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ABSTRACT

During the Great Recession, many central banks lowered their policy rate to its zero lower

bound (ZLB), creating a kink in the policy rule and calling into question linear estimation

methods. There are two promising alternatives: estimate a fully nonlinear model that accounts

for precautionary savings effects of the ZLB or a piecewise linear model that is much faster

but ignores the precautionary savings effects. This paper compares the accuracy of the two

methods using artificial datasets. We find the predictions ofthe nonlinear model are typically

more accurate than the piecewise linear model, but the differences are usually small. There are

far larger gains in accuracy from estimating a richer, less misspecified piecewise linear model.
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1 INTRODUCTION

Using Bayesian methods to estimate linear dynamic stochastic general equilibrium (DSGE) models

has become common practice in the literature over the last 20years. Many central banks also use

these models for forecasting and counterfactual simulations. The estimation procedure sequentially

draws parameters from a proposal distribution, solves the model given that draw, and then evalu-

ates the likelihood function. With linearity and normally distributed shocks, the model solves in a

fraction of a second and it is easy to exactly evaluate the likelihood function with a Kalman filter.1

The financial crisis and subsequent recession compelled many central banks to take unprece-

dented action to reduce their policy rate to its zero lower bound (ZLB), calling into question linear

estimation methods. The ZLB constraint presents a challenge for empirical work because it creates

a kink in the central bank’s policy rule. The constraint has always existed, but when policy rates

were well above zero and the likelihood of hitting the constraint was negligible, it was reasonable

to ignore it. The lengthy period of near zero policy rates over the last decade and the increased like-

lihood of future ZLB events due to estimates of a lower natural rate has forced researchers to think

more carefully about the ZLB constraint and its implications (e.g., Laubach and Williams, 2016).

There are two promising estimation methods used in the literature that account for the ZLB

constraint in DSGE models. The first method estimates a fullynonlinear model with an occasion-

ally binding ZLB constraint (e.g., Gust et al., 2017; Planteet al., 2018; Richter and Throckmorton,

2016). This method provides the most comprehensive treatment of the ZLB constraint but is nu-

merically intensive. It uses projection methods to solve the nonlinear model and a particle filter to

evaluate the likelihood function for each draw from the posterior distribution (henceforth, NL-PF).2

The second method estimates a piecewise linear version of the nonlinear model (e.g., Guerrieri

and Iacoviello, 2017). The model is solved using the OccBin toolbox developed by Guerrieri and

Iacoviello (2015). The likelihood is evaluated using an inversion filter, which solves for the shocks

that minimize the distance between the data and the model predictions. The benefit of this method

(henceforth, OB-IF) is that it is nearly as fast as estimating a linear model with a Kalman filter

while still capturing the kink in the decision rules createdby the ZLB. However, OB-IF differs

from NL-PF in a potentially important way. Households do notaccount for the possibility that the

ZLB may bind in the future when it does not currently bind, which is inconsistent with survey data.3

1Schorfheide (2000) and Otrok (2001) were the first to use these methods to generate draws from the posterior
distribution of a linear DSGE model. See An and Schorfheide (2007) and Herbst and Schorfheide (2016) for examples.

2Several papers examine the effects of the ZLB constraint in acalibratednonlinear model using projection methods
similar to ours (e.g., Aruoba et al., 2018; Fernández-Villaverde et al., 2015; Gavin et al., 2015; Keen et al., 2017;
Mertens and Ravn, 2014; Nakata, 2017; Nakov, 2008; Ngo, 2014; Richter and Throckmorton, 2015; Wolman, 2005).

3The inversion filter also removes the interest rate as an observable and sets the monetary policy shock to zero
when the ZLB binds, whereas the particle filter estimates those shocks given the data. This difference is important
to the extent that monetary policy shocks impact the economyat the ZLB. However, in practice, the particle filter
typically estimates monetary policy shocks close to zero when the ZLB binds, suggesting there is little it can identify.
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This paper compares the accuracy of the two estimation methods. We specify a true parameter-

ization of a medium-scale nonlinear model with an occasionally binding ZLB constraint, solve the

model with a projection method, and generate a large sample of datasets. The datasets either con-

tain no ZLB events or a single event with various durations tounderstand the influence of the ZLB

on the posterior estimates. For each dataset, we use NL-PF and OB-IF to estimate a small-scale,

but nested, version of the medium-scale model that generates the data. We also estimate the linear

model with a Kalman filter (henceforth, Lin-KF), since it wasthe most common method before the

Great Recession. The small-scale model excludes features of the medium-scale model that others

have shown are empirically important. The difference between the two models—referred to as

misspecification—account for the practical reality that all models are misspecified. It also sheds

light on the merits of estimating a simpler, more misspecified, model with NL-PF, versus a richer,

less misspecified, model with OB-IF that is numerically verycostly with fully nonlinear methods.

We find NL-PF and OB-IF produce similar parameter estimates.In contrast, the predictions

and forecasting performance of NL-PF are typically more accurate than OB-IF. For example, the

estimates of the notional interest rate (the rate the central bank would set in the absence of the ZLB

constraint), the expected ZLB duration, the probability ofa 4 quarter or longer ZLB event, and

forecasts of the policy rate are closer to their actual values. The increase in accuracy, however, is

often small because the precautionary savings effects of the ZLB and the effects of other nonlin-

earities are weak in canonical models. The benefits also comewith a steep increase in estimation

time. The model takes roughly a week to estimate with NL-PF versus a couple hours with OB-IF.

These results suggest that OB-IF may provide an adequate substitute for NL-PF, but there are

two important caveats. One, our analysis focuses exclusively on the ZLB constraint. Other con-

straints could create inaccuracies that provide a strongerjustification for the computational burden

of NL-PF. Two, OB-IF only captures nonlinearities from occasionally binding constraints. OB-IF

could not account for nonlinear features such as stochasticvolatility, non-convex adjustment costs,

endogenous regime-switching, default, Bayesian learning, and non-Gaussian shock distributions.

Our results will provide a useful benchmark for future work that examines these nonlinear features.

Model misspecification has a much larger impact on accuracy than the estimation method. It

biases many of the parameter estimates and often creates significant differences between the pre-

dictions of the estimated models and the data generating process (DGP). These results suggest

researchers are better off reducing misspecification by estimating a richer piecewise linear model

than a simpler but computationally less intensive nonlinear model when the ZLB binds in the data.

This important finding could open the door to promising new work on the implications of the ZLB.

Our paper is the first to compare different estimation methods that account for the ZLB con-

straint. Others compare nonlinear estimation methods to linear methods. Fernández-Villaverde

and Rubio-Ramı́rez (2005) show that a neoclassical growth model estimated with NL-PF predicts
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moments closer to the true moments than the estimates from Lin-KF using two artificial datasets

and actual data. The primary source of nonlinearity in theirmodel is high risk aversion. Hirose and

Inoue (2016) generate artificial datasets from a linear model where the ZLB constraint is imposed

using anticipated monetary policy shocks and then apply Lin-KF to estimate the model without

the constraint. They find the estimated parameters, impulseresponses, and structural shocks be-

come less accurate as the frequency and duration of ZLB events increase in the data. Hirose and

Sunakawa (2015) extend that work by generating data from a nonlinear model and re-examine the

bias. None of these papers introduce misspecification, which is an important aspect of our analysis.

We also build on recent empirical work that analyzes the implications of the ZLB constraint

(e.g., Gust et al., 2017; Iiboshi et al., 2018; Plante et al.,2018; Richter and Throckmorton, 2016).

These papers use NL-PF to estimate a nonlinear model similarto ours using actual data from the

U.S. or Japan that includes the ZLB period. Our contributionis to examine the accuracy of these

nonlinear estimation methods and show under what conditions they outperform other approaches.

The measurement error (ME) in the observation equation of the filter is a key aspect of the

estimation procedure that could potentially affect the accuracy of the parameter estimates. Unlike

the inversion filter, the particle filter requires positive ME variances to prevent degeneracy—a

situation when the likelihood is inaccurate. The literature has used a wide range of different values,

with limited investigation on how they impact accuracy. Canova et al. (2014) show the downside

of introducing ME is that the posterior distributions of some parameters do not contain the truth

in a DSGE model estimated with Lin-KF. Cuba-Borda et al. (2017) show that ME in the particle

filter reduces the accuracy of the likelihood function usinga calibrated model with an occasionally

binding borrowing constraint. Our analysis provides a potentially important role for ME because

it includes model misspecification. We find larger ME variances improve the accuracy of some

parameters, but the benefits are more than offset by decreases in the accuracy of other parameters.4

The paper proceeds as follows.Section 2describes our DGP and how we construct our artificial

datasets.Section 3outlines the estimated model and estimation methods.Section 4shows our pos-

terior estimates and several measures of accuracy for each estimation method.Section 5concludes.

2 DATA GENERATING PROCESS

To test the accuracy of recent estimation methods that account for the ZLB constraint, we generate

a large number of artificial datasets from a medium-scale NewKeynesian model with capital and

an occasionally binding ZLB constraint. Our model is the same as the one in Gust et al. (2017),

except it removes government spending, inflation indexation, and the investment efficiency shock.5

4Herbst and Schorfheide (2018) develop a tempered particle filter that sequentially reduces the ME variances. They
assess accuracy against the Kalman filter on U.S. data with a linear model and find it outperforms the untempered filter.

5Appendix E.7shows how the addition of government spending to the DGP and estimated model affects our results.
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2.1 FIRMS The production sector consists of a continuum of monopolistically competitive inter-

mediate goods firms and a final goods firm. Intermediate firmf ∈ [0, 1] produces a differentiated

good,y(f), according toyt(f) = (υtkt−1(f))
α(atnt(f))

1−α, wheren(f) is the labor hired by firm

f andk(f) is the capital rented by firmf . at = ztat−1 is productivity andυ is the capital utilization

rate, which are both common across firms. Deviations from thesteady-state growth rate,z̄, follow

zt = z̄ + σzεz,t, εz ∼ N(0, 1). (1)

The final goods firm purchases output from each intermediate firm to produce the final good,

yt ≡ [
∫ 1

0
yt(f)

(θp−1)/θpdf ]θp/(θp−1), whereθp > 1 is the elasticity of substitution. Dividend max-

imization determines the demand for intermediate goodf , yt(f) = (pt(f)/pt)
−θpyt, wherept =

[
∫ 1

0
pt(f)

1−θpdf ]1/(1−θp) is the price level. Following Rotemberg (1982), intermediate firms pay a

price adjustment cost,adjpt (f) ≡ ϕp(pt(f)/(π̄pt−1(f))−1)2yt/2, whereϕp > 0 scales the cost and

π̄ is the steady-state gross inflation rate. Given this cost, firm f choosesnt(f), kt−1(f), andpt(f)

to maximize the expected discounted present value of futuredividends,Et

∑∞
k=t qt,kdk(f), subject

to its production function and the demand for its product, whereqt,t ≡ 1, qt,t+1 ≡ β(λt/λt+1) is

the pricing kernel between periodst andt+ 1, qt,k ≡
∏k>t

j=t+1 qj−1,j, anddt(f) = pt(f)yt(f)/pt −

wtnt(f)− rkt υtkt−1(f)− adjpt (f). In symmetric equilibrium, the optimality conditions reduce to

yt = (υtkt−1)
α(atnt)

1−α, (2)

wt = (1− α)mctyt/nt, (3)

rkt = αmctyt/(υtkt−1), (4)

ϕp(πt/π̄ − 1)(πt/π̄) = 1− θp + θpmct + βϕpEt[(λt/λt+1)(πt+1/π̄ − 1)(πt+1/π̄)yt+1/yt], (5)

whereπt = pt/pt−1 is the gross inflation rate. Ifϕp = 0, the real marginal cost of producing a unit

of output (mct) equals(θp − 1)/θp, which is the inverse of the markup of price over marginal cost.

2.2 HOUSEHOLDS Each household consists of a unit mass of members who supply differen-

tiated types of labor,n(ℓ), at real wage ratew(ℓ). A perfectly competitive labor union bundles

the labor types to produce an aggregate labor product,nt ≡ [
∫ 1

0
nt(ℓ)

(θw−1)/θwdℓ]θw/(θw−1), where

θw > 1 is the elasticity of substitution. Dividend maximization determines the demand for labor

typeℓ, nt(ℓ) = (wt(ℓ)/wt)
−θwnt, wherewt = [

∫ 1

0
wt(ℓ)

1−θwdℓ]1/(1−θw) is the aggregate real wage.

The households choose{ct, nt, bt, xt, kt, υt}
∞
t=0 to maximize expected lifetime utility given by

E0

∑∞
t=0 β

t[log(ct − hcat−1) − χ
∫ 1

0
nt(ℓ)

1+ηdℓ/(1 + η)], whereβ is the discount factor,χ deter-

mines steady-state labor,1/η is the Frisch labor supply elasticity,c is consumption,ca is aggregate

consumption,h is the degree of external habit persistence,b is the real value of a privately-issued1-

period nominal bond,x is investment, andE0 is an expectation operator conditional on information
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available in period0. Following Chugh (2006), the nominal wage rate for each labor type is sub-

ject to an adjustment cost,adjwt (ℓ) = ϕw(w
g
t (ℓ)− 1)2yt/2, wherewg

t (ℓ) = πtwt(ℓ)/(π̄z̄wt−1(ℓ)) is

nominal wage growth relative its steady-state. The cost of utilizing the capital shock,u, is given by

ut = r̄k(exp(συ(υt − 1))− 1)/συ, (6)

whereσυ ≥ 0 scales the cost. Given the two costs, the household’s budgetconstraint is given by

ct + xt + bt/(stit) + utkt−1 +
∫ 1

0
adjwt (ℓ)dℓ =

∫ 1

0
wt(ℓ)nt(ℓ)dℓ+ rkt υtkt−1 + bt−1/πt + dt,

wherei is the gross nominal interest rate,rk is the capital rental rate, andd is a real dividend from

ownership of intermediate firms. The nominal bond,b, is subject to a risk premium,s, that follows

st = (1− ρs)s̄+ ρsst−1 + σsεs,t, 0 ≤ ρs < 1, εs ∼ N(0, 1), (7)

wheres̄ is the steady-state value. An increase inst boosts saving, which lowers period-t demand.

Households also face an investment adjustment cost, so the law of motion for capital is given by

kt = (1− δ)kt−1 + xt(1− ν(xg
t − 1)2/2), 0 ≤ δ ≤ 1, (8)

wherexg
t = xt/(z̄xt−1) is investment growth relative to its steady-state andν ≥ 0 scales the cost.

The first order conditions to each household’s constrained optimization problem are given by

rkt = r̄k exp(συ(υt − 1)), (9)

λt = ct − hcat−1, (10)

wf
t = χnη

tλt, (11)

1 = βEt[(λt/λt+1)(stit/πt+1)], (12)

qt = βEt[(λt/λt+1)(r
k
t+1υt+1 − ut+1 + (1− δ)qt+1)], (13)

1 = qt[1− ν(xg
t − 1)2/2− ν(xg

t − 1)xg
t ] + βνz̄Et[(λt/λt+1)qt+1(x

g
t+1)

2(xg
t+1 − 1)], (14)

ϕw(w
g
t − 1)wg

t = [(1− θw)wt + θww
f
t ]nt/yt + βϕwEt[(λt/λt+1)(w

g
t+1 − 1)wg

t+1yt+1/yt], (15)

where1/λ is the marginal utility of consumption,q is Tobin’s q, andwf is the flexible wage rate.

Monetary Policy The central bank sets the gross nominal interest rate,i, according to

it = max{1, int }, (16)

int = (int−1)
ρi (̄ı(πt/π̄)

φπ(ygdpt /(ygdpt−1z̄))
φy)1−ρi exp(σiεi,t), 0 ≤ ρi < 1, εi ∼ N(0, 1), (17)

whereygdp is real GDP (i.e., output,y, minus the resources lost due to adjustment costs,adjp and
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adjw, and utilization costs),in is the gross notional interest rate,ı̄ and π̄ are the target values of

the inflation and nominal interest rates, andφπ andφy are the responses to the inflation and output

growth gaps. A more negative net notional rate indicates that the central bank is more constrained.

Competitive Equilibrium The aggregate resource constraint and real GDP definition are given by

ct + xt = ygdpt , (18)

ygdpt = [1− ϕp(πt/π̄ − 1)2/2− ϕw(w
g
t − 1)2/2]yt − utkt−1. (19)

The model does not have a steady-state due to the unit root in productivity,at. Therefore, we define

the variables with a trend in terms of productivity (i.e.,x̃t ≡ xt/at). The detrended equilibrium

system is provided inAppendix A. A competitive equilibrium consists of sequences of quan-

tities,{c̃t, ỹt, ỹ
gdp
t , xg

t , y
g
t , nt, k̃t, x̃t}

∞
t=0, prices,{w̃t, w̃

f
t , w̃

g
t , it, i

n
t , πt, λ̃t, υt, ut, qt, r

k
t , mct}

∞
t=0, and

exogenous variables,{st, zt}∞t=0, that satisfy the detrended equilibrium system, given the initial

conditions,{c̃−1, i
n
−1, k̃−1, x̃−1, w̃−1, s0, z0, εi,0}, and three sequences of shocks,{εz,t, εs,t, εi,t}

∞
t=1.

Subjective Discount Factor β 0.9949 Rotemberg Price Adjustment Cost ϕp 100
Frisch Labor Supply Elasticity 1/η 3 Rotemberg Wage Adjustment Cost ϕw 100
Price Elasticity of Substitution θp 6 Capital Utilization Curvature συ 5
Wage Elasticity of Substitution θw 6 Inflation Gap Response φπ 2
Steady-State Labor Hours n̄ 0.3333 Output Growth Gap Response φy 0.5
Steady-State Risk Premium s̄ 1.0058 Habit Persistence h 0.8
Steady-State Growth Rate z̄ 1.0034 Risk Premium Persistence ρs 0.8
Steady-State Inflation Rate π̄ 1.0053 Notional Rate Persistence ρi 0.8
Capital Share of Income α 0.35 Productivity Growth Shock SD σz 0.005
Capital Depreciation Rate δ 0.025 Risk Premium Shock SD σs 0.005
Investment Adjustment Cost ν 4 Notional Interest Rate Shock SD σi 0.002

Table 1: Parameter values for the data generating process.

2.3 PARAMETER VALUES Table 1shows the model parameters for the DGP. The parameters

were chosen so our DGP is characteristic of recent U.S. data.The steady-state growth rate (z̄),

inflation rate (̄π), risk-premium (̄s), and capital share of income (α) are equal to the time averages

of per capita real GDP growth, the percent change in the GDP implicit price deflator, the Baa

corporate bond yield relative to the yield on the 10-Year Treasury rate, and the Fernald (2012)

utilization-adjusted quarterly-TFP estimates of the capital share of income from 1988Q1-2017Q4.

The subjective discount factor,β, is set to0.9949, which is the time average of the values im-

plied by the steady-state Euler equation and the federal funds rate. The corresponding annualized

steady-state nominal interest rate is3.3%, which is consistent with the sample average and current

long-run estimates of the federal funds rate. The leisure preference parameter,χ, is set so steady-

state labor equals1/3 of the available time. The capital depreciation rate is set to 0.025. Both
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values are ubiquitous in the literature. The elasticities of substitution between intermediate goods

and labor types,θp andθw, are set to6, which correspond to a20% average markup in each sector

and match the values used in Gust et al. (2017). The Frisch elasticity of labor supply,1/η, is set

to 3 to match the macro estimate in Peterman (2016). The investment adjustment cost parameter,

ν, and capital utilization curvature,συ, are consistent with the estimates in Gust et al. (2017). The

price and wage adjustment cost parameters,ϕp andϕw, are both set to100, which correspond to

Phillips curve slopes of0.050 and0.027. Estimates for the monetary responses to the inflation and

output growth gaps,φπ andφy vary in the literature, ranging from1.5-2.5 and0-1 (Aruoba et al.,

2018; Gust et al., 2017). We setφπ = 2.0 andφy = 0.5, which are in the middle of those ranges.

The persistence parameters and shock standard deviations are set to values that are in line with

the estimates from Aruoba et al. (2018) and Gust et al. (2017). The most consequential parameters

are the risk premium persistence and shock standard deviation because they have the largest impact

on the expected frequency and duration of ZLB events. When either of those parameters increase,

households place more weight on outcomes where the central bank cannot respond to adverse

shocks by lowering the nominal interest rate, which increases the downward bias from the ZLB.

2.4 SOLUTION AND SIMULATION METHODS We solve the nonlinear model with the policy

function iteration algorithm described in Richter et al. (2014), which is based on the theoretical

work on monotone operators in Coleman (1991). We discretizethe endogenous state variables and

approximate the exogenous states,st, zt, andεi,t using theN-state Markov chain in Rouwenhorst

(1995). The Rouwenhorst method is attractive because it only requires us to interpolate along the

dimensions of the endogenous state variables, which makes the solution more accurate and faster

than quadrature methods. To obtain initial conjectures forthe nonlinear policy functions, we solve

the level-linear analogue of our nonlinear model with Sims’s (2002) gensys algorithm. Then we

minimize the Euler equation errors on every node in the statespace and compute the maximum

distance between the updated policy functions and the initial conjectures. Finally, we replace the

initial conjectures with the updated policy functions and iterate until the maximum distance is

below the tolerance level. SeeAppendix Bfor a more detailed description of the solution method.

We generate data for output growth, the inflation rate, and the nominal interest rate by simulat-

ing the model using the nonlinear policy functions, so the observables are given byxt = [ygt , πt, it].

Each simulation is initialized with a draw from the ergodic distribution and contains120 quarters,

similar to what is often used when estimating models with actual data. We use samples from the

DGP with either no ZLB events or a single ZLB event that is5%, 10%, 15%, 20%, and25% of the

sample. Our sample is120 quarters, so the ZLB events are either6, 12, 18, 24, or30 quarters long.

The longest events reflect the recent experiences of some advanced economies, such as the U.S.

and Japan. We create50 datasets for each ZLB duration.Appendix E.6provides more information.
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3 ESTIMATION METHODS

The medium-scale model is costly to estimate with global methods, which causes researchers to

work with smaller models. To account for this reality, we simulate data from the fully nonlinear

model and test the accuracy of different estimation methodson a small-scale nonlinear model that

does not include capital or sticky wages. Therefore, the estimated model contains misspecifica-

tion. The medium-scale model that generates our data collapses to the small-scale model when

α = ϕw = 0 andθw → ∞. The equilibrium system includes (1), (5), (7), (10), (12), (16), (17), and

yt = atnt, (20)

wt = mctyt/nt, (21)

wt = χnη
tλt, (22)

ct = ygdpt , (23)

ygdpt = [1− ϕp(πt/π̄ − 1)2/2]yt. (24)

Once again, we remove the trend in productivity and provide the detrended equilibrium system in

Appendix A. The competitive equilibrium includes sequences of quantities,{c̃t, ỹt, ỹ
gdp
t , ygt , nt}

∞
t=0,

prices,{w̃t, it, i
n
t , πt, λ̃t, mct}

∞
t=0, and exogenous variables,{st, zt}∞t=0, that satisfy the detrended

system, given the initial conditions,{c̃−1, i
n
−1, s0, z0, εi,0}, and shock sequences,{εz,t, εs,t, εi,t}

∞
t=1.

We estimate the small-scale model with Bayesian methods. For each dataset, we draw param-

eters from a proposal distribution, solve the model conditional on the draw, and filter the data to

evaluate the likelihood function within a random walk Metropolis-Hastings algorithm. Within this

framework, we test the accuracy of two promising estimationmethods that account for the ZLB.

The first method estimates the fully nonlinear model with a particle filter (NL-PF). We solve

the model with the same algorithm we used to generate our datasets. To filter the data, we follow

Algorithm 14 in Herbst and Schorfheide (2016) and adapt the basic bootstrap particle filter de-

scribed in Fernández-Villaverde and Rubio-Ramı́rez (2007) to include the information contained

in the current observation, so the model better matches extreme outliers in the data. NL-PF is well-

equipped to handle the nonlinearities in the data, but it is also the most computationally intensive.

NL-PF requires solving the fully nonlinear model and performing a large number of simulations to

evaluate the likelihood function for each draw in the randomwalk Metropolis-Hastings algorithm.

Appendix Cprovides a more detailed description of the estimation algorithm and the particle filter.

The second method estimates a piecewise linear version of the nonlinear model with an inver-

sion filter. To solve the model, we use the OccBin toolbox developed by Guerrieri and Iacoviello

(2015). The algorithm separates the model into two regimes.In one regime, the ZLB constraint

is slack, and the decision rules from the unconstrained linear model are used. In the other regime,
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the ZLB binds and backwards induction within a guess and verify method solves for the decision

rules. For example, if the ZLB binds in the current period, aninitial conjecture is made for how

many quarters the nominal interest rate will remain at the ZLB. Starting far enough in the future,

the algorithm uses the decision rules for when the ZLB does not bind and iterates backward to the

current period. The algorithm switches to the decision rules for the ZLB regime when the simu-

lated nominal interest rate indicates that the ZLB binds. The simulation implies a new guess for

the ZLB duration. The algorithm iterates until the implied ZLB duration equals the previous guess.

The advantage of using the piecewise linear model is that it solves very quickly. On average,

the nonlinear model takes3.6 seconds to solve (using Fortran with 16 cores), whereas the piecewise

linear model takes a fraction of a second. Furthermore, the nonlinear solution time exponentially

increases with the size of the model, whereas the model has little effect on the solution time in the

piecewise linear model. However, it is numerically too costly to apply a particle filter. For each

particle, the piecewise linear solution requires a long enough simulation to return to the regime

where the ZLB does not bind, whereas only a 1-period update isneeded with the nonlinear solution.

To speed up the filter, Guerrieri and Iacoviello (2017) follow Fair and Taylor (1983) and use an

inversion filter that requires only one simulation. The inversion filter solves for the shocks that

minimize the distance between the observables and the equivalent model predictions each period.

The piecewise linear model estimated with the inversion filter (OB-IF) makes one potentially

important simplifying assumption. Households do not account for the possibility that the ZLB may

bind in the future when it does not currently bind. That meanshouseholds ignore the effects of the

ZLB in states of the economy where it is likely to bind in the near future because the algorithm

uses the unconstrained linear decision rules. The questionis whether this simplification creates

large enough differences between the two methods to justifythe higher estimation time of NL-PF.

As a benchmark, we estimate the linear analogue of the nonlinear model using Sims’s (2002)

gensys algorithm to solve the model and a Kalman filter to evaluate the likelihood function (Lin-

KF). Unlike the other two methods, this method ignores the ZLB constraint, but it is much easier

to implement and was the most common method used in the literature before the Great Recession.

For each estimation method, the observation equation is given byxt = Hst + ξt, wherest
is a vector of variables,H is an observable selection matrix, andξ is a vector of measurement

errors (MEs). The inversion filter solves for the shocks thatminimize the distance between the

observables,xt, and their model predictions,Hst, so there is no ME up to a numerical tolerance.

With a Kalman filter or particle filter,ξ ∼ N(0, R), whereR is a diagonal matrix of ME variances.6

6Ireland (2004) allows for correlated MEs, but he finds a real business cycle model’s out-of-sample forecasts
improve when the ME covariance matrix is diagonal. Guerrón-Quintana (2010) finds that introducingi.i.d. MEs and
fixing the variances to10% or 20% of the standard deviation of the data improves the empiricalfit and forecasting
properties of a New Keynesian model. Fernández-Villaverde and Rubio-Ramı́rez (2007) estimate the ME variances,
but Doh (2011) argues that approach can lead to complications because the ME variances are similar to bandwidths in
nonparameteric estimation. Given those findings, we use a diagonal ME covariance matrix and fix the ME variances.
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We are free to set the ME variances to zero when we use the Kalman filter, since the number of

observables is equal to the number of shocks. The particle filter, however, always requires positive

ME variances to avoid degeneracy. Unfortunately, there is no consensus on how to set these values,

despite their potentially large effect. We consider three values for the ME variances:2%, 5%, and

10% of the variance in the data. These values encompass the rangeof values used in the literature.7

Parameter Dist. Mean (SD) Parameter Dist. Mean (SD) Parameter Dist. Mean (SD)

ϕp Norm 100 h Beta 0.8 σz IGam 0.005
(25) (0.1) (0.005)

φπ Norm 2.0 ρs Beta 0.8 σs IGam 0.005
(0.25) (0.1) (0.005)

φy Norm 0.5 ρi Beta 0.8 σi IGam 0.002
(0.25) (0.1) (0.002)

Table 2: Prior distributions, means, and standard deviations of the estimated parameters.

Table 2displays information about the prior distributions of the estimated parameters. All

other parameter values are fixed at their true values. The prior means are set to the true parameter

values to isolate the influence of other aspects of the estimation procedure, such as the solution

method and filter. Different prior means would most likely affect the accuracy of the estimation

and contaminate our results. The prior standard deviations, which are consistent with the values in

the literature, are relatively diffuse to give the algorithm flexibility to search the parameter space.

Our estimation procedure has three stages. First, we conduct a mode search to create an initial

variance-covariance matrix for the estimated parameters.The covariance matrix is based on the

parameters corresponding to the90th percentile of the likelihoods from5,000 draws. Second, we

perform an initial run of the Metropolis-Hastings algorithm with 25,000 draws from the posterior

distribution. We burn off the first5,000 draws and use the remaining draws to update the variance-

covariance matrix from the mode search. Third, we conduct a final run of the Metropolis-Hastings

algorithm. We obtain50,000 draws from the posterior distribution and then record the mean draw.

The algorithm is programmed in Fortran and the datasets are run in parallel across several su-

percomputers. Each dataset uses one core with OB-IF and Lin-KF, whereas NL-PF uses16 cores

because the solution is parallelized. For example, a supercomputer with80 cores can simultane-

ously run80 datasets with OB-IF but only5 datasets with NL-PF. To increase the accuracy of the

particle filter, we evaluate the likelihood function on eachcore. Since NL-PF uses16 cores, we

obtain16 likelihoods and determine whether to accept a draw based on the median likelihood. This

key step reduces the variance of the likelihoods from seed effects. The filter uses40,000 particles.

7Some papers set the MEstandard deviationsto20% or25% of the sample standard deviations, which is equivalent
to setting the MEvariancesto 4% or 6.25% of the sample variances (e.g., An and Schorfheide, 2007; Doh, 2011;
Herbst and Schorfheide, 2016; van Binsbergen et al., 2012).Other work directly sets the ME variances to10% or 25%
of the sample variances (e.g., Bocola, 2016; Gust et al., 2017; Plante et al., 2018; Richter and Throckmorton, 2016).
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NL-PF (16 Cores) OB-IF (1 Core) Lin-KF (1 Core)

0Q 30Q 0Q 30Q 0Q 30Q

Seconds per draw 6.7 8.4 0.035 0.096 0.002 0.002
(6.1, 7.9) (7.5, 9.5) (0.031, 0.040) (0.051, 0.135) (0.002, 0.004) (0.001, 0.003)

Hours per dataset 148.8 186.4 0.781 2.137 0.052 0.049
(134.9, 176.5) (167.6, 210.7) (0.689, 0.889) (1.133, 3.000) (0.044, 0.089) (0.022, 0.067)

Table 3: Average and(5, 95) percentiles of the estimation times by method and ZLB duration in the data.

Table 3shows the computing times for each estimation method. We first report the average and

(5, 95) percentiles of the combined solution and filter times acrossour50 posterior mean estimates.

These draws are independent and representative of other draws from the posterior distribution. We

then show hours per dataset, which are extrapolated by multiplying seconds per draw by80,000

draws and dividing by3,600 seconds per hour. We report times for NL-PF, OB-IF, and Lin-KF in

datasets where the ZLB never binds and datasets with one 30 quarter ZLB event. NL-PF is run on

16 cores and the other methods use a single core. The estimation times depend on the hardware, but

there are two interesting takeaways. One, OB-IF is slightlyslower than Lin-KF, but it only takes a

few hours to run on a single core. Two, NL-PF requires significantly more time than OB-IF, but it

ran in about a week with16 cores, so it is possible to estimate the nonlinear model on a workstation.

4 POSTERIORESTIMATES AND ACCURACY

The section begins by showing the accuracy of the parameter estimates for each estimation method.

We then compare the filtered estimates of the notional interest rate, expected frequency and dura-

tion of the ZLB, responses to a severe recession, and forecasting performance across the methods.

4.1 PARAMETER ESTIMATES We measure parameter accuracy by calculating the normalized

root-mean square-error (NRMSE) for each estimated parameter. For parameterj and estimation

methodh, the error is the difference between the parameter estimatefor datasetk, θ̂j,h,k, and the

true parameter,̃θj . Therefore, theNRMSE for parameterj and estimation methodh is given by

NRMSEj
h = 1

θ̃j

√

1
N

∑N
k=1(θ̂j,h,k − θ̃j)

2,

whereN is the number of datasets. TheRMSE is normalized bỹθj to remove differences in the

scales of the parameters and measure the total error. We alsocompute the coverage ratio given by

CRj
h = 1

N

∑N
k=1 I(θ̂

5%
j,h,k < θ̃j)× I(θ̂95%j,h,k > θ̃j),

whereI is an indicator function and̂θX% denodes theXth percentile of the posterior distribution.

This statistic shows how likely it is for the posterior distribution to contain the true parameter value.
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Ptr Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q

ϕp 100 151.1 188.4 142.6 183.4 151.4 191.6
(134.2, 165.8) (174.7, 202.7) (121.1, 157.3) (169.2, 198.5) (134.0, 165.7) (175.3, 204.1)
{0.52, 0.02} {0.89, 0.00} {0.44, 0.08} {0.84, 0.00} {0.52, 0.00} {0.92, 0.00}

h 0.8 0.66 0.68 0.64 0.63 0.66 0.67
(0.62, 0.70) (0.64, 0.71) (0.61, 0.67) (0.60, 0.67) (0.62, 0.69) (0.63, 0.70)
{0.18, 0.00} {0.16, 0.00} {0.20, 0.00} {0.21, 0.00} {0.18, 0.00} {0.17, 0.00}

ρs 0.8 0.76 0.81 0.76 0.82 0.76 0.82
(0.72, 0.80) (0.78, 0.84) (0.73, 0.81) (0.79, 0.86) (0.72, 0.80) (0.78, 0.86)
{0.06, 0.70} {0.03, 0.90} {0.05, 0.82} {0.04, 0.78} {0.06, 0.74} {0.04, 0.78}

ρi 0.8 0.79 0.80 0.76 0.77 0.79 0.84
(0.75, 0.82) (0.75, 0.84) (0.71, 0.79) (0.73, 0.81) (0.75, 0.82) (0.80, 0.88)
{0.03, 0.96} {0.03, 0.96} {0.06, 0.52} {0.05, 0.66} {0.03, 0.98} {0.06, 0.56}

σz 0.005 0.0032 0.0040 0.0051 0.0059 0.0032 0.0043
(0.0023, 0.0039) (0.0030, 0.0052) (0.0044, 0.0058) (0.0050, 0.0069) (0.0023, 0.0039) (0.0030, 0.0057)
{0.37, 0.00} {0.23, 0.58} {0.09, 0.92} {0.22, 0.30} {0.36, 0.00} {0.20, 0.68}

σs 0.005 0.0052 0.0050 0.0051 0.0046 0.0053 0.0047
(0.0040, 0.0066) (0.0039, 0.0062) (0.0042, 0.0063) (0.0036, 0.0056) (0.0040, 0.0067) (0.0037, 0.0061)
{0.15, 0.92} {0.13, 0.96} {0.13, 0.92} {0.15, 0.82} {0.15, 0.92} {0.15, 0.92}

σi 0.002 0.0017 0.0015 0.0020 0.0020 0.0017 0.0016
(0.0014, 0.0020) (0.0013, 0.0019) (0.0018, 0.0023) (0.0019, 0.0024) (0.0015, 0.0020) (0.0014, 0.0019)
{0.17, 0.48} {0.24, 0.20} {0.08, 0.90} {0.09, 0.90} {0.16, 0.50} {0.20, 0.28}

φπ 2.0 2.04 2.13 2.01 1.96 2.04 1.73
(1.88, 2.19) (1.94, 2.31) (1.84, 2.16) (1.77, 2.14) (1.88, 2.20) (1.52, 1.91)
{0.06, 0.98} {0.09, 0.92} {0.06, 0.98} {0.06, 0.98} {0.06, 0.98} {0.15, 0.78}

φy 0.5 0.35 0.42 0.32 0.44 0.35 0.32
(0.21, 0.54) (0.27, 0.62) (0.17, 0.48) (0.27, 0.61) (0.22, 0.54) (0.17, 0.47)
{0.36, 0.80} {0.28, 0.98} {0.41, 0.68} {0.25, 0.98} {0.35, 0.80} {0.40, 0.76}

Σ 1.90 2.08 1.53 1.91 1.88 2.28

Table 4: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

Table 4shows the parameter estimates by specification (first columnheader) and the duration

of the ZLB (second column header). The percentage appended to each specification header corre-

sponds to the size of the ME variances. Each cell includes theaverage (first row),(5, 95) percentiles

(second row),NRMSE (third row, first value), and the coverage ratio (third row, second value).8

Across all specifications, the Rotemberg price adjustment cost parameter (ϕp) has the highest

NRMSE and it becomes less accurate when the ZLB binds in the data. The upward bias is driven by

misspecification, since the small-scale model used for estimation does not include sticky-wages. In

the small-scale model, the response of marginal costs to shocks is much larger than in the medium-

scale model, so the estimates ofϕp are higher than the true value to flatten the Phillips curve.

Another inaccuracy is a downward bias in the estimates of habit persistence (h). The response

of output growth to shocks is too small due to the lack of investment in the small-scale model.

Loweringh increases the response to shocks, although at the expense oflower persistence. Risk

premium persistence (ρs) and the monetary response to the output growth gap (φy) also have a

downward bias in the datasets without a ZLB event, but theCR is much higher than the near-zero

8For conciseness, we focus on datasets without a ZLB event andthose with a 30 quarter event, but the estimates
for the datasets with intermediate ZLB durations, as well asthe Lin-KF-0% estimates, are provided inAppendix E.2.
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values forϕp andh. Also, the bias ofρs andφy decreases using datasets with a 30 quarter event.

The NL-PF-5% estimates of the productivity growth and monetary policy shock standard devi-

ations (σz andσi) are biased downward, while the OB-IF-0% estimates are roughly consistent with

their true values. In the datasets without a ZLB event, Lin-KF-5% produces identical estimates

to NL-PF-5%, suggesting the bias is due to the positive ME variances in the filter. The impor-

tance of the ME variances is likely driven by the filter ascribing large shocks to ME rather than the

structural shocks, reducing their estimated volatility. However, in datasets with a 30 quarter event,

NL-PF-5% is more likely to contain the true risk premium parameters (ρs andσs) than OB-IF-0%.

While the average estimates are similar, theCR is 0.90 for ρs with NL-PF-5%, compared to0.78

with OB-IF-0%. Forσs theCRs are0.96 with NL-PF-5% and0.82 with OB-IF-0%. This is notable

because these two parameters have the largest effect on the frequency and duration of ZLB events.

The bottom row oftable 4shows the sum of theNRMSE across the parameters. These values

provide an aggregate measure of parameter accuracy. In the datasets that are not influenced by

the ZLB, OB-IF-0% is more accurate than NL-PF-5%. The results for Lin-KF-5% show the lower

accuracy of NL-PF-5% is driven by positive ME variances and that the ZLB is the onlyimportant

nonlinearity in the model. When the ZLB binds, it reduces theaccuracy of every specification,

largely due to a single parameter,ϕp.9 Long ZLB events have the smallest effect on the accuracy

of NL-PF-5%. Datasets with a 30 quarter ZLB event reduce accuracy by0.18 relative to datasets

without a ZLB event. For comparison, the accuracy decreasesby 0.38 with OB-IF-0% and by0.30

with Lin-KF-0%. However, NL-PF-5% is less accurate than OB-IF-0% due to the positive ME

variances. In other words, NL-PF-5% is the best equipped to handle ZLB events in the data, but the

loss in accuracy from the positive ME variances in the particle filter may outweigh those benefits.

Misspecification The absence of sticky wages and other frictions from the datagenerating process

are important drivers of the parameter estimates in the small-scale model. Here we explore the

effect of misspecification on only the OB-IF estimates sinceadding sticky wages substantially

increases the computational cost of NL-PF. The first two columns of table 5repeat the OB-IF-

0% estimates of the small-scale model, while the middle columns show the effect of reducing

misspecification on the OB-IF-0% estimates by including sticky wages.10 The right two columns

show the OB-IF-0% estimates using the medium-scale model that generates the data, eliminating

all misspecification except nonlinearities not captured bythe OccBin solution. For the last two

cases, we fix the parameters that are not estimated in the small-scale model to their true values.11

In datasets with a 30 quarter ZLB event, adding sticky wages reduces the sum of theNRMSE

9Appendix E.3shows there is a small but similar decrease in accuracy due toϕp when there is no misspecification.
10The equilibrium system is the same as the small-scale model,except (43) and (44) are replaced with (28), (32),

(40), and a real GDP definition that accounts for sticky wages (i.e.,ỹgdpt = [1−ϕp(πt/π̄−1)2/2−ϕw(w
g
t −1)2/2]ỹt).

11Appendix E.1further explores the estimated bias by reproducingtable 4with ϕp andh fixed at their true values.
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Ptr Truth OB-IF-0% OB-IF-0%-Sticky Wages OB-IF-0%-DGP

0Q 30Q 0Q 30Q 0Q 30Q

ϕp 100 142.6 183.4 100.1 129.8 101.4 128.4
(121.1, 157.3) (169.2, 198.5) (76.9, 119.6) (105.5, 152.3) (80.1, 120.7) (109.0, 148.1)
{0.44, 0.08} {0.84, 0.00} {0.13, 1.00} {0.33, 0.58} {0.12, 0.98} {0.31, 0.46}

h 0.8 0.64 0.63 0.82 0.80 0.81 0.77
(0.61, 0.67) (0.60, 0.67) (0.78, 0.86) (0.77, 0.85) (0.75, 0.85) (0.72, 0.84)
{0.20, 0.00} {0.21, 0.00} {0.04, 0.82} {0.03, 0.88} {0.04, 1.00} {0.06, 0.78}

ρs 0.8 0.76 0.82 0.82 0.84 0.80 0.82
(0.73, 0.81) (0.79, 0.86) (0.76, 0.86) (0.80, 0.88) (0.76, 0.85) (0.79, 0.86)
{0.05, 0.82} {0.04, 0.78} {0.04, 0.90} {0.06, 0.58} {0.03, 0.96} {0.04, 0.80}

ρi 0.8 0.76 0.77 0.80 0.80 0.79 0.79
(0.71, 0.79) (0.73, 0.81) (0.77, 0.83) (0.77, 0.84) (0.75, 0.82) (0.75, 0.83)
{0.06, 0.52} {0.05, 0.66} {0.02, 0.98} {0.03, 0.92} {0.03, 0.98} {0.03, 0.92}

σz 0.005 0.0051 0.0059 0.0038 0.0047 0.0047 0.0055
(0.0044, 0.0058) (0.0050, 0.0069) (0.0031, 0.0044) (0.0039, 0.0055) (0.0039, 0.0054) (0.0047, 0.0066)
{0.09, 0.92} {0.22, 0.30} {0.24, 0.16} {0.12, 0.72} {0.11, 0.78} {0.15, 0.70}

σs 0.005 0.0051 0.0046 0.0085 0.0074 0.0060 0.0051
(0.0042, 0.0063) (0.0036, 0.0056) (0.0056, 0.0134) (0.0050, 0.0107) (0.0043, 0.0084) (0.0039, 0.0068)
{0.13, 0.92} {0.15, 0.82} {0.81, 0.44} {0.60, 0.58} {0.30, 0.88} {0.19, 0.92}

σi 0.002 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.0018, 0.0023) (0.0019, 0.0024) (0.0018, 0.0022) (0.0018, 0.0023) (0.0018, 0.0022) (0.0018, 0.0024)
{0.08, 0.90} {0.09, 0.90} {0.08, 0.84} {0.08, 0.92} {0.08, 0.92} {0.09, 0.88}

φπ 2.0 2.01 1.96 1.91 1.81 1.92 1.81
(1.84, 2.16) (1.77, 2.14) (1.74, 2.04) (1.63, 1.99) (1.72, 2.08) (1.62, 2.03)
{0.06, 0.98} {0.06, 0.98} {0.07, 1.00} {0.11, 0.72} {0.06, 1.00} {0.11, 0.70}

φy 0.5 0.32 0.44 0.40 0.50 0.41 0.50
(0.17, 0.48) (0.27, 0.61) (0.24, 0.58) (0.33, 0.73) (0.24, 0.57) (0.32, 0.74)
{0.41, 0.68} {0.25, 0.98} {0.28, 0.96} {0.23, 0.98} {0.26, 0.96} {0.24, 0.96}

Σ 1.53 1.91 1.71 1.59 1.03 1.23

Table 5: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

from 1.91 to 1.59. That is a clear improvement over NL-PF-5% and is driven by more accurate

estimates ofϕp andh that dominate the lower accuracy ofσs. TheCR for ϕp andh also signifi-

cantly increases. This is consistent with the claim that thebias ofϕp andh in table 4is primarily

due to the lack of sticky wages, which destabilize marginal costs and inflation. The amplification

of shocks still remains too low, now for both inflation and output, which leads to an upward bias

in σs rather than a downward bias inh. TheNRMSE for σs is much higher and theCR declines.

Making the estimated model consistent with the DGP improvesthe parameter estimates even

further. The sum of theNRMSE declines1.59 to 1.23 when the ZLB binds for 30 quarters. The

primary reason is becauseσs is closer to its true value. TheNRMSE in σs is significantly lower

and theCR is much higher. Also, all of the true parameter values are encompassed by the(5, 95)

percentiles of the estimates, except the estimate ofϕp has a large upward bias in the 30 quarter

datasets. This indicates the increase in the bias ofϕp as the ZLB duration increases is solely driven

by sample selection, not model misspecification. Overall, our results suggest it is more beneficial

to reduce misspecification and estimate a richer model with OB-IF than a smaller model with

NL-PF. Nonlinear methods more accurately capture the dynamics of the ZLB, but computational

limitations often require excluding important features ofthe model, like sticky wages and capital.
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Ptr Truth NL-PF-2% NL-PF-5% NL-PF-10%

0Q 30Q 0Q 30Q 0Q 30Q

ϕp 100 150.2 192.0 151.1 188.4 149.5 182.7
(133.5, 165.3) (176.5, 207.1) (134.2, 165.8) (174.7, 202.7) (132.6, 163.8) (168.6, 197.3)
{0.51, 0.02} {0.93, 0.00} {0.52, 0.02} {0.89, 0.00} {0.50, 0.02} {0.83, 0.02}

h 0.8 0.66 0.67 0.66 0.68 0.66 0.68
(0.62, 0.69) (0.64, 0.71) (0.62, 0.70) (0.64, 0.71) (0.61, 0.70) (0.65, 0.72)
{0.18, 0.00} {0.17, 0.00} {0.18, 0.00} {0.16, 0.00} {0.17, 0.00} {0.15, 0.00}

ρs 0.8 0.76 0.81 0.76 0.81 0.76 0.81
(0.71, 0.79) (0.78, 0.84) (0.72, 0.80) (0.78, 0.84) (0.72, 0.79) (0.79, 0.85)
{0.06, 0.60} {0.03, 0.92} {0.06, 0.70} {0.03, 0.90} {0.06, 0.76} {0.03, 0.88}

ρi 0.8 0.77 0.79 0.79 0.80 0.80 0.81
(0.73, 0.80) (0.75, 0.83) (0.75, 0.82) (0.75, 0.84) (0.77, 0.84) (0.76, 0.85)
{0.05, 0.76} {0.03, 0.96} {0.03, 0.96} {0.03, 0.96} {0.03, 0.96} {0.03, 0.94}

σz 0.005 0.0038 0.0043 0.0032 0.0040 0.0027 0.0038
(0.0031, 0.0043) (0.0035, 0.0052) (0.0023, 0.0039) (0.0030, 0.0052) (0.0020, 0.0035) (0.0025, 0.0050)
{0.25, 0.16} {0.18, 0.60} {0.37, 0.00} {0.23, 0.58} {0.46, 0.00} {0.28, 0.62}

σs 0.005 0.0052 0.0051 0.0052 0.0050 0.0051 0.0049
(0.0039, 0.0065) (0.0040, 0.0061) (0.0040, 0.0066) (0.0039, 0.0062) (0.0041, 0.0065) (0.0037, 0.0061)
{0.15, 0.88} {0.13, 0.92} {0.15, 0.92} {0.13, 0.96} {0.14, 0.94} {0.14, 0.92}

σi 0.002 0.0019 0.0018 0.0017 0.0015 0.0015 0.0013
(0.0017, 0.0021) (0.0016, 0.0021) (0.0014, 0.0020) (0.0013, 0.0019) (0.0012, 0.0018) (0.0011, 0.0017)
{0.10, 0.70} {0.14, 0.62} {0.17, 0.48} {0.24, 0.20} {0.25, 0.28} {0.34, 0.12}

φπ 2.0 2.01 2.14 2.04 2.13 2.06 2.12
(1.84, 2.16) (1.96, 2.31) (1.88, 2.19) (1.94, 2.31) (1.89, 2.21) (1.92, 2.28)
{0.06, 0.98} {0.09, 0.90} {0.06, 0.98} {0.09, 0.92} {0.07, 0.98} {0.08, 0.96}

φy 0.5 0.31 0.39 0.35 0.42 0.41 0.46
(0.18, 0.48) (0.24, 0.60) (0.21, 0.54) (0.27, 0.62) (0.26, 0.59) (0.30, 0.66)
{0.42, 0.64} {0.32, 0.92} {0.36, 0.80} {0.28, 0.98} {0.27, 0.98} {0.24, 1.00}

Σ 1.79 2.01 1.90 2.08 1.95 2.13

Table 6: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

ME Variances Table 6shows the parameter estimates andNRMSEs for NL-PF with three dif-

ferent ME variances:2%, 5% (baseline), and10%. Without model misspecification, lowering the

ME variances would increase the accuracy of the parameter estimates as long as the effective sam-

ple of particles is large enough. In our setup, the presence of misspecification creates a potential

tradeoff. On the one hand, lower ME variances force the modelto match sharp swings in the data,

which could help identify the parameters. On the other hand,higher ME variances give the model a

degree of freedom to account for important differences between the estimated model and the DGP.

We find higher ME variances increase the sum of theNRMSE. In datasets with 30 quarter

ZLB events, it increases from2.01 to 2.13 when the ME variances increase from2% to 10%. For

σz andσi, higher ME variances push the estimates lower, away from their true values. Once again,

this result is likely driven by the filter incorrectly ascribing movements in the data to ME rather

than the structural shocks. This loss in accuracy as the ME variances increase is partially offset

by the increase in the accuracy of most other parameters. Estimates ofφy with all datasets and

estimates ofϕp with datasets where the ZLB binds for 30 quarters improve themost. These results

show that ME variances are important for accuracy. In some cases, they may compensate for model

misspecification. In our setup, however, larger ME variances have a net negative effect on accuracy.
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4.2 NOTIONAL INTEREST RATE ESTIMATES We measure the accuracy of the notional rate by

calculating the averageRMSE across periods when the ZLB binds. For periodt and estimation

methodh, the error is the difference between the filtered notional rate based on the parameter

estimates for datasetk, ı̂nt,h,k, and the true notional rate,ı̃nt . TheRMSE for methodh is given by

RMSEin

h =
√

1
N

1
τ

∑N
k=1

∑t+τ−1
j=t (̂ınj,h,k − ı̃nj )

2,

wheret is the first period the ZLB binds andτ is the duration of the ZLB event. There is no reason

to normalize theRMSE since the units are the same across periods and we do not sum across states.

Estimates of the notional interest rate are of keen interestto policymakers for two key rea-

sons. One, they summarize the severity of the recession and the nominal interest rate policymakers

would like to set in the absence of the ZLB, which help inform decisions about implementing un-

conventional monetary policy. Two, estimates of the notional rate help determine how long the

ZLB is expected to bind, which is necessary to issue forward guidance. The notional rate is also

the only latent endogenous state variable in the model that is not directly linked to an observable.

6Q 12Q 18Q 24Q 30Q
0

0.25

0.5

0.75

1

1.25

1.5

1.75

Figure 1:RMSE of the notional interest rate across ZLB durations in the data. Rates are net annualized percentages.

Figure 1shows the accuracy of the notional rate for our baseline methods, NL-PF-5% and OB-

IF-0%. We also show the how different ME variances in the particle filter affect accuracy. We do

not present the results for Lin-KF because they are uninformative. Since the linear model does not

distinguish between the notional and nominal rates and the nominal rate is an observable, the error

in the linear model equals the absolute value of the notionalrate when the ZLB binds in the data.

Regardless of the ZLB duration, NL-PF-5% provides more accurate estimates of the notional

rate than OB-IF-0%. Depending on the ZLB duration, the average difference between the two

methods ranges from0.1 to 0.25 annualized percentage points.Appendix E.5shows the RMSE
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is higher with OB-IF-0% because the estimate of the notional rate is more likely to beabove the

true value. Nevertheless, the differences in the estimatesare not big enough to have a meaningful

impact on policy prescriptions. Increasing or decreasing the ME variances also has a modest effect.

4.3 EXPECTED ZLB DURATION AND PROBABILITY In addition to estimates of the notional in-

terest rate, two commonly referenced statistics in the literature are the expected duration and prob-

ability of the ZLB constraint. These statistics determine the impact of a ZLB event in the model

and are frequently measured against survey data.Figure 2shows the accuracy of the two statistics.

(a) Estimated vs. Actual Expected ZLB Durations

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12

2

4

6

8

10

12

(b) Estimated vs. Actual Probability of a 4 Quarter or LongerZLB Event
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Figure 2: Estimated and actual ZLB statistics. The solid lines are mean estimates and the shaded areas capture the
(5, 95) percentiles across the datasets. The dashed line shows where the estimated values would equal the actual values.

The top panel compares the expected ZLB durations given the parameter estimates from the

small-scale model to the actual expected ZLB durations fromthe DGP given the true parameters.

The expected ZLB durations are computed as the average across10,000 simulations of a model ini-

tialized at the filtered states (or actual states for the DGP)where the ZLB binds. The solid lines are

the mean expected ZLB durations in the small-scale model after pooling across the different ZLB
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states and datasets. The shaded areas are the(5, 95) percentiles of the durations. The estimated

expected ZLB duration equals the actual expected ZLB duration along the dashed 45 degree line.

When the actual expected ZLB duration is relatively short, the NL-PF-5% and OB-IF-0% ex-

pected ZLB durations are close to the truth. As the actual expected duration lengthens, both es-

timates become less accurate. The NL-PF-5% 95th percentile continues to encompass the actual

expected durations. However, once the actual value exceedssix quarters, there is a95% chance

or higher of under-estimating the actual expected durationwith OB-IF-0%. Furthermore, the OB-

IF-0% mean expected duration is typically at least one quarter shorter than the NL-PF-5% mean

estimate.12 These results are likely driven by model misspecification, as the presence of capital and

sticky wages in the DGP makes the ZLB more persistent than in the estimated small-scale model.

The Lin-KF-0% estimated ZLB durations are always significantly shorter since that method

does not permit a negative notional rate when filtering the data. The only instance when Lin-

KF-0% produces an expected ZLB duration beyond one year is when theeconomy is in a severe

downturn and the actual expected duration is extremely long. The Lin-KF-0% estimates are a lower

bound on the OB-IF-0% estimates since the solutions are identical when the ZLB does not bind.

The bottom panel is constructed in a similar way as the top panel except the horizontal and

vertical axes correspond to the actual and estimated probability of a ZLB event that lasts for at

least four quarters. The probability is calculated in all periods where the ZLB does not bind in the

data. We do not show the results for Lin-KF-0% because the probability of a four quarter ZLB event

is always near zero. NL-PF-5% and OB-IF-0% underestimate the true probability, but the mean

NL-PF-5% estimates are slightly closer to the actual probabilities and the95th percentile almost

encompasses the truth. Changing the ME variances in the particle filter has no discernable effect

on the estimates. These results illustrate the precautionary savings effects of the ZLB, which are

not captured by OB-IF-0%. However, they do not provide overwhelming support for NL-PF-5%.

4.4 RECESSIONRESPONSES To illustrate the economic implications of the differencesin ac-

curacy, we compare simulations of the small-scale model given our parameter estimates to simu-

lations of the DGP given the true parameters. The simulations are initialized in steady state and

followed by four consecutive1.5 standard deviation positive risk premium shocks, which generates

a10 quarter ZLB event in the DGP.13 A risk premium shock is a proxy for a change in demand be-

cause it affects households’ consumption and saving decisions. Positive shocks cause households

to postpone consumption, which reduces current output growth. We focus on this particular shock

because it is the primary mechanism for generating ZLB events in the DGP and estimated model.14

12Prior to instituting date-based forward guidance in 2011, Blue Chip consensus forecasts revealed that people
expected the ZLB to bind for three quarters or less. After theforward guidance, the expectation rose to seven quarters.

13The simulations are reflective of the Great Recession. The current Congressional Budget Office estimate of the
output gap in 2009Q2 is−5.9%, roughly equivalent to the output (level) gap in the true simulation in the fourth period.

14Appendix E.4shows impulse responses to a productivity growth and monetary policy shock in a severe recession.
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Figure 3: Recession responses. The solid line is the true simulation, the dashed line is the mean estimated simulation,
and the shaded area contains the(5, 95) percentiles across the datasets. The simulations are initialized in steady state
and followed by four1.5 standard deviation positive risk premium shocks. All values are net annualized percentages.

Figure 3shows the simulated paths of the output growth gap, inflationrate, and notional interest

rate in annualized net percentages. The NL-PF-5% simulations are shown in the left column and

the OB-IF-0% simulations are in the right column. The true simulation of the DGP (solid line) is

compared to the mean estimated simulation of the small-scale model (dashed line). The(5, 95) per-

centiles account for differences in the simulations acrossthe parameter estimates for each dataset.

Model misspecification leads to significantly muted responses relative to the true simulation.15

None of the estimated simulations for NL-PF-5% or OB-IF-0% can replicate the size of the neg-

ative output growth gap, decline in inflation, or policy response at the beginning of the true simu-

15Appendix E.3reproduces the responses without misspecification to confirm it is the source of the muted responses.
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lation. Both estimation methods also underestimate the duration of the ZLB event. However, the

NL-PF-5% mean simulations of the three variables and the ZLB durationare closer to the truth

than the OB-IF-0% simulations. Unlike OccBin, the fully nonlinear solution captures the expec-

tational effects of going to the ZLB, which puts downward pressure on output and inflation and

improves accuracy. Although NL-PF-5% is closer to the truth than OB-IF-0%, once again these

differences are fairly small and may not justify the significantly longer estimation time.

4.5 FORECASTPERFORMANCE Another important aspect of any model is its ability to forecast.

We examine the forecasting performance of each estimation method in the quarter immediately

preceding a severe recession that causes the ZLB to bind. Thepoint forecasts are inaccurate since

severe recessions are rare. However, there are potentiallyimportant differences between the fore-

cast distributions, which assign probabilities to the range of potential outcomes in a given period.

The tails of the distribution are particularly important. To measure the accuracy of the forecast

distribution of variablej, we compute the continuous rank probability score (CRPS) given by

CRPSj
m,k,t,τ =

∫ ̃t+τ

−∞
[Fm,k,t(jt+τ )]

2djt+τ +
∫∞

̃t+τ
[1− Fm,k,t(jt+τ )]

2djt+τ ,

wherem indicates whether the forecast distribution comes from theDGP or an estimated model,k

is the dataset,t is the forecast date,Fm,k,t(jt+τ ) is the cumulative distribution function (CDF) of the

τ -quarter ahead forecast, and̃t+τ is the true realization. TheCRPS measures the accuracy of the

forecast distribution by penalizing probabilities assigned to outcomes that are not realized. It also

has the same units as the forecasted variables, which are netpercentages, and reduces to the mean

absolute error if the forecast is deterministic. A smallerCRPS indicates a more accurate forecast.16

For each dataset, we calculate aCRPS for the small-scale model given the parameter estimates

and the medium-scale model that generates the data. To approximate the forecast distribution for

a given model, we first initialize the forecasts at the filtered state (or actual state for the DGP) one

quarter before the ZLB binds in the data. Then we draw random shocks and simulate the model

for 8 quarters,10,000 times. Using the simulations, we approximate the CDF of the forecast dis-

tribution 8-quarters ahead.17 Finally, we average theCRPS for a given model across the datasets.

Figure 4shows the meanCRPS across the datasets for the DGP and each estimation method.

The horizontal axis denotes the ZLB duration in the data. Dueto model misspecification, none of

the estimation methods perform as well as the DGP. The DGP hasat least a0.5 percentage point

advantage over the estimated models, regardless of the forecasted variable or ZLB duration in the

data. Interestingly, theCRPS is similar across the estimation methods. The differences are most

pronounced for the nominal interest rate forecasts in datasets where the ZLB binds for 30 quarters.

16Appendix Dshows the CDF for a specific dataset to illustrate what each term represents in theCRPS calculation.
17We obtain similar results with a four quarter forecast horizon, as well as with theRMSE of the point forecast.
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Figure 4: MeanCRPS of 8-quarter ahead forecasts. Forecasts are made one quarter before the ZLB binds in the data.

The NL-PF-5% CRPS is only 179% of the DGPCRPS, compared to199% for OB-IF-0% and

211% for Lin-KF-0%. The NL-PF-5% forecasts of the inflation rate are also consistently more

accurate than the other estimation methods. However, in allcases the differences in accuracy are

small relative to the DGP. These findings are consistent withour previous results. NL-PF-5% has

an advantage over OB-IF-0%, but it is small and may not be worth the added computational costs.

5 CONCLUSION

During the Great Recession, many central banks lowered their policy rate to its ZLB, creating a

kink in the policy rule and calling into question linear estimation methods. There are two promising

alternatives: estimate a fully nonlinear model that accounts for the expectational effects of going to
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the ZLB or a piecewise linear model that is faster but ignoresthe expectational effects. This paper

compares the accuracy of the two methods. We find the predictions of the nonlinear model are

typically more accurate than the piecewise linear model, but the differences are often small. There

are far larger gains in accuracy from estimating a richer, less misspecified piecewise linear model.

Our results suggest that researchers are better off using piecewise linear models rather than

a simpler but properly solved nonlinear model when examining the empirical implications of the

ZLB constraint. However, it is important to caution that further research is needed to examine

whether our findings in the ZLB context are generalizable to other settings. It is also important to

emphasize that the nonlinear model is considerably more versatile. While the piecewise linear and

nonlinear models can handle any combination of occasionally binding constraints, only the non-

linear model can account for other nonlinear features emphasized in the literature (e.g., stochastic

volatility, asymmetric adjustment costs, non-Gaussian shocks, search frictions, time-varying pol-

icy rules, changes in steady states). Our results will serveas an important starting point for future

research that explores these nonlinear features or makes advances in nonlinear estimation methods.
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A DETRENDEDEQUILIBRIUM SYSTEM

Medium-Scale Model The detrended system includes (1), (6), (7), (9), (16), (17) and

ỹt = (υtk̃t−1/zt)
αn1−α

t , (25)

rkt = αmctztỹt/(υtk̃t−1), (26)

w̃t = (1− α)mctỹt/nt, (27)

wg
t = πtztw̃t/(π̄z̄w̃t−1), (28)

ỹgdpt = [1− ϕp(πt/π̄ − 1)2/2− ϕw(w
g
t − 1)2/2]ỹt − utk̃t−1/zt, (29)

ygt = ztỹ
gdp
t /(z̄ỹgdpt−1), (30)

λ̃t = c̃t − hc̃t−1/zt, (31)

w̃f
t = χnη

t λ̃t, (32)

c̃t + x̃t = ỹt, (33)

xgt = ztx̃t/(z̄x̃t−1), (34)

k̃t = (1− δ)(k̃t−1/zt) + x̃t(1− ν(xgt − 1)2/2), (35)

1 = βEt[(λ̃t/λ̃t+1)(stit/(zt+1πt+1))], (36)

qt = βEt[(λ̃t/λ̃t+1)(r
k
t+1υt+1 − ut+1 + (1− δ)qt+1)/zt+1], (37)

1 = qt[1− ν(xgt − 1)2/2− ν(xgt − 1)xgt ] + βνz̄Et[qt+1(λ̃t/λ̃t+1)(x
g
t+1)

2(xgt+1 − 1)/zt+1], (38)

ϕp(πt/π̄ − 1)(πt/π̄) = 1− θp + θpmct + βϕpEt[(λ̃t/λ̃t+1)(πt+1/π̄ − 1)(πt+1/π̄)(ỹt+1/ỹt)], (39)

ϕw(w
g
t − 1)wg

t = [(1− θw)w̃t + θww̃
f
t ]nt/ỹt + βϕwEt[(λ̃t/λ̃t+1)(w

g
t+1 − 1)wg

t+1(ỹt+1/ỹt)]. (40)

The variables arẽc, n, x̃, k̃, ỹ, ỹgdp, u, υ, wg, xg, yg, w̃f , w̃, rk, π, i, in, q,mc, λ̃, z, ands.

Small-Scale Model The detrended system includes (1), (7), (16), (17), (30), (31), (36), (39), and

ỹt = nt, (41)

w̃t = mctỹt/nt, (42)

ỹgdpt = [1− ϕp(πt/π̄ − 1)2/2]ỹt, (43)

w̃t = χnη
t λ̃t, (44)

c̃t = ỹgdpt . (45)

The variables arẽc, n, ỹ, ỹgdp, yg, w̃, π, i, in, mc, λ̃, z, ands.

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear equilibrium system as

E[f(st+1, st, εt+1)|zt, ϑ] = 0,
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wheref is a vector-valued function,st is a vector of variables,εt ≡ [εs,t, εz,t, εi,t]
′ is a vector of

shocks,zt is a vector of states (zt ≡ [c̃t−1, i
n
t−1, k̃t−1, x̃t−1, w̃t−1, st, zt, εi,t]

′ for the model with cap-

ital andzt ≡ [c̃t−1, i
n
t−1, st, zt, εi,t]

′ for the model without capital), andϑ is a vector of parameters.

There are many ways to discretize the exogenous state variables,st, zt, andεi,t. We use the

Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show outperforms other

methods for approximating autoregressive processes. The bounds oñct−1, int−1, k̃t−1, x̃t−1, and

w̃t−1 are respectively set to±2.5%, ±6%, ±8%, ±15%, ±4% of their deterministic steady state.

These bounds were chosen so the grids contain99.9% of the simulated values for each state vari-

able and ZLB duration. We discretize the states into7 evenly-spaced points, except for capital

and the risk premium which use11 and13 points, respectively. The product of the points in each

dimension,D, represents the total nodes in the state space (D = 16,823,807 for the model with

capital andD = 31,213 for the model without capital). The realization ofzt on noded is denoted

zt(d). The Rouwenhorst method provides integration nodes,[st+1(m), zt+1(m), εi,t+1(m)], with

weights,φ(m), for m ∈ {1, . . . ,M}. Since the exogenous variables evolve according to a Markov

chain, the number of future realizations is the same as the state variables,(13, 7, 7) orM = 637.

The vector of policy functions is denotedpf t and the realization on noded is denotedpf t(d)

(pf t ≡ [c̃t(zt), π
gap
t (zt), nt(zt), qt(zt), υt(zt)] for the capital model andpf t ≡ [c̃t(zt), π

gap
t (zt)] for

the model without capital, whereπgap
t (zt) ≡ πt(zt)/π̄). Our choice of policy functions, while not

unique, simplifies solving for the other variables in the nonlinear system of equations givenzt.

The following steps outline our global policy function iteration algorithm:

1. Use Sims’s (2002)gensys algorithm to solve the level-linear model without the ZLB con-

straint. Then map the solution to the discretized state space to initialize the policy functions.

2. On iterationj ∈ {1, 2, . . .} and each noded ∈ {1, . . . , D}, use Chris Sims’scsolve to find

pf t(d) to satisfyE[f(·)|zt(d), ϑ] ≈ 0. Guesspf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at timet, givenpf t(d) andzt(d).

(b) Linearly interpolate the policy functions,pf j−1, at the updated state variables,zt+1(m),

to obtainpf t+1(m) on every integration node,m ∈ {1, . . . ,M}.

(c) Given{pf t+1(m)}Mm=1, solve for the other elements ofst+1(m) and compute

E[f(st+1, st(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)f(st+1(m), st(d), εt+1(m)).

Whencsolve converges, setpf j(d) = pf t(d).

3. Repeat step 2 untilmaxdistj < 10−6, wheremaxdistj ≡ max{|pf j − pf j−1|}. When that

criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.
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C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate the model insection 3with

artificial data of120 quarters. To measure how well the model fits the data, we use either the

adapted particle filter described in Algorithm 14 in Herbst and Schorfheide (2016), which modifies

the basic bootstrap filter in Stewart and McCarty (1992) and Gordon et al. (1993) to better account

for the outliers in the data, or the inversion filter recentlyused by Guerrieri and Iacoviello (2017).

C.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Generate artificial data consisting of the output growth gap, the inflation rate, and the nomi-

nal interest rate,xt ≡ [ygt , πt, it]
′, whereNx = 3 is the number of observable variables.

2. Specify the prior distributions, means, variances, and bounds of each element of the vector

of Ne estimated parameters,θ ≡ [ϕp, φπ, φy, h, ρs, ρi, σz, σs, σi]
′.

3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.

(a) For alli ∈ {1, . . . , Nm}, whereNm = 5,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its densityvalue:

log ℓpriori =
∑Ne

j=1 log p(θ̂i,j|µj, σ
2
j ),

wherep is the prior density function of parameterj with meanµj and varianceσ2
j .

ii. Solve the model given̂θi. Follow Appendix Bfor the nonlinear model and use

OccBin for the PW linear model. Repeat 3(a)i if the algorithmdoes not converge.

iii. Obtain the model log-likelihood,log ℓmodel
i . Apply the particle filter described in

section C.2to the nonlinear model and the inversion filter to the PW linear model.

iv. The posterior log-likelihood islog ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculatemax(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector,θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters,Σ,

which is used to obtain candidate draws during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. Stack theNm,sub = (1 − p)Nm

draws in aNm,sub ×Ne matrix,Θ̂, and definẽΘ = Θ̂−
∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) CalculateΣ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.
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(a) For alli ∈ {0, . . . , Nd}, whereNd = 25,000, perform the following steps:

i. Draw a candidate vector of parameters,θ̂candi , where

θ̂i
cand ∼







N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We setc0 = 0 and tunec to target an overall acceptance rate of roughly30%.

ii. Calculate the prior density value,log ℓpriori , of the candidate draw,̂θcandi , as in 3(a)i.

iii. Solve the model given̂θcandi . If the algorithm does not converge repeat 5(a)i.

iv. Obtain the model log-likelihood value,log ℓmodel
i , using the methods in 3(a)iii.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =



















(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if min(1, ℓcandi /ℓi−1) > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution,U[0, 1], and the posterior log-

likelihood associated with the candidate draw islog ℓcandi = log ℓpriori + log ℓmodel
i .

(b) Burn the firstNb = 5,000 draws and use the remaining sample to calculate the mean

draw,θ̂5(b) =
∑Nd

i=Nb+1 θ̂i/(Nd −Nb), and the covariance matrix,Σ5(b). We follow step

4 to calculateΣ5(b) but use allNd −Nb draws instead of just the upperpth percentile.

6. Conduct a final run of the Metropolis-Hastings algorithm by repeating step 5, whereNd =

50,000, θ̂0 = θ̂5(b), andΣ = Σ5(b). The final posterior mean estimates areθ̂ =
∑Nd

i=1 θ̂i/Nd.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition ofst from Appendix Bis referred

to as the state vector, which should not be confused with the state variables for the nonlinear model.

1. Initialize the filter by drawing{εt,p}0t=−24 for all p ∈ {0, . . . , Np} and simulating the model,

whereNp is the number of particles. We initialize the filter with the final state vector,s0,p,

which is approximately a draw from the model’s ergodic distribution. We setNp = 40,000.

2. Fort ∈ {1, . . . , T}, sequentially filter the nonlinear model as follows:

(a) Forp ∈ {1, . . . , Np}, draw shocks from an adapted distribution,εt,p ∼ N(ε̄t, I), where

ε̄t maximizesp(ξt|st)p(st|s̄t−1) ands̄t−1 =
∑Np

p=1 st−1,p/Np is the mean state vector.

i. Use the model solution to update the state vector,st, givens̄t−1 and a guess for̄εt.

Definesht ≡ Hst, whereH selects the observable variables from the state vector.
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ii. Calculate the measurement error,ξt = sht −xt, which is assumed to be multivariate

normally distributed,p(ξt|st) = (2π)−3/2|R|−1/2 exp(−ξ′tR
−1ξt/2), whereR ≡

diag(σ2
me,yg , σ

2
me,π, σ

2
me,i) is a diagonal matrix of measurement error variances.

iii. The probability of observing the current state,st, conditional on̄st−1, is given by

p(st|s̄t−1) = (2π)−3/2 exp(−ε̄′tε̄t/2).

iv. Maximizep(ξt|st)p(st|s̄t−1) ∝ exp(−ξ′tR
−1ξt/2) exp(−ε̄′tε̄t/2) by solving for the

optimalε̄t. We use MATLAB’sfminsearch routine converted to Fortran.

(b) Use the model solution to predict the state vector,st,p, givenst−1,p andεt,p.

(c) Calculateξt,p = sht,p − xt. The unnormalized weight on particlep is given by

ωt,p =
p(ξt|st,p)p(st,p|st−1,p)

g(st,p|st−1,p,xt)
∝

exp(−ξ′t,pR
−1ξt,p/2) exp(−ε′t,pεt,p/2)

exp(−(εt,p − ε̄t)′(εt,p − ε̄t)/2)
.

Without adaptation,̄εt = 0 andωt,p = p(ξt|st,p), as in a basic bootstrap particle filter.

The time-t contribution to the model log-likelihood isℓmodel
t =

∑Np

p=1 ωt,p/Np.

(d) Normalize the weights,Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use systematic resampling with

replacement from the swarm of particles as described in Kitagawa (1996) to get a set

of particles that represents the filter distribution and reshuffle{st,p}
Np

p=1 accordingly.

3. The model log-likelihood islog ℓmodel =
∑T

t=1 log ℓ
model
t .

Aruoba et al. (2018) apply the same methodology to a New Keynesian model with sunspot shocks.

See Herbst and Schorfheide (2016) for a comprehensive discussion of the different particle filters.

D CONTINUOUS RANK PROBABILITY SCORE (CRPS) EXAMPLE

Figure 5shows an example of the 8-quarter ahead forecast distribution of the nominal interest rate

given the parameter estimates from NL-PF-5%. We picked a dataset where the ZLB binds for six

quarters, from period90 to 95 in the sample. The forecasts are initialized at the filtered state in

period89, immediately before the ZLB first binds, and the forecast distribution is approximated

based on10,000 simulations. Due to a strong tendency for the forecasts to revert to the stochastic

steady state, the mean forecast for the nominal interest rate is 2.32%. However, the probability

density function (PDF) in the left panel shows a significant number of forecasts remain near or at

the ZLB, even after 8 quarters. The true realization equals1.94%, which means there is signifi-

cant probability mass under the PDF above and below the true value. The right panel shows the

cumulative distribution function (CDF) of the forecasts. TheCRPS for this dataset and estimation

method is closely related to the shaded area, which has the same units as the forecasted variable.
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Figure 5: Example forecast distribution in the period before the ZLB binds in the data.

E ADDITIONAL RESULTS

First, we examine the sources of the bias in the estimates of the habit persistence and price adjust-

ment cost parameters. Second, we report the parameter estimates for datasets with ZLB events be-

tween 0 and 30 quarters long. Third, we show how misspecification affects the parameter estimates

and impulse responses using generated data from our small-scale model. Fourth, we plot impulse

responses to a productivity growth and monetary policy shock when the ZLB binds. Fifth, we

compare the filtered paths of the notional interest rate. Sixth, we provide additional statistics about

the ZLB events in our datasets. Finally, we examine how government spending affects our results.

E.1 PRICE ADJUSTMENT COST AND HABIT PERSISTENCE In table 4, estimates of the price

adjustment cost (ϕp) and habit persistence (h) parameters have some of the largestNRMSEs, even

in datasets without a ZLB event. These parameters are critical for output and inflation dynamics, so

understanding the source of the bias is important for interpreting our results. The small-scale model

lacks important shock amplifiers for output, such as sticky wages and variable capital utilization.

Therefore, the response of output growth is too small when the model is parameterized with the true

values. Conversely, the lack of sticky wages means marginalcosts are overly volatile and inflation

is too sensitive to shocks. If misspecification impacted theresponses of output growth and inflation

in the same direction, the estimated shock size would have been affected. Instead, estimates ofh

are lower than the true value, amplifying the response of output. Estimates ofϕp are biased upward,

flattening the price Phillips curve and stabilizing inflation despite overly volatile marginal costs.

Another potentially important source of the bias is the misspecification in the aggregate re-

source constraint. Movements in wage adjustment costs, capital utilization costs and other terms

could be interpreted as price adjustment costs through a larger estimate ofϕp. However, that is
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unlikely to drive the bias in estimates ofϕp andh. The NL-PF-5% and Lin-KF-5% estimates of

ϕp andh are very similar, despite the absence of price adjustment costs in the aggregate resource

constraint in the linear model (i.e.,̂yt = ŷgdpt = ĉt). Therefore, the upward bias inϕp is not the

result of price adjustment costs absorbing the gap between consumption and output in the DGP.

The middle columns oftable 5, where only sticky wages are added to the small-scale model,

support these conclusions. In particular, in datasets without a ZLB event, there is virtually no bias

in the OB-IF-0% estimates ofϕp andh, but there is a large upward bias inσs. When sticky wages

are added, the volatility of output growth is still too smalldue to the absence of investment and

capital utilization, but the volatility of inflation is now proportionally too small as well.σs increases

to match the dynamics of the output and inflation data, whileh andϕp remain close to their true

values. In the right two columns oftable 5, the full model is estimated andσs is close to the truth.

Ptr Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q

ρs 0.8 0.43 0.52 0.39 0.44 0.43 0.55
(0.37, 0.50) (0.40, 0.68) (0.31, 0.47) (0.26, 0.71) (0.35, 0.50) (0.40, 0.77)
{0.47, 0.00} {0.37, 0.04} {0.52, 0.00} {0.48, 0.04} {0.47, 0.00} {0.33, 0.12}

ρi 0.8 0.74 0.75 0.69 0.68 0.74 0.79
(0.69, 0.78) (0.71, 0.81) (0.65, 0.73) (0.62, 0.73) (0.70, 0.78) (0.73, 0.84)
{0.09, 0.26} {0.07, 0.52} {0.15, 0.00} {0.16, 0.00} {0.09, 0.30} {0.05, 0.86}

σz 0.005 0.0052 0.0062 0.0086 0.0107 0.0053 0.0078
(0.0041, 0.0067) (0.0037, 0.0134) (0.0069, 0.0099) (0.0071, 0.0163) (0.0041, 0.0067) (0.0042, 0.0138)
{0.17, 0.88} {0.54, 0.82} {0.73, 0.00} {1.28, 0.00} {0.17, 0.86} {0.83, 0.44}

σs 0.005 0.0166 0.0196 0.0183 0.0239 0.0169 0.0169
(0.0139, 0.0212) (0.0113, 0.0261) (0.0143, 0.0230) (0.0085, 0.0355) (0.0141, 0.0216) (0.0065, 0.0257)
{2.37, 0.00} {3.04, 0.12} {2.71, 0.00} {4.15, 0.04} {2.42, 0.00} {2.59, 0.12}

σi 0.002 0.0018 0.0016 0.0021 0.0021 0.0018 0.0017
(0.0015, 0.0022) (0.0014, 0.0021) (0.0019, 0.0023) (0.0019, 0.0025) (0.0015, 0.0022) (0.0015, 0.0020)
{0.13, 0.64} {0.21, 0.38} {0.09, 0.78} {0.11, 0.78} {0.13, 0.64} {0.16, 0.44}

φπ 2.0 2.04 2.03 1.96 1.84 2.01 1.64
(1.81, 2.23) (1.84, 2.33) (1.70, 2.21) (1.53, 2.24) (1.78, 2.22) (1.41, 1.89)
{0.07, 0.96} {0.07, 0.90} {0.08, 0.96} {0.14, 0.80} {0.07, 0.98} {0.19, 0.44}

φy 0.5 0.23 0.29 0.13 0.20 0.24 0.19
(0.11, 0.40) (0.14, 0.50) (0.05, 0.22) (0.05, 0.35) (0.11, 0.41) (0.08, 0.36)
{0.56, 0.32} {0.49, 0.54} {0.75, 0.02} {0.65, 0.10} {0.56, 0.30} {0.64, 0.18}

Σ 3.86 4.80 5.02 6.96 3.91 4.81

Table 7: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

Lastly, we fixedϕp andh to their true values and re-estimated each specification.Table 7

reports the results, which show how other parameters adjust. In particular,σs is now3 to 4 times

higher than its true value andρs drops to roughly half of its true value. TheNRMSEs for σs are

by far the largest of any parameter and theCRs are all near0. In this exercise,h cannot fall to

compensate for the missing frictions, so the size of the riskpremium shocks must increase. This

effect, in addition to not allowingϕp to increase to compensate for the lack of sticky wages, induces

too much inflation volatility. Therefore, the estimate of risk premium persistence,ρs, falls. Unlike

its shock size, its persistence affects the inflation response more than the output growth response.
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Ptr Truth 0Q 6Q 12Q 18Q 24Q 30Q

NL-PF-5%

ϕp 100 151.1 161.0 172.1 180.6 187.2 188.4
(134.2, 165.8) (143.2, 179.3) (153.8, 193.4) (161.3, 201.4) (167.0, 204.5) (174.7, 202.7)
{0.52, 0.02} {0.62, 0.00} {0.73, 0.00} {0.81, 0.18} {0.88, 0.00} {0.89, 0.00}

h 0.8 0.66 0.66 0.67 0.67 0.68 0.68
(0.62, 0.70) (0.61, 0.71) (0.62, 0.71) (0.63, 0.71) (0.64, 0.72) (0.64, 0.71)
{0.18, 0.00} {0.17, 0.00} {0.17, 0.00} {0.16, 0.00} {0.15, 0.00} {0.16, 0.00}

ρs 0.8 0.76 0.77 0.79 0.80 0.81 0.81
(0.72, 0.80) (0.74, 0.81) (0.75, 0.82) (0.77, 0.84) (0.78, 0.83) (0.78, 0.84)
{0.06, 0.70} {0.04, 0.86} {0.03, 0.98} {0.03, 0.92} {0.02, 0.96} {0.03, 0.90}

ρi 0.8 0.79 0.79 0.79 0.80 0.80 0.80
(0.75, 0.82) (0.75, 0.82) (0.77, 0.82) (0.76, 0.83) (0.76, 0.84) (0.75, 0.84)
{0.03, 0.96} {0.04, 0.90} {0.02, 1.00} {0.03, 0.94} {0.03, 0.94} {0.03, 0.96}

σz 0.0050 0.0032 0.0032 0.0034 0.0037 0.0038 0.0040
(0.0023, 0.0039) (0.0023, 0.0041) (0.0024, 0.0044) (0.0027, 0.0049) (0.0027, 0.0047) (0.0030, 0.0052)
{0.37, 0.00} {0.38, 0.08} {0.34, 0.18} {0.29, 0.38} {0.28, 0.46} {0.23, 0.58}

σs 0.0050 0.0052 0.0052 0.0051 0.0051 0.0050 0.0050
(0.0040, 0.0066) (0.0042, 0.0068) (0.0040, 0.0060) (0.0034, 0.0064) (0.0041, 0.0064) (0.0039, 0.0062)
{0.15, 0.92} {0.15, 0.92} {0.13, 0.98} {0.18, 0.86} {0.12, 1.00} {0.13, 0.96}

σi 0.0020 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015
(0.0014, 0.0020) (0.0014, 0.0019) (0.0014, 0.0019) (0.0013, 0.0019) (0.0013, 0.0018) (0.0013, 0.0019)
{0.17, 0.48} {0.18, 0.40} {0.21, 0.30} {0.24, 0.26} {0.25, 0.20} {0.24, 0.20}

φπ 2.0 2.04 2.06 2.12 2.13 2.10 2.13
(1.88, 2.19) (1.87, 2.24) (1.94, 2.33) (1.90, 2.41) (1.84, 2.33) (1.94, 2.31)
{0.06, 0.98} {0.07, 0.96} {0.08, 0.92} {0.10, 0.94} {0.09, 0.90} {0.09, 0.92}

φy 0.5 0.35 0.39 0.41 0.40 0.41 0.42
(0.21, 0.54) (0.22, 0.61) (0.27, 0.60) (0.26, 0.54) (0.26, 0.61) (0.27, 0.62)
{0.36, 0.80} {0.31, 0.92} {0.27, 1.00} {0.27, 0.92} {0.27, 0.98} {0.28, 0.98}

Σ 1.90 1.96 1.99 2.12 2.09 2.08

OB-IF-0%

ϕp 100 142.6 152.5 164.5 174.7 183.1 183.4
(121.1, 157.3) (131.3, 170.7) (140.8, 185.5) (153.9, 202.0) (165.3, 204.1) (169.2, 198.5)
{0.44, 0.08} {0.54, 0.02} {0.66, 0.00} {0.76, 0.00} {0.84, 0.00} {0.84, 0.00}

h 0.8 0.64 0.64 0.63 0.63 0.63 0.63
(0.61, 0.67) (0.61, 0.68) (0.60, 0.67) (0.61, 0.67) (0.59, 0.67) (0.60, 0.67)
{0.20, 0.00} {0.20, 0.00} {0.21, 0.00} {0.21, 0.00} {0.21, 0.00} {0.21, 0.00}

ρs 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.73, 0.81) (0.73, 0.81) (0.76, 0.83) (0.78, 0.85) (0.80, 0.85) (0.79, 0.86)
{0.05, 0.82} {0.04, 0.92} {0.03, 0.96} {0.03, 0.86} {0.03, 0.76} {0.04, 0.78}

ρi 0.8 0.76 0.75 0.76 0.76 0.76 0.77
(0.71, 0.79) (0.71, 0.80) (0.73, 0.79) (0.68, 0.80) (0.72, 0.81) (0.73, 0.81)
{0.06, 0.52} {0.07, 0.50} {0.06, 0.54} {0.06, 0.58} {0.06, 0.58} {0.05, 0.66}

σz 0.0050 0.0051 0.0053 0.0056 0.0059 0.0060 0.0059
(0.0044, 0.0058) (0.0048, 0.0068) (0.0047, 0.0066) (0.0051, 0.0079) (0.0051, 0.0074) (0.0050, 0.0069)
{0.09, 0.92} {0.13, 0.82} {0.19, 0.60} {0.24, 0.54} {0.25, 0.46} {0.22, 0.30}

σs 0.0050 0.0051 0.0051 0.0048 0.0047 0.0045 0.0046
(0.0042, 0.0063) (0.0041, 0.0063) (0.0039, 0.0058) (0.0031, 0.0058) (0.0037, 0.0053) (0.0036, 0.0056)
{0.13, 0.92} {0.14, 0.96} {0.13, 0.90} {0.18, 0.76} {0.15, 0.80} {0.15, 0.82}

σi 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.0018, 0.0023) (0.0018, 0.0023) (0.0018, 0.0022) (0.0018, 0.0024) (0.0018, 0.0023) (0.0019, 0.0024)
{0.08, 0.90} {0.07, 0.90} {0.07, 0.98} {0.09, 0.82} {0.08, 0.88} {0.09, 0.90}

φπ 2.0 2.01 1.96 1.99 1.97 1.94 1.96
(1.84, 2.16) (1.77, 2.16) (1.78, 2.16) (1.73, 2.23) (1.69, 2.19) (1.77, 2.14)
{0.06, 0.98} {0.07, 0.98} {0.06, 0.98} {0.08, 0.96} {0.08, 0.90} {0.06, 0.98}

φy 0.5 0.32 0.35 0.39 0.36 0.41 0.44
(0.17, 0.48) (0.18, 0.53) (0.24, 0.56) (0.20, 0.52) (0.21, 0.62) (0.27, 0.61)
{0.41, 0.68} {0.37, 0.76} {0.30, 0.90} {0.35, 0.80} {0.29, 0.90} {0.25, 0.98}

Σ 1.53 1.63 1.71 2.01 1.99 1.91

Table 8: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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Ptr Truth 0Q 6Q 12Q 18Q 24Q 30Q

Lin-KF-0%

ϕp 100 143.0 153.3 167.2 177.5 186.3 186.9
(125.9, 157.7) (134.2, 168.4) (147.0, 196.6) (157.1, 204.9) (165.6, 204.5) (168.5, 201.1)
{0.44, 0.04} {0.54, 0.00} {0.69, 0.00} {0.79, 0.00} {0.87, 0.00} {0.88, 0.00}

h 0.8 0.64 0.64 0.64 0.64 0.64 0.63
(0.61, 0.68) (0.60, 0.68) (0.60, 0.67) (0.62, 0.67) (0.60, 0.67) (0.60, 0.67)
{0.20, 0.00} {0.20, 0.00} {0.20, 0.00} {0.20, 0.00} {0.20, 0.00} {0.21, 0.00}

ρs 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74, 0.80) (0.76, 0.83) (0.76, 0.84) (0.80, 0.85) (0.80, 0.85)
{0.06, 0.74} {0.04, 0.88} {0.03, 1.00} {0.03, 0.92} {0.03, 0.82} {0.04, 0.78}

ρi 0.8 0.76 0.77 0.78 0.79 0.80 0.81
(0.73, 0.79) (0.72, 0.80) (0.75, 0.81) (0.74, 0.84) (0.77, 0.85) (0.77, 0.85)
{0.06, 0.62} {0.05, 0.70} {0.04, 0.92} {0.03, 0.88} {0.03, 0.90} {0.03, 0.90}

σz 0.0050 0.0049 0.0051 0.0055 0.0057 0.0060 0.0059
(0.0043, 0.0054) (0.0045, 0.0058) (0.0048, 0.0066) (0.0051, 0.0067) (0.0049, 0.0071) (0.0051, 0.0068)
{0.07, 0.90} {0.08, 0.88} {0.16, 0.56} {0.17, 0.50} {0.23, 0.32} {0.21, 0.28}

σs 0.0050 0.0052 0.0051 0.0048 0.0048 0.0045 0.0045
(0.0043, 0.0064) (0.0042, 0.0062) (0.0040, 0.0058) (0.0035, 0.0059) (0.0038, 0.0053) (0.0036, 0.0052)
{0.14, 0.86} {0.14, 0.96} {0.12, 0.96} {0.15, 0.86} {0.15, 0.78} {0.15, 0.86}

σi 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019
(0.0018, 0.0022) (0.0018, 0.0022) (0.0018, 0.0023) (0.0016, 0.0022) (0.0017, 0.0022) (0.0017, 0.0022)
{0.07, 0.96} {0.07, 0.88} {0.08, 0.88} {0.08, 0.82} {0.08, 0.88} {0.08, 0.88}

φπ 2.0 2.01 1.96 1.85 1.78 1.65 1.69
(1.85, 2.15) (1.71, 2.17) (1.60, 2.07) (1.51, 2.04) (1.42, 1.92) (1.46, 1.89)
{0.06, 0.98} {0.07, 1.00} {0.10, 0.94} {0.14, 0.76} {0.19, 0.44} {0.17, 0.64}

φy 0.5 0.32 0.32 0.28 0.26 0.25 0.28
(0.18, 0.48) (0.20, 0.52) (0.11, 0.48) (0.14, 0.43) (0.15, 0.37) (0.17, 0.44)
{0.40, 0.72} {0.41, 0.60} {0.48, 0.50} {0.51, 0.32} {0.51, 0.32} {0.47, 0.44}

Σ 1.49 1.62 1.89 2.10 2.30 2.24

Lin-KF-5%

ϕp 100 151.4 161.1 174.8 183.1 191.1 191.6
(134.0, 165.7) (142.0, 179.5) (153.7, 198.6) (163.0, 208.5) (172.1, 210.9) (175.3, 204.1)
{0.52, 0.00} {0.62, 0.00} {0.76, 0.00} {0.84, 0.00} {0.92, 0.00} {0.92, 0.00}

h 0.8 0.66 0.66 0.67 0.67 0.67 0.67
(0.62, 0.69) (0.61, 0.71) (0.62, 0.71) (0.63, 0.70) (0.64, 0.71) (0.63, 0.70)
{0.18, 0.00} {0.18, 0.00} {0.17, 0.00} {0.17, 0.00} {0.16, 0.00} {0.17, 0.00}

ρs 0.8 0.76 0.78 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74, 0.81) (0.75, 0.83) (0.78, 0.85) (0.79, 0.85) (0.78, 0.86)
{0.06, 0.74} {0.04, 0.92} {0.03, 1.00} {0.03, 0.00} {0.03, 0.88} {0.04, 0.78}

ρi 0.8 0.79 0.80 0.81 0.83 0.83 0.84
(0.75, 0.82) (0.75, 0.83) (0.78, 0.84) (0.78, 0.86) (0.80, 0.88) (0.80, 0.88)
{0.03, 0.98} {0.04, 0.96} {0.03, 0.94} {0.04, 0.00} {0.05, 0.70} {0.06, 0.56}

σz 0.0050 0.0032 0.0033 0.0036 0.0040 0.0042 0.0043
(0.0023, 0.0039) (0.0025, 0.0041) (0.0027, 0.0045) (0.0029, 0.0052) (0.0029, 0.0054) (0.0030, 0.0057)
{0.36, 0.00} {0.36, 0.12} {0.31, 0.32} {0.24, 0.00} {0.22, 0.66} {0.20, 0.68}

σs 0.0050 0.0053 0.0052 0.0051 0.0050 0.0048 0.0047
(0.0040, 0.0067) (0.0042, 0.0068) (0.0041, 0.0062) (0.0033, 0.0063) (0.0039, 0.0059) (0.0037, 0.0061)
{0.15, 0.92} {0.15, 0.90} {0.14, 0.94} {0.18, 0.00} {0.12, 0.96} {0.15, 0.92}

σi 0.0020 0.0017 0.0016 0.0017 0.0016 0.0016 0.0016
(0.0015, 0.0020) (0.0014, 0.0019) (0.0014, 0.0020) (0.0012, 0.0019) (0.0014, 0.0020) (0.0014, 0.0019)
{0.16, 0.50} {0.20, 0.20} {0.17, 0.44} {0.22, 0.00} {0.19, 0.32} {0.20, 0.28}

φπ 2.0 2.04 2.00 1.89 1.83 1.72 1.73
(1.88, 2.20) (1.72, 2.21) (1.67, 2.09) (1.62, 2.09) (1.52, 1.93) (1.52, 1.91)
{0.06, 0.98} {0.07, 1.00} {0.08, 1.00} {0.11, 0.00} {0.16, 0.78} {0.15, 0.78}

φy 0.5 0.35 0.36 0.33 0.31 0.31 0.32
(0.22, 0.54) (0.21, 0.56) (0.14, 0.54) (0.18, 0.50) (0.19, 0.45) (0.17, 0.47)
{0.35, 0.80} {0.36, 0.84} {0.42, 0.70} {0.43, 0.00} {0.42, 0.66} {0.40, 0.76}

Σ 1.88 2.01 2.11 2.27 2.28 2.28

Table 9: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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E.2 SHORTER ZLB DURATIONS The paper focuses on the accuracy of NL-PF and OB-IF in

datasets with either no ZLB events or a single 30 quarter event. This section shows the results

when the ZLB binds for durations that are shorter than 30 quarters. We show theNRMSE for each

estimated parameter as well as the sum of theNRMSE to measure overall accuracy.Table 8shows

the results with NL-PF-5% and OB-IF-0%, while table 9focuses on Lin-KF-0% and Lin-KF-5%.

No Misspecification: DGP and Estimation Use Small-Scale Model
Ptr Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q

ϕp 100 96.8 109.8 94.3 110.6 103.7 128.5
(81.6, 109.9) (89.5, 130.3) (81.8, 108.3) (95.3, 125.1) (92.6, 118.4) (111.2, 145.3)
{0.09, 0.96} {0.15, 0.90} {0.11, 0.96} {0.15, 0.96} {0.09, 0.98} {0.30, 0.46}

h 0.8 0.79 0.79 0.79 0.79 0.80 0.79
(0.76, 0.82) (0.77, 0.82) (0.75, 0.82) (0.77, 0.82) (0.76, 0.83) (0.76, 0.82)
{0.02, 0.94} {0.02, 0.94} {0.02, 0.92} {0.02, 0.96} {0.02, 0.96} {0.03, 0.92}

ρs 0.8 0.80 0.83 0.81 0.84 0.82 0.87
(0.76, 0.83) (0.78, 0.86) (0.76, 0.85) (0.80, 0.87) (0.77, 0.86) (0.83, 0.91)
{0.03, 0.96} {0.04, 0.60} {0.04, 0.98} {0.06, 0.58} {0.05, 0.90} {0.10, 0.10}

ρi 0.8 0.82 0.82 0.79 0.79 0.82 0.86
(0.79, 0.84) (0.78, 0.85) (0.77, 0.82) (0.74, 0.82) (0.79, 0.84) (0.83, 0.88)
{0.03, 0.88} {0.03, 0.80} {0.02, 0.98} {0.03, 0.90} {0.03, 0.94} {0.08, 0.26}

σz 0.005 0.0037 0.0035 0.0051 0.0052 0.0038 0.0034
(0.0029, 0.0046) (0.0025, 0.0045) (0.0044, 0.0056) (0.0043, 0.0061) (0.0029, 0.0046) (0.0026, 0.0044)
{0.27, 0.24} {0.33, 0.18} {0.08, 0.98} {0.11, 0.86} {0.26, 0.28} {0.33, 0.16}

σs 0.005 0.0047 0.0043 0.0049 0.0046 0.0047 0.0036
(0.0035, 0.0058) (0.0032, 0.0058) (0.0039, 0.0060) (0.0034, 0.0057) (0.0034, 0.0059) (0.0027, 0.0046)
{0.19, 0.90} {0.22, 0.72} {0.16, 0.86} {0.17, 0.80} {0.21, 0.90} {0.32, 0.38}

σi 0.002 0.0016 0.0014 0.0020 0.0019 0.0016 0.0015
(0.0013, 0.0020) (0.0010, 0.0018) (0.0017, 0.0022) (0.0016, 0.0022) (0.0013, 0.0019) (0.0012, 0.0017)
{0.20, 0.24} {0.31, 0.18} {0.07, 0.90} {0.10, 0.78} {0.20, 0.24} {0.27, 0.10}

φπ 2.0 2.00 2.01 1.95 1.80 1.97 1.62
(1.81, 2.21) (1.82, 2.20) (1.74, 2.14) (1.58, 2.06) (1.76, 2.18) (1.42, 1.86)
{0.06, 0.96} {0.06, 1.00} {0.06, 1.00} {0.12, 0.76} {0.07, 0.96} {0.20, 0.38}

φy 0.5 0.45 0.48 0.46 0.52 0.46 0.50
(0.29, 0.61) (0.28, 0.61) (0.30, 0.63) (0.32, 0.73) (0.31, 0.63) (0.34, 0.66)
{0.22, 1.00} {0.18, 1.00} {0.21, 1.00} {0.23, 1.00} {0.22, 1.00} {0.19, 1.00}

Σ 1.12 1.35 0.78 0.99 1.14 1.82

Table 10: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

E.3 NO M ISSPECIFICATION Table 10compares the parameter estimates after removing model

misspecification. Since it is numerically very expensive toestimate the medium-scale model used

to generate the data with NL-PF, we created new datasets fromthe small-scale model. The sum

of theNRMSE shows about40% of the error is due to model misspecification. For example, in

datasets without any ZLB events, the error with NL-PF-5% increases from1.12 to 1.90 when mis-

specification is added to the estimated model. Removing misspecification has the largest impact on

the accuracy ofϕp, h, andφy because the estimates no longer have to compensate for the lack of

sticky wages and investment, which creates large differences in the model’s sensitivity to shocks.

Notably, the NL-PF-5% estimate ofϕp declines from151.1 to 96.8 and the estimate ofh rises from

0.66 to 0.79 in datasets without ZLB events. TheCR rises from near0 to consistently above0.9.
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The other results emphasized in the paper are unchanged. Theshock standard deviations are

biased downward with NL-PF-5% because the filter incorrectly assigns some of the fluctuations to

ME, reducing the estimated variances. When the ZLB binds in the data, it biases the estimates of

ϕp andρs upward, though NL-PF-5% and OB-IF-0% are both far more accurate than Lin-KF-5%.
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Figure 6: Recession responses without model misspecification. The solid line is the true simulation, the dashed line is
the mean estimated simulation, and the shaded area containsthe(5, 95) percentiles across the datasets. The simulations
are initialized in steady state and followed by four consecutive 1.5 standard deviation positive risk premium shocks.

Figure 6plots the recession responses infigure 3without misspecification. The solid line shows

the responses based on the true parameterization of the small-scale model, rather than the medium-

scale model that generates our original datasets. The dashed line shows the mean responses, given

the parameter estimates with our alternative datasets. Consistent with the previous results, the re-

sponses based on the NL-PF-5% and OB-IF-0% parameter estimates are very similar. The key dif-
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ference is that the mean estimated simulations are much closer to the true simulation and the(5, 95)

percentiles almost always encompass the truth. This resultshows the muted responses infigure 3

are primarily driven by model misspecification, rather thaninaccuracies in the estimation methods.

E.4 IMPULSE RESPONSES This section shows generalized impulse response functions(GIRFs)

of a productivity growth and monetary policy shock when the economy is in a severe recession and

the ZLB binds. To compute the GIRFs, we follow Koop et al. (1996). We first calculate the mean

of 10,000 simulations, conditional on random shocks in every quarter(i.e., the baseline path). We

then calculate a second mean from another set of10,000 simulations, but this time the shock in the

first quarter is replaced with a two standard deviation negative productivity growth or monetary

policy shock (i.e., the impulse path). Finally, we plot the differences between the two mean paths.

The benefit of a GIRF over a more traditional impulse responsefunction is that it allows us to

calculate the responses in any state of the economy without the influence of mean reversion. For the

true model, we initialize at the state following four consecutive1.5 standard deviation positive risk

premium shocks, consistent withfigure 3. We then find a sequence of four equally sized risk pre-

mium shocks that produce the same notional rate in our estimated model as the true model, so the

simulations begin at the same point. The NL-PF-5% simulations are shown in the left column and

the OB-IF-0% simulations are in the right column. The true simulation of the DGP (solid line) is

compared to the mean estimated simulation of the small-scale model (dashed line). The(5, 95) per-

centiles account for differences in the simulations acrossthe parameter estimates for each dataset.

Figure 7ashows the responses to a productivity growth shock. Qualitatively the responses of

output growth and inflation are similar across the specifications. Higher productivity growth in-

creases the output growth gap and decreases the inflation rate like a typical supply shock. Since the

Fed faces a tradeoff between stabilizing the inflation and output gaps, the notional interest rate re-

sponse depends on the parameterization. The notional rate rises with the DGP, but falls with both of

the estimated models. Quantitatively, there are importantdifferences between all of the responses.

Consistent withfigure 3, model misspecification leads to muted responses of the output growth

gap and the inflation rate. There are also differences in the magnitudes of the estimated responses,

but most of that is driven by the downward bias in the shock standard deviation with NL-PF-5%.

Figure 7bshows the responses to a monetary policy shock. Although theZLB binds in the true

and estimated models, the shock is expansionary because it lowers the expected nominal interest

rate in future periods. Therefore, the output growth gap andthe inflation rate both increase in all

three models. Unlike with the other two shocks, model misspecification has a relatively small effect

on the responses, as the(5, 95) percentiles of the estimated responses encompass the true responses

in most periods. There are some differences in the NL-PF-5% and OB-IF-0% responses, but they

are smaller than infigure 7aand are never large enough to have meaningful policy implications.
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(a) Productivity Growth Shock
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(b) Monetary Policy Shock
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Figure 7: Impulse responses to a−2 standard deviation shock in a severe recession. The solid line is the true response,
the dashed line is the mean estimated response, and the shaded area contains the(5, 95) percentiles of the responses.
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Figure 8: Estimates of the notional rate in datasets with a 30quarter ZLB event. Rates are net annualized percentages.

E.5 NOTIONAL RATE ESTIMATES Figure 8provides more intuition about what is driving the

relative accuracy of the filtered estimates of the notional rate infigure 1. The top panel plots the

actual notional rate from an example dataset with a 30 quarter ZLB event, as well as the filtered

estimates from NL-PF-5% and OB-IF-0%. Over time, the OB-IF-0% estimate increases towards

zero faster than NL-PF-5%. This may be driven by the lower estimate ofρi (0.77) with OB-IF-0%,

which is slightly below the NL-PF-5% estimate and the true value (0.80). The bottom two panels

plot the error in the average filtered notional rate estimates during the 30 quarter ZLB event across

the 50 datasets (solid line). The shaded region shows the(5, 95) percentiles. This suggests the

example dataset in the top panel is fairly representative. The distribution of errors for OB-IF-0% is

slightly shifted up from the NL-PF-5% error distribution, and increasingly so over time. This may

seem somewhat at odds with the results infigure 1, as OB-IF-0% is even less accurate relative to

NL-PF-5% in the datasets with shorter ZLB events. However the OB-IF-0% estimates ofρi andφy

have an even larger downward bias in datasets with shorter ZLB duration, as shown intable 8.
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6Q 12Q 18Q 24Q 30Q

CDF of ZLB Event Durations 0.678 0.885 0.966 0.992 0.998
Number of Simulations to Reach 50 Datasets 150,300 154,950 256,950 391,950 1,030,300

Table 11: Probability of ZLB event durations in a long simulation of the medium-scale model.
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Figure 9: Duration of ZLB events in a long simulation of the medium-scale model.

E.6 ADDITIONAL DATASET STATISTICS ZLB events are frequent in the medium-scale model

that generates the datasets, which allows us to find simulations with up to 30 consecutive quarters at

the ZLB without imposing restrictions on the shocks. In a long simulation of the model, the uncon-

ditional probability of being at the ZLB is24 percent. This is roughly equivalent to the U.S. expe-

rience of 7 years, since our sample is 30 years. Most of the ZLBevents in the simulation are short,

with the policy rate rising above zero within one year or less, as shown intable 11andfigure 9.

However, long ZLB events are not incredibly uncommon, as0.25 percent of ZLB events have a du-

ration of at least 30 quarters. When generating our datasets, we impose an additional requirement

that the ZLB event in our sample is unique so it reflects actualdata. The number of 120 quarter sim-

ulations required to find50 simulations that meet that criterion is shown in the last rowof table 11.

E.7 GOVERNMENT SPENDING This section shows how government spending affects our re-

sults. Government spending is a potentially important feature because it adds a shock that directly

enters the aggregate resource constraint. Without government spending, any shock in the DGP that

affects the resource constraint is absorbed by consumptionor price adjustment costs in the small-

scale model, since output and inflation are observed. Without a wedge between consumption and

output, it could cause significant bias in the habit persistence and price adjustment cost parameters.

We assume the share of government spending devoted to outputfollows

gst = (1− ρg)ḡ
s + ρgg

s
t−1 + σgεg,t, 0 ≤ ρg < 1, εg ∼ N(0, 1), (46)

where the steady-state share,ḡs, is set to0.2129 to match the time average from 1988Q1-2017Q4.
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With the addition of government spending, the aggregate resource constraint is given by

ct + xt = (1− gst )y
gdp
t . (47)

All other equations in the equilibrium system are unchanged. We add government spending to

the medium-scale model that generates our datasets and our small-scale model for estimation. We

estimate the small-scale model with (gs-4obs) and without (gs-3obs) including real per capita con-

sumption growth as an additional observable. In this secondspecification, the government spend-

ing shock is less constrained, potentially absorbing the adjustment costs left out of the small-scale

model and reducing inaccuracy driven by misspecification inthe aggregate resource constraint.

The specification without government spending (no-gs) excludesgs from the DGP and the esti-

mated model, just like in the main paper. In each case, the true parameterization is unchanged,

except the shock standard deviations were reduced from0.005 to 0.004. This change is neces-

sary because the additional volatility in the model with government spending causes the model

to spend too much time at the ZLB and not converge at the previous parameterization.Table 12

shows the parameter estimates using datasets where the ZLB binds for 30 quarters andtable 13is

based on datasets where the ZLB never binds in the data. OB-IF-0% is not used to estimate these

specifications, since it is not possible to have more shocks than observables in the inversion filter.

Interestingly, the differences in the parameter estimatesbetweengs-4obs and no-gs are fairly

small, especially in datasets where the ZLB binds for 30 quarters. Thegs-4obs estimates ofϕp and

h are more accurate than the no-gs estimates, but they are still significantly biased. Furthermore,

the improvement in those estimates is not as significant as what occurs when we add sticky wages

to the model estimated with OB-IF-0%. This implies that the presence of government spending

helps increase the volatility of output growth, but not enough to compensate for the lack of sticky

wages, which we see as the most important misspecification driving the bias inϕp andh. It

is also important to note that the estimates of the productivity growth and risk premium shock

standard deviations (σz andσs) are biased downward to a greater extent than in the model without

government spending. As a consequence, the sum of theNRMSE with government spending is

higher than without government spending, regardless of theestimation method or the duration of

the ZLB. This result occurs even though thegs-4obs estimates included an additional observable.

Excluding the additional observable (gs-3obs) also does not improve the overall accuracy of the

parameter estimates. The productivity growth and risk premium shock standard deviations become

more accurate than no-gs, but the estimates ofϕp are largely unchanged and the downward bias

in h becomes even larger. As a result, theNRMSE of gs-3obs is higher than thegs-4obs or no-

gs estimates. Once again, this is consistent with the lack of sticky wages as the most important

misspecification, while misspecification in the resource constraint appears to play a smaller role.
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NL-PF-5% (30Q) Lin-KF-5% (30Q)

Ptr Truth no-gs gs-4obs gs-3obs no-gs gs-4obs gs-3obs

ϕp 100 180.8 164.2 183.3 182.8 170.0 188.6
(167.2, 193.5) (145.1, 188.9) (165.2, 203.5) (168.0, 194.5) (150.3, 196.3) (167.6, 210.5)
{0.81, 0.00} {0.65, 0.06} {0.84, 0.00} {0.83, 0.00} {0.71, 0.00} {0.90, 0.00}

h 0.8 0.66 0.71 0.56 0.65 0.71 0.54
(0.63, 0.71) (0.67, 0.74) (0.47, 0.62) (0.62, 0.70) (0.66, 0.74) (0.43, 0.61)
{0.17, 0.00} {0.11, 0.00} {0.31, 0.00} {0.18, 0.00} {0.12, 0.00} {0.33, 0.00}

ρs 0.8 0.84 0.86 0.84 0.85 0.87 0.84
(0.81, 0.86) (0.84, 0.88) (0.80, 0.87) (0.82, 0.87) (0.85, 0.90) (0.81, 0.88)
{0.05, 0.48} {0.08, 0.10} {0.05, 0.62} {0.06, 0.36} {0.09, 0.12} {0.06, 0.58}

ρi 0.8 0.81 0.81 0.81 0.83 0.83 0.85
(0.78, 0.84) (0.77, 0.84) (0.77, 0.85) (0.80, 0.86) (0.80, 0.88) (0.81, 0.89)
{0.03, 0.94} {0.03, 0.96} {0.03, 0.92} {0.04, 0.80} {0.05, 0.70} {0.07, 0.28}

ρgs 0.8 − 0.89 0.82 − 0.89 0.83
(0.85, 0.93) (0.80, 0.84) (0.85, 0.93) (0.82, 0.86)
{0.12, 0.28} {0.03, 1.00} {0.12, 0.20} {0.04, 1.00}

σz 0.004 0.0030 0.0028 0.0034 0.0031 0.0029 0.0036
(0.0023, 0.0037) (0.0019, 0.0037) (0.0026, 0.0047) (0.0024, 0.0038) (0.0021, 0.0041) (0.0025, 0.0052)
{0.26, 0.40} {0.33, 0.20} {0.21, 0.94} {0.25, 0.40} {0.30, 0.28} {0.22, 0.88}

σs 0.004 0.0031 0.0024 0.0036 0.0029 0.0023 0.0034
(0.0025, 0.0039) (0.0020, 0.0030) (0.0026, 0.0049) (0.0023, 0.0036) (0.0018, 0.0029) (0.0025, 0.0047)
{0.25, 0.50} {0.40, 0.04} {0.20, 0.82} {0.30, 0.26} {0.44, 0.00} {0.22, 0.70}

σi 0.002 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015
(0.0013, 0.0018) (0.0011, 0.0018) (0.0011, 0.0017) (0.0011, 0.0016) (0.0012, 0.0017) (0.0012, 0.0017)
{0.24, 0.22} {0.26, 0.28} {0.29, 0.22} {0.33, 0.00} {0.26, 0.10} {0.27, 0.10}

σg 0.004 − 0.0044 0.0025 − 0.0044 0.0025
(0.0039, 0.0049) (0.0018, 0.0032) (0.0039, 0.0049) (0.0018, 0.0033)
{0.13, 0.74} {0.39, 0.16} {0.13, 0.70} {0.40, 0.20}

φπ 2.0 2.27 2.09 2.23 2.10 1.73 1.90
(2.13, 2.47) (1.85, 2.34) (2.00, 2.45) (1.91, 2.32) (1.31, 2.04) (1.62, 2.13)
{0.14, 0.64} {0.08, 0.90} {0.13, 0.68} {0.08, 0.92} {0.17, 0.72} {0.09, 0.96}

φy 0.5 0.38 0.50 0.47 0.36 0.41 0.44
(0.26, 0.55) (0.34, 0.63) (0.24, 0.64) (0.22, 0.51) (0.30, 0.58) (0.31, 0.64)
{0.29, 0.98} {0.18, 0.98} {0.21, 0.96} {0.33, 0.94} {0.25, 0.98} {0.23, 0.98}

Σ 2.26 2.38 2.70 2.39 2.64 2.83

Table 12: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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NL-PF-5% (0Q) Lin-KF-5% (0Q)

Ptr Truth no-gs gs-4obs gs-3obs no-gs gs-4obs gs-3obs

ϕp 100 157.9 128.8 148.8 157.7 128.8 149.2
(130.0, 175.8) (109.2, 143.7) (128.8, 163.8) (130.1, 175.3) (109.5, 142.8) (129.4, 164.3)
{0.59, 0.00} {0.31, 0.34} {0.50, 0.00} {0.59, 0.02} {0.31, 0.38} {0.50, 0.00}

h 0.8 0.64 0.68 0.57 0.64 0.68 0.57
(0.60, 0.69) (0.65, 0.72) (0.47, 0.66) (0.60, 0.69) (0.65, 0.72) (0.48, 0.66)
{0.20, 0.00} {0.15, 0.00} {0.30, 0.00} {0.20, 0.00} {0.15, 0.00} {0.29, 0.00}

ρs 0.8 0.79 0.81 0.78 0.79 0.81 0.78
(0.74, 0.82) (0.76, 0.85) (0.72, 0.83) (0.74, 0.83) (0.77, 0.85) (0.72, 0.83)
{0.03, 0.94} {0.03, 0.90} {0.05, 0.86} {0.03, 0.96} {0.04, 0.90} {0.05, 0.86}

ρi 0.8 0.79 0.78 0.80 0.79 0.78 0.80
(0.74, 0.82) (0.74, 0.82) (0.76, 0.83) (0.74, 0.82) (0.75, 0.82) (0.76, 0.83)
{0.04, 0.86} {0.04, 0.84} {0.03, 0.98} {0.04, 0.88} {0.03, 0.92} {0.03, 0.98}

ρgs 0.8 − 0.82 0.81 − 0.82 0.80
(0.76, 0.87) (0.76, 0.84) (0.77, 0.86) (0.75, 0.83)
{0.05, 0.94} {0.03, 1.00} {0.04, 0.94} {0.03, 1.00}

σz 0.004 0.0029 0.0023 0.0027 0.0029 0.0023 0.0027
(0.0022, 0.0037) (0.0018, 0.0029) (0.0019, 0.0036) (0.0022, 0.0037) (0.0018, 0.0029) (0.0019, 0.0036)
{0.29, 0.22} {0.43, 0.00} {0.36, 0.54} {0.29, 0.28} {0.43, 0.00} {0.36, 0.50}

σs 0.004 0.0032 0.0025 0.0036 0.0032 0.0025 0.0037
(0.0025, 0.0038) (0.0021, 0.0030) (0.0026, 0.0049) (0.0025, 0.0039) (0.0020, 0.0030) (0.0027, 0.0049)
{0.23, 0.52} {0.38, 0.02} {0.19, 0.84} {0.23, 0.54} {0.38, 0.02} {0.19, 0.84}

σi 0.002 0.0018 0.0018 0.0017 0.0018 0.0018 0.0017
(0.0015, 0.0021) (0.0015, 0.0021) (0.0014, 0.0020) (0.0015, 0.0021) (0.0015, 0.0020) (0.0014, 0.0020)
{0.15, 0.60} {0.15, 0.60} {0.17, 0.48} {0.15, 0.62} {0.15, 0.56} {0.16, 0.50}

σg 0.004 − 0.0041 0.0033 − 0.0041 0.0033
(0.0037, 0.0046) (0.0025, 0.0039) (0.0036, 0.0046) (0.0025, 0.0038)
{0.08, 0.84} {0.20, 0.52} {0.08, 0.84} {0.20, 0.56}

φπ 2.0 2.11 1.92 2.08 2.10 1.92 2.08
(1.97, 2.24) (1.67, 2.25) (1.87, 2.34) (1.97, 2.24) (1.66, 2.27) (1.86, 2.32)
{0.07, 1.00} {0.09, 1.00} {0.08, 0.94} {0.07, 0.98} {0.09, 0.98} {0.08, 0.96}

φy 0.5 0.39 0.53 0.52 0.39 0.53 0.52
(0.26, 0.53) (0.34, 0.70) (0.30, 0.69) (0.27, 0.52) (0.34, 0.70) (0.30, 0.68)
{0.26, 1.00} {0.22, 0.98} {0.23, 1.00} {0.27, 1.00} {0.22, 0.98} {0.23, 1.00}

Σ 1.87 1.92 2.12 1.86 1.91 2.12

Table 13: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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