model misspecification. For example, in
datasets without any ZLB events, the error with NL-Fk-increases from.12 to 1.90 when mis-
specification is added to the estimated model. Removingpadiication has the largest impact on
the accuracy ofp,, h, and¢, because the estimates no longer have to compensate fockhefla
sticky wages and investment, which creates large diffeagic the model’s sensitivity to shocks.
Notably, the NL-PF% estimate ofp, declines fromi51.1 to 96.8 and the estimate df rises from

0.66 to 0.79 in datasets without ZLB events. TR& rises from neaf to consistently above.9.
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The other results emphasized in the paper are unchangedshblk standard deviations are
biased downward with NL-PEY% because the filter incorrectly assigns some of the fluctnatio
ME, reducing the estimated variances. When the ZLB bindeerdata, it biases the estimates of
¢, andps upward, though NL-PBY% and OB-IF0% are both far more accurate than Lin-KF.

Inflation Rate Output Growth Gap

Notional Interest Rate

True Simulation — — — Mean Estimated Simulation|

NL-PF-5%

OB-IF-0%
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Figure 6: Recession responses without model misspecificatihe solid line is the true simulation, the dashed line is
the mean estimated simulation, and the shaded area cotita(3s95) percentiles across the datasets. The simulations
are initialized in steady state and followed by four consigeu .5 standard deviation positive risk premium shocks.

Figure 6plots the recession responsefigure 3without misspecification. The solid line shows

the responses based on the true parameterization of thesrald model, rather than the medium-
scale model that generates our original datasets. The disbeshows the mean responses, given
the parameter estimates with our alternative datasetssi€ent with the previous results, the re-
sponses based on the NL-B%-and OB-IF0% parameter estimates are very similar. The key dif-
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ference is that the mean estimated simulations are mucérdtmthe true simulation and ttig, 95)
percentiles almost always encompass the truth. This rekalts the muted responsedigure 3
are primarily driven by model misspecification, rather tiveatcuracies in the estimation methods.

E.4 IMPULSE RESPONSES This section shows generalized impulse response funci@@iid-s)
of a productivity growth and monetary policy shock when tberemy is in a severe recession and
the ZLB binds. To compute the GIRFs, we follow Koop et al. (@R9Ve first calculate the mean
of 10,000 simulations, conditional on random shocks in every qudrter, the baseline path). We
then calculate a second mean from another séd 600 simulations, but this time the shock in the
first quarter is replaced with a two standard deviation negatroductivity growth or monetary
policy shock (i.e., the impulse path). Finally, we plot thiéestences between the two mean paths.
The benefit of a GIRF over a more traditional impulse respdunsetion is that it allows us to
calculate the responses in any state of the economy witheufluence of mean reversion. For the
true model, we initialize at the state following four constie 1.5 standard deviation positive risk
premium shocks, consistent witigure 3 We then find a sequence of four equally sized risk pre-
mium shocks that produce the same notional rate in our esdmaodel as the true model, so the
simulations begin at the same point. The NL-Pk-simulations are shown in the left column and
the OB-IF0% simulations are in the right column. The true simulationtef DGP (solid line) is
compared to the mean estimated simulation of the smalescatlel (dashed line). T8, 95) per-
centiles account for differences in the simulations actiesgparameter estimates for each dataset.
Figure 7ashows the responses to a productivity growth shock. Quakls the responses of
output growth and inflation are similar across the speciboat Higher productivity growth in-
creases the output growth gap and decreases the inflateolikeas typical supply shock. Since the
Fed faces a tradeoff between stabilizing the inflation artdutlgaps, the notional interest rate re-
sponse depends on the parameterization. The notionaisasewith the DGP, but falls with both of
the estimated models. Quantitatively, there are impod#dfgrences between all of the responses.
Consistent withfigure 3 model misspecification leads to muted responses of thaubgtpwth
gap and the inflation rate. There are also differences in tgnitudes of the estimated responses,
but most of that is driven by the downward bias in the shockdded deviation with NL-PKBY%.
Figure 7bshows the responses to a monetary policy shock. AlthoughliBebinds in the true
and estimated models, the shock is expansionary becauseeitd the expected nominal interest
rate in future periods. Therefore, the output growth gaptaednflation rate both increase in all
three models. Unlike with the other two shocks, model missjgation has a relatively small effect
on the responses, as tfie 95) percentiles of the estimated responses encompass thespanses
in most periods. There are some differences in the NL5%Fand OB-IF0% responses, but they
are smaller than ifigure 7aand are never large enough to have meaningful policy imjpdinsa.
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(a) Productivity Growth Shock
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Figure 7: Impulse responses te-& standard deviation shock in a severe recession. The sodiddithe true response,
the dashed line is the mean estimated response, and thelsiradecontains thg, 95) percentiles of the responses.
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Example of Filtered Notional Rate Estimates
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Figure 8: Estimates of the notional rate in datasets with quz0ter ZLB event. Rates are net annualized percentages.

E.5 NOTIONAL RATE ESTIMATES Figure 8provides more intuition about what is driving the
relative accuracy of the filtered estimates of the notioatd infigure 1 The top panel plots the
actual notional rate from an example dataset with a 30 quZttB event, as well as the filtered
estimates from NL-PBY% and OB-IF6%. Over time, the OB-I% estimate increases towards
zero faster than NL-PE%. This may be driven by the lower estimatep{0.77) with OB-1F-0%,
which is slightly below the NL-PEY estimate and the true valu@§0). The bottom two panels
plot the error in the average filtered notional rate estisdteing the 30 quarter ZLB event across
the 50 datasets (solid line). The shaded region showsitts) percentiles. This suggests the
example dataset in the top panel is fairly representatifae.distribution of errors for OB-1B% is
slightly shifted up from the NL-PFBY% error distribution, and increasingly so over time. This may
seem somewhat at odds with the resultfignre 1, as OB-IF0% is even less accurate relative to
NL-PF-5% in the datasets with shorter ZLB events. However the OBYfestimates op; and¢,
have an even larger downward bias in datasets with shortBrdZitation, as shown itable 8
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6Q 12Q 18Q 24Q 30Q

CDF of ZLB Event Durations 0.678 0.885 0.966 0.992 0.998
Number of Simulations to Reach 50 Datasets 150,300 154,950 256,950 391,950 1,030,300

Table 11: Probability of ZLB event durations in a long sintida of the medium-scale model.
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Figure 9: Duration of ZLB events in a long simulation of thednan-scale model.

E.6 ADDITIONAL DATASET STATISTICS ZLB events are frequent in the medium-scale model
that generates the datasets, which allows us to find simuakatvith up to 30 consecutive quarters at
the ZLB without imposing restrictions on the shocks. In ageimulation of the model, the uncon-
ditional probability of being at the ZLB i84 percent. This is roughly equivalent to the U.S. expe-
rience of 7 years, since our sample is 30 years. Most of the &ldBits in the simulation are short,
with the policy rate rising above zero within one year or Jessshown irtable 11andfigure Q
However, long ZLB events are not incredibly uncommon).a5 percent of ZLB events have a du-
ration of at least 30 quarters. When generating our datasetsnpose an additional requirement
that the ZLB event in our sample is unique so it reflects actat. The number of 120 quarter sim-
ulations required to find0 simulations that meet that criterion is shown in the last odvable 11

E.7 GOVERNMENT SPENDING This section shows how government spending affects our re-

sults. Government spending is a potentially importantuieabecause it adds a shock that directly

enters the aggregate resource constraint. Without govarnspending, any shock in the DGP that

affects the resource constraint is absorbed by consumgtiprice adjustment costs in the small-

scale model, since output and inflation are observed. Withavedge between consumption and

output, it could cause significant bias in the habit persisteand price adjustment cost parameters.
We assume the share of government spending devoted to doliputs

9; = (1= pg)g° + pggi_1 + 04844, 0 < pg < 1,g4 ~ N(0,1), (46)
where the steady-state shagg,is set t00.2129 to match the time average from 1988Q1-2017Q4.
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With the addition of government spending, the aggregatauree constraint is given by
e+ = (1—g))yi™. (47)

All other equations in the equilibrium system are unchangé& add government spending to
the medium-scale model that generates our datasets anthallvssale model for estimation. We
estimate the small-scale model wiff{4obs) and withoutq*-3obs) including real per capita con-
sumption growth as an additional observable. In this sespedification, the government spend-
ing shock is less constrained, potentially absorbing thstichent costs left out of the small-scale
model and reducing inaccuracy driven by misspecificatiotheaggregate resource constraint.
The specification without government spending (rfipexcludesg® from the DGP and the esti-
mated model, just like in the main paper. In each case, tleegasameterization is unchanged,
except the shock standard deviations were reduced €r66% to 0.004. This change is neces-
sary because the additional volatility in the model with gmment spending causes the model
to spend too much time at the ZLB and not converge at the pus\parameterizationfable 12
shows the parameter estimates using datasets where theidd8fbr 30 quarters antble 13is
based on datasets where the ZLB never binds in the data. @B:li§ not used to estimate these
specifications, since it is not possible to have more shdwks dbservables in the inversion filter.
Interestingly, the differences in the parameter estimagtaeenyg®-4obs and ngy are fairly
small, especially in datasets where the ZLB binds for 30tgusir They*-4obs estimates af, and
h are more accurate than the pbestimates, but they are still significantly biased. Furtiee,
the improvement in those estimates is not as significant as$ adturs when we add sticky wages
to the model estimated with OB-I6%. This implies that the presence of government spending
helps increase the volatility of output growth, but not egloto compensate for the lack of sticky
wages, which we see as the most important misspecificativmgrthe bias ing, and h. It
is also important to note that the estimates of the prodiigtgrowth and risk premium shock
standard deviationg( ando,) are biased downward to a greater extent than in the modebutit
government spending. As a consequence, the sum of BidSE with government spending is
higher than without government spending, regardless oéstienation method or the duration of
the ZLB. This result occurs even though ffedobs estimates included an additional observable.
Excluding the additional observablg{3obs) also does not improve the overall accuracy of the
parameter estimates. The productivity growth and risk jpwemshock standard deviations become
more accurate than ng but the estimates af, are largely unchanged and the downward bias
in h becomes even larger. As a result, BMSE of ¢®-3obs is higher than thg°-4obs or no-
g° estimates. Once again, this is consistent with the lackidkysivages as the most important
misspecification, while misspecification in the resourcest@int appears to play a smaller role.
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NL-PF-5% (30Q)

Lin-KF-5% (30Q)

Ptr  Truth nog?* g®-4obs g®-3obs nog* g®-4obs g®-3obs
©p 100 180.8 164.2 183.3 182.8 170.0 188.6
(167.2,193.5) (145.1,188.9) (165.2, 203.5) (168.0,194.5) (150.3, 196.3) (167.6,210.5)
{0.81,0.00} {0.65,0.06} {0.84,0.00} {0.83,0.00} {0.71,0.00} {0.90, 0.00}
h 0.8 0.66 0.71 0.56 0.65 0.71 0.54
0.63,0.71 0.67,0.74 0.47,0.62 0.62,0.70 0.66,0.74 0.43, 0.61
§0.17, 0.00%» Eo 11, 0.00%» é0.31, 0.00%» fo.ls, 0.00%» fo.m, 0.00%» 50.33, 0.00%»
Ps 0.8 0.84 0.86 0.84 0.85 0.87 0.84
(0.81,0.86) (0.84,0.88) (0.80,0.87) (0.82,0.87) (0.85,0.90) 50.81, 0.88)
{0.05,0.48} {0.08,0.10} {0.05,0.62} {0.06,0.36} {0.09,0.12} 0.06,0.58}
pi 0.8 0.81 0.81 0.81 0.83 0.83 0.85
0.78,0.84 0.77,0.84 0.77,0.85 0.80, 0.86 0.80,0.88 0.81,0.89
fo 03,0 94% 50.03, 0.96% 50.03, 0.92% 50.04, 0 80% éo.os, 0.70% 50.07, 0.28%
Pgs 0.8 — 0.89 0.82 — 0.89 0.83
0.85,0.93 0.80,0.84 0.85,0.93 0.82,0.86
Eo.m, 0.28% §0.03, 1.00% Eo.m, 0.20% 50.04, 1.00%
o, 0.004 0.0030 0.0028 0.0034 0.0031 0.0029 0.0036
(0.0023,0.0037)  (0.0019,0.0037)  (0.0026,0.0047)  (0.0024,0.0038)  (0.0021,0.0041)  (0.0025,0.0052)
{0.26,0.40} {0.33,0.20} {0.21,0.94} {0.25,0.40} {0.30,0.28} {0.22,0.88}
os  0.004 0.0031 0.0024 0.0036 0.0029 0.0023 0.0034
(0.0025,0.0039)  (0.0020,0.0030)  (0.0026,0.0049)  (0.0023,0.0036)  (0.0018,0.0029)  (0.0025, 0.0047)
{0.25,0.50} {0.40, 0.04} {0.20, 0.82} {0.30, 0.26} {0.44,0.00} {0.22,0.70}
o;  0.002 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015
(0.0013,0.0018)  (0.0011,0.0018)  (0.0011,0.0017)  (0.0011,0.0016)  (0.0012,0.0017)  (0.0012,0.0017)
{0.24,0.22} {0.26,0.28} {0.29,0.22} {0.33,0.00} {0.26,0.10} {0.27,0.10}
ogs 0.004 — 0.0044 0.0025 — 0.0044 0.0025
‘ (0.0039,0.0049)  (0.0018, 0.0032) (0.0039,0.0049)  (0.0018, 0.0033)
{0.13,0.74} {0.39,0.16} {0.13,0.70} {0.40, 0.20}
On 2.0 2.27 2.09 2.23 2.10 1.73 1.90
2.13,2.47 1.85,2.34 2.00, 2.45 1.91,2.32 1.31,2.04 1.62,2.13
§0.14, 0.64%» Eo.os, 0.90% §0.13, 0.68%» Eo.os, 0.92%» Eo.n, 0.72%» Eo.og, 0.96%»
by 0.5 0.38 0.50 0.47 0.36 A1 0.44
0.26,0.55 0.34,0.63 0.24,0.64 0.22,0.51 0.30, 0.58 0.31,0.64
éo.zg, 0.98%» éo.ls, 0.98%» é0.21, 0.96%» é0.33, 0 94% éo 25,0 98%» 50.23, 0.98%»
> 2.26 2.38 2.70 2.39 2.64 2.83

Table 12: Average5, 95) percentiles, andNRMSE, CR}. X is the sum of th&lRMSE across the parameters.
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NL-PF5% (0Q)

Lin-KF-5% (0Q)

Ptr  Truth nog?* g®-4obs g®-3obs nog* g®-4obs g®-3obs
©p 100 157.9 128.8 148.8 157.7 128.8 149.2
(130.0,175.8) (109.2, 143.7) (128.8,163.8) (130.1, 175.3) (109.5, 142.8) (129.4, 164.3)
{0.59,0.00} {0.31,0.34} {0.50,0.00} {0.59,0.02} {0.31,0.38} {0.50,0.00}
h 0.8 0.64 0.68 0.57 0.64 0.68 0.57
§0.60, 0.69% §0.65, 0.72% éO'M’ 0.66% éO.GO, 0.69% §0.65, 0.72% 50.48, 0.66%
0.20, 0.00 0.15,0.00 0.30, 0.00 0.20, 0.00 0.15,0.00 0.29, 0.00
Ps 0.8 0.79 0.81 0.78 0.79 0.81 0.78
(0.74,0.82) (0.76,0.85) (0.72,0.83) (0.74,0.83) (0.77,0.85) 50.72, 0.83)
{0.03,0.94} {0.03,0.90} {0.05,0.86} {0.03,0.96} {0.04,0.90} 0.05,0.86}
pi 0.8 0.79 0.78 0.80 0.79 0.78 0.80
0.74,0.82 0.74,0.82 0.76,0.83 0.74,0.82 0.75,0.82 0.76,0.83
50.04, 0 86% 50.04, 0.84% 50.03, 0.98% 50.04, 0 88% éo.o:’,, 0.92% 50.03, 0.98%
s 0.8 — 0.82 0.81 — 0.82 0.80
Ps EM& 0.87% EM& 0.84% Eo.w, 0.86% 50.75, 0.83%
0.05,0.94 0.03, 1.00 0.04,0.94 0.03, 1.00
o, 0.004 0.0029 0.0023 0.0027 0.0029 0.0023 0.0027
(0.0022,0.0037)  (0.0018,0.0029)  (0.0019,0.0036)  (0.0022,0.0037)  (0.0018,0.0029)  (0.0019, 0.0036)
{0.29,0.22} {0.43,0.00} {0.36,0.54} {0.29,0.28} {0.43,0.00} {0.36,0.50}
o, 0.004 0.0032 0.0025 0.0036 0.0032 0.0025 0.0037
(0.0025,0.0038)  (0.0021,0.0030)  (0.0026,0.0049)  (0.0025,0.0039)  (0.0020,0.0030)  (0.0027,0.0049)
{0.23,0.52} {0.38,0.02} {0.19,0.84} {0.23,0.54} {0.38,0.02} {0.19,0.84}
o; 0.002 0.0018 0.0018 0.0017 0.0018 0.0018 0.0017
(0.0015,0.0021)  (0.0015,0.0021)  (0.0014,0.0020)  (0.0015,0.0021)  (0.0015,0.0020)  (0.0014,0.0020)
{0.15,0.60} {0.15,0.60} {0.17,0.48)} {0.15,0.62} {0.15,0.56} {0.16,0.50}
o 0.004 — 0.0041 0.0033 — 0.0041 0.0033
g (0.0037,0.0046)  (0.0025,0.0039) (0.0036,0.0046)  (0.0025, 0.0038)
{0.08,0.84} {0.20,0.52} {0.08,0.84} {0.20,0.56}
On 2.0 2.11 1.92 2.08 2.10 1.92 2.08
1.97,2.24 1.67,2.25 1.87,2.34 1.97,2.24 1.66,2.27 1.86, 2.32
Eo.oz 1.00%» Eo.og, 1.00%» Eo.os, 0.94%» Eo.oz 0.98%» Eo.og, 0.98%» Eo.os, 0.96%»
by 0.5 0.39 .53 .52 0.39 0.53 0.52
0.26,0.53 0.34,0.70 0.30, 0.69 0.27,0.52 0.34,0.70 0.30, 0.68
0.26, 1.00 0.22,0.98 0.23,1.00 0.27,1.00 0.22,0.98 0.23,1.00
b R Xt SN (v S (210 617 S X B X ¥ 11
by 1.87 1.92 2.12 1.86 1.91 2.12

Table 13: Average5, 95) percentiles, andNRMSE, CR}. X is the sum of th&lRMSE across the parameters.
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