
A Polyhedral Approximation Approach to

Concave Numerical Dynamic Programming∗

Kenichi Fukushima

University of Wisconsin, Madison

Yuichiro Waki

University of Queensland

November 27, 2012

Abstract

This paper introduces a numerical method for solving concave continuous state

dynamic programming problems which is based on a pair of polyhedral approximations

of concave functions. The method is globally convergent and produces computable

upper and lower bounds on the value function which can in theory be made arbitrarily

tight. This is true regardless of the pattern of binding constraints, the smoothness

of model primitives, and the dimensionality and rectangularity of the state space. We

illustrate the method's performance using an optimal �rm management problem subject

to credit constraints and partial investment irreversibilities.

1 Introduction

This paper concerns continuous state numerical dynamic programming problems in which the

return and constraint functions are continuous and concave. Such problems arise frequently

in economics, often in inner loops for algorithms that solve much harder problems. There is

therefore a desire for solution methods that are reliable, precise, and e�cient.

Existing methods with the broadest applicability and greatest reliability are those based

on value iterations, which if implemented exactly will generate a sequence of functions that

converges to the value function from any starting point thanks to its contraction mapping

property. When the state variables are continuous, however, an exact implementation of the

procedure is infeasible as it requires storing in�nitely many numbers in memory and solving

∗We thank the referees, Paul Klein, Ellen McGrattan, and especially John Stachurski for helpful com-
ments. (First version circulated: June 2011.)

1

in�nitely many optimization problems per iteration. In practice one therefore approximately

implements the procedure in one way or another.

There are two standard approaches here. The �rst is to discretize the state space, that is,

simply replace the original state space with one that is �nite. This approach is numerically

stable�the iterations are guaranteed to converge because their contraction mapping property

is preserved�but generally slow. The second approach is to compute the updated function

values on a �nite grid and then interpolate those values, either exactly or approximately,

to generate a function to be used as input in the next iteration. This approach is often

faster than the �rst but is generally less reliable as most interpolation methods break the

contraction property of the iterations and can thereby cause non-convergence (see, e.g.,

Judd, 1998, p. 438). For problems with one-dimensional state spaces there is a satisfactory

solution to the latter problem based on shape preserving splines (Judd and Solnick, 1994).

However comparable techniques remain relatively scarce for problems with multi-dimensional

state spaces. In particular, currently known techniques (cf. Gordon, 1995; and Stachurski,

2008), when applied to concave problems, generally introduce non-concavities which make

it di�cult to solve the optimization problems reliably and e�ciently.

In addition to confronting users with this di�cult tradeo�, existing methods are also lim-

ited in their ability to tell precisely how accurate the computed solution is. It is now common

practice to address this issue by checking if certain necessary conditions for optimality�such

as intertemporal Euler equations�hold with high accuracy. There are conditions under

which such tests are known to have sound theoretical foundations (Santos, 2000); however

it is not straightforward to adapt them to problems with occasionally binding constraints

and/or other sources of non-smoothness.

The purpose of this paper is to introduce a method based on a pair of polyhedral approxi-

mations of concave functions which improves upon existing methods along these dimensions.

In particular, the method is globally convergent, preserves concavity of the problem, and

produces computable upper and lower bounds on the value function which can in theory

be made arbitrarily tight. Furthermore, these properties hold true regardless of the pat-

tern of binding constraints, the smoothness of model primitives, and the dimensionality and

rectangularity of the state space.

These features of our method make it particularly well suited for solving in a robust

manner problems with occasionally binding constraints, non-di�erentiabilities, or multi-

dimensional state spaces that may be non-rectangular. One such problem is the optimal

�rm management problem with credit constraints and partial investment irreversibilities in

Khan and Thomas (2011). We use this as an example to test the practical performance of

our method and �nd it to be reasonably e�cient.

2

Our method consists of two components and each have important predecessors in the

literature. The �rst component, which produces lower bounds on the value function, is

close to a method based on piecewise a�ne interpolations analyzed by Santos and Vigo-

Aguiar (1998) and the lottery based method of Phelan and Townsend (1991) for solving

dynamic contracting problems. The second component, which produces upper bounds on

the value function, is similar in some ways to what Nishimura and Stachurski (2009) used

to analyze a model of primary commodity markets. Both components also fall into a broad

class of methods outlined by Gordon (1995) and Stachurski (2008) for which convergence

is guaranteed. Our method is also closely related to Judd, Yeltekin, and Conklin's (2003)

method for solving repeated games, and can in fact be viewed as its adaptation to dynamic

programming problems. As far as we know, however, no paper has combined these strands

in the literature into a general purpose method of the kind that we develop here.

The main limitation of our approach is that it works only with concave problems, and this

constraint sometimes does bind in practice. While it is usually possible to get around it by

introducing lotteries or other randomization devices, doing so may or may not be reasonable

depending on the application.

2 Setup

We focus throughout on a general in�nite horizon dynamic programming problem as treated

in Stokey, Lucas, and Prescott (1989, Chapter 9). Our terminology on convex analysis follows

Rockafellar (1970).

The decision problem is described by the following elements. The endogenous state

variable x and control variable y (which becomes the next period's endogenous state) both

belong to X ⊂ Rn, which we take to be a polytope (i.e., the convex hull of a �nite set of

points). The random shocks z follow a time homogeneous Markov chain with �nite state

space Z, and the probability of transiting from state z to z′ is π(z′|z). The discount factor

is β ∈ (0, 1). The return function r : X × X × Z → R is continuous and concave in its

�rst 2n arguments, and we let rmin := min r(X ×X × Z) and rmax := max r(X ×X × Z).

The set of feasible controls at state (x, z) ∈ X × Z is Γ(x, z) = {y ∈ X : h(x, y, z) ≥ 0},
where h : X × X × Z → Rm. Each component of h is continuous and concave in its �rst

2n arguments and Γ(x, z) is non-empty for any (x, z) ∈ X × Z. For later reference we let

P := Rn and de�ne r∗ : P × P × Z → R as:

r∗(p, q, z) = min
(x,y)∈X×X

{p · x+ q · y − r(x, y, z) : h(x, y, z) ≥ 0}.

3

Associated with this problem is the operator T which maps v : X × Z → R to Tv :

X × Z → R, given by:

Tv(x, z) = sup
y∈Γ(x,z)

{r(x, y, z) + βEv(y, z)} (1)

where the operator E maps v : X × Z → R to Ev : X × Z → R, given by:

Ev(y, z) =
∑
z′∈Z

v(y, z′)π(z′|z).

As is well known, T is a monotone β-contraction on B(X×Z), the Banach space of bounded

real valued functions on X × Z equipped with the supremum norm || · ||, and has the value

function V as its unique �xed point in B(X × Z). Standard arguments imply that V is

continuous and concave.

3 Approach

We begin by introducing two operators which approximate general concave functions by

polyhedral concave functions. One produces approximations from below while the other

produces approximations from above.

To set the stage, let S ⊂ Rl be a polytope.

The �rst operator L (for �lower�) uses a grid Ŝ on S which contains all vertices of S and

maps f : S → R to Lf : S → R, given by

Lf(s) = max
µ∈M(s,Ŝ)

∑
ŝ∈Ŝ

µ(ŝ)f(ŝ). (2)

where M(s, Ŝ) is the set of probability distributions on Ŝ with mean s. We will sometimes

write LŜ to make the dependence on Ŝ explicit.

The second operator U (for �upper�) uses a grid D̂ on D := Rl such that 0 ∈ D̂ and maps

f : S → R to Uf : S → R, given by

Uf(s) = min
d̂∈D̂
{d̂ · s− f ∗(d̂)}, (3)

where f ∗ is the concave conjugate of f . We will sometimes write UD̂ to make the dependence

on D̂ explicit.

Figure 1 illustrates how these operators work. They are called inner/outer linearizations

in the applied mathematics literature (e.g., Bertsekas and Yu, 2011), and can be viewed as

4

Figure 1: Left panel: The operator L. The dotted line is the graph of f and the solid line
is the graph of Lf . Right panel: The operator U. The dotted line is the graph of f and the
solid line is the graph of Uf .

applications of Judd, Yeltekin, and Conklin's (2003) inner/outer approximations of convex

sets to the subgraph of f .

Note that the approximating functions Lf and Uf are both completely summarized by

the �nite lists of numbers f(Ŝ) and f ∗(D̂) respectively, no matter how �complicated� f is.

As we will see, this is part of what makes these operators useful for computations.

The following lemmas establish some basic properties of L and U. Most of them are

intuitively plausible given �gure 1. Note that not all parts require concavity or continuity

however. (All proofs are in appendix A.)

Lemma 1L. (i) If f is concave then LS̄f ≤ LŜf ≤ f for any grids S̄ and Ŝ satisfying

S̄ ⊂ Ŝ. If f is also continuous then for any ε ∈ R++ one can choose S̄ so that f − ε ≤ LS̄f .
(ii) If f ≤ f ′ then Lf ≤ Lf ′. (iii) L(f + a) = Lf + a for a ∈ R. (iv) If f ≡ 0 then Lf ≡ 0.

Lemma 1U. (i) If f is concave then f ≤ UD̂f ≤ UD̄f for any grids D̄ and D̂ satisfying

D̄ ⊂ D̂. If f is also continuous then for any ε ∈ R++ one can choose D̄ so that UD̄f ≤ f+ε.

(ii) If f ≤ f ′ then Uf ≤ Uf ′. (iii) U(f + a) = Uf + a for a ∈ R. (iv) If f ≡ 0 then Uf ≡ 0.

We next use the operators L and U to de�ne approximations of T which we denote TL

and TU . What we want them to do, of course, is to approximate T from below and above

respectively in a theoretically reasonable and computationally convenient manner.

The operator TL maps v : X × Z → R to TLv : X × Z → R, given by:

TLv(x, z) = max
y∈Γ(x,z)

{r(x, y, z) + βELX̂v(·, z)(y)} (4)

where X̂ is a grid on X which contains all of its vertices.

5

The operator TU maps v : X × Z → R to TUv : X × Z → R, given by:

TUv(x, z) = max
y∈Γ(x,z)

{r(x, y, z) + βEUP̂v(·, z)(y)} (5)

where P̂ is a grid on P which contains the zero vector.

The following theorems formalize the sense in which TL and TU approximate T from

below and above:

Theorem 2L. TL is a monotone β-contraction on B(X × Z) whose unique �xed point V L

satis�es V L ≤ V . For any ε ∈ R++ there exists a grid X̄ such that V − ε ≤ V L if X̄ ⊂ X̂.

Theorem 2U. TU is a monotone β-contraction on B(X × Z) whose unique �xed point V U

satis�es V ≤ V U . For any ε ∈ R++ there exists a grid P̄ such that V U ≤ V + ε if P̄ ⊂ P̂ .

An important property of TL and TU from a computational standpoint is that the �nite

lists of numbers v(X̂ × Z) and v∗(P̂ × Z) (where v∗(·, z) is the concave conjugate of v(·, z)
for each z ∈ Z) completely summarize the data contained in v needed to compute TLv
and TUv. This means that we can implement �xed point iterations on these operators by

simply keeping track of and updating these lists. The following theorems give the updating

formulas.

Theorem 3L. For each (x̂, z) ∈ X̂ × Z:

TLv(x̂, z) = max
(y,µ)∈Γ(x̂,z)×R|X̂|×|Z|+

r(x̂, y, z) + β
∑
z′∈Z

∑
ŷ∈X̂

µ(ŷ, z′)v(ŷ, z′)π(z′|z) :

∑
ŷ∈X̂

µ(ŷ, z′) = 1, ∀z′ ∈ Z;
∑
ŷ∈X̂

µ(ŷ, z′)ŷ = y, ∀z′ ∈ Z

 (6)

Theorem 3U. For each (p̂, z) ∈ P̂ × Z:

(TUv)∗(p̂, z) = max
(q,λ)∈P×R|P̂ |×|Z|+

r∗(p̂, q, z) +
∑
z′∈Z

∑
q̂∈P̂

λ(q̂, z′)v∗(q̂, z′) :

∑
q̂∈P̂

λ(q̂, z′) = βπ(z′|z), ∀z′ ∈ Z;
∑
q̂∈P̂

∑
z′∈Z

λ(q̂, z′)q̂ = −q

 (7)

Note here that the maximization problems in (6) and (7) simultaneously take care of the

�interpolation step� (where one constructs Lv and Uv) and the �optimization step� (where

6

one solves the maximization problems in (4) and (5)). In (7), the maximization problem also

takes care of the conjugate operation that maps TUv to (TUv)∗.

Thus, given any vL0 and vU0 we can compute vLN = (TL)NvL0 and vUN = (TU)NvU0 for each

N ∈ N. Because TL and TU are contractions, the sequences (vLN)N∈N and (vUN)N∈N generated

in this way are guaranteed to converge to V L and V U respectively as N →∞.

We already know that the limiting functions V L and V U bound the true value function

V from below and above. But because neither is computable in a �nite number of steps, we

need to go a step further if we are to make this property useful in practice. Our suggestion

is to exploit the following monotone convergence results:

Theorem 4L. Suppose vL0 satis�es vL0 ≤ TLvL0 (one example being the constant function

vL0 ≡ rmin/(1− β)). Let vLN = TLvLN−1 for N ∈ N. Then vLN ↑ V L as N →∞.

Theorem 4U. Suppose vU0 satis�es vU0 ≥ TUvU0 (one example being the constant function

vU0 ≡ rmax/(1− β)). Let vUN = TUvUN−1 for N ∈ N. Then vUN ↓ V U as N →∞.

These results, combined with the previous ones, give us the following recipe for computing

lower and upper bounds on the value function V : start from initial values vL0 and vU0 that

satisfy the hypotheses of Theorems 4L/U, compute vLN and vUN for some N using the formulas

in Theorems 3L/U, and set vL(·, z) := LvLN(·, z) and vU(·, z) := UvUN(·, z) for each z ∈ Z.

Our results guarantee that vL ≤ V L ≤ V ≤ V U ≤ vU and that these bounds can be made

arbitrarily tight by re�ning the grids and making N large.

The �nal step now is to calculate a policy function g : X × Z → X. One reasonable

approach here is to use vL as an estimate of V and let g be vL-greedy, namely:

g(x, z) ∈ argmax
y∈Γ(x,z)

{r(x, y, z) + βEvL(y, z)}. (8)

In this case the following theorem provides a bound on the suboptimality of g which is in

principle computable:

Theorem 5. The policy g is ε-optimal, where ε = ||vU − vL||.

4 Implementation

We turn next to some techniques for e�ciently implementing our method.

7

4.1 LP approximations

A key step in implementing our method is to e�ciently handle the maximization problems

in (6) and (7). Both are non-linear programs with many variables, and they can be costly

to solve when the non-linear functions r, h, and r∗ are hard to evaluate and/or insu�ciently

smooth. In our experience, an e�ective way to handle this part is to convert these maximiza-

tion problems to linear programs by applying polyhedral approximations to all non-linear

functions.

For instance, one could approximate TLv by applying L to r and h to obtain:

T̃Lv(x̂, z) = max
(y,µr,µh,µv)∈X×R|X̂|+ ×R|X̂|+ ×R|X̂|×|Z|+∑

ŷ∈X̂

µr(ŷ)r(x̂, ŷ, z) + β
∑
z′∈Z

∑
ŷ∈X̂

µv(ŷ, z
′)v(ŷ, z′)π(z′|z) :

∑
ŷ∈X̂

µr(ŷ) = 1;
∑
ŷ∈X̂

µr(ŷ)ŷ = y;

∑
ŷ∈X̂

µh(ŷ)h(x̂, ŷ, z) ≥ 0;
∑
ŷ∈X̂

µh(ŷ) = 1;
∑
ŷ∈X̂

µh(ŷ)ŷ = y;

∑
ŷ∈X̂

µv(ŷ, z
′) = 1, ∀z′ ∈ Z;

∑
ŷ∈X̂

µv(ŷ, z
′)ŷ = y, ∀z′ ∈ Z

 .

The problem above is a linear program, and it follows from r(x, ·, z) ≥ Lr(x, ·, z) and

h(x, ·, z) ≥ Lh(x, ·, z) that T̃Lv ≤ TLv for any v.
For TU , a straightforward approach is to proceed similarly and approximate TUv by

applying L to r∗ to obtain:

(T̃Uv)∗(p̂, z) = max
(q,λr∗ ,λv)∈P×R|P̂ |+ ×R

|P̂ |×|Z|
+

∑
q̂∈P̂

λr∗(q̂)r
∗(p̂, q̂, z) +

∑
z′∈Z

∑
q̂∈P̂

λv(q̂, z
′)v∗(q̂, z′) :

∑
q̂∈P̂

λr∗(q̂) = 1;
∑
q̂∈P̂

λr∗(q̂)q̂ = q;

∑
q̂∈P̂

λv(q̂, z
′) = βπ(z′|z), ∀z′ ∈ Z;

∑
q̂∈P̂

∑
z′∈Z

λv(q̂, z
′)q̂ = −q

 .

This problem again is a linear program, and from r∗(p, ·, z) ≥ Lr∗(p, ·, z) we know that

(TUv)∗ ≥ (T̃Uv)∗ and hence TUv ≤ T̃Uv for any v.

8

For many problems, however, the following alternative approximation of TU works better

than the one listed above, although its derivation is somewhat more complicated. This is

because it is often easier to evaluate the values and (sub)gradients of r and h than it is to

evaluate r∗ (which generally requires non-linear programming). First, approximate r∗ by:

r̃∗(p, q, z) = min
(x,y)∈Rn×Rn

{p · x+ q · y − Ur(·, ·, z)(x, y) : Uh(·, ·, z)(x, y) ≥ 0}.

Here, the grids for U are taken so that:

Ur(·, ·, z)(x, y) = min
(x̂,ŷ)∈X̂2

{dr(x̂, ŷ, z) · (x, y)− cr(x̂, ŷ, z)}

Uh(·, ·, z)(x, y) = min
(x̂,ŷ)∈X̂2

{dh(x̂, ŷ, z) · (x, y)− ch(x̂, ŷ, z)}

where dr(x̂, ŷ, z) and dh(x̂, ŷ, z) are (sub)gradients of r(·, ·, z) and h(·, ·, z) at (x̂, ŷ), and

cr(x̂, ŷ, z) = dr(x̂, ŷ, z) · (x̂, ŷ)− r(x̂, ŷ, z),

ch(x̂, ŷ, z) = dh(x̂, ŷ, z) · (x̂, ŷ)− h(x̂, ŷ, z).

Next rewrite this as a linear program in epigraph form:

r̃∗(p, q, z) = min
(x,y,τr,τh)∈Rn×Rn×R×R+

{p · x+ q · y − τr :

τr ≤ dr(x̂, ŷ, z) · (x, y)− cr(x̂, ŷ, z), ∀(x̂, ŷ) ∈ X̂2;

τh ≤ dh(x̂, ŷ, z) · (x, y)− ch(x̂, ŷ, z), ∀(x̂, ŷ) ∈ X̂2}

and use duality to obtain:

r̃∗(p, q, z) = max
(λr,λh)∈R|X̂|

2

+ ×R|X̂|
2

+

 ∑
(x̂,ŷ)∈X̂2

[λr(x̂, ŷ)cr(x̂, ŷ, z) + λh(x̂, ŷ)ch(x̂, ŷ, z)] :

∑
(x̂,ŷ)∈X̂2

λr(x̂, ŷ) = 1;
∑

(x̂,ŷ)∈X̂2

[λr(x̂, ŷ)dr(x̂, ŷ, z) + λh(x̂, ŷ)dh(x̂, ŷ, z)] = (p, q)

 .

9

Finally, replace r∗ in (7) by r̃∗ to obtain the approximation:

(T̃Uv)∗(p̂, z) = max
(q,λr,λh,λv)∈P×R|X̂|

2

+ ×R|X̂|
2

+ ×R|P̂ |×|Z|+ ∑
(x̂,ŷ)∈X̂2

[λr(x̂, ŷ)cr(x̂, ŷ, z) + λh(x̂, ŷ)ch(x̂, ŷ, z)] +
∑
z′∈Z

∑
q̂∈P̂

λv(q̂, z
′)v∗(q̂, z′) :

∑
(x̂,ŷ)∈X̂2

λr(x̂, ŷ) = 1;
∑

(x̂,ŷ)∈X̂2

[λr(x̂, ŷ)dr(x̂, ŷ, z) + λh(x̂, ŷ)dh(x̂, ŷ, z)] = (p̂, q);

∑
q̂∈P̂

λv(q̂, z
′) = βπ(z′|z), ∀z′ ∈ Z;

∑
q̂∈P̂

∑
z′∈Z

λv(q̂, z
′)q̂ = −q

 .

Once again this is a linear program, and we have r∗ ≥ r̃∗ which implies (TUv)∗ ≥ (T̃Uv)∗

and hence TUv ≤ T̃Uv for any v.
It is straightforward to check that each of the above approximations T̃L and T̃U are

monotone β-contractions on B(X ×Z). It follows from this and the fact that T̃Lv ≤ TLv ≤
Tv ≤ TUv ≤ T̃Uv for any v that one can use T̃L and T̃U just like TL and TU to calculate

bounds on V from below and above.

Several factors contribute to the e�ectiveness of this scheme. One is that it can leverage

well established techniques for linear programming. Simplex methods are especially e�ective

here thanks to the availability of warm starts (for example, the solution to the maximization

problem at one point in the state space is typically close to that at a nearby point). Another

is that it makes it possible to pre-compute the relevant values of r and h before the main

iterations, which is bene�cial when those functions are costly to evaluate. This approach

can also handle any non-smoothness in r or h with ease.

Finally, while the size of the linear programs above may be problematic for very large

problems, our experience is that it is often possible to mitigate this issue by tuning the above

formulas to the problem at hand by, for instance, using di�erent grids to approximate di�er-

ent functions and/or exploiting special structure such as partial linearities or separabilities

in r and/or h.

4.2 Combining with other acceleration techniques

One strength of our method is that it works well with a number of standard acceleration

techniques. We give a list of examples below.

10

Parallelizing. Our method can be parallelized at two levels: First, one can carry out

the iterations on TL and TU independently. Second, one can distribute the maximization

problems that need to be solved at each grid point across a number of separate processors

(as is standard). The fact that our method does not have an independent, hard-to-parallelize

�interpolation step� helps with scaling in the latter case.

Policy function iterations. Policy function iterations, both in pure and modi�ed forms,

can be combined with our method in the usual manner. Doing so does not interfere with the

robustness of our method as it preserves its monotone convergence properties. Moreover, the

policy iterations in this case require only sparse linear algebra (as in �nite state problems),

which helps with e�ciency.

Multigrid methods. One can also combine our method with a multigrid method along

the lines of Chow and Tsitsiklis (1991). Again, doing so preserves our method's monotone

convergence properties as the value function approximations can only improve as one re�nes

the grids.

5 Example

We now use an example to illustrate a use of our method and its performance.

5.1 Problem description

We consider an optimal �rm management problem subject to credit constraints and partial

investment irreversibilities. We essentially took the problem from Khan and Thomas (2011),

who embed it in a general equilibrium model to study the cyclical implications of credit

market imperfections.

The Bellman equation for the problem is:

v(k, b, z) = max
d,k′,b′

{d+ βEv(k′, b′, z)}

s.t.: 0 ≤ d ≤ zkα − φ(k, k′)− b+ βb′

b′ ≤ θk

k′ ≥ 0

Here, k is capital, b is debt, z is productivity, d is dividends, zkα is production, and β is the

inverse of the gross interest rate. The �rst constraints are budget/limited liability constraints,

11

the second constraint is a Kiyotaki-Moore (1997) credit constraint with tightness parameter

θ ≥ 0, and φ is an Abel-Eberly (1996) investment cost function given by:

φ(k, k′) =

k′ − (1− δ)k if k′ ≥ (1− δ)k

γ(k′ − (1− δ)k) if k′ < (1− δ)k

where γ ∈ [0, 1) is the price at which uninstalled capital can be sold on the market and δ is

the depreciation rate. The baseline parameters are: β = 0.96, α = 0.27, δ = 0.065, θ = 1.28,

γ = 0.95, and z follows a 7 state Tauchen (1986) discretization of log(z′) = 0.653× log(z)+η,

η ∼ N(0, 0.1352).

A subtle but important feature of this problem is that it is not appropriate to take

R+ × R to be the state space for (k, b) because the constraint set is empty�meaning the

�rm is insolvent�if b is too high relative to k. We therefore use instead:

{(k, b) ∈ R+ × R : b ≤ bmax(k)}

where bmax : R+ → R solves the functional equation:

bmax(k) = max
k′,b′
{zmink

α − φ(k, k′) + βb′ : k′ ≥ 0, b′ ≤ θk, b′ ≤ bmax(k′)} (9)

with zmin being the minimum value of z. This ensures that the set of feasible controls is non-

empty at any given state. It is straightforward to show using standard contraction mapping

arguments that bmax is uniquely determined and concave, so our state space is well de�ned

and convex.

This problem has several characteristics that make it non-trivial to solve using standard

methods: (i) there are multiple constraints that bind only occasionally; (ii) there is a kink in φ

which makes the problem non-di�erentiable; (iii) there are two continuous state variables; and

(iv) the state space is non-rectangular. Properties (i)-(ii) pose a challenge for methods that

exploit �rst order conditions, while properties (iii)-(iv) pose a challenge for many methods

based on value iteration. Property (ii) also makes it di�cult to evaluate the accuracy of the

solution using standard metrics such as Euler equation errors.

Our theoretical analysis indicates that none of these characteristics are problematic for

our method, however. Since the theorems do not depend in any way on the pattern of binding

constraints, the smoothness of model primitives, or the dimensionality and rectangularity

of the state space, our method should, at least in theory, be able to solve the problem

as precisely as desired and provide computable error bounds on the solution despite these

characteristics. We are not aware of other methods that can accomplish both tasks for

12

problems of this kind.

5.2 Code and computing environment

To evaluate how well our method can handle the problem in practice, we implemented a

version of it which uses the linear programming approach from section 4.1 to compute the

value functions, formula (8) to compute the policy function, and a straightforward adaptation

of TL to handle (9) (which produces a polytope approximation of the theoretical state space

within which the constraint set is guaranteed to be non-empty). The code, which is written

in Fortran and uses ILOG CPLEX for linear programming and the sparse BLAS from Intel's

MKL to handle the modi�ed policy function iterations, is available for download at:

http://www.ssc.wisc.edu/~kfukushi/papers.htm

http://sites.google.com/site/yuichirowaki/research

We obtained the results below by compiling this code using the Intel Fortran compiler and

running the executable on a desktop equipped with a 3.10 GHz Intel Core i5-2400 processor

and 4 GB of RAM.

5.3 Accuracy and speed

Table 1 summarizes the performance of our method for several parameter con�gurations and

grid sizes.

The second column reports an estimate of ||vU − vL||, which we computed by simulating

the solution for 50,000 periods and then calculating the maximum value of |vU(kt, bt, zt) −
vL(kt, bt, zt)| across all (kt, bt, zt) realizations. This serves as an accuracy measure of both the

value function and the policy function (cf. Theorem 5). In the table we express this quantity

as a fraction of average �rm value, so 1.0e-3 means 0.1% of average �rm value, 1.0e-4 means

0.01% of average �rm value, and so on. To put these numbers into perspective, we note that

the coe�cient of variation of �rm value was about 3.5%. The numbers here indicate that

the method was able to solve the problem reasonably accurately with moderate sized grids

and that doubling the grid size reduced the errors by about 50% in most cases.

The third and fourth columns report how many seconds it took to solve the model without

and with 200 modi�ed policy function iterations, respectively. In each case, the computation

time appears to grow faster than linearly but slightly slower than quadratically with the grid

size, which is consistent with the typical behavior of the simplex method. The numbers also

highlight the signi�cant speed gains we obtained from modi�ed policy function iterations,

which allowed us to solve the model quite accurately in a matter of seconds. In each case,

13

Grid size
Error bound Time without modi�ed Time with modi�ed

max |vU(t)− vL(t)| policy iterations (seconds) policy iterations (seconds)
A. Baseline parameters

100 2.8e-3 57.8 1.4
200 1.0e-3 162.8 3.8
400 4.8e-4 535.2 13.4
800 2.0e-4 1909.8 47.1

B. Low discounting (β = 0.99)
100 1.7e-3 182.3 1.6
200 5.8e-4 496.1 4.5
400 1.8e-4 1685.0 15.4
800 1.5e-4 6407.4 61.5

C. High curvature in production function (α = 0.15)
100 2.5e-3 59.3 1.3
200 7.9e-4 155.8 3.6
400 1.8e-4 508.1 12.7
800 2.0e-4 1961.4 46.0

D. High productivity risk (Var(η) = 1.5× 0.1352)
100 5.0e-3 61.0 1.4
200 2.1e-3 162.7 3.9
400 8.0e-4 527.6 13.5
800 3.7e-4 1938.5 52.3

E. Irreversible investment (γ = 0)
100 3.4e-3 64.3 1.7
200 1.2e-3 167.9 3.6
400 3.8e-4 538.9 13.4
800 2.6e-4 1921.6 47.0

F. Tight credit limit (θ = 0.5)
100 2.3e-3 53.3 1.3
200 6.3e-4 144.4 3.2
400 2.2e-4 483.9 11.4
800 1.6e-4 1757.0 42.7

Table 1: Performance benchmarks.

14

1 2 3 4
number of processors

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
e
e
d
u
p

actual scaling
perfect scaling

Figure 2: Parallel scaling.

about 1/2 of the time was spent on computing vL and the remaining 1/2 on computing vU .

Hence the time requirements would have been about 1/2 of the reported values if (a) we had

computed vL and vU in parallel, or (b) we had computed only vL (as we would if we were

not interested in obtaining the error bounds).

The table also shows that the performance of our method was more or less consistent

across the parameter con�gurations we considered. There is, however, a noticeable speed

reduction when the discount factor β is increased to 0.99, which is as expected given that

our algorithm uses �xed point iterations on β-contractions, as well as an accuracy loss when

the variance of productivity shocks z is increased by 50%.

In addition to this we also tested how well our method parallelizes when we distribute

the maximization problems across a number of separate processors. We were able to obtain

speedups of about 80-95% of what one should get under perfect scaling; �gure 2 plots the

results for the con�guration reported in the �rst row of table 1.

5.4 Comparison with alternative methods

We next compare the performance of our method with two standard alternatives: (i) a pure

discretization method (which simply replaces the state space with one that is �nite), and

(ii) a �tted value iteration method that uses bilinear interpolations to represent the value

function and grid search for maximization. We focus here on the lower approximation part

of our method only, as its upper approximation part has no counterpart in the alternative

solution methods we consider.

To make this comparison we need a measure of solution accuracy that is comparable

across di�erent solution methods. Euler equation errors are often used in the literature

15

Grid size for Grid size for Value function error Time with modi�ed
state variables control variables max |v(t)− v̂U(t)| policy iterations (seconds)
A. Polyhedral approximation, lower approximation part only

100 n/a 9.2e-4 0.7
200 n/a 6.6e-4 2.0
400 n/a 1.6e-4 7.9
800 n/a 9.4e-5 24.8

B. Discretization
900 900 1.3e-2 0.3
2500 2500 7.1e-3 1.8
4900 4900 5.1e-3 6.6
10000 10000 3.4e-3 25.9
40000 40000 1.8e-3 423.5

C. Fitted value iteration with bilinear approximations and grid search
900 4500 6.1e-4 4.6
2500 12500 2.6e-4 34.8
4900 24500 1.9e-4 140.2
10000 50000 1.5e-4 591.8
40000 200000 9.0e-5 9487.7

Table 2: Comparison with alternative methods.

for this purpose, but those are unavailable here due to the problem's non-di�erentiability.

We therefore look instead at �value function errors,� de�ned as ||v − v̂U ||, where v is the

computed value function and v̂U is a tight upper bound on the true value function V , which

we can obtain using our polyhedral approximation method with a �ne grid. For the solution

methods we consider we always have v ≤ V ≤ v̂U , so ||v− v̂U || is an upper bound on ||v−V ||
which is in principle computable.

Table 2 shows the results under the baseline parametrization. The �rst two columns

list the grid size(s). The third column shows the value function errors ||v − v̂U ||, estimated
using a 50,000 period simulation and expressed as a fraction of average �rm value as in the

previous subsection. The function v̂U we use here was computed using 1600 grid points and

approximately satis�es ||v̂U−V || < 0.009% of average �rm value. The fourth column reports

the computation time in seconds, with each method accelerated using 200 modi�ed policy

function iterations.1 Overall, our method required signi�cantly fewer grid points than its

alternatives to attain a given level of accuracy, and, in part because of this, it was able to

1In comparing the numbers in panel A with those in table 1, we note that (a) the value function errors
reported in panel A are smaller than the error bounds reported in table 1 because the former is an estimate
of ||vL − v̂U ||, the latter is an estimate of ||vU − vL||, and vL ≤ V ≤ v̂U < vU ; and (b) the computations in
panel A run faster than those in table 1 because here we are focusing on the lower approximation part of
our method only.

16

deliver substantial speed gains, especially when high accuracy was requested.2

5.5 Solution characteristics

To conclude our discussion we indicate what the computed solution looks like. Figure 3

plots the policy functions. Each row here corresponds to a particular productivity level

z: the top row is for low z (43% below median), the middle row is for median z, and the

bottom row is for high z (43% above median). The left column then plots the policy for

next period capital k′, the middle column plots the sign function of optimal gross investment

sgn(k′ − (1 − δ)k) (which equals 1 when investment is positive, 0 when investment is zero,

and −1 when investment is negative), and the right column plots the policy for next period

debt b′.

According to the left and middle columns, the �rm typically: (i) invests (resp. disinvests)

when k is su�ciently low (resp. high) to maintain a �target� level of capital; (ii) makes zero

investments for intermediate levels of k; (iii) sharply disinvests when it is highly leveraged

(i.e., b is high relative to k); and (iv) is more likely to invest (resp. disinvest) when z is high

(resp. low). The policy for k′ displays clear kinks at the boundaries of these cases.

The right column indicates that optimal next period debt b′ is typically increasing in

current capital k. It turns out that the credit constraint b′ ≤ θk is binding at most places,

which explains this and the function's apparent linearity. An exception arises however when

productivity z is low and current capital k is high. In such states the �rm chooses to

deleverage and leave the credit constraint slack (b′ < θk). The policy function again displays

a kink at the boundary where this happens.

Figure 4 shows these features in action by plotting a particular simulated history. The

left panel plots productivity zt, the middle panel plots gross investment kt+1 − (1 − δ)kt,

and the right panel plots next period debt bt+1 along with the credit limit θkt. The �gure

shows that the �rm usually chooses either positive or zero investment, and that the credit

constraint bt+1 ≤ θkt usually binds. Exceptions arise however between periods t = 20 and

t = 30 when productivity declines sharply. During this �crisis� period the �rm chooses to

disinvest, although only by a relatively small amount, and to rapidly deleverage, rendering

the credit constraint slack. The relative strength of the latter e�ect compared to the former

is a natural consequence of the partial irreversibility built into the investment cost function

φ.

2An obvious but important caveat here is that benchmark results of this sort inevitably depend not only
on the relative merits of the methods but also on how e�ciently they are implemented. We have tried to
limit the in�uence of this problem here by employing any optimization tricks we know of to speed up the
two alternative methods we consider (the most important being the extensive use of lookup tables) and by
using similar grids (essentially equally spaced in each dimension) for each solution method.

17

k′ sgn(k′ − (1− δ)k) b′

lo
w
z

m
ed
ia
n
z

h
ig
h
z

Figure 3: Policy functions for selected productivity values z.

18

0 20 40 60 80 100
t

0.6

0.8

1.0

1.2

1.4
zt

0 20 40 60 80 100
t

−0.5

0.0

0.5

1.0

1.5

2.0

kt+1−(1−δ)kt

0 20 40 60 80 100
t

1

2

3

4

5

6

bt+1

θkt

Figure 4: A simulated history.

A Proofs

A.1 Proof of Lemma 1L

(i) Let f be concave and let S̄ ⊂ Ŝ. Fix s ∈ S. Let µ solve the maximization problem in

(2). Then:

LŜf(s) =
∑
ŝ∈Ŝ

µ(ŝ)f(ŝ) ≤ f

∑
ŝ∈Ŝ

µ(ŝ)ŝ

 = f(s)

where the weak inequality follows from the concavity of f . Next let µ̄ ∈ M(s, S̄) solve the

problem in (2) for LS̄f(s). De�ne µ̂ ∈M(s, Ŝ) by setting µ̂(s̃) = µ̄(s̃) if s̃ ∈ S̄ and µ̂(s̃) = 0

otherwise. Then

LS̄f(s) =
∑
s̄∈S̄

µ̄(s̄)f(s̄) =
∑
ŝ∈Ŝ

µ̂(ŝ)f(ŝ) ≤ max
µ∈M(s,Ŝ)

∑
ŝ∈Ŝ

µ(ŝ)f(ŝ) = LŜf(s).

Now let f be concave and continuous and �x ε > 0. De�ne the following three subsets of

Rl+1:

E = S × [min f(S)− ε,max f(S)]

A = {(s, t) ∈ E : t ≤ f(s)− ε}

C = {(s, t) ∈ E : t ≤ f(s)}

We claim that there is a polytope O ⊂ Rl+1 such that A ⊂ O ⊂ C. The construction goes

as follows. First, because f is continuous and ε > 0, we can for each a ∈ A choose an open

rectangle R(a) ⊂ Rl+1 such that a ∈ R(a) and R(a) ∩ E ⊂ C. And because {R(a) : a ∈ A}
is an open cover of A which is compact, there exists a �nite subset of A, say A0, such that

A ⊂ ∪a0∈A0R(a0). Set O = co(∪a0∈A0R(a0) ∩ E).

19

Let S̄ denote the set of s-coordinates of the vertices of O. Then let for each s̄ ∈ S̄:

T̄ (s̄) = {t̄ ∈ R : (s̄, t̄) is a vertex of O}, τ(s̄) = max T̄ (s̄).

For any (s, t) ∈ O there exists a probability distribution ν on the set of vertices of O with

mean (s, t), so:

t =
∑
s̄∈S̄

∑
t̄∈T̄ (s̄)

ν(s̄, t̄)t̄ ≤
∑
s̄∈S̄

∑
t̄∈T̄ (s̄)

ν(s̄, t̄)τ(s̄) ≤ max
µ∈M(s,S̄)

∑
s̄∈S̄

µ(s̄)τ(s̄).

Also from O ⊂ C we know that τ(s̄) ≤ f(s̄) for any s̄ ∈ S̄.
We therefore have for each s:

f(s)− ε = max{t ∈ R : (s, t) ∈ A} ≤ max{t ∈ R : (s, t) ∈ O}

≤ max
µ∈M(s,S̄)

∑
s̄∈S̄

µ(s̄)τ(s̄) ≤ max
µ∈M(s,S̄)

∑
s̄∈S̄

µ(s̄)f(s̄) = LS̄f(s).

(ii) Suppose f ≤ f ′. Then for each s, the objective in (2) for Lf(s) is no greater than that

for Lf ′(s) at any given µ. Hence Lf ≤ Lf ′.

(iii) Using (2) we have for any s:

L(f + a)(s) = max
µ∈M(s,Ŝ)

∑
ŝ∈Ŝ

µ(ŝ)(f(ŝ) + a) =

 max
µ∈M(s,Ŝ)

∑
ŝ∈Ŝ

µ(ŝ)f(ŝ)

 + a = Lf(s) + a.

(iv) Immediate from (2).

A.2 Proof of Lemma 1U

(i) Let f be concave and let D̄ ⊂ D̂. Fix s ∈ S. We have:

UD̂f(s) = min
d̂∈D̂
{d̂ · s− f ∗(d̂)} ≥ inf

d∈D
{d · s− f ∗(d)} = f ∗∗(s) ≥ f(s).

Also from D̄ ⊂ D̂ we have:

UD̂f(s) = min
d̂∈D̂
{d̂ · s− f ∗(d̂)} ≤ min

d̄∈D̄
{d̄ · s− f ∗(d̄)} = UD̄f(s).

20

Now let f be concave and continuous and �x ε > 0. De�ne:

E = S × [min f(S),max f(S) + ε]

A = {(s, t) ∈ E : t ≤ f(s)}

C = {(s, t) ∈ E : t ≤ f(s) + ε}

The exact same argument as in the proof of Lemma 1L (i) implies that there is a polytope

O ⊂ Rl+1 that satis�es A ⊂ O ⊂ C.

We next partition the set of normals of O into D̄, D̄−, and D̄0 so that (s, t) ∈ O if and

only if:

t ≤ d̄ · s+ ψ(d̄), ∀d̄ ∈ D̄

−t ≤ d̄ · s+ ψ(d̄), ∀d̄ ∈ D̄−
0 ≤ d̄ · s+ ψ(d̄), ∀d̄ ∈ D̄0

Note that for d̄ ∈ D̄ we can assume without loss of generality:

ψ(d̄) = max
(s,t)∈O

{t− d̄ · s} ≥ max
(s,t)∈A

{t− d̄ · s} = max
s∈S
{f(s)− d̄ · s} = −f ∗(d̄).

We therefore have for each s:

f(s) + ε = max{t ∈ R : (s, t) ∈ C} ≥ max{t ∈ R : (s, t) ∈ O}

= min
d̄∈D̄
{d̄ · s+ ψ(d̄)} ≥ min

d̄∈D̄
{d̄ · s− f ∗(d̄)} = UD̄f(s).

(ii) If f ≤ f ′, we have f ∗ ≥ f ′∗ and hence Uf ≤ Uf ′ from (3).

(iii) For any d ∈ D:
(f + a)∗(d) = f ∗(d)− a.

So for any s ∈ S we have

U(f + a)(s) = min
d̂∈D̂
{d̂ · s− (f + a)∗(d̂)} = min

d̂∈D̂
{d̂ · s− f ∗(d̂)}+ a = Uf(s) + a.

(iv) Let f ≡ 0 and pick any s ∈ S. From (i) we have Uf(s) ≥ f(s) = 0. We also have

f ∗(0) = 0, which together with 0 ∈ D̂ implies

Uf(s) = min
d̂∈D̂
{d̂ · s− f ∗(d̂)} ≤ 0 · s− f ∗(0) = 0.

21

Hence Uf(s) = 0.

A.3 Proof of Theorem 2L

If v ∈ B(X × Z), then from (4) and Lemma 1L (ii), (iii), and (iv) we have:

rmin + β inf v(X × Z) ≤ TLv ≤ rmax + β sup v(X × Z)

so TLv ∈ B(X × Z). Also from (4) and Lemma 1L (ii) we know that TL is monotone.

And from (4) and Lemma 1L (iii) we know that if v ∈ B(X × Z) and a ∈ R++ then

TL(v + a) = TLv + βa. Blackwell's su�cient conditions hold, so TL is a β-contraction.

In proceeding, we observe that from (1), (4), Lemma 1L (i), and the concavity of V we

have V = TV ≥ TLV .
Now let vLN = (TL)NV for N ∈ N. We just observed that vL1 = TLV ≤ V = vL0 . And

if vLN ≤ vLN−1 then vLN+1 = TLvLN ≤ TLvLN−1 = vLN by the monotonicity of TL. It follows by
induction that (vLN)N∈N is monotonically decreasing. The contraction property of TL implies

that ||vLN − V L|| → 0 as N →∞, so we have V L ≤ V .

Finally, let ε > 0 be given. Since V is continuous and concave, we can use Lemma 1L (i)

to choose X̄ so that for each z ∈ Z:

LX̄V (·, z) ≥ V (·, z)− (1− β)ε/β.

Let X̄ ⊂ X̂. We then have for each (x, z) ∈ X × Z:

TLV (x, z) = max
y∈Γ(x,z)

{r(x, y, z) + βELX̂V (·, z)(y)}

≥ max
y∈Γ(x,z)

{r(x, y, z) + βELX̄V (·, z)(y)}

≥ max
y∈Γ(x,z)

{r(x, y, z) + βEV (y, z)} − (1− β)ε

= TV (x, z)− (1− β)ε

= V (x, z)− (1− β)ε.

From this and V ≥ TLV we have ||V − TLV || ≤ (1− β)ε. Combining this with

||V − V L|| = ||V − TLV ||+ ||TLV − TLV L|| ≤ ||V − TLV ||+ β||V − V L||

we obtain:

||V − V L|| ≤ 1

1− β
||V − TLV || ≤ ε.

22

A.4 Proof of Theorem 2U

Essentially identical to that of Theorem 2L.

A.5 Proof of Theorem 3L

We can rewrite (4) as:

TLv(x̂, z) = max
y∈Γ(x̂,z)

r(x̂, y, z) + β
∑
z′∈Z

 max
µ(·,z′)∈M(y,X̂)

∑
ŷ∈X̂

µ(ŷ, z′)v(ŷ, z′)

 π(z′|z)


which is equivalent to (6).

A.6 Proof of Theorem 3U

Let us �rst rewrite (5) as:

TUv(x, z) = max
y∈Γ(x,z)

max
τ∈R|Z|

{
r(x, y, z) + β

∑
z′∈Z

τ(z′)π(z′|z) : τ(z′) ≤ UP̂v(y, z′), ∀z′ ∈ Z

}

and note that

τ(z′) ≤ UP̂v(y, z′), ∀z′ ∈ Z ⇐⇒ τ(z′) ≤ q̂ · y − v∗(q̂, z′), ∀(q̂, z′) ∈ P̂ × Z.

Substituting these into the right hand side of the de�nition for (TUv)∗, namely

(TUv)∗(p̂, z) = inf
x∈X
{p̂ · x− TUv(x, z)},

we obtain:

(TUv)∗(p̂, z) = inf
x,y,τ∈X×X×R|Z|

{
p̂ · x− r(x, y, z)− β

∑
z′∈Z

τ(z′)π(z′|z) :

τ(z′) ≤ q̂ · y − v∗(q̂, z′), ∀(q̂, z′) ∈ P̂ × Z; h(x, y, z) ≥ 0

}
.

23

By strong duality we may rewrite the right hand side as:

sup
λ∈R|P̂ |×|Z|+

inf
x,y,τ∈X×X×R|Z|

{
p̂ · x− r(x, y, z)− β

∑
z′∈Z

τ(z′)π(z′|z)

+
∑
q̂∈P̂

∑
z′∈Z

λ(q̂, z′) (τ(z′)− q̂ · y + v∗(q̂, z′)) : h(x, y, z) ≥ 0

 .

By the linearity in τ , this equals:

sup
λ∈R|P̂ |×|Z|+

inf
x,y∈X×X

p̂ · x− r(x, y, z) +
∑
q̂∈P̂

∑
z′∈Z

λ(q̂, z′) (−q̂ · y + v∗(q̂, z′)) :

h(x, y, z) ≥ 0;
∑
q̂∈P̂

λ(q̂, z′) = βπ(z′|z), ∀z′ ∈ Z


which can be rewritten as:

sup
(q,λ)∈P×R|P̂ |×|Z|+

inf
x,y∈X×X

p̂ · x+ q · y − r(x, y, z) +
∑
q̂∈P̂

∑
z′∈Z

λ(q̂, z′)v∗(q̂, z′) :

h(x, y, z) ≥ 0;
∑
q̂∈P̂

λ(q̂, z′) = βπ(z′|z), ∀z′ ∈ Z;
∑
q̂∈P̂

∑
z′∈Z

λ(q̂, z′)q̂ = −q

 .

Solving out for the inner minimization over (x, y) and using the compactness of the constraint

set for (q, λ), we obtain (7).

A.7 Proof of Theorem 4L

Let (vLN)N∈N satisfy the hypotheses. We know from the contraction property of TL that

||vLN − V L|| → 0 as N → ∞, so it is enough to show that vLN ≤ vLN+1 for all N . This holds

for N = 0 by assumption. And if it holds for N , we can apply TL to both sides and use its

monotonicity to get vLN+1 = TLvLN ≤ TLvLN+1 = vLN+2. The result follows by induction.

Suppose vL0 ≡ rmin/(1− β). Then we have from (4) and Lemma 1L (ii), (iii), and (iv):

TLvL0 (x, z) ≥ rmin + β
rmin

1− β
=

rmin

1− β
= vL0 (x, z).

24

A.8 Proof of Theorem 4U

Essentially identical to that of Theorem 4L.

A.9 Proof of Theorem 5

Let G map v : X × Z → R to Gv : X × Z → R as:

Gv(x, z) = r(x, g(x, z), z) + βEv(g(x, z), z).

Standard arguments imply that G is a monotone β-contraction on B(X × Z) and that its

unique �xed point Vg is the value of policy g.

From vL ≤ TLvL ≤ TvL = GvL and the monotone contraction property of G we have

vL ≤ GNvL ↑ Vg as N → ∞. Also from vU ≥ TUvU ≥ TvU ≥ GvU and the monotone

contraction property of G we have vU ≥ GNvU ↓ Vg as N →∞. Hence vL ≤ Vg ≤ vU . From

this and vL ≤ V ≤ vU we have ||Vg − V || ≤ ||vU − vL||. Since g(x, z) ∈ Γ(x, z) for each

(x, z) ∈ X × Z by de�nition, the result follows.

References

Abel, A. B., and J. C. Eberly (1996): �Optimal Investment with Costly Reversibility,� Review

of Economic Studies, 63(4), 581�593.

Bertsekas, D. P., and H. Yu (2011): �A Unifying Polyhedral Approximation Framework for

Convex Optimization,� SIAM Journal on Optimization, 21(1), 333�360.

Chow, C.-S., and J. Tsitsiklis (1991): �An Optimal One-way Multigrid Algorithm for

Discrete-time Stochastic Control,� IEEE Transactions on Automatric Control, 36(8), 898�

914.

Gordon, G. J. (1995): �Stable Function Approximation in Dynamic Programming,� in Pro-

ceedings of the Twelfth International Conference on Machine Learning, ed. by A. Prieditis,

and S. J. Russell, pp. 261�268.

Judd, K. L. (1998): Numerical Methods in Economics. MIT Press, Cambridge, MA.

Judd, K. L., and A. Solnick (1994): �Numerical Dynamic Programming with Shape-

Preserving Splines,� Working paper, Hoover Institution and Stanford University.

25

Judd, K. L., S. Yeltekin, and J. Conklin (2003): �Computing Supergame Equilibria,� Econo-

metrica, 71(4), 1239�1254.

Khan, A., and J. Thomas (2011): �Credit Shocks and Aggregate Fluctuations in an Econ-

omy with Production Heterogeneity,� NBER Working Paper 17311, National Bureau of

Economic Research.

Kiyotaki, N., and J. Moore (1997): �Credit Cycles,� Journal of Political Economy, 105(2),

211�248.

Nishimura, K., and J. Stachurski (2009): �Equilibrium Storage with Multiple Commodities,�

Journal of Mathematical Economics, 45(1-2), 80�96.

Phelan, C., and R. M. Townsend (1991): �Computing Multi-Period, Information-Constrained

Optima,� Review of Economic Studies, 58(5), 853�881.

Rockafellar, R. T. (1970): Convex Analysis. Princeton University Press.

Santos, M. S. (2000): �Accuracy of Numerical Solutions Using the Euler Equation Residuals,�

Econometrica, 68(6), 1377�1402.

Santos, M. S., and J. Vigo-Aguiar (1998): �Analysis of a Numerical Dynamic Programming

Algorithm Applied to Economic Models,� Econometrica, 66(2), 409�426.

Stachurski, J. (2008): �Continuous State Dynamic Programming via Nonexpansive Approx-

imation,� Computational Economics, 31(2), 141�160.

Stokey, N. L., R. E. Lucas, Jr, and E. C. Prescott (1989): Recursive Methods in Economic

Dynamics. Harvard University Press, Cambridge.

Tauchen, G. (1986): �Finite State Markov-Chain Approximations to Univariate and Vector

Autoregressions,� Economics Letters, 20(2), 177�181.

26

