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Corporate Default and Investment Decisions

under Rollover Risk and Solvency Concern

Abstract

We consider the role of a market learning process in identifying the firm’s solvency risk

in its financing and investment decisions under endogenous interaction between rollover risk

and solvency concern. We show that an increase in liquidity (solvency) uncertainty raises

(reduces) the firm’s incentives to default, but reduces (raises) the firm’s incentives to invest,

although unlike the standard real options model, an increase in liquidity (solvency) uncer-

tainty reduces (raises) the volatility of the state variable defined as the posterior expectation

of the drift of cash flows. We also find that the firm’s incentive to default (invest) decreases

(increases) as debt maturity increases. In addition, our model predicts that an increase in

liquidity (solvency) uncertainty raises (reduces) the leverage ratio of the firm, while reducing

(raising) credit spreads if debt maturity is sufficiently long.

JEL Classification Codes: D83, G31, G32, G33.
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1. Introduction

The 2007—2008 financial crisis shed new light on the importance of the interaction between

rollover risk and solvency concern in financial markets: the deterioration of rollover risk

caused severe financial difficulties for many firms and exacerbated their solvency concern,

whereas the aggravated solvency concerns conversely increased rollover risk. In fact, because

economic circumstances changed drastically during the financial crisis, market participants

were forced to reconsider the solvency risk of firms by determining their current and future

profitability.

The objective of this paper is to study the role of a market learning process in identifying

the firm’s solvency risk in its default, investment, and leverage decisions under the interaction

between rollover risk and solvency concern. Rollover risk in this paper means not only

the possibility of the firm’s failure to roll over debt, but also the fluctuations in rollover

gains/losses incurred by the firm.

We consider the situation in which a firm must continuously roll over maturing bonds.

As in Diamond and He (2014), we assume that equity holders pay the principal back on

maturing bonds by issuing new bonds with the same principal and maturity at market

prices, which can be higher or lower than the principal of the maturing bonds. In addition,

we introduce two sources of uncertainty in cash flows–liquidity and solvency uncertainties–

and incorporate a learning process over time regarding the solvency uncertainty, following

the learning models of Gryglewicz (2011), DeMarzo and Sannikov (2017), and He, Wei, Yu,

and Gao (2017).1 ,2 Then, liquidity is the ability of a firm to compensate for rollover losses

at each point in time and is short-term in nature. Solvency is the ability of a firm to incur

debt obligations over longer periods of time. More specifically, we assume that cash flows

follow a Brownian motion with drift that is not directly observable. In this framework,

liquidity uncertainty is represented by the Brownian motion, whereas solvency uncertainty

is expressed by the uncertain drift. Investors observe noisy cash flows and learn about the

drift through a Bayesian-type updating process.

In our model, both the debt rollover and the learning process generate the endogenous

1Chang, Dasgupta, Wang, and Yao (2014) show empirically the importance of decomposing corporate

cash flows into temporary and permanent components to understand how firms allocate cash flows, and

whether financial constraints matter in this allocation decision.
2However, DeMarzo and Sannikov (2017) and He, Wei, Yu, and Gao (2017) examine the learning process

in a continuous-time agency model rather than a capital structure model.
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interaction between rollover risk and solvency concern, which is characterized as a type

of feedback effect. For example, via the learning process, persistent cash flow shocks affect

solvency concern, which has an effect on the firm’s default, investment, and leverage policies.

The changes in these policies influence rollover gains/losses and cause fluctuations in rollover

risk. More specifically, the firm’s equity holders must absorb rollover gains/losses because the

market prices of newly issued bonds can be higher or lower than the principal of the maturing

bonds. This implies that the more severely the firm’s fundamentals have deteriorated, the

heavier are the rollover losses incurred by equity holders. This conflict of interest between

equity and debt holders may induce equity holders to default optimally when they find

it unprofitable to absorb further losses. Thus, rollover risk generates solvency concern.

Consequently, variations in rollover risk affect solvency concern.

However, the learning process in our model enables us to isolate the effects of solvency

uncertainty on the firm’s policies from those of liquidity uncertainty. The reason is that

the two uncertainties work oppositely in the learning process: greater liquidity uncertainty

updates the posterior expectation of the drift of cash flows slower, whereas greater solvency

uncertainty updates the posterior expectation of the drift of cash flows faster. Because

greater liquidity (solvency) uncertainty makes cash flow signals less (more) informative,

greater liquidity (solvency) uncertainty decreases (increases) the present value of the expected

profit of the firm. Hence, the two sources of uncertainty have different implications for the

informativeness of cash flow signals under the learning process and affect the firm’s policies

differently through the variations in the informativeness of cash flows.

In fact, this mechanism is very different from that of a real options model in which the

firm’s policies are affected through the option value of waiting to execute the irreversible

decisions. In particular, in our model, the firm’s decisions depend on the volatility of the

posterior expectation of the drift of cash flows, whereas in real options models they depend

on the volatility of cash flows (the state variable) involved in the option value of waiting. In

our model, the posterior expectation of the drift of cash flows serves as the state variable,

while cash flows work as a signal to make market participants form the posterior expectation.

However, it is complicated to analyze the market learning process of the firm’s solvency

risk under the endogenous interaction between rollover risk and solvency concern in the

learning model because it is not straightforward to disentangle the effects on the default and

investment decisions. To make the analysis tractable, we compare our baseline model with
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two benchmarks. The first benchmark is the "constant capital stock" model, in which neither

investment nor depreciation occurs.3 Only the effect on the default decision is investigated.

The second benchmark is the "equity finance" model, in which all the required funds are

financed by equity. In this case, no default decision is considered because there is no debt.

Only the effect on the investment decision is examined.

The main results of our model are summarized as follows. We first discuss how liquidity

and solvency uncertainties affect optimal default and investment policies. An increase in

liquidity uncertainty raises the firm’s incentives to default, whereas solvency uncertainty

reduces them. However, an increase in liquidity uncertainty reduces the firm’s incentives to

invest, while solvency uncertainty raises them. The interesting implication of these results

is that an increase in the volatility of cash flows hastens the default timing and delays the

investment timing, even though it reduces the volatility of the posterior expectation of the

drift as the state variable. By contrast, in standard real options models, such as in Dixit

and Pindyck (1994), the default (investment) timing is delayed (hastened) if the volatility of

the state variable decreases. Furthermore, our finding regarding the firm’s investment policy

also provides additional new results that the effect of solvency uncertainty on the investment

policy–debt overhang–is opposite to that of liquidity uncertainty.

Intuitively, greater liquidity (solvency) uncertainty delays (hastens) the update of the pos-

terior expectation of the drift of cash flows by decreasing (increasing) the volatility of the

posterior expectation of the drift of cash flows. Thus, greater liquidity (solvency) uncer-

tainty makes cash flow signals less (more) informative through the learning process. As a

result, under our framework, the two sources of uncertainty affect the present value of the

additional expected profit of the firm differently because of a change in the expectation of

the firm’s profitability and the market value of debt, thereby leading to the different effects

on the default and investment policies. In particular, greater liquidity (solvency) uncertainty

hastens (delays) the default timing and delays (hastens) the investment timing through a

mechanism in which greater liquidity (solvency) uncertainty decreases (increases) the present

value of the additional expected profit of the firm because of a change in the expectation of

the firm’s profitability by making cash flow signals less (more) informative.

Second, we examine the effect of debt maturity on optimal default and investment policies.

3Note that because of the presence of depreciation, the baseline model is not reduced to the constant

capital stock model even if the investment cost is infinitely large.
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Then, default is more likely to occur if debt maturity is shorter. In addition, default is more

likely to arise in the baseline model than in the constant capital stock model. Intuitively,

investment opportunities induce equity holders to be more likely to choose default earlier.

However, unlike Diamond and He (2014), investment incentives for equity holders improve as

debt maturity increases. This novel result implies that less debt overhang occurs for longer

maturities. However, investment incentives are more aggravated in the baseline model than

in the equity finance model. Intuitively, as in the ex post debt overhang model of Gertner

and Scharfstein (1991), the market value of debt decreases with debt maturity because the

future portion of debt is riskier. This leverage effect increases equity holders’ incentive to

invest when debt maturity is longer. In addition, debt overhang forces equity holders to

invest later in the baseline model than in the equity finance model.

Third, our model predicts that an increase in liquidity (solvency) uncertainty raises (re-

duces) the leverage ratio of the firm, while reducing (raising) credit spreads if debt maturity is

sufficiently long. These results again depend on the fact that the greater liquidity (solvency)

uncertainty makes cash flow signals less (more) informative through the learning process.

This paper provides several empirical implications of the relationship between uncertainty

and the firm’s decisions on investment and capital structure. For investment, there remains a

possibility that increasing uncertainty enhances firms’ investment activities such as research

and development (see Bloom, 2014, and Kraft, Schwartz, and Weiss, 2013). Given that the

two sources of uncertainty have opposite effects on the firm’s optimal investment policy in

our model and that solvency uncertainty plays a more important role in the firm’s research

and development activity, we suggest that solvency uncertainty should be distinguished from

liquidity uncertainty in the empirical analysis of investment. We also predict that increasing

solvency uncertainty enhances the investment activities of firms in "new economy" industries,

such as information technology and bioscience.

For capital structure, the existing empirical literature provides competing views about

a relationship between cash flow volatility and capital structure (see Bradley, Jarrell, and

Kim, 1984). A possible reason for the divergence in views may be because of a difference

in identification of the cash flow volatility (see Keefe and Yaghoubi, 2016). However, our

finding shows that greater solvency (liquidity) uncertainty decreases (increases) the leverage

ratio. Consequently, our paper uncovers the importance of making a distinction between

liquidity and solvency uncertainties in interpreting the mixed results in the existing empirical
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literature.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 presents the model setting. Section 4 derives the debt and equity valuations.

Section 5 investigates the optimal default, investment, and leverage policies of the firm.

Section 6 clarifies the empirical implications of our results. Section 7 concludes. All proofs

are in the Appendix.

2. Literature Review

This paper is related to several recent studies on default—liquidity interaction under debt

rollover.4 He and Xiong (2012a) consider the setting in which bond investors hit by liquidity

shocks are forced to sell their holdings immediately at an exogenous transaction cost. Because

such deterioration in liquidity causes a firm to suffer losses in rolling over its maturing debt,

equity holders must absorb the losses when they do not choose to default.5 However, when the

equity value drops to zero, equity holders choose to default optimally. He andMilbradt (2014)

endogenize secondary bond market liquidity (or the transaction cost) by modeling bond

trading in a search-based secondary market, and examine debt valuations, equity valuations,

and default policy. Unlike the authors of these two papers, Diamond and He (2014) neglect

both the liquidity shock of bond investors and transaction costs in secondary bond markets.

Instead, they incorporate investment opportunities, determine debt maturity endogenously,

and discuss how debt maturity affects debt overhang. In contrast to these three papers, our

paper distinguishes between liquidity and solvency uncertainties and incorporates a market

learning process over time into the debt rollover model regarding the firm’s solvency risk.

Relative to models without such a learning process, we can show that liquidity uncertainty

affects the investment decision through a mechanism that is different from the standard real

4The methodology of these papers extends the constant debt maturity structure models of Leland (1994,

1998) and Leland and Toft (1996). By ruling out Brownian cash flow shocks and assuming deterministically

decreasing cash flows with a possible terminal upward jump, He and Milbradt (2016) consider how a firm

chooses its debt maturity structure and default timing dynamically without any commitment to a policy of

constant debt maturity structure. DeMarzo and He (2016) also study a model in which equity holders lack

the ability to commit to their future leverage choices and can fully issue or buy back debt at the current

market price at any time.
5He and Xiong (2012b) focus on rollover risk originated from coordination problems between debt holders

in firms that cannot raise funds by issuing new equity. Cheng and Milbradt (2012) also discuss a similar

coordination problem under the risk-shifting incentive of the manager. However, neither the investment

decision nor the learning process is considered in these models.
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options model. We can also clarify the effects of solvency uncertainty on the decisions of the

firm about default, investment, and leverage policies, by separating these effects from the

effects of liquidity uncertainty, under the endogenous interaction between rollover risk and

solvency concern generated by both debt rollover and learning.

Our analysis is related to several existing studies on the effect of debt overhang first for-

malized by Myers (1977), which points out that outstanding debt may distort the firm’s

investment incentives downward. Myers (1977) suggests that the shorter the maturity of

debt, the smaller the ex ante debt overhang. This is because the value of shorter-term debt

is less sensitive to the value of the firm, and the debt value represents a smaller benefit from

new investment taken after the debt is issued. Gertner and Scharfstein (1991) incorporate

investment opportunities in a two-period model, conditional on ex post financial distress.

Holding constant the promised payment to debt holders, they show that shorter-term debt

imposes a stronger overhang ex post because making an early fixed-promised debt payment

causes debt to be safer and raises the market value of the debt (the firm’s market leverage),

increases transfers to debt holders, and thus causes ex post debt overhang.6 In the analy-

sis of the effect of maturity on debt overhang, Diamond and He (2014) stress the timing

of investment decisions and hold the initial market value of debt constant by varying the

promised debt payment. They develop a dynamic model based on Leland (1994, 1998), in

which firms have many investment opportunities in the present and future, and show that

investment incentives first increase with debt maturity for very short maturities, but then

decrease with debt maturity for longer maturities. By contrast, our paper indicates that in-

vestment incentives improve with debt maturity as debt maturity increases. The difference

between the results of our paper and Diamond and He (2014) reflects the following: in our

model, the possibility of debt rollover creates leverage effects through the changes not only

in the debt value when rolling over debt, but also in the default loss for debt holders because

the initial market value of debt per capital stock varies, while the promised payment to debt

holders per unit of capital stock is held constant. Note that our leverage effect does not arise

in the two-period framework of Gertner and Scharfstein (1991) because they do not consider

the possibility of debt rollover so that there is no default loss in the date-1 portion of debt

6The quantitative study of Titman and Tsyplakov (2007) based on Leland (1998) also fixes the promised

debt payment and focuses on leverage adjustments by incorporating a tax shield and physical costs of default

and adjusting leverage. They suggest that the shorter-term debt improves investment incentives further but

triggers the earlier default.
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in their model.

Our paper also complements the recent study of Gryglewicz (2011) on solvency—liquidity

interaction under a learning process.7 In his model, the firm faces both liquidity and solvency

uncertainties. In addition, at each point in time, the positive net earnings of the firm can be

distributed as dividends or retained to increase cash holdings, although the firm cannot issue

new equity. As a result, losses and dividends must be covered from cash reserves instead

of new equity issues in his model, unlike He and Xiong (2012a), He and Milbradt (2014),

Diamond and He (2014), DeMarzo and He (2016), and our model.8 Using this framework,

Gryglewicz (2011) focuses on the role of initial cash holdings under liquidity and solvency

concerns by ruling out debt rollover and the investment decision of the firm, although he as-

sumes that the firm has sufficient cash holdings to avoid liquidity default (liquidity concern).

Hence, he cannot obtain any results regarding debt maturity or investment. Accordingly,

the main difference between our paper and Gryglewicz (2011) is that we investigate a market

learning process of the firm’s solvency risk under the interaction between rollover risk and

solvency concern when newly issued equity covers the net loss under debt rollover and when

the choice of investment is considered. Again, we highlight that Gryglewicz (2011) assumes

perpetual debt and rules out the investment decision problem. Therefore, we can derive

the effect of liquidity uncertainty on the default, investment, and leverage policy decisions

through a different mechanism from a standard real options model and also clarify the effect

of solvency uncertainty on the default, investment, and leverage policy decisions of the firm

under the endogenous interaction between rollover risk and solvency concern.

3. The Model

3.1. Outline of the model.–

We consider a firm that generates uncertain cash flows and selects investment and default

policies at t ≥ 0. We assume that all of the agents in the model are risk neutral and discount
cash flows at a constant risk-free rate r, and that management acts in the interest of equity

7A different learning model is also developed using the continuous-time agency framework of DeMarzo

and Sannikov (2017), in which the firm’s expected cash flows are controlled through costly effort observed

by the agent alone and the firm’s expected profitability is learned over time.
8In fact, the benchmark model of Gryglewicz (2011) follows the framework of Leland (1994). As a result,

losses and dividends can be covered from new equity issues in his benchmark model. However, the valuations

of equity, debt, and the firm in his benchmark model are different from those derived in our model because

he assumes perpetual debt and neglects the investment decision problem.
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holders.

The firm’s financing comes from a combination of equity and multiple debt issues. Because

it is difficult to analyze dynamic models of multiple debt issues, we use a framework based on

He and Xiong (2012a) and Diamond and He (2014) by extending it with the incorporation

of capital stock accumulation.9 In this framework, even though conditions change, the

firm keeps constant the total amount promised to debt holders per capital stock at each

refinancing, and does not adjust this amount in response to new conditions. To satisfy this

requirement, we assume that the firm can always raise equity as needed whenever the value

of equity is positive. Then, equity holders are willing and able to inject any funds necessary

to cover investment costs or losses at refinancing. To focus on the effect of external market

liquidity, we also assume that internal liquidity such as cash holdings and credit lines is

unavailable.

The assumption on the financing of the firm allows us to eliminate the possibility of the

firm defaulting because of illiquidity, that is, liquidity default. Instead, this assumption

enables us to focus on solvency default, which is defined as a situation in which the firm

voluntarily defaults if the value of equity falls below zero.

3.2. Earnings and learning.–

At each time t, a firm produces output by employing capital. The firm’s capital stock Kt

evolves according to

dKt = (it − δ)Ktdt, (1)

where it is the firm’s growth investment rate controlled by equity holders and δ ≥ 0 is the
rate of depreciation. We assume that it ∈ {0, i} takes a binary value, and that the investment
cost is λitKt. We also assume that r + δ > i > δ. The firm generates a stochastic flow of

earnings:

dXt = μKtdt+ σKtdZt − λitKt, (2)

where μ is the true mean value of earnings per capital stock, σ is the constant volatility, and

{Zt : 0 ≤ t ≤ ∞} is a standard Brownian motion.
The firm faces two sources of uncertainty about the instantaneous flow of earnings. The

9He and Xiong (2012a) and Diamond and He (2014) use the framework of Leland (1994, 1998) and Leland

and Toft (1996). The latter three papers take as fixed parameters both the frequency of refinancing and the

total amount of promised repayments of debt.
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first uncertainty arises from Brownian shocks dZt, whereas the second uncertainty comes

from the fact that the true μ is ex ante unknown to all parties. We assume that μ is a fixed

parameter and can take either of the two values μL or μH , with μL < μH .

The information structure of our model is as follows. We assume that all parties have

the same information at each time t. More specifically, at the initial time 0, all parties

share a common prior expectation μ0 about μ, with μ0 ∈ (μL, μH). As time evolves, more
information generated by Xt becomes available. Thus, all parties update their expectation

of μ. Let Ft denote the current set of information generated by Xt. Then, the posterior
expectation of the mean earnings based on information up to time t, μt, is given by μt =

E[μ | Ft].
Let dZt denote the difference between the realized and expected earnings. Then, the

dynamics of Xt in terms of observables are represented as follows:

dXt = (μt − λit)Ktdt+ σKtdZt. (3)

Note that the process {Zt : 0 ≤ t ≤ ∞} is a Brownian motion adapted to filtration Ft.
The posterior expectation of the mean earnings per capital stock, μt, evolves as (see Lipster

and Shiryaev (2001))10

dμt =
1

σ
(μt − μL)(μH − μt)dZt. (4)

The key point of equation (4) is that expectations adjust more rapidly if σ is small, while

learning slows down if μt is close to either μL or μH . This feature will help us understand our

results regarding the differences in the effects of short-term liquidity and long-term solvency

uncertainties in the subsequent analysis.

As discussed in Gryglewicz (2011), the specification written as (3) and (4) elucidates a

close relation between cash flow shocks and solvency. Compared with equation (2), we find

that in equation (3), short-term negative (positive) cash flow shocks dZt < 0 (dZt > 0) are

10DeMarzo and Sannikov (2017) and He, Wei, Yu, and Gao (2017) show that the evolution equation of

the posterior expectation of the mean earnings can be represented independently of an unobservable effort

level of the agent, even though the stochastic flow of cash earnings depends on the unobservable effort level.

Similarly, our evolving equation of μ can be represented independently of the observable investment level,

although the stochastic flow of cash earnings depends on the observable investment level. In addition, we

may formalize the time-varying μ like DeMarzo and Sannikov (2017). Then, the true value of μt is never

known with certainty, but all the agents believe at time 0 that μ0 ∼ N(μ0, ς0). Even in this case, under
certain conditions, μt evolves like equation (4). See Subsection 2.1 of DeMarzo and Sannikov (2017) for the

detailed discussion.
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more likely to occur if the firm is of low (high) expected long-term profitability μ. The reason

is that dZt =
dXt−(μt−λit)Ktdt

σKt
< 0 is more likely to arise if dXt is more likely to fall below

(μt − λit)Ktdt. Because (2) implies that dXt is more likely to be small if the true μ is low

(μ = μL), we show that dZt < 0 is more likely to occur if μ = μL. Similarly, dZt > 0 is more

likely if μ = μH . Hence, this specification indicates that cash flow shocks and solvency are

closely interrelated.

Suppose that equity holders always invest (it = i) and the firm does not default. Given the

current value of the posterior expectation μt, the present value of the firm per capital stock,

which is equal to the expected discounted future cash flows per capital stock, is represented

by μt−λi
r−i+δ . Because the present value of the firm per capital stock without investment is

μt
r+δ
, investment is always profitable for the firm if μt−λi

r−i+δ ≥ μt
r+δ
. Hence, if μt ≥ (r + δ)λ,

investment at time t maximizes the total value of the firm. We also assume that investment

can be undertaken only by equity holders, and that future investment policies are lost when

debt holders take over the firm at default. Thus, if default occurs, the first-best policy that

investment occurs at every instant when μt ≥ (r + δ)λ cannot be achieved.

3.3. Stationary debt structure and rolling over debt.–

According to Leland (1994, 1998) and Leland and Toft (1998), we assume that the firm has

one unit of debt per capital stock with a constant aggregate principal face value of debt p and

maintains a stationary debt structure per capital stock under a refinancing policy in which

at each instant a constant fraction of debt per capital stock, fdt, becomes due and must be

refinanced to keep the amount of total debt outstanding per capital stock constant.11 Thus,

given refinancing frequency f , the average debt maturity is m ≡ 1
f
. In addition, because

each debt is retired exponentially, the firm’s existing debt per capital stock is identical at

any point in time.

Let D(Rt,Kt) denote the market value of the firm’s debt, where Rt = μtKt is the posterior

expectation of the mean earnings. In issuing new debt to replace maturing debt, the firm

receives total proceeds
D(Rt,Kt)

m
dt by issuing Kt

m
dt units of new debt and pays pKt

m
dt to replace

maturing debt. Because the market price of newly issued debt fluctuates with the posterior

expectation of the mean earnings μt, the net payments to bond holders lead to rollover

11We assume that there is no coupon payment. Thus, debt in our model can be interpreted as zero-coupon

debt.
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gains/losses, which are represented by 1
m
[D(Rt, Kt)− pKt] dt.

12 The rollover gains or losses

are received or paid by equity holders. This implies that any gain will be paid out to equity

holders immediately, whereas any loss will be paid off by issuing more equity at the market

price. Thus, for μt, the expected net cash flow to equity holders is

(μt − λit)Ktdt+
1

m
[D(Rt,Kt)− pKt] dt, (5)

where the first term indicates the firm’s expected net cash flows and the second term the

rollover gains or losses.

When the firm issues additional equity to absorb rollover losses, the equity issuance dilutes

the value of the existing shares. Hence, rollover losses affect the equity value. In fact, as

investment can only be undertaken by equity holders, future investment opportunities are

lost when debt holders take over the firm from bankruptcy. Thus, equity holders are willing

and able to pay off rollover losses to keep the firm’s operations running whenever the equity

value is positive, that is, whenever the option value of keeping the firm alive justifies expected

rollover losses. This means that insolvency default is triggered by equity holders when the

equity value drops to zero.

4. Valuations of Debt and Equity for Different Debt Maturities

We now determine the values of claims held by debt and equity holders for different

debt maturities. These values depend on the flows to the claimants and on the insolvency

default and investment times chosen by equity holders. The insolvency default occurs when

the posterior expectation μt drops to an endogenously determined threshold μB. In the

Appendix, we assume that the total value of the firm increases in μt,
13 and can show that

the optimal investment time is determined by an endogenous investment threshold μI .

4.1. Debt and equity values with evolution of capital stock.–

12As we assume zero-coupon debt, it follows from discounting that the firm always incurs rollover losses.

However, whether rollover gains are possible or not is not essential to our analysis, as discussed in He and

Xiong (2012a) and Diamond and He (2014).
13Our numerical calculation ensures that this assumption holds in our parameter set.

13



First, using (1) and (4), note that

dRt = d(μtKt) = μt(it − δ)Ktdt+
Kt

σ
(μt − μL)(μH − μt)dZt. (6)

Then, because equity holders use the investment threshold policy, the debt value before

default satisfies the following ordinary differential equations:

rD(R,K) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2σ2
(μ− μL)

2(μH − μ)2(K)2DRR(R,K) + μ(i− δ)KDR(R,K)

+(i− δ)KDK(R,K) +
1
m
[pK −D(R,K)] , if μ ≥ μI ,

1
2σ2
(μ− μL)

2(μH − μ)2(K)2DRR(R,K)− μδKDR(R,K)− δKDK(R,K)

+ 1
m
[pK −D(R,K)] , if μI > μ ≥ μB.

(7)

The first two terms (third term) on the right-hand side of (7) capture(s) the expected change

in the debt value from a change in R in equation (6) (K in equation (1)), and the final term

is the change in the debt value caused by rolling over debt.

Using the scale invariance of the firm’s technology arising from the homogeneity assump-

tion, we write D(R,K) ≡ d(R
K
, 1)K ≡ d(μ)K. Hence, we can reduce (7) to the following

equations with a single state variable μ.µ
r − i+ δ +

1

m

¶
d(μ) =

p

m
+

1

2σ2
(μ− μL)

2(μH − μ)2d00(μ), if μ ≥ μI , (8a)

µ
r + δ +

1

m

¶
d(μ) =

p

m
+

1

2σ2
(μ− μL)

2(μH − μ)2d00(μ), if μI > μ ≥ μB. (8b)

We need several boundary conditions to solve equation (8). Equity holders choose default

at μ = μB. Then, we assume that the liquidation value per capital stock is equal to the value

per capital stock of the all-equity firm at the moment of default, μB
r+δ
. Furthermore, debt

holders take over the firm with the value μB
r+δ

per capital stock without future investment.14

This requirement is represented by the following value-matching condition:

d(μB) =
μB

r + δ
. (9)

14This assumption implies that debt holders can sell the firm to other investors without any liquidation

costs in default. Gryglewicz (2011) imposes a similar assumption although he takes account of liquidation

costs. However, even though liquidation costs are considered, our main results are unaffected.
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At the investment boundary μI , the boundary conditions are also needed, that is,

lim
μ↑μI

d(μ) = lim
μ↓μI

d(μ), (10)

lim
μ↑μI

d0(μ) = lim
μ↓μI

d0(μ). (11)

Finally, if μ hits μH , we need the condition that d(μH) is bounded and is equal to the default-

free debt value per capital stock, p

1+m(r−i+δ) , as imposed in Gryglewicz (2011) and Diamond

and He (2014). Thus,

d(μH) =
p

1 +m(r − i+ δ)
. (12)

This condition implies that μH is an absorbing state for μ.

We now consider the equity value. Using (1) and (6), the equity value must satisfy the

following differential equation:

rE(R,K) = max
i∈{0,i}

1

2σ2
(μ− μL)

2(μH − μ)2(K)2ERR(R,K) + μ(i− δ)KER(R,K)

+ (i− δ)KEK(R,K) + (μ− λi)K − 1

m
[pK −D(R,K)] . (13)

The first two terms (third term) on the right-hand side of (13) capture(s) the expected

change in the equity value caused by a change in R in equation (6) (K in equation (1)), and

the final term is the rollover gain/loss of equity holders.

Again, using the scale invariance of the firm’s technology arising from the homogeneity

assumption, we write E(R,K) ≡ e(R
K
, 1)K ≡ e(μ)K. Then,

re(μ) = max
i∈{0,i}

μ− λi+ (i− δ)e(μ) +
1

2σ2
(μ− μL)

2(μH − μ)2e00(μ)− 1

m
[p− d(μ)]. (14)

We specify boundary conditions to solve equation (14). In the Appendix, we can show

that the threshold investment strategy is optimal. Thus, it follows from the maximization

of the right-hand side of (14) with respect to i that

i(μ) =

⎧⎨⎩ i, if μ ≥ μI ,

0, if μI > μ ≥ μB,
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and that the endogenous investment threshold μI chosen by equity holders must satisfy the

following value-matching condition:15

e(μI) = λ. (15)

At the boundary μH , the debt value per capital stock is equal to the default-free debt value

per capital stock p

1+m(r−i+δ) . Thus, for consistency, we need to have

e(μH) =
μH − λi

r − i+ δ
− p

1 +m(r − i+ δ)
, (16)

where the firm value per capital stock at μ = μH is equal to the expected discounted future

cash flows per capital stock that prevail if the firm always invests and does not default. To

ensure this, we assume that e(μH) > λ, that is,
μH−λ(r+δ)
r−i+δ > p

1+m(r−i+δ) .

However, equity holders default at μB and receive zero under limited liability, which implies

e(μB) = 0. (17)

The endogenous default boundary also needs to satisfy the smooth-pasting condition:

e0(μB) = 0. (18)

To ensure the existence of μB (≥ μL) and the immediate default for μ < μB, we assume

that e(μL) < 0, that is,
μL
r+δ

< p

1+m(r+δ)
. Finally, the following boundary conditions at the

investment boundary are required:

lim
μ↑μI

e(μ) = lim
μ↓μI

e(μ), (19)

lim
μ↑μI

e0(μ) = lim
μ↓μI

e0(μ). (20)

Now, we provide the following proposition that clarifies the debt and equity values as

15In Diamond and He (2014), this condition is represented by the smooth-pasting condition. The difference

depends on the difference between the formulation of the two models. More specifically, Diamond and He

(2014) suppose that cash flows follow a geometric Brownian motion, whereas they do not consider capital

accumulation. By contrast, we suppose that cash flows per capital stock follow an arithmetic Brownian

motion by incorporating the capital accumulation process.
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solutions to equations (8) and (14) together with boundary conditions (9)—(12) and (15)—

(20).16 We also verify the optimality of the threshold investment strategy in the Appendix

by assuming that v(μ) is increasing in μ.

Proposition 1: There exists a unique μI that satisfies (14). Thus, the optimal investment

policy for each different debt maturity is given by the investment threshold policy: given μB

and μI, equity holders invest as long as the posterior expectation μ exceeds a critical value

μI :

i(μ) =

⎧⎨⎩ i, if μ ≥ μI ,

0, if μI > μ ≥ μB.

The debt value is: if μ ≥ μI ,

d(μ) =
p

1 +m(r − i+ δ)
+A1(μ− μL)

1−β1(μH − μ)β1; (21a)

and if μI > μ ≥ μB,

d(μ) =
p

1 +m(r + δ)
+A3(μ− μL)

1−β2(μH − μ)β2 +A4(μ− μL)
β2(μH − μ)1−β2 . (21b)

The equity value is: if μ ≥ μI ,

e(μ) =
μ− λi

r − i+ δ
− p

1 +m(r − i+ δ)
+B1(μ−μL)

1−γ1(μH−μ)γ1−A1(μ−μL)
1−β1(μH−μ)β1 ;

(22a)

and if μI > μ ≥ μB,

e(μ) =
μ

r + δ
− p

1 +m(r + δ)
+B2(μ− μL)

1−γ2(μH − μ)γ2 +B3(μ− μL)
γ2(μH − μ)1−γ2

−A3(μ− μL)
1−β2(μH − μ)β2 −A4(μ− μL)

β2(μH − μ)1−β2 . (22b)

The constants β1, β2, γ1, γ2, A1, A3, A4, B1, B2, and B3 are given by (A1), (A3), (A17),

(A19), (A5)—(A7), and (A23)—(A25), respectively, in the Appendix. The endogenous bound-

aries μB and μI are also given by (A29) and (A30) in the Appendix. In particular, μB

16In the subsequent analysis, for brevity, we delete the term “per capital stock” from each variable unless

confusion occurs.
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satisfies μB
r+δ

< p

1+m(r+δ)
.

The value functions of d(μ) and e(μ) are interpreted as follows. If μ exceeds the investment

threshold μI , the debt value is equal to the value of default-free debt minus the impact of

potential default (the present value of the expected potential loss for debt holders when

defaulting at μ). However, outside the investment region μI > μ ≥ μB, the debt value

includes an additional term that captures the adjustment for entering the investment region

in the future. This additional term represents the loss of the debt value caused by the

execution of investment. This loss arises when potential default occurs because of a change

in the expectation of the firm’s profitability, thereby moving the equity value close to zero.

Regarding the equity value, if μ exceeds μI , it is comprised of four terms. The first and

second terms are equal to the firm value at μ that would prevail if the firm always invested

and did not default, minus the default-free debt value. The remaining two terms reflect

the present value of the additional expected profit for equity holders generated by updating

μ as well as the impact of potential default (the present value of the additional expected

profit for equity holders when defaulting at μ). Outside the investment region μI > μ ≥ μB,

the equity value now consists of six terms. The first and second terms are the firm value

at μ without investment in the case of no default, minus the default-free debt value. The

remaining four terms capture both the present value of the additional expected profit for

equity holders generated by updating μ when the adjustment for entering the investment

region in the future is included and the impact of potential default (the present value of

the additional expected profit for equity holders in defaulting at μ when the adjustment for

entering the investment region in the future is included).

Proposition 1 indicates that μB
r+δ

< p

1+m(r+δ)
. This implies that on the date of default, there

is a loss to debt holders.

4.2. Debt and equity values with default and investment boundaries under

benchmark models.–

To facilitate discussion, we now solve two other cases that serve as benchmark models. We

first consider a benchmark case in which neither investment nor depreciation occurs (i = δ =

0) so that the firm’s capital stock is constant (Kt = const for any t ≥ 0). This corresponds
to the case in which no investment decision is considered. We call this the "constant capital
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stock" case, and indicate the corresponding solution by a superscript "c".

Then, ignoring μI and using i = δ = 0, we rearrange Proposition 1 as follows.

Proposition 2: Suppose that i = δ = 0 and the capital stock is constant for any t ≥ 0.
Then, the debt value is:

dc(μ) =
p

1 +mr
−
µ

p

1 +mr
− μcB
r

¶µ
μ− μL

μcB − μL

¶1−βc µ
μH − μ

μH − μcB

¶βc

; (23)

and the equity value is:

ec(μ) =
μ

r
− p

1 +mr
+

µ
p

1 +mr
− μcB
r

¶µ
μ− μL

μcB − μL

¶1−βc µ
μH − μ

μH − μcB

¶βc

, (24)

where βc > 1 is the positive root of (βc)
2 − βc − 2(1+mr)σ2

m(μH−μL)2 = 0. The default threshold is

given by

μcB =
μHμL + [(β

c − 1)μH − βcμL]
rp

1+mr

(1− βc)μL + βcμH − rp

1+mr

. (25)

Note that μcB satisfies
μc
B

r
< p

1+mr
.

Several remarks can be made. First, as we do not consider investment, we need not

change the debt or equity value function according to whether investment occurs or not. In

addition, except for the term regarding the value of default-free debt (the firm value at μ

that would prevail if the firm always invested and did not default, minus the default-free

debt value), the debt (equity) value consists of only the term involved in the present value of

the expected potential loss (profit) for debt (equity) holders when defaulting at μ; in other

words, the debt value does not include any terms involved in the adjustment for entering

the investment region in the future, whereas the equity value does not include any terms

involved in the present value of the additional expected profit for equity holders generated

by updating μ. Second, the default threshold has the closed-form expression (25) in this

case.

Gryglewicz (2011) derives the debt and equity value equations by assuming that new

external financing is available only at the start of the project while the firm uses this initial

financing to ensure cash holdings enable the firm to avoid liquidity default (see Proposition
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4 in Gryglewicz (2011)). This assumption allows only solvency default by excluding liquidity

default. Because he does not consider debt rollover or the investment decision of the firm,

the debt and equity value equations in his model are essentially similar to (23) and (24) if we

rule out debt rollover (m → ∞) and make debt perpetual.17 Note that there is no coupon
payment in our model.

More formally, we provide the following corollary to clarify the relationship between our

model and the benchmark model of Gryglewicz (2011, Proposition 1).

Corollary to Proposition 2: Suppose that i = δ = 0 and capital stock is constant for

any t ≥ 0. If we rule out debt rollover (m→∞), the debt value is:

dc(μ) =
μcB
r

µ
μ− μL

μcB − μL

¶1−βc µ
μH − μ

μH − μcB

¶βc

; (230)

and the equity value is:

ec(μ) =
μ

r
− μcB
r

µ
μ− μL

μcB − μL

¶1−βc µ
μH − μ

μH − μcB

¶βc

, (240)

where βc > 1 is the positive root of (βc)
2 − βc − 2rσ2

(μH−μL)2 = 0. The default threshold is given

by

μcB =
μHμL

(1− βc)μL + βcμH
. (250)

We next discuss the other benchmark case in which equity holders do not issue any debt

(d (μ) = 0 for any t ≥ 0) and finance all the required funds by issuing equity. This corre-
sponds to the case in which neither endogenous default decisions nor debt overhang problems

are investigated. We denote this case as the "equity finance" case, and indicate the corre-

sponding solution with a superscript "e". Then, ignoring μB and applying a proof procedure

similar to that of Proposition 1, we obtain the following proposition.

Proposition 3: Suppose that equity holders do not issue any debt (d (μ) = 0 for any

17Note that βc in our model converges to β given in Gryglewicz (2011) as m → ∞ (see the following

corollary to Proposition 2).
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t ≥ 0). Then, the equity value is: if μ ≥ μeI ,

ee (μ) =
μ− λi

r − i+ δ
+

∙
λ (r + δ)− μeI
r − i+ δ

¸µ
μ− μL

μeI − μL

¶1−γe1 µ μH − μ

μH − μeI

¶γe1

, (26a)

and if μeI > μ,

ee (μ) =
μ

r + δ
+

∙
λ (r + δ)− μeI

r + δ

¸µ
μ− μL

μeI − μL

¶γe2
µ

μH − μ

μH − μeI

¶1−γe2
, (26b)

where γe1 > 1 and γe2 > 1 are the positive roots of (γ
e
1)
2 − γe1 − 2(r−i+δ)σ2

(μH−μL)2 = 0 and (γ
e
2)
2 −

γe2 − 2(r+δ)σ2

(μH−μL)2 = 0, respectively. The investment threshold is given by

μeI = −

(r − i+ δ) [μLλ (r + δ)− μHμL + γe2λ (r + δ) (μH − μL)]

− (r + δ) [(μH − γe1 (μH − μL))λ (r + δ)− μHμL]

(r − i+ δ) [μH − γe2 (μH − μL)− λ (r + δ)]− (r + δ) [μL + γe1 (μH − μL)− λ (r + δ)]
.

(27)

We provide several comments. First, this benchmark model is different from a standard

real options model of investment à la Dixit and Pindyck (1994), in that in our model the

learning process is incorporated. Second, as equity holders do not need to consider future

default in the absence of debt, there is no default effect in this case. Thus, the debt overhang

problem discussed in the baseline model does not arise in this case. Indeed, it follows

from the proof of this proposition that the second term on the right-hand side of (26a)

((26b)) corresponds to B1(μ − μL)
1−γ1(μH − μ)γ1 (B3(μ − μL)

γ2(μH − μ)1−γ2) on the right-

hand side of (22a) ((22b)), which can be interpreted as the present value of the additional

expected profit for equity holders generated by updating μ. Thus, by comparing the results

of Propositions 1 and 3 ((22) and (26)), we see that the equity value in this case includes

the terms involved in the present value of the additional expected profit for equity holders

generated by updating μ, whereas it does not include any terms involved in the value of

default-free debt or in the impact of potential default.
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5. Optimal Default and Investment Policies

Comparing the baseline model of Proposition 1 with the other two benchmark models of

Propositions 2 and 3, we now consider how changes in σ, μH − μL, and m affect the optimal

default and investment policies. We also investigate the effects of σ and μH − μL on the

leverage ratio and credit spreads in the baseline model.

5.1. The effects of liquidity and solvency uncertainties on default and invest-

ment policies.–

We now discuss how the two sources of uncertainty affect optimal default and investment

policies. In this model, liquidity uncertainty arises from the unpredictable immediate earn-

ings. Thus, liquidity uncertainty is the liquidity shock generated by the Brownian motion.

However, solvency uncertainty is the profitable uncertainty represented by the uncertain drift

μ that may cause the firm to undergo solvency distress. We analyze the effects of these two

uncertainties on default and investment policies using the following set of basic parameters:

μL = 0, μH = 0.1, σ = 0.3, m = 10, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

However, the initial market value of debt varies with liquidity uncertainty σ or solvency

uncertainty μH − μL relative to p = 0.8. We also use the same basic parameter set in the

discussions of the next two subsections.

Figure 1A indicates that in the baseline model, an increase in σ (from 0.2 to 0.4) leads

to an increase in the default threshold μB. Thus, equity holders are more likely to default

earlier as σ increases. This tendency is also observed in the case of constant capital stock

(see also Figure 1A). In the case of constant capital stock, it follows from (24) that the equity

value includes the term involved in the present value of the additional expected profit for

equity holders when defaulting at μ, whereas it does not include any terms involved in the

present value of the additional expected profit for equity holders generated by updating μ.

In the baseline model case, it follows from (22b) that the equity value also includes the term

involved in the present value of the additional expected profit for equity holders generated

by updating μ, as well as the terms observed in the case of constant capital stock. This

implies that incorporation of the present value of the additional expected profit for equity

holders generated by updating μ does not modify the effect of σ on the default threshold. In

addition, as argued in the corollary to Proposition 2, the case of constant capital stock when
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m = ∞ corresponds to the benchmark case of Gryglewicz (2011). Figure 1B suggests that

even for the case that corresponds to Gryglewicz (2011), the comparative static result with

respect to liquidity uncertainty has the same tendency as in the other cases for sufficiently

large μH − μL (μH − μL ≥ 0.101), although we have the corner solution μB = μL in this

case if μH − μL is not sufficiently large (μH − μL < 0.101).

Figure 1A. The effect of a change in σ on the default threshold in the baseline

model (blue line) and in the constant capital stock model (red line). Each solid line ex-

presses the optimal default threshold relative to σ. Parameters are μL = 0, μH = 0.1,

m = 10, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

23



Figure 1B. The effects of changes in σ and μH − μL on the default threshold in

the Gryglewicz (2011) model. Each solid line expresses the optimal default threshold

as a function of μH − μL relative to σ. Parameters are m = ∞, r = 0.05, λ = 0.3,
i = 0.05, δ = 0.04, and p = 0.8.

The intuition for these results is explained as follows. A higher σ makes instantaneous

cash flows less informative about μ. Then, the effect of increasing σ lowers the present value

of the additional expected profit for equity holders when defaulting at μ. This leads to

hastening the decision on default to wait for new information in both the baseline model

and the constant capital stock model. Hence, in these two models, the default threshold μB

increases as σ increases.

Next, Figure 2 illustrates that in the baseline model, an increase in σ increases the in-

vestment threshold μI . Hence, the higher σ aggravates the investment incentives for equity

holders and increases debt overhang. Similarly, in the equity finance model, Figure 2 also

shows that an increase in σ increases the investment threshold μeI . This result means that

even though the present value of the additional expected profit for equity holders when de-
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faulting μ is incorporated, increasing σ does not modify the effect of σ on the investment

threshold.

Figure 2. The effect of a change in σ on the investment threshold in the base-

line model (blue line) and in the equity finance model (red line). Each solid line

expresses the optimal investment threshold relative to σ. Parameters are μL = 0,

μH = 0.1, m = 10, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

The logic behind these results is explained as follows. A direct effect of increasing σ

causes the increased volatility of cash flows and the less-informative cash flow signals, thereby

decreasing the present value of the additional expected profit for equity holders generated by

updating μ.18 This direct learning effect created by an increase in volatility σ induces the firm

to choose the higher investment threshold. Furthermore, given that rollover gains/losses are

covered from new equity issues, the lower informativeness of cash flows raises the market value

of debt because debt is information-insensitive security. This indirect learning effect increases

18Because an increase in σ delays the adjustment of μ, the prediction of whether μ = μL or μH using

additional information becomes more difficult. As a result, the present value of the additional expected

payoff for equity holders generated by updating μ decreases.
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the transfer to debt holders and decreases equity holders’ incentives to invest. Another

indirect learning effect of increasing μI arises from the above finding that μB increases in σ.

This is because the increase in μB triggers earlier default and induces the firm to make do

with smaller cash flows or to hedge negative liquidity shocks to a lesser extent at each point

in time as a result of the greater likelihood of failing to receive cash flows when investing.

In the equity finance model, the firm does not default because it does not issue any debt.

Hence, it follows from (26a) and (26b) that the equity value includes the term involved in the

present value of the additional expected profit for equity holders generated by updating μ,

but does not include any terms involved in the present value of the additional expected profit

for equity holders when defaulting. Then, in the equity finance model, increasing volatility

σ involves only the first of these three learning effects because there is no debt. Thus, in this

model, an increase in σ always increases the investment threshold μeI . However, the baseline

model also includes the remaining two indirect learning effects because the levered firm may

default. In fact, even though the last indirect learning effect may have the opposite to the

other two learning effects, it is dominated by these other learning effects. Consequently,

consideration of debt does not modify the relation between μI and σ observed in the equity

finance model.

We now consider the effect of a change in profitability uncertainty. Because we use the

binomial distribution of μ, this uncertainty is measured by a mean preserving spread between

the high value (μH) and low value (μL) realizations of mean earnings, as in Gryglewicz (2011).

More specifically, we vary μH − μL around the mean μ0 =
1
2
(μH + μL) = 0.05. Increasing

μH − μL around the mean μ0 has two main direct effects. One effect is that increasing μH

− μL around the mean μ0 directly increases the profit potential of the firm at success. The

other effect is that the greater the spread of μH − μL is, the more rapid are the learning

dynamics in μt. The reason is that cash flow signals are then more informative about the

realization of either μH or μL (see equation (4)) because μt is farther away from μL and μH

on average. Thus, this effect increases the present value of waiting for new information.19

As illustrated in Figure 3, the default threshold μB decreases with μH − μL in the baseline

model. Thus, equity holders are more likely to default later as μH − μL increases. This is

also observed in the constant capital stock model (see Figure 3). Hence, consideration of the

present value of the additional expected payoff for equity holders generated by updating μ

19DeMarzo and Sannikov (2017)
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does not modify the effect of μH − μL on the default threshold. Again, Figure 1B suggests

that even for the case that corresponds to Gryglewicz (2011), the comparative static result

with respect to solvency uncertainty has the same tendency as in the other cases for suffi-

ciently large μH − μL (μH − μL ≥ 0.101), although we have the corner solution μB = μL in

this case if μH − μL is not sufficiently large (μH − μL < 0.101).

Figure 3. The effect of a change in μH − μL on the default threshold in the

baseline model (blue line) and in the constant capital stock model (red line).

Each solid line expresses the optimal default threshold relative to μH − μL. Pa-

rameters are σ = 0.3, m = 10, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

The mechanism for these results is as follows. The two main direct effects of increasing μH

− μL discussed above increases the present value of the additional expected payoff for equity

holders when defaulting at μ and increases the present value of waiting for new information

in both the baseline model and the constant capital stock model. Hence, in these two models,

the default threshold μB decreases for any m as μH − μL increases.

Figure 4 shows that in the baseline model, the investment threshold μI decreases with

μH − μL. In the equity finance model, Figure 4 also indicates that an increase in μH − μL
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decreases the investment threshold μeI . Thus, this result suggests that even though the

present value of the additional expected profit for equity holders when defaulting at μ is

incorporated, increasing μH − μL still induces equity holders to invest earlier.

Figure 4. The effect of a change in μH−μL on the investment threshold in the
baseline model (blue line) and in the equity finance model (red line). Each solid

line expresses the optimal investment threshold relative to μH − μL. Parameters

are σ = 0.3, m = 10, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

Intuitively, the four main effects of increasing μH − μL around μ0 operate as follows. First,

increasing μH − μL directly increases the profit potential of the firm at success. Hence,

increasing μH − μL induces equity holders to invest earlier. Second, an increase in μH − μL

raises the speed of learning from cash flow shocks about expected profitability. Hence, this

creates the higher present value of the additional expected profit for equity holders generated

by updating μ. Thus, an increase in μH − μL reduces the investment threshold. Third, given

that rollover gains/losses are covered from new equity issues and that debt is information-

insensitive security, the greater informativeness of cash flows reduces the market value of

debt. This indirect learning effect decreases the transfer to debt holders and increases equity
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holders’ incentive to invest. Fourth, the decrease in the default threshold μB because of an

increase in μH − μL triggers a later default and induces the firm to obtain larger cash flows

or the greater need to hedge negative liquidity shocks at each point in time as a result of

the greater likelihood of being able to receive cash flows when investing. Thus, this indirect

effect also motivates the firm to choose the lower investment threshold. In the equity finance

model, increasing profitability uncertainty μH − μL involves only the first and second direct

effects because there is no debt. Hence, in the equity finance model, an increase in μH

− μL always decreases the investment threshold μeI , thereby inducing equity holders to start

their investments earlier. In the baseline model, consideration of debt additionally involves

the two indirect effects. However, as the two indirect effects also decrease the investment

threshold, consideration of debt does not modify the tendency of the equity finance model.

Consequently, increasing solvency uncertainty is more likely to induce equity holders to invest

earlier in the baseline model.

The analysis in this section also shows that the effect on the default threshold of solvency

uncertainty is opposite to that of liquidity uncertainty. Furthermore, the effect on the

investment threshold (debt overhang) of solvency uncertainty is also opposite to that of

liquidity uncertainty. Intuitively, this is because the greater degree of uncertainty about

liquidity (solvency) makes cash flow signals less (more) informative through the learning

process of profitability uncertainty. As a result, liquidity and solvency uncertainties affect

the present value of the additional expected payoff for equity holders generated by updating

μ, the firm’s demand for cash flows, and the market value of debt at each point in time in

different ways, thereby leading to different effects on the default and investment policies of

the firm. These results have not been tested empirically.

Our investigation also indicates that the effect of increasing solvency uncertainty not only

mitigates the incentives for equity holders to default, but also improves their incentives to

invest. This result depends on the fact that increasing solvency uncertainty raises the profit

potential of the firm at success and the present value of the additional expected payoff for

equity holders generated by updating μ, while reducing the market value of debt, thereby

decreasing (increasing) equity holders’ incentives to default (invest).

Finally, we should notice that the mechanism through which two sources of uncertainty

affect the firm’s default and investment decisions is very different from that of the standard

real options model. In the standard real options model, the firm’s default and investment
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policies are affected through the variations in the option value of waiting to execute the

irreversible decisions. As a result, the default (investment) timing is hastened (delayed) if

the volatility of the state variable increases. By contrast, in our learning model, the default

(investment) timing is hastened (delayed) if the volatility of the state variable decreases.

Intuitively, in our learning model, the decrease in the volatility of the state variable defined as

the posterior expectation of the drift of cash flows delays the adjustment of the state variable

itself, thus making cash flows less informative through the learning process. Consequently,

this effect reduces the present value of the additional expected profit for equity holders

generated by updating the firm’s profitability and raises the market value of debt, thereby

hastening (delaying) the default (investment) timing.

5.2. The effect of debt maturity on default and investment policies.–

First studied by Myers (1977), debt overhang captures the idea that equity holders un-

derinvest relative to the level that maximizes the total value of the firm because a part of

investment benefits accrues to the firm’s debt claims. In this subsection, we provide numeri-

cal examples to illustrate a new insight offered by our paper into the effect of debt maturity

on default and debt overhang when debt maturity is exogenously determined.

As indicated at the beginning of Section 5.1, the initial market value of debt varies with

debt maturity m relative to p = 0.8. By contrast, Diamond and He (2014) hold the initial

market value of debt constant by varying the face value of debt. We do not follow the setting

of Diamond and He (2014), not only because the default and investment policies of the firm

depend strongly on the leverage effect caused by the effect of debt maturity on the market

value of debt, but also because we need to investigate the leverage effect created by learning.

In addition, because our leverage effect is derived from the possibility of debt rollover and

learning, unlike Gertner and Scharfstein (1991), it would seem interesting to consider this

effect fully under our framework.

Figure 5 illustrates the optimal default policies when varying debt maturity m for the two

models: the baseline model and the constant capital stock (i = δ = 0) model. In the constant

capital stock case, Figure 5 indicates that the default threshold μcB decreases withm: default

is more likely to occur if debt maturity is shorter. In the baseline model case, Figure 5 shows

that the default threshold μB in this case still decreases with m; and it is higher than μcB

for any m. Hence, consideration of the present value of the additional expected payoff for
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equity holders generated by updating μ is more likely to induce equity holders to default for

any m.

Figure 5. The effect of a change inm on the default and investment thresholds.

The red (blue) solid line expresses the optimal default (investment) threshold in

the baseline model. The red (blue) dashed line represents the optimal default

(investment) threshold in the constant capital stock (equity finance) model. Pa-

rameters are μL = 0, μH = 0.1, σ = 0.3, m = 10, r = 0.05, λ = 0.3, i = 0.05,

δ = 0.04, and p = 0.8.

The reason why μB decreases with m is that equity holders default earlier to refuse to

subsidize debt holders as m is shorter. This is because shorter-term debt requires equity

holders to absorb greater rollover losses when the firm’s future prospects deteriorate.20 Such

a relation between the default threshold and debt maturity is also obtained in He and Xiong

(2012a) and Diamond and He (2014), although their model frameworks are different from

20In our model, reducing m raises equity holders’ rollover losses, 1
m
[p − d(m)], because the effect of the

higher rollover frequency 1
m
brought about by reducing m dominates the effect of the larger market value of

debt caused by reducing m.
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ours. Our analysis also indicates that for any m, the default threshold is higher in the

baseline model than in the constant capital stock model. As the firm has an option to invest

in the former case but not in the latter case, equity holders are more likely to choose default

in the former case than in the latter case, when the firm’s future prospects deteriorate.

Consequently, for any m, the default threshold is higher in the baseline model than in the

constant capital stock model.

Figure 5 also illustrates the optimal investment policies when varying debt maturity m

for the two models: the baseline model and equity finance (d = 0 for any t ≥ 0) model.

In the equity finance model, as the firm does not issue any debt, the equity value does

not depend on m. Consequently, the investment threshold μeI does not depend on m. In

the baseline model, the equity value includes the terms involved in the present value of the

additional expected payoff for equity holders when defaulting. Then, Figure 5 indicates that

the investment threshold μI is higher than μeI for any m. Hence, consideration of debt is

more likely to induce equity holders to delay investment for any m. Furthermore, Figure 5

also illustrates that the investment threshold μI in this case decreases with m. This implies

that debt has less overhang when the debt maturity is long.

Intuitively, because of the possibility of default, consideration of debt forces the firm to

consider the likelihood of failing to receive cash flows as a result of investment. Hence, it

is not surprising that this consideration is more likely to induce equity holders to delay the

investment timing for any m. However, the reason why μI in the baseline model decreases

withm is explained as follows. As shorter-term debt induces more frequent repricing, shorter-

term debt holders share less gains given good news. Hence, shorter-term debt may improve

equity holders’ incentives to invest. However, our model also incorporates the leverage effect

caused by debt rollover, through which the market value of debt decreases with debt maturity

(see Figure 6) because the future portion of debt is more risky due to the greater possibility of

default. Thus, the leverage effect decreases the transfer to debt holders and increases equity

holders’ incentives to invest, as debt maturity is longer. In addition, the other effect by

which longer-term debt increases equity holders’ incentives to invest results from the above

finding that μB decreases with debt maturity. This is because the decrease in μB is more

likely to delay default and induces the firm to obtain larger cash flows or to hedge negative

shocks to a greater extent at each point in time as a result of the greater likelihood of being

able to receive cash flows when investing. As the second and third effects are stronger than
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the first effect, longer-term debt has less debt overhang.

Figure 6. The initial debt value in the baseline model. Parameters are μL = 0,

μH = 0.1, σ = 0.3, m = 10, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, p = 0.8, and

μ0 = 0.5.

In contrast, holding the initial market value of debt constant by varying the promised

debt payment, Diamond and He (2014) suggest that investment incentives first increase with

debt maturity for very short maturities, then decrease with debt maturity as debt maturity

increases. By varying the initial market value of debt, we consider the leverage effect caused

by debt rollover, which is not derived by Gertner and Scharfstein (1991), although Diamond

and He (2014) rule out this effect by holding the initial market value of debt constant.

Thus, investment incentives increase with debt maturity. In fact, holding the promised debt

payment constant by varying the initial market value of debt, we might choose a considerably

higher or lower leverage ratio, which would affect the results of this paper. To check this

problem, we report the default and investment thresholds, the debt value, and the firm value

in Figures A1 and A2 using our basic parameter set. The results confirm that our choice
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of the value of the promised debt payment does not lead to extraordinary results (see the

discussion at the end of the Appendix).

5.3. Leverage and credit spreads.–

In this subsection, we examine the effects of liquidity and solvency uncertainties on the

leverage ratio (debt to firm value) and credit spreads in the baseline model.

Figure 7A displays the effects of the two sources of uncertainty on the leverage ratio.21 The

effect of increasing σ on the leverage ratio is positive for all m. As discussed in Section 5.1,

higher volatility makes cash flow signals less informative about μ and causes default to occur

relatively early. Although the latter effect increases the cost of debt, the former learning effect

induces equity holders to issue more debt because debt is information-insensitive security.

As the latter learning effect dominates, the higher volatility increases the debt value and

leverage ratio.

Figure 7A. The effect of a change in σ on the leverage ratio for different

debt maturities. Each solid line expresses the leverage ratio relative to σ. Pa-

rameters are μL = 0, μH = 0.1, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

21In Figures 7 and 8, note that in several cases ofm < 3, we do not obtain any computation results because

the firm does not operate in this case as a result of μ0 ≤ μB.

34



However, Figure 7B also shows that the effect of a mean preserving spread of μH − μL

around the mean is negative for all m. As argued in the preceding section, a higher spread

μH − μL increases the profit potential for the firm at success, brings out the higher infor-

mativeness of cash flows, and induces equity holders to default relatively late. In particular,

because the second learning effect dominates and debt is information-insensitive security, the

higher μH − μL motivates equity holders to issue less debt and decreases the leverage ratio.

Figure 7B. The effect of a change in μH−μL on the leverage ratio for different

debt maturities. Each solid line expresses the leverage ratio relative to μH − μL.

Parameters are σ = 0.3, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

Gryglewicz (2011) suggests that the consideration of cash holdings in his model lessens

the problem of the standard trade-off model of capital structure that the optimal leverage

implied by the standard model exceeds the leverage ratio observed empirically. However,

our numerical analysis also indicates that the leverage ratio is significantly lower as the debt

maturity is longer. Hence, our model implies that one of the driving forces of the reduced
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leverage is the incorporation of debt maturity.22

Figure 8A illustrates the effects of liquidity and solvency uncertainties on credit spreads.

The high volatility σ decreases credit spreads for all m ≥ 9, but does not necessarily do so
for shorter-maturity debt. The high volatility risk lowers the informativeness of cash flows

and results in the greater possibility of default. Indeed, as the first learning effect dominates

for m ≥ 9 (but does not necessarily dominate for m < 9), credit spreads decrease for m ≥
9 (but does not necessarily decrease for m < 9).

Figure 8A. The effect of a change in σ on credit spreads for different debt

maturities. Each solid line expresses credit spreads relative to σ. Parameters are

μL = 0, μH = 0.1, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

However, Figure 8B indicates that the higher spread μH − μL increases credit spreads for

all m ≥ 12, but does not necessarily do so for shorter-maturity debt. The higher spread
creates the greater profit potential of the firm at success, the greater informativeness of cash

flows, and the lower default threshold. Because the second learning effect dominates for m

22Note that in the model of Gryglewicz (2011), the debt maturity is infinite.
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≥ 12 (but does not necessarily dominate for m < 12), credit spreads increase for m ≥ 12
(but does not necessarily decrease for m < 12).

Figure 8B. The effect of a change in μH − μL on credit spreads for different

debt maturities. Each solid line expresses credit spreads relative to μH − μL.

Parameters are σ = 0.3, r = 0.05, λ = 0.3, i = 0.05, δ = 0.04, and p = 0.8.

When the maturity of debt is not sufficiently long, our results for credit spreads do not nec-

essarily coincide with those of Gryglewicz (2011). Again, the incorporation of debt maturity

affects the results significantly.

6. Empirical implications

6.1. Investment.–

Although many theoretical and empirical studies support the argument that uncertainty

has a negative effect on firms’ investments, there remains a possibility that increasing un-

certainty enhances firms’ investment activities such as research and development.23 This is

23Bloom (2014) discusses this issue. Kraft, Schwartz, and Weiss (2013) indicate that R&D-intensive firms

with higher uncertainty can have higher stock values.
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because a “growth options effect” exists: increasing uncertainty extends the upper range of

the revenues from a new project, whereas it also expands the lower range of the revenues

from the new project but the expansion is bounded by limited liability. Our research in Sec-

tion 5.1 shows that liquidity and solvency uncertainties have opposite effects on investment

policy: increasing solvency (liquidity) uncertainty is more likely to induce equity holders to

invest earlier (later). Because solvency (liquidity) uncertainty works in the long- (short-)

term, the growth options effect depends on solvency uncertainty rather than liquidity un-

certainty. Indeed, firms in some industries, for example, in “new economy” industries such

as information technology and bioscience, are more likely to have higher R&D expenditures.

Thus, our result suggests that increasing solvency uncertainty enhances the investment ac-

tivities of firms in “new economy” industries such as information technology and bioscience

by the growth options effect. Hence, our finding can be interpreted such that solvency un-

certainty should be distinguished from liquidity uncertainty in the empirical literature on

the investment activities of R&D-intensive firms.

6.2. Capital structure.–

The literature on corporate finance provides competing views on how cash flow volatility

influences capital structure. For example, Bradley, Jarrell, and Kim (1984) show a negative

relationship between volatility and leverage, while Kim and Sorensen (1986) find a positive

one. In addition, Leary and Roberts (2005) find that volatility has no role in explaining

capital structure. A possible reason for such divergence in views is because of a difference in

identification of the cash flow volatility. Keefe and Yaghoubi (2016) investigate the effect of

cash flow volatility on capital structure using several measures of a firm’s cash flow volatility.

They find that firms with more volatile cash flows use less debt. Furthermore, their result is

robust regardless of the different measures of cash flow volatility and debt ratio. However,

they do not consider the endogenous interaction between solvency and liquidity concerns in

calculating the cash flow volatility measures.

In Section 5.3, taking debt maturity as given, we indicate that the larger solvency (liq-

uidity) uncertainty decreases (increases) the leverage ratio for any debt maturity. Thus, our

finding suggests that solvency uncertainty should be distinguished from liquidity uncertainty

in interpreting the mixed results reported in the existing empirical literature.
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7. Conclusion

We explore the roles of debt rollover and the market learning process in the firm’s solvency

risk in its default, investment, and leverage policy decisions under the interaction between

rollover risk and solvency concern. We distinguish between liquidity uncertainty (cash flow

shock) and solvency uncertainty (profitability uncertainty) and incorporate an assessment

of the firm’s solvency risk via the learning process over time. Under the learning model

framework, the effects on the decisions of the firm about default, investment, and leverage

policies resulting from solvency uncertainty are separated from those resulting from liquidity

uncertainty. In addition, both liquidity and solvency uncertainties affect the firm’s policies

through a different mechanism from that of the real options model because an increase in

liquidity (solvency) uncertainty makes cash flow signals less (more) informative by reducing

(raising) the volatility of the state variable defined by the posterior expectation of the drift

term. We consider how the two sources of uncertainty affect such decisions of the firm under

the endogenous interaction between rollover risk and solvency concern, generated by both

debt rollover and the learning process, when newly issued equity covers losses under debt

rollover.

Our results show that an increase in liquidity (solvency) uncertainty raises (reduces) the

firm’s incentives to default and the leverage ratio, whereas an increase in liquidity (solvency)

uncertainty reduces (raises) the firm’s incentives to invest. The latter result regarding the

firm’s investment incentives implies that the effect of solvency uncertainty on the invest-

ment policy–debt overhang–is opposite to that of liquidity uncertainty. In addition, an

increase in liquidity (solvency) uncertainty reduces (raises) credit spreads if debt maturity

is sufficiently long. Our findings further indicate that default is more likely to occur if debt

maturity is shorter. Our findings also show that as debt maturity becomes longer, less debt

overhang subsequently occurs.
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Appendix

Proof of Proposition 1: We begin by solving for the debt value function. Initially, we

assume that equity holders use the investment threshold policy. Later, we will prove that

the investment threshold policy is optimal for equity holders. Then, if μ ≥ μI , ordinary

differential equation (8) has a solution of the following general form:

d(μ) =
m

2[1 +m(r − i+ δ)]σ2
β1(β1 − 1)(μH − μL)

2
£
A1(μ− μL)

1−β1(μH − μ)β1

+A2(μ− μL)
β1(μH − μ)1−β1

¤
+

p

1 +m(r − i+ δ)
,

where β1 > 1 is the positive root of

β21 − β1 − 2[1 +m(r − i+ δ)]σ2

m(μH − μL)2
= 0. (A1)

Because A2(μ−μL)
β1(μH −μ)1−β1 → ±∞ as μ→ μH , boundary condition (12) implies that

A2 = 0. Thus, using (A1), we obtain

d(μ) = A1(μ− μL)
1−β1(μH − μ)β1 +

p

1 +m(r − i+ δ)
, if μ ≥ μI . (A2)

If μI > μ ≥ μB, ordinary differential equation (8) still has a solution of the following

general form:

d(μ) =
m

2[1 +m(r + δ)]σ2
β2(β2 − 1)(μH − μL)

2
£
A3(μ− μL)

1−β2(μH − μ)β2

+A4(μ− μL)
β2(μH − μ)1−β2

¤
+

p

1 +m(r + δ)
,

where β2 > 1 is determined by

β22 − β2 − 2[1 +m(r + δ)]σ2

m(μH − μL)2
= 0. (A3)
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Thus, it follows from (A3) that the above solution can be reduced to

d(μ) = A3(μ−μL)1−β2(μH−μ)β2+A4(μ−μL)β2(μH−μ)1−β2+ p

1 +m(r + δ)
, if μI > μ ≥ μB.

(A4)

Solving the constants A1, A3, and A4 using (9)—(11), (A2), and (A4), we obtain

A1 =

∙
μB

r + δ
− p

1 +m(r + δ)

¸
1

μB − μL

µ
μB − μL

μH − μB

¶β2
µ
μH − μI

μI − μL

¶β2−β1

+

"µ
μI − μL

μH − μI

¶β1+β2−1
−
µ
μB − μL

μH − μB

¶2β2−1µμH − μI

μI − μL

¶β2−β1
#
A4

−
pmi

μH−μI

³
μI−μL
μH−μI

´β1−1
[1 +m(r + δ)] [1 +m(r − i+ δ)]

, (A5)

A3 =

∙
μB

r + δ
− p

1 +m(r + δ)

¸
1

μB − μL

µ
μB − μL

μH − μB

¶β2

−
µ
μH − μB

μB − μL

¶1−2β2
A4, (A6)

A4 =

(
Ψ3 +

µ
μB − μL

μH − μB

¶2β2−1
Ψ2

+

"µ
μI − μL

μH − μI

¶β1+β2−1
−
µ
μB − μL

μH − μB

¶2β2−1µμH − μI

μI − μL

¶β2−β1
#
Ψ1

)−1

×
(∙

μB

r + δ
− p

1 +m(r + δ)

¸
1

μB − μL

µ
μB − μL

μH − μB

¶β2
"
Ψ2 −

µ
μH − μI

μI − μL

¶β2−β1
Ψ1

#

+
pmi

³
β1

μH−μI +
β1−1
μI−μL

´
[1 +m(r + δ)] [1 +m(r − i+ δ)]

⎫⎬⎭ , (A7)

where

Ψ1 = β1

µ
μH − μI

μI − μL

¶β1−1
+ (β1 − 1)

µ
μH − μI

μI − μL

¶β1

, (A8)

Ψ2 = β2

µ
μH − μI

μI − μL

¶β2−1
+ (β2 − 1)

µ
μH − μI

μI − μL

¶β2

, (A9)

Ψ3 = β2

µ
μI − μL

μH − μI

¶β2−1
+ (β2 − 1)

µ
μI − μL

μH − μI

¶β2

. (A10)

Now, we move on to equity. We first show that the optimal investment policy is given
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by the investment threshold policy. Note that
μH−λ(r+δ)
r−i+δ > p

1+m(r−i+δ) is assumed,
24 which

ensures that e(μH) > λ. Hence, investment is optimal and default does not occur at μ =

μH . Then, it follows from (12) and (14) that e(μ) → μH−λi
r−i+δ − p

1+m(r−i+δ) > λ as μ → μH .

Given e(μB) = 0 from (17), there must exist a solution μI ∈ (μB, μH) that satisfies e(μI) =
λ. Suppose that we have multiple solutions to e(μI) = λ, and take the smallest one as μI0.

To prove that the threshold strategy is optimal, we need to show that e(μ) > λ for any μ

∈ (μI0, μH ], where e(μ) solves the following ordinary differential equation for any μ ∈ (μI0,
μH ]:

(r − i+ δ)e(μ) = μ− λi+
1

2σ2
(μ− μL)

2(μH − μ)2e00(μ)− 1

m
[p− d(μ)]. (A11)

Suppose that there are at least two other solutions μI1, μI2 ∈ (μI0, μH ] that satisfy μI1 <

μI2, e(μIi) = λ for i = 1, 2, and e0(μI1) < 0 < e0(μI2). Then, there are intermediate points μ◦I

∈ (μI0, μI1) and μ◦◦I ∈ (μI1, μI2) so that e(μ◦I) > λ > e(μ◦◦I ), e
0(μ◦I) = e

0(μ◦◦I ) = 0, e
00(μ◦I) <

0, and e00(μ◦◦I ) > 0.
25 ,26 Now, evaluating (A11) at μ◦I and μ◦◦I and using e(μ◦I) > λ > e(μ◦◦I ),

we obtain

μ◦I − λi+
1

2σ2
(μ◦I − μL)

2(μH − μ◦I)
2e00(μ◦I)−

1

m
[p− d(μ◦I)]

>
λ

r − i+ δ
> μ◦◦I − λi+

1

2σ2
(μ◦◦I − μL)

2(μH − μ◦◦I )
2e00(μ◦◦I )−

1

m
[p− d(μ◦◦I )].

Thus,

μ◦I−μ◦◦I >
1

m
[d(μ◦◦I )−d(μ◦I)]+

1

2σ2
(μ◦◦I −μL)2(μH−μ◦◦I )2e00(μ◦◦I )−

1

2σ2
(μ◦I−μL)2(μH−μ◦I)2e00(μ◦I).

(A12)

Given μ◦I ∈ (μI0, μI1), μ◦◦I ∈ (μI1, μI2), e00(μ◦I) < 0, and e00(μ◦◦I ) > 0, it follows from (A12) that
d(μ◦◦I ) < d(μ

◦
I). Because of e(μ

◦
I) > λ > e(μ◦◦I ), this implies that v(μ

◦
I) > v(μ

◦◦
I ). However,

this contradicts the assumption that v(μ) is increasing in μ. Hence, the solution to e(μI) =

λ is uniquely determined. Consequently, we verify that e(μ) > λ for any μ ∈ (μI , μH ].
We next proceed to characterize the equity value function. As discussed in Diamond and

24Note that our parameter set satisfies this assumption.
25Even though μI0 = μI1 (μI1 = μI2) so that e(μI1) = λ and e0(μI1) = 0 (e(μI2) = λ and e0(μI2) = 0),

we can set μ◦I = μI1 (μ
◦◦
I = μI2). Then, the following argument still holds.

26μ◦I is a local maximum point of e(μ). Thus, e(μ) is flat and concave at μ◦I . In contrast, μ
◦◦
I is a local

minimum point of e(μ). Thus, e(μ) is flat and convex at μ◦◦I .
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He (2014), the equity value can be indirectly derived as the difference between the total firm

value and the debt value: e(μ) = v(μ) − d(μ). The total firm value v(μ) satisfies

v(μ) =

⎧⎨⎩ μ−λi
r−i+δ +B1(μ− μL)

1−γ1(μH − μ)γ1, if μ ≥ μI ,

μ

r+δ
+B2(μ− μL)

1−γ2(μH − μ)γ2 +B3(μ− μL)
γ2(μH − μ)1−γ2 , if μI > μ ≥ μB.

(A13)

The function v(μ) can be interpreted as follows. If μ ≥ μI , the first term is equal to the

firm value at μ that would be realized if the firm always invested and did not default. The

second term indicates the adjustment for stopping investment at least temporarily. If μI >

μ ≥ μB, the first term is the firm value at μ without investment in the case of no default.

The remaining terms reflect the adjustment for entering the investment region again in the

future.

Thus, it follows from (A2), (A13), and e(μ) = v(μ)− d(μ) that if μ ≥ μI , the equity value

is given by

e(μ) =
μ− λi

r − i+ δ
+B1(μ−μL)

1−γ1(μH−μ)γ1−A1(μ−μL)
1−β1(μH−μ)β1− p

1 +m(r − i+ δ)
.

(A14)

Then,

e0(μ) = v0(μ)− d0(μ)

=
1

r − i+ δ
+ (1− γ1)B1

µ
μH − μ

μ− μL

¶γ1

− γ1B1

µ
μ− μL

μH − μ

¶1−γ1
−
"
(1− β1)A1

µ
μH − μ

μ− μL

¶β1

− β1A1

µ
μ− μL

μH − μ

¶1−β1#
, (A15)

e00(μ) =
(μH − μL)

2

(μ− μL)(μH − μ)2

"
γ1(γ1 − 1)B1

µ
μH − μ

μ− μL

¶γ1

− β1(β1 − 1)A1
µ
μH − μ

μ− μL

¶β1
#
.

(A16)

Using (14) and v(μ) = d(μ) + e(μ), it is found from (A1), (A2), (A13), and (A16) that

γ1 > 1 is the positive root of

γ21 − γ1 − 2σ
2(r − i+ δ)

(μH − μL)2
= 0. (A17)
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If μI > μ ≥ μB, we repeat the above argument with (14), (A3), (A4), (A13), and e(μ) =

v(μ) − d(μ). Then, we can show that the equity value is given by

e(μ) =
μ

r + δ
+B2(μ− μL)

1−γ2(μH − μ)γ2 +B3(μ− μL)
γ2(μH − μ)1−γ2

−A3(μ− μL)
1−β2(μH − μ)β2 −A4(μ− μL)

β2(μH − μ)1−β2 − p

1 +m(r + δ)
, (A18)

where γ2 > 1 is given by the positive root of

γ22 − γ2 − 2σ2(r + δ)

(μH − μL)2
= 0. (A19)

We now solve the constants B1, B2, and B3. Combining (9)—(11), (17), (19), and (20)

under v(μ) = e(μ) + d(μ), we have

v(μB) =
μB

r + δ
, (A20)

lim
μ↑μI

v(μ) = lim
μ↓μI

v(μ), (A21)

lim
μ↑μI

v0(μ) = lim
μ↓μI

v0(μ). (A22)

Then, it follows from (A13) and (A20)—(A22) that

B1 =
1

Ψ4

(
i

(r − i+ δ)(r + δ)
−
"µ

μB − μL

μH − μB

¶2γ2−1
Ψ5 +Ψ6

#
B3

)
, (A23)

B2 = −
µ
μB − μL

μH − μB

¶2γ2−1
B3, (A24)

B3 =

(
(μI − μL)

µ
μB − μL

μH − μB

¶2γ2−1 ∙µμH − μI

μI − μL

¶γ1 Ψ5

Ψ4

−
µ
μH − μI

μI − μL

¶γ2
¸

+(μH − μI)

µ
μI − μL

μH − μI

¶γ2

+ (μI − μL)

µ
μH − μI

μI − μL

¶γ1 Ψ6

Ψ4

¾−1

×
⎧⎨⎩ i

(r − i+ δ)(r + δ)

⎡⎣μI + (μI − μL)
³
μH−μI
μI−μL

´γ1
Ψ4

⎤⎦− λi

r − i+ δ

⎫⎬⎭ , (A25)
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where

Ψ4 = γ1

µ
μH − μI

μI − μL

¶γ1−1
+ (γ1 − 1)

µ
μH − μI

μI − μL

¶γ1

, (A26)

Ψ5 = γ2

µ
μH − μI

μI − μL

¶γ2−1
+ (γ2 − 1)

µ
μH − μI

μI − μL

¶γ2

, (A27)

Ψ6 = γ2

µ
μI − μL

μH − μI

¶γ2−1
+ (γ2 − 1)

µ
μI − μL

μH − μI

¶γ2

. (A28)

Now, it follows from (A14) and (A18) that the investment and default thresholds μI and

μB are simultaneously determined by (15) and (18), that is,

μI − λi

r − i+ δ
− p

1 +m(r − i+ δ)
− λ

+ (μI − μL)

µ
μH − μI

μI − μL

¶γ1 1

Ψ4

(
i

(r − i+ δ)(r + δ)
−
"µ

μB − μL

μH − μB

¶2γ2−1
Ψ5 +Ψ6

#
B3

)

− (μI − μL)

µ
μH − μI

μI − μL

¶β1
(∙

μB

r + δ
− p

1 +m(r + δ)

¸
1

μB − μL

µ
μB − μL

μH − μB

¶β2
µ
μH − μI

μI − μL

¶β2−β1

+

"µ
μI − μL

μH − μI

¶β1+β2−1
−
µ
μB − μL

μH − μB

¶2β2−1µμH − μI

μI − μL

¶β2−β1
#
A4

−
pmi

μH−μI

³
μI−μL
μH−μI

´β1−1
[1 +m(r + δ)] [1 +m(r − i+ δ)]

⎫⎪⎬⎪⎭
= 0, (A29)

1

r + δ
+

"
γ2

µ
μB − μL

μH − μB

¶γ2−1 μH − μL

μH − μB
+ (γ2 − 1)

µ
μB − μL

μH − μB

¶γ2−1 μH − μL

μH − μB

#
B3

+

"
β2

µ
μH − μB

μB − μL

¶β2−1
+ (β2 − 1)

µ
μH − μB

μB − μL

¶β2
#
A3

−
"
β2

µ
μB − μL

μH − μB

¶β2−1
+ (β2 − 1)

µ
μB − μL

μH − μB

¶β2
#
A4 = 0. (A30)

Finally, to prove μB
r+δ

< p

1+m(r+δ)
, we assume that μB

r+δ
≥ p

1+m(r+δ)
. Then, it follows from

(9) that d(μB) ≥ p

1+m(r+δ)
, which means that the debt is riskless. Thus, with the option

to default, equity holders must incur strictly negative expected cash flows at default, as
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discussed in Diamond and He (2014). However, because equity holders set it = 0 at μB, it

follows from (5) that the expected net cash flow for equity at μB is at least equal to {μB +
1
m
[d(μB) − p]}dt >

³
μB − p(r+δ)

1+m(r+δ)

´
dt ≥ 0, which is a contradiction. ¥

Proof of Proposition 2: Suppose that i = δ = 0. Given that the investment threshold μI

does not need to be considered, we can derive (23)—(25) by applying the same procedure as

that of the proof of Proposition 1 with i = δ = 0. Given boundary conditions (12) and (16),

note that (23) and (24) are determined so that neither d(μ) nor e(μ) becomes infinite as μ

→ μH . Again, note that μ
c
B must satisfy

μcB
r
< p

1+mr
. ¥

Proof of Proposition 3: In this case, the firm does not issue any debt. Then, the equity

value is obtained as

ee (μ) =

⎧⎨⎩ μ−λi
r−i+δ +B

e
1 (μ− μL)

1−γe1 (μH − μ)
γe1 , if μ ≥ μeI ,

μ

r+δ
+Be3 (μ− μL)

γe2 (μH − μ)
1−γe2 , if μeI > μ,

(A31)

where γe1 > 1 and γe2 > 1 are the positive roots of (γ
e
1)
2 − γe1 − 2σ2(r−i+δ)

(μH−μL)2 = 0 and (γ
e
2)
2 − γe2

− 2σ2(r+δ)

(μH−μL)2 = 0, respectively. Note that the equity value is determined so that it does not

become infinite as μ → μH or μ → μL. It follows from (15) and (A31) that

Be1 =

∙
λ (r + δ)− μeI
r − i+ δ

¸
(μeI − μL)

−1+γe1 (μH − μeI)
−γe1 . (A32)

It is also found from (15), (19), and (A31) that

Be3 =

∙
λ (r + δ)− μeI

r + δ

¸
(μeI − μL)

−γe2 (μH − μeI)
−1+γe2 . (A33)

Substituting (A32) and (A33) into (A31), we obtain (26a) and (26b). It also follows from

(26a), (26b), and (20) that (27) is derived.

The effect of the promised debt payment p: To confirm that our choice of the value of

the promised debt payment p does not lead to extraordinary results, we examine the effect

of p on the default and investment thresholds, the debt value, and the firm value. We report

the results in Figures A1 and A2. These results suggest that our choice of p does not cause
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any trouble. ¥

Figure A1. The effects of a change in p on the default and investment thresholds, μB and μI .

Parameters are μL = 0, μH = 0.1, σ = 0.3,m = 10, r = 0.05, λ = 0.3, i = 0.05, and δ = 0.04.
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Figure A2. The effects of a change in p on the debt and firm values, d and v.

Parameters are μL = 0, μH = 0.1, σ = 0.3, m = 10, r = 0.05, λ = 0.3, i = 0.05,

δ = 0.04, and μ0 = 0.5.
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