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Abstract

This paper introduces banks into a dynamic stochastic general equilibrium model

by featuring asymmetric information as the underlying friction for banking. Asym-

metric information about asset qualities causes a lemons problem in the asset market.

In this environment, banks can issue liquid liabilities by pooling illiquid assets con-

taminated by asymmetric information. The liquidity transformation by banks results

in a minimum value of common equity that banks must issue to avoid a run. This

value increases with downside risk to the asset price and the expected degree of asset

illiquidity. It rises during a boom if productivity shocks cause the business cycle.
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1 Introduction

Banking is a crucial part of the modern economy. This fact has been reconfirmed by the

recent financial crisis. Yet, an effort to integrate banks into macroeconomic models is still

ongoing in the literature. Recent work in this strand of literature includes Chen (2001),

Gertler and Karadi (2011), He and Krishnamurthy (forthcoming), Rampini and Viswanathan

(2010), Brunnermeier and Sannikov (2011), and Gertler, Kiyotaki, and Queralto (2011).

These papers highlight various roles of banks, such as loan monitoring, debt enforcement,

and asset management. In this paper, I focus on yet a different aspect of banks—the suppliers

of liquid assets. I introduce this aspect of banks into a dynamic general equilibrium model

by featuring asymmetric information about asset qualities as the underlying friction. The

model shows that banks supplying liquid assets must satisfy a minimum value of common

equity to avoid a bank run. This value is determined by macroeconomic conditions. Thus, a

threat of a bank run makes banks show macroprudential behavior endogenously, if banks are

rational and do not have any agency problem with depositors or equity holders as assumed

in the model.

The model is a version of AK model. The economy grows through investments of goods

into some real assets, which in turn generates goods in each period. The opportunity to invest

into real assets arrives randomly at each investor in each period. Those who receive invest-

ment opportunities must finance their investments by selling their existing assets because of

borrowing constraints. The secondary market for real assets, however, is contaminated by

a lemons problem: each unit of real assets depreciates at an i.i.d. rate in each period and

the rate is the private information of the seller. As a result, investors withhold real assets

with low depreciation rates because of undervaluation in the market. I call this non-traded

fraction of real assets illiquid.

I introduce banks into this environment. Banks are public companies issuing deposits
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and common equity. This assumption is based on the fact that banks are public companies

in practice. Using the funds raised, banks buy real assets in the secondary market, and pool

them. Through asset pooling, the idiosyncratic depreciation rates of each bank’s real assets

average out. As a result, each bank’s total revenue becomes public information. Investors

can, therefore, resell bank deposits and equity backed by banks’ revenues without a lemons

problem. They are willing to hold these securities as liquid assets.

Banks can pool real assets because, unlike investors, they do not have private information

about the depreciation rates of their real assets. If they had private information, they would

keep only real assets with low depreciation rates, reselling the other fraction of real assets in

the market. Thus, pooled real assets would be unbundled in this case. The assumption that

investors have better information than banks reflects firms’ superior knowledge about their

own production and trading partners in practice. For example, interpret investments into

real assets in the model as including the provision of trade credit by firms to enhance their

suppliers’ production and, hence, their own production. Trade credit is normally illiquid as

outsiders cannot easily assess its quality. The result of the model provides an explanation

as to why banks can still discount trade credit to various firms.1

The model implies a minimum bank equity requirement based on Value-at-Risk. Due to

the illiquidity of real assets, the present discounted value of future revenues from a bank’s

assets is greater than the market value of the assets. As part of multiple equilibria, a bank

suffers a self-fulfilling bank run if the face value of its deposits exceeds the market value of

its assets. To eliminate any possibility of a run in this case, a bank must limit the issuance

of deposits to the worst possible market value of its assets in the next period. Thus, the rest

of the present discounted value of its assets must be financed through common equity. This

1This function of banking is different from that of mutual funds. Mutual funds bundle securities that
are already tradable in the securities market. The benefit of using mutual funds is to delegate portfolio
adjustments to professional asset managers and to save transaction costs in the market. I do not analyze
this effect of bundling here.
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value is the minimum common equity value that a bank must satisfy to avoid a run.

The minimum common equity value can be decomposed into two factors:

Minimum common equity value

= Expected discounted value of future revenues from the bank’s assets

− Discounted worst possible market value of the assets in the next period

= (Expected discounted value of future revenues from the assets

− Expected discounted market value of the assets in the next period)

+ (Expected discounted market value of the assets in the next period

− Discounted worst possible market value of the assets in the next period)

= Expected illiquidity of the assets (the first parenthesis)

+ Downside risk to the market value of the assets (the second parenthesis).

Both factors on the right-hand side fluctuate endogenously over the business cycle. Through

a calibration exercise, I show that the minimum common equity value is pro-cyclical if

aggregate productivity shocks cause the business cycle. In this case, banks need to raise

more equity during a boom than a recession. Given rationality and no agency problem with

depositors or equity holders, banks voluntarily satisfy this minimum equity requirement to

avoid a run, if the probability of the worst state in the next period is sufficiently high.

The cyclicality of the minimum common equity value is consistent with countercyclical

capital buffer recently introduced by Basel III. This result provides an interpretation of Basel

III such that Basel III imposes on actual banks the behavior of rational banks with no agency

problem, in case there is some irrationality or moral hazard, such as risk shifting, at actual

banks. Also, the model implies that common equity (i.e., bank capital) is unnecessary in

an equilibrium in which depositors never run to banks. In light of this result, Basel III can

be interpreted as preventing over-optimistic behavior of banks. If banks believe that a no

bank-run equilibrium will hold, then they have no incentive to maintain bank capital. In case

such bank expectations are over-optimistic, policy makers impose a bank capital requirement
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that is robust even if a self-fulfilling bank run can occur.

1.1 Related literature

Besides the aforementioned papers, this paper is related to several other strands of literature.

Kiyotaki and Moore (2012) incorporate asset illiquidity into a dynamic stochastic gen-

eral equilibrium model by introducing resaleability constraints. These constraints limit the

fraction of assets that each agent can resell per period. Tomura (2012) endogenizes the

resaleability constraints by introducing asymmetric information into a set-up similar to Kiy-

otaki and Moore’s model. The way to endogenize asset illiquidity in a competitive market

follows Banerjee and Maskin (1996) and Eisfeldt (2004). In this paper, I introduce public

companies functioning as banks into the model developed by Tomura (2012).

Williamson (1988) and Gorton and Pennacchi (1990) consider asymmetric information as

the underlying friction for banking. They model a bank as a coalition of agents to overcome

adverse selection in the market. In contrast to their cooperative game-theoretic approach,

I introduce banks into a competitive equilibrium model, in which agents take as given the

competitive market prices of bank securities when they decide whether to fund banks.

A self-fulfilling bank run due to asset illiquidity in this paper is similar to the one analyzed

by Diamond and Dybvig (1983). A crucial difference, however, is in that asset illiquidity

is endogenous in this paper. As a result, the degree of asset illiquidity fluctuates over the

business cycle. This feature of the model leads to the finding that endogenous fluctuations

in asset illiquidity result in a dynamic minimum equity requirement for banks. Also, I find

that downside risk to the market value of bank assets is another determinant of a minimum

equity requirement. This finding is similar to the papers by Diamond and Rajan (2000,

2001). In this paper, I derive the two factors for a minimum equity requirement in a unified

framework.

Finally, Covas and Fujita (2010) analyze the effects of Basel I and II on real economic
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activity by featuring banks as the suppliers of credit lines. Their model is based on Kato’s

(2006) model, which extends Holmström and Tirole’s (1998) model to a dynamic stochas-

tic general equilibrium model. This paper adds to their work by discussing the model’s

implications for Basel III.

2 Model of asset illiquidity

I start from presenting a basic model without banks to illustrate endogenous asset illiquidity

due to asymmetric information. This model is based on Tomura (2012).

Time is discrete. There is a [0, 1] continuum of infinite-lived agents. Each agent maxi-

mizes the expected discounted utility of consumption of goods:

E0

∞
∑

t=0

βt ln ci,t, (1)

where β (∈ (0, 1)) is the time discount factor, i (∈ [0, 1]) is the index for each agent, t

(= 0, 1, 2, ...) is the time period, and ci,t is the consumption of goods in period t. Agents

generate goods from capital stock at the beginning of each period through a linear function:

yi,t = αtki,t−1, (2)

where yi,t is output, ki,t−1 is the quantity of capital held at the beginning of period t, and αt

is the aggregate productivity shock. This shock is the structural shock in this paper.

Each infinitesimal unit of capital depreciates at an i.i.d. rate after production. The

distribution of depreciation rates in each period is uniform over [δ̄ − ∆, δ̄ + ∆], where δ̄

(∈ (0, 1)) denotes the mean and ∆ (∈ [0,min{δ̄, 1− δ̄})) determines the range of idiosyncratic

depreciation rates.2 Thus, each agent holds capital with uniformly distributed depreciation

2The range of ∆ in its definition ensures that the depreciation rates of capital are non-negative and not
more than unity.
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rates after production in each period.

The current depreciation rate of each unit of capital is the private information of the

agent who uses the capital for production in the period. This assumption is motivated by

heterogeneity in asset quality in reality and the fact that the quality of an asset is often the

private information of the owner.3 I simplify the information dynamics by assuming that

depreciation rates in each period become public information at the beginning of the next

period.

Agents can trade depreciated capital in a competitive secondary market. Because of

the private information, every agent has a common price of capital, Qt, regardless of the

depreciation rate of each unit of capital sold. I assume that the price is independent of the

quantity of capital traded in each transaction, since a linear pricing follows immediately from

arbitrage if agents can make any number of transactions in the market in each period.4 The

realized average depreciation rate of capital bought by an agent equals the average depre-

ciation rate of capital sold in the market, which is a standard assumption in the literature

(e.g., Eisfeldt 2004).

At the end of each period, agents can produce new capital from goods. If an agent

invests an amount xi,t of goods, then the agent obtains an amount φi,txi,t of new capital

at the beginning of the next period, given the agent’s investment efficiency, φi,t. I assume

that φi,t ∈ {0, φ} (φ > 0), and that the probability that φi,t = φ is ρ (∈ (0, 1)) for all i and

3The qualities of consumer durables such as a car and a house are easily observable examples of private
information. For empirical analysis of business capital, see Eisfeldt and Rampini (2006). Also see Ashcraft
and Schuermann (2008) and Downing, Jaffee, and Wallace (2009) on the presence of asymmetric information
in the mortgage-backed securities market.

4This point is made by Banerjee and Maskin (1996, footnote 16). Suppose that there are two prices of
capital, Q and Q′, for two different quantities of capital gross of depreciation, X and X ′, respectively. Given
that Q > Q′ without loss of generality, each agent can sell and buy the price-quantity pairs (Q, X) and (Q′,
X ′), respectively, infinitely many times to earn an arbitrarily large profit. Note that the private information
about the depreciation rates of capital does not matter here, since arbitraging agents do not have to take a
net position in capital gross of depreciation. The linear pricing may not hold if an agent can participate in
only one transaction in each period. Gale (1992) assumes such limited participation in a competitive market
with adverse selection and derives a quantity-contingent pricing in a separating equilibrium.

7



t. Thus, only agents with φi,t = φ can invest in new capital. I call agents with φi,t = φ

“productive” and those with φi,t = 0 “unproductive”. Each agent learns the value of φi,t at

the beginning of period t.

I assume that each agent cannot borrow against their investments in new capital. Even

though prohibiting any borrowing is not essential for the main result of the model as long

as borrowing constraints on productive agents bind, the basic model without banks has an

analytical solution with this assumption.

2.1 Utility maximization problem of each agent

The following maximization problem summarizes the environment for each agent:

max
{ci,t, xi,t, hi,t, li,δ,t}

∞

t=0

E0

∞
∑

t=0

βt ln ci,t (3)

s.t. ci,t + xi,t +Qthi,t = αtki,t−1 +Qt

∫ δ̄+∆

δ̄−∆

li,δ,t dδ, (4)

ki,t = φi,txi,t + (1− δ̂t)hi,t +

∫ δ̄+∆

δ̄−∆

(1− δ)

(

ki,t−1

2∆
− li,δ,t

)

dδ, (5)

li,δ,t ∈
[

0,
ki,t−1

2∆

]

, ci,t ≥ 0, xi,t ≥ 0, hi,t ≥ 0, (6)

where hi,t is the quantity of capital gross of depreciation that the agent buys in the secondary

capital market, li,δ,t is the density of capital with depreciation rate δ that the agent sells in

the market, and δ̂t is the average depreciation rate of capital sold in the market. Eqs. (4) and

(5) are the flow-of-funds constraint and the law of motion for capital net of depreciation (i.e.,

ki,t), respectively. Eq. (6) contains the short-sale constraint on capital and non-negativity

constraints on the choice variables. Note that ki,t−1/(2∆) is the uniform density of the

agent’s capital with each depreciation rate over [δ̄ −∆, δ̄ + ∆]. Each agent takes as given

the probability distribution of {Qt, δ̂t, αt, φi,t}∞t=0.
5

5All variables except αt and φi,t are state-contingent. The notation of state contingency is omitted here.
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In Eq. (5), the quantity of capital net of depreciation, ki,t, is the sufficient state variable

for the agent’s capital at the beginning of the next period, because the current depreciation

rates of capital will be public information then. Also, the realized average depreciation rate

of capital bought by the agent equals δ̂t, as assumed above.

2.2 Definition of an equilibrium

The secondary market price of capital, Qt, and the average depreciation rate of capital sold

in the secondary market, δ̂t, are determined by the following conditions:

δ̂t =

∫ ∫ δ̄+∆

δ̄−∆
δ li,δ,t dδ di

∫ ∫ δ̄+∆

δ̄−∆
li,δ,t dδ di

, (7)

∫

hi,t di =

∫ ∫ δ̄+∆

δ̄−∆

li,δ,t dδ di. (8)

The numerator of the fraction on the right-hand side of the first equation is the total depre-

ciation of capital sold, and the denominator is the total quantity of capital sold. The second

equation is a standard market clearing condition for the secondary capital market. Given

the value of ki,−1 for each i and the probability distribution of {αt, φi,t}∞t=0, an equilibrium

is the solution to the maximization problem for each i defined by Eqs. (3)-(6) and (Qt, δ̂t)

satisfying Eqs. (7)-(8) for all t.

In the basic model, I assume only that the aggregate productivity shock, αt, follows a

stochastic process implying a well-defined expectation operator, E0, in Eqs. (3)-(6) in an

equilibrium. Because of the log utility function, the functional form of equilibrium conditions

is invariant to the specification of the stochastic process.
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2.3 Endogenous asset illiquidity

I briefly summarize the results in the basic model.6

In the equilibrium, productive agents invest in new capital if and only if their investment

efficiency, φ, is so high that φβαt > (1 − β)(1 − δ̄). In this case, they are willing to obtain

goods from unproductive agents to enhance their investments in new capital. The only

channel for the transfer of goods from unproductive agents to productive agents, however,

is the secondary capital market because of borrowing constraints. Thus, agents sell and buy

capital in the secondary capital market when they become productive and unproductive,

respectively.

The secondary market price of capital, Qt, is identical for every unit of capital sold because

the depreciation rates of capital are the private information of the sellers, as assumed above.

As a result, agents withhold capital with low depreciation rates to avoid the undervaluation

of the capital in the market:

Proposition 1 If ∆ > 0, then productive and unproductive agents sell only the fractions of

capital with depreciation rates greater than min{1−Qtφ, δ̂t} and δ̂t, respectively.

Proof. See Appendix A.

I call the non-traded fraction of capital illiquid. The existence of illiquid capital reduces

the amount of goods that productive agents obtain for their investments in new capital by

selling their existing capital:

Proposition 2 There exists unique equilibrium in the basic model. Denote aggregate invest-

ment in new capital,
∫

xi,t di, by Xt and aggregate output,
∫

yi,t di, by Yt. In the equilibrium,

Xt/Yt > 0 if and only if φβαt > (1 − β)(1 − δ̄). In this case, the value of Xt/Yt is higher

with ∆ = 0 than with ∆ > 0.

6See Tomura (2012) for more detailed analysis of the basic model.
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Proof. See Appendix B.

Note that there is no asymmetric information if ∆ = 0. Thus, an increase in ∆ from zero

to a positive number introduces asymmetric information into the economy.

In the next section, I introduce banks into this environment. I will show that the illiquid-

ity of capital leads to agents’ demand for liquid securities issued by banks. Banks, however,

are subject to a self-fulfilling bank run if their equity values fall below a certain threshold.

3 Model of banking

3.1 Banks

In addition to the agents described above, there are a continuum of homogeneous banks.

Banks are public companies issuing two types of securities: deposits and common equity.

Agents can buy these securities in a securities market. Those buying common equity direct

the behavior of banks as the owners. Banks can spend the funds raised on buying capital in

the secondary capital market.

When buying capital, banks cannot know the depreciation rate of each unit of capital

sold in the secondary market. This assumption is as same as the one for agents. Also, banks

cannot know the current depreciation rate of each unit of their own capital after production,

until the rate becomes public information at the beginning of the next period. Thus, banks

have less information than agents. This assumption reflects firms’ superior knowledge about

their own production and trading partners in practice. For example, interpret investments

into capital in the model as including the provision of trade credit by firms to enhance their

suppliers’ production and, hence, their own production. Trade credit is normally illiquid

as outsiders cannot easily assess its quality. Investments into capital in the model can also

include other types of information-intensive assets held by firms, such as direct investments
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into non-public, small firms.7

Banks can produce goods from their capital through the same linear function as Eq. (2).

After production, each infinitesimal unit of capital held by each bank depreciates at an i.i.d.

rate. The distribution of the depreciation rates is as same as the uniform distribution for

each agent defined above. Banks do not have ability to invest in new capital.

3.2 Utility maximization problem of an agent

With bank deposits and equity, the flow-of-funds constraint for each agent is modified to:

ci,t + xi,t +Qthi,t + bi,t + (1 + ζ)Vtsi,t =

αtki,t−1 +Qt

∫ δ̄+∆

δ̄−∆

li,δ,t dδ + R̃tbi,t−1 + (Dt + Vt)si,t−1, (9)

where: bi,t and si,t are the value of bank deposits and the number of units of bank equity,

respectively, that the agent holds at the end of period t; R̃t is the ex-post gross deposit

interest rate defined below; and Vt is the price of bank equity. Also, ζ (> 0) is an equity

transaction cost per value of bank equity. This cost reflects the fact that it is more costly to

manage equity than deposits. The values of bi,t and si,t must be non-negative because agents

cannot short-sell bank securities by assumption.

Agents take as given the value of Vt and the probability distribution of R̃t+1 in the next

period. The utility maximization problem of each agent implies the following Euler equations

7Given no private information held by banks, I can exclude the case in which banks transfer their private
information to their equity holders, i.e., their owners. Hence, each agent has an identical value of the
secondary market price of capital, Qt, even if some banks sell their capital in the market.
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for Vt and R̃t+1:

(1 + ζ)Vt = Et [ΛV,t+1(Dt+1 + Vt+1)] , (10)

1 = Et

[

ΛR,t+1R̃t+1

]

, (11)

where ΛV,t+1 and ΛR,t+1 denote the stochastic discount factors, βci,t/ci,t+1, for agents buying

bank equity and deposits, respectively, in period t.8

3.3 Flow of funds for a bank

The flow-of-funds constraint for each bank can be written as:

DtSB,t−1 + R̃tBB,t−1 +Qt(HB,t − LB,t) = αtKB,t−1 +BB,t + Vt(SB,t − SB,t−1), (12)

where: Dt is the dividends per unit of bank equity; SB,t−1 is the units of bank equity

outstanding at the beginning of period t; BB,t−1 is the value of deposits outstanding at the

beginning of period t; HB,t and LB,t are the amounts of capital gross of depreciation that a

bank buys and sells in the secondary capital market, respectively; and KB,t−1 is the quantity

of capital held by a bank at the beginning of period t.9 The left-hand side and the right-hand

side of Eq. (12) are expenditure and income, respectively. The last term on the right-hand

side is the revenue from newly issued equity if it is positive, and the expenditure on equity

repurchases if it is negative.

8Eqs. (10)-(11) are the first-order conditions with respect to bi,t and si,t for those buying bank equity
and deposits, respectively. Eqs. (10)-(11) hold even if banks choose not to supply deposits or equity, because
Eqs. (10)-(11) only require some agents to be indifferent to holding bank equity and deposits, respectively.

9Throughout this paper, the index for each bank is omitted from the notation of the variables because
banks are homogeneous.
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3.4 Bank run

The ex-post gross interest rate on bank deposits, R̃t, equals the contracted gross deposit rate

set in the previous period, R̄t−1, if the bank does not default. A bank suffers a run, however,

if the face value of bank deposits, R̄t−1BB,t−1, exceeds the market value of bank assets at

the beginning of the period, (αt + Qt)KB,t−1. In this case, the bank must sell its capital

immediately in the secondary market to maximize the repayment to depositors. Hence:

R̃t =















R̄t−1, if R̄t−1BB,t−1 ≤ (αt +Qt)KB,t−1,

(αt+Qt)KB,t−1

BB,t−1
, if R̄t−1BB,t−1 > (αt +Qt)KB,t−1,

(13)

LB,t = KB,t−1, HB,t = Vt = Dt = 0, if R̄t−1BB,t−1 > (αt +Qt)KB,t−1. (14)

The deposit recovery rate in the second line of Eq. (13), (αt+Qt)KB,t−1/BB,t−1, is less than

the contracted rate, R̄t−1. Thus, a bank defaults if hit by a run, as expected by depositors

running to the bank. The deposit recovery rate is determined by the flow-of-funds constraint

(12), given Eq. (14). Agents running to a bank take as given the secondary market price of

capital, Qt, because each bank is so infinitesimal that the failure of one bank does not affect

Qt.

3.5 Profit maximization problem of a bank

Being a public company, each bank maximizes the cum-dividend value of equity, (Dt +

Vt)SB,t−1, for its existing equity holders in each period. In doing so, each bank internalizes

Eqs. (10)-(11), given the joint probability distribution of ΛV,t+1 and ΛR,t+1. Thus, each bank

takes into account the responses of its equity price, Vt, and the contracted gross deposit rate

for its deposits, R̄t, to its behavior.10 This assumption on the behavior of a public company

10Each bank takes as given the equity prices and the deposit rates of the other banks. The values of Vt

and R̄t are identical for every bank in equilibrium because banks are homogeneous.
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is standard in the literature.11

Substituting Eq. (10) into the flow-of-funds constraint (12) yields the following recursive

form for the cum-dividend value of equity, (Dt + Vt)SB,t−1:

(Dt + Vt)SB,t−1 = Ωt(KB,t−1, BB,t−1, R̄t−1) ≡

max
{HB,t,LB,t,BB,t}

αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 +BB,t

+ Et

[

ΛV,t+1Ωt+1(KB,t, BB,t, R̄t)

1 + ζ

]

, (15)

s.t. Eqs. (11), (13), and (14),

KB,t = (1− δ̂t)HB,t + (1− δ̄)(KB,t−1 − LB,t), (16)

LB,t ∈ [0, KB,t−1], HB,t ≥ 0, BB,t ≥ 0. (17)

In the profit maximization problem, a bank chooses how much capital to buy and sell

in the secondary capital market (HB,t and LB,t) and the amount of deposits to raise (BB,t).

Once the values of these choice variables are determined, the amount of dividends per equity

(Dt) and the value of equity issuance or repurchase (SB,t−SB,t−1) can be induced from Eqs.

(10), (12), and (15).

The constraint set includes Eqs. (13)-(14), because a bank takes into account the risk

of a bank run. A bank also internalizes the determination of R̄t through Eqs. (11) and

(13), as assumed above. Eq. (16) is the law of motion for capital held by a bank. In

this equation, the realized average depreciation rate of capital bought by a bank equals the

average depreciation rate of capital sold in the market, δ̂t, as assumed for agents. Also, the

value of LB,t does not depend on the depreciation rate of each unit of capital sold by a bank,

11For example, see Woodford (2003) for the profit maximization problem of an intermediate-good pro-
ducing firm in a standard New-Keynesian model. In this type of model, each firm maximizes the present
discounted value of current and future profit with the same stochastic discount factor as households’, given
that households own the equity of the firm. The present discounted value of current and future profit equals
the cum-dividend equity price if a competitive equity market is introduced into the model.
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because a bank can sell its capital only randomly without knowing the current depreciation

rate of each unit of its capital. Hence, the average depreciation rate of capital sold by a bank

equals the average depreciation rate of capital held by the bank (i.e., δ̄) by the law of large

numbers. Eq. (17) contains the short-sale constraint in the secondary capital market and

non-negativity constraints on a bank’s choice variables. A bank takes as given the probability

distribution of {Qt, δ̂t, αt, ΛV,t, ΛR,t}∞t=0.
12

3.6 Shock process

Hereafter, I assume that the aggregate productivity shock, αt, follows a two-state Markov

process: αt ∈ {ᾱ, α}; and the transition probability function denoted by P is such that

P (αt+1 = ᾱ | αt = ᾱ) = η̄α and P (αt+1 = α | αt = α) = η
α
for all t.

3.7 Definition of an equilibrium

Given (ki,−1, si,−1, bi,−1) for each i, (KB,−1, BB,−1, R̄−1), and the probability distribution of

{αt, φi,t}∞t=0, an equilibrium consists of: the solutions to the maximization problems for

agents and banks; the secondary market price of capital, Qt, that clears the market; the

average depreciation rate of capital sold in the secondary market, δ̂t, that satisfies its defini-

tion; and the equity price and the contracted gross deposit interest rate, (Vt, R̄t), that satisfy

Eqs. (10)-(11), given the stochastic discount factors for the agents holding bank equity and

deposits, (ΛV,t,ΛR,t). See Appendix C for an analytical expression of equilibrium conditions.

12If there is no existing equity holder for a bank (i.e., SB,t−1 = 0), then the bank maximizes the net profit
from the initial public offering and consumes the profit right away. Because the net profit equals the value of
Ωt, this case is covered by the maximization problem (15). The net profit becomes zero in the equilibrium.
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4 Equilibrium dynamics

4.1 Parameter specification

Lacking the closed-form solution for the equilibrium conditions, I solve the model numer-

ically. For the benchmark parameter values, I set (δ̄, ∆, φ, β, ζ, ρ) = (0.1, 0.09, 4.75,

0.99, 0.02, 0.45), and ᾱ = α = 0.03. With these values, the model approximately replicates

the following sample averages of annual data on the balanced growth path: the real GDP

growth rate (3.4%), the real interest rate on three-month Treasury bills (3.9%), and the ratio

of commercial bank credit to aggregate fixed assets (15.0%) in the U.S. over 1948-2007; the

capital-to-asset ratio of banks required by Basel Committee (8%); the annual depreciation

rate of capital (10%); and the equity premium for S&P 500 over 1948-1992 as reported by

Rouwenhoust (1995) (1.99%).13

For dynamic analysis, I consider the following stochastic process of the aggregate pro-

ductivity shock: (ᾱ, α) = (0.0306, 0.0294) and η̄α = η
α
= 0.75. The other parameters are

fixed to the benchmark values specified above. The two possible values of the aggregate

productivity shock represent a boom and a recession, each of which lasts for four years on

average, given the annual frequency of the model. The conditional average of the output

growth rate ((Yt−Yt−1)/Yt−1 where Yt denotes aggregate output) is 4.36% when αt = ᾱ, and

2.01% when αt = α. See Appendices D and E for the complete set of the equilibrium laws

of motion for aggregate variables that hold with this set of parameter values. To compute

a stochastic dynamic equilibrium, I use a projection method to approximate the state-space

solution for the model non-linearly. See Appendix F for the numerical solution method.

13The sample averages are matched by: (Yt − Yt−1)/Yt−1 where Yt denotes aggregate output; R̄t − 1;
KB,t/(KB,t +

∫

ki,t di); VtSB,t/(BB,t +VtSB,t); δ̄; and (Dt +Vt+1)/Vt − R̄t, in order. The first three sample
averages are from the BEA and the Federal Reserve Board. The value of ᾱ is arbitrary, because the model
can be normalized by ᾱ.
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4.2 Illiquidity of capital

Hereafter, I sketch the feature of the equilibrium with the parameter values specified above.

The following inequalities imply that the investment efficiency of productive agents, φ, is so

high that they invest only in new capital:

φ−1 < Qt(1− δ̂t)
−1, (18)

1 > Et

[

βci,tR̃t+1

ci,t+1

∣

∣

∣

∣

∣

φi,t = φ

]

, (19)

(1 + ζ)Vt > Et

[

βci,t(Dt+1 + Vt+1)

ci,t+1

∣

∣

∣

∣

φi,t = φ

]

. (20)

Accordingly, productive agents sell their existing capital and bank securities (i.e., deposits

and equity) to obtain goods to invest in new capital.14

Proposition 1 holds for productive agents as in the basic model without banks. Thus,

a lemons problem in the secondary capital market makes productive agents to sell only

a fraction of capital with high depreciation rates.15 As a result, the average depreciation

rate of capital sold in the secondary capital market, δ̂t, exceeds the unconditional average

depreciation rate of capital, δ̄:

δ̂t > δ̄. (21)

14Eq. (18) indicates that productive agents invest in new capital, rather than buy capital in the secondary
market. The left-hand sides of Eqs. (19) and (20) are the marginal costs of buying bank deposits and equity,
respectively. The right-hand sides are the expected discounted returns on bank deposits and equity for
productive agents. The costs exceed the expected discounted returns because a high return on investment
in new capital lowers the stochastic discount factor for productive agents. Thus, productive agents do not
buy bank deposits or equity.

15Proposition 1 does not exactly hold for unproductive agents in the model with banks. The availability
of bank securities increases unproductive agents’ gains from obtaining goods by selling their capital, because
they can buy bank securities with the obtained goods. As a result, the threshold for the depreciation rate of
capital sold by unproductive agents falls below δ̂t. The threshold remains above δ̂t −∆ for both productive
and unproductive agents with the parameter values specified above.
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4.3 Liquidity of bank securities

In contrast, bank deposits and equity are free of a lemons problem. Given Eq. (21), the

law of motion for capital (16) implies that a bank loses capital net of depreciation (i.e.,

KB,t) if it buys and sells capital in the secondary market simultaneously (i.e., HB,t > 0 and

LB,t > 0). This result holds because a bank must sell its capital randomly without knowing

the depreciation rate of each unit of its capital. Thus, a bank can commit to pooling its

entire capital as long as it buys capital in the secondary market (i.e., HB,t > 0).

The idiosyncratic depreciation rates of the entire capital held by each bank average out to

the unconditional average depreciation rate of capital, δ̄. Thus, the total revenue from each

bank’s assets becomes public information. As a result, the market value of bank securities,

which are backed by each bank’s revenue, becomes free of a lemons problem:16

Proposition 3 Suppose Eqs. (18)-(20) hold in an equilibrium. If HB,t > 0 and no bank run

occurs in period t, then:

R̄t−1BB,t−1 + (Dt + Vt)SB,t−1 =

[

αt +
Qt(1− δ̄)

1− δ̂t

]

KB,t−1. (22)

Proof. See Appendix D.

Proposition 3 implies that the total market value of bank securities equals the present

discounted value of current and future income from bank assets, given no bank run.17 Ac-

16Proposition 3 does not require HB,t > 0 or no bank run for all t. It holds even if there is a positive
probability of a bank run in the future.

17Note that Qt(1− δ̂t)
−1 on the right-hand side of Eq. (22) is the marginal acquisition cost of capital net of

depreciation in the secondary market. In equilibrium, this cost equals the present discounted value of future
marginal income from capital net of depreciation. If the cost is more than the present discounted value of
future marginal income from capital net of depreciation, then a bank would buy no capital in the secondary
market, which contradicts HB,t > 0. If it is less, then a bank would issue an arbitrary large amount of
securities to buy an arbitrarily large amount of capital, which violates the market clearing condition for the
secondary capital market. Hence, the right-hand side of Eq. (22) is the present discounted value of current
and future income from capital at the beginning of each period t.
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cordingly, the market value of bank securities exceeds the market value of bank assets,

(αt +Qt)KB,t−1, at the beginning of each period:

[

αt +
Qt(1− δ̄)

1− δ̂t

]

KB,t−1 > (αt +Qt)KB,t−1, (23)

in which the strict inequality holds given Eq. (21). Thus, productive agents can obtain more

goods to invest in new capital if they hold bank securities rather than capital.

Ex-ante, unproductive agents buy bank securities in case they become productive in the

next period.18 Also, they do not buy capital in the secondary market, but sell a fraction of

their capital with sufficiently high depreciation rates to raise funds to buy bank securities.

They keep the other fraction of capital to avoid the undervaluation of the capital in the

secondary capital market.19

4.4 Banks’ incentive for liquidity transformation

It is optimal for banks to meet the demand for bank securities, given no bank run. In this

case, banks arbitrage between the market prices of bank securities and the secondary market

price of capital, Qt. Thus, banks issue deposits and equity to buy capital in the secondary

market in each period (i.e., HB,t > 0 for all t). The purchase of capital in each period makes

it credible for banks to pool capital, as described above. In the equilibrium, the marginal

acquisition cost of capital net of depreciation, Qt(1 − δ̂t)
−1, rises to the present discounted

value of future marginal income from capital net of depreciation, so that the arbitrage free

condition holds.20 Hence, banks earn no rent.

18Thus, the stochastic discount factors for the holders of bank equity and deposits, ΛV,t are ΛR,t, respec-
tively, equal the one for unproductive agents. Every unproductive agent has an identical stochastic discount
factor in each period due to the log utility function.

19This behaviour implies that every agent holds some amount of capital to sell after any history. Given
Eq. (18), a productive agent invests in new capital, which becomes existing capital in the next period. If
a productive agent becomes unproductive afterward, then the agent sells only part of the agent’s capital in
each period.

20This arbitrage free condition is incorporated by Eq. (22). See footnote 17 for more details.
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4.5 Minimum equity-to-asset ratio based on Value-at-Risk

The number of possible values of the aggregate productivity shock in the next period, αt+1,

is two in each period, as assumed above. I denote by ωt+1 the smaller market value of each

unit of bank assets in the next period, αt+1 + Qt+1, given the state of period t. Given a

sufficiently high probability of the low state as implied by the values of η̄α and η
α
specified

above, each bank limits the issuance of deposits to satisfy:

R̄tBB,t = ωt+1KB,t, (24)

for all t, so that no bank run will occur in the next period.21

This result holds because a bank suffering a run has to immediately sell its entire capital

in the secondary market despite a lemons problem. Thus, eliminating the possibility of a

run in the next period increases the value of equity, VtSB,t−1, for current bank equity holders

in each period t. Also, banks minimize equity issuance as long as they remain free of a run

in the next period. Banks prefer deposits to equity as a funding source, because the equity

transaction cost, ζ, makes agents require a higher rate of return on equity than deposits.22

The right-hand side of Eq. (24) is the Value-at-Risk of bank assets, that is, the market

value of the assets in the worst-case scenario. The limit on deposits based on Value-at-Risk

21This result is similar to endogenous borrowing constraints considered by Geanakoplos (2009). The
difference is in that the cost of default arises from asymmetric information in this paper.

22To see this result, compare Eqs. (10) and (11).
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implies a minimum equity-to-asset ratio that each bank satisfies to avoid a bank run:23

VtSB,t

BB,t + VtSB,t

=
Et

{

ΛV,t+1(1 + ζ)−1
[

αt+1 +Qt+1(1− δ̂t+1)
−1(1− δ̄)− ωt+1

]

KB,t

}

Qt(1− δ̂t)−1KB,t

=
Et

(

ΛV,t+1

{[

Qt+1(1− δ̂t+1)
−1(1− δ̄)−Qt+1

]

+ (αt+1 +Qt+1 − ωt+1)
})

(1 + ζ)Qt(1− δ̂t)−1
.

(25)

The numerator is the amount of equity that a bank must issue. This term equals the expected

discounted difference between the present discounted value of future revenues from bank

assets and the limit on deposits.24 This term is discounted by ΛV,t+1(1 + ζ)−1, which is the

pricing kernel for equity in Eq. (10). The denominator is the total size of the balance sheet

at the end of the period, which equals the sum of deposits and equity value, BB,t + VtSB,t.

The second line of Eq. (25) decomposes the numerator into two factors: the expected

illiquidity of bank assets and the downside risk to the market value of bank assets. In Eq.

(25), the degree of illiquidity of bank assets in the next period is represented by Qt+1(1 −

δ̂t+1)
−1(1 − δ̄) − Qt+1. Note that Qt+1(1 − δ̂t+1)

−1 equals the present discounted value of

future marginal income from capital net of depreciation, while Qt+1 is the secondary market

price of capital. The downside risk to the market value of bank assets is represented by

αt+1 +Qt+1 − ωt+1, where ωt+1 denotes the lowest possible value of αt+1 +Qt+1 in the next

period given the state of period t, as defined above.

23Eq. (25) is derived from LB,t = 0 and Eqs. (10), (12), (16), (22), and (24). Substituting LB,t = 0 and

Eqs. (16) and (22) into Eq. (12) yields BB,t + VtSB,t = Qt(1 − δ̂t)
−1KB,t. To confirm the first equality

in Eq. (25), substitute Eq. (22) into Dt+1 + Vt+1 in Eq. (10) and replace R̄tBB,t with ωt+1KB,t in the
equation, given Eq. (24).

24Note that Qt+1(1− δ̂t+1)
−1 equals the present discounted value of future marginal income from capital

net of depreciation in period t + 1. Thus, [αt+1 + Qt+1(1 − δ̂t+1)
−1(1 − δ̄)]KB,t is the present discounted

value of current and future revenues from bank assets at the beginning of the next period.
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4.6 Numerical example of equilibrium dynamics

The minimum equity-to-asset ratio is dynamic because both the expected illiquidity of bank

assets and the downside risk to the market value of bank assets fluctuate over the business

cycle. To illustrate this result, Figure 1 shows a sample path of the stochastic dynamic

equilibrium with the parameter values specified above. The sample path is generated after

the aggregate productivity shock, αt, switches between the two values (i.e., a boom and a

recession) every four periods (i.e., years) for sufficiently many periods. This sample path

features a regular business cycle.

Figure 1 indicates that the minimum equity-to-asset ratio, VtSB,t/(BB,t + VtSB,t), co-

moves with output. This result is due to the downside risk to the market value of bank

assets. An increase in αt raises the secondary market price of capital, Qt, through a rise

in aggregate current income.25 At the same time, it pushes up the economic growth rate,

Yt/Yt−1. Thus, the cum-dividend market price of capital, αt + Qt, becomes higher during a

boom than a recession. The expected value of αt+1 + Qt+1 increases with αt, because the

level of αt is persistent given the stochastic process of αt specified above.26 Accordingly, the

downside risk to αt+1+Qt+1 becomes higher during a boom. This effect raises the minimum

equity-to-asset ratio during a boom.

The expected illiquidity of bank assets also fluctuates over the business cycle.27 During a

boom, a rise inQt induces productive agents to sell capital with lower depreciation rates.28 As

25With the log utility function, the effect of an increase in the expected future aggregate productivity, αt+1,
on Qt is completely offset by the effect of an expected rise in future consumption, ci,t+1, on the stochastic
discount factor, βci,t/ci,t+1.

26More specifically, the persistence is implied by the values of η̄α and η
α
.

27This feature of the model contrasts with Kiyotaki and Moore’s (2012) model, which takes shocks to asset
illiquidity as exogenous.

28The value of δ̂t remains below the upper bound, δ̄ + ∆, for all t, because productive agents sell some
capital with depreciation rates lower than δ̂t to obtain goods to invest in new capital. See Proposition 1
and Eq. (18) to confirm this behaviour of productive agents. The sales of high-quality capital by productive

agents ensure a positive trading volume in the secondary capital market by attracting buyers. Thus, δ̂t+1

fluctuates between δ̄ and δ̄ +∆, given Eq. (21).
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a result, the average depreciation rate of capital sold in the secondary market, δ̂t, drops. This

effect reduces the expected illiquidity of bank assets during a boom. This effect, however, is

dominated by the downside risk to the market value of bank assets, because δ̂t+1 does not

fluctuate enough when αt+1 affects δ̂t+1 only indirectly through Qt+1.

5 Implications for the dynamic bank capital rule in Basel III

Basel Committee announced a new regulatory bank capital standard, Basel III, in December

2010 (Basel Committee on Banking Supervision 2010). One of the new features of the

standard is a dynamic bank capital rule called countercyclical capital buffer. Under this

rule, the national authority in each country can require banks in its jurisdiction to increase

bank capital by 2.5% when excessive credit growth is observed. Basel III emphasizes common

equity as the core part of bank capital.

The cyclicality of the minimum equity-to-asset ratio shown above is consistent with

countercyclical capital buffer. Figure 1 shows that the banks’ share of aggregate capital,

KB,t/(KB,t+
∫

ki,t di), increases during a boom. This result holds because an increase in the

secondary market price of capital, Qt, during a boom induces productive agents to sell more

capital in the secondary market. Banks absorb the capital sold, given that unproductive

agents do not buy capital in the secondary market. Hence, the minimum equity-to-asset

ratio, VtSB,t/(BB,t + VtSB,t), rises with an expansion in financial intermediation during a

boom.

Banks in the model voluntarily satisfy the minimum equity-to-asset ratio to avoid a bank

run, given rationality and no agency problem with depositors or equity holders as assumed

above. This result provides an interpretation of Basel III such that Basel III imposes on

actual banks the behavior of rational banks with no agency problem, in case there is some

irrationality or moral hazard, such as risk shifting, at actual banks.
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This interpretation is consistent with the representative hypothesis proposed by Dewa-

tripont and Tirole (1994). In this hypothesis, they regard a regulator as an implicit agent

of depositors. Even though they do not model a regulator explicitly in their model, they

interpret the optimal contract between a bank and depositors as the prudential regulation

that an implicit regulator should impose on banks on behalf of depositors. In this paper,

the minimum equity-to-asset ratio can be interpreted as a regulation imposed by an implicit

regulator acting on behalf of many, small bank equity holders and depositors.

Also, a bank run in the equilibrium described above is self-fulfilling. As part of multiple

equilibria, there exists another equilibrium in which depositors never run to banks. This

feature of the model is the same as Diamond and Dybvig’s (1983) model. In the latter

equilibrium, banks do not have to issue common equity. In light of this result, countercyclical

capital buffer in Basel III can be interpreted as preventing over-optimistic behavior of banks.

If banks believe that a no bank-run equilibrium will hold, then they have no incentive to

maintain bank capital. In case such bank expectations are over-optimistic, policy makers

impose a bank capital requirement that is robust even if a self-fulfilling bank run can occur.

6 Conclusions

I have introduced banks into a dynamic stochastic general equilibrium model by featuring

asymmetric information as the underlying friction for banking. Banks are public companies

as in practice. In this environment, banks can issue liquid securities by pooling illiquid assets.

Banks, however, suffers a run if they fail to satisfy an endogenous minimum value for their

common equity. The minimum equity-to-asset ratio is increasing in the expected illiquidity

of bank assets as well as the downside risk to the market value of bank assets. It rises with

a credit expansion during a boom, if aggregate productivity shocks cause the business cycle.

This result is consistent with countercyclical capital buffer introduced by Basel III.
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In this paper, banks can make bank securities free of asymmetric information through

asset pooling. A question remains regarding how asymmetric information about the qualities

of bank securities affects the economy. Also, the calibration of the model implies a smaller

increase in the minimum equity-to-asset ratio during a boom than countercyclical capital

buffer. This result is based on the focus of the paper on a regular business cycle. It remains

a question if the quantitative implication of the model sustains in the presence of an asset

bubble, given the fact that a housing bubble in the U.S. led to the introduction of Basel III

after the recent financial crisis. Addressing these issues is left for future research.
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Figure 1: Dynamic equilibrium with banks: the business cycle driven by αt
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Notes: “KB,t/Aggregate capital” denotes KB,t/(KB,t +
∫

ki,t di). Parameter values are
(δ̄, ∆, φ, β, ζ, ρ) = (0.1, 0.09, 4.75, 0.99, 0.02, 0.45), (ᾱ, α) = (0.0306, 0.0294), and
η̄α = η

α
= 0.75. The figure shows a sample path after αt keeps changing its value every 4

periods for a sufficiently long time.
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Appendices (not for publication)

A Proof of Proposition 1

The first-order condition with respect to li,δ,t implies that each agent sells only the fraction

of the agent’s capital whose shadow value is exceeded by the market price, Qt:

li,δ,t =















ki,t−1(2∆)−1, if Qt > λi,t(1− δ),

0, otherwise,

(A.1)

where:

λi,t =















min{φ−1, Qt(1− δ̂t)
−1}, if φi,t = φ,

Qt(1− δ̂t)
−1, if φi,t = 0.

(A.2)

The variable λi,t denotes the shadow value of capital net of depreciation at the end of

period t (i.e., ki,t), so that λi,t(1 − δ) is the shadow value of capital with depreciation rate

δ. The envelop theorem implies that λi,t equals current consumption, ci,t, multiplied by the

Lagrange multiplier for Eq. (5). Also, given the envelop theorem, the first-order condition

with respect to ki,t yields Eq. (A.2), which implies that the value of λi,t equals the marginal

acquisition cost of capital net of depreciation for each agent. The minimum operator in Eq.

(A.2) reflects that productive agents can choose the cheaper way to obtain capital net of

depreciation between investing in new capital and buying existing capital in the secondary

capital market. The first and the second options, respectively, cost the amounts φ−1 and

Qt(1 − δ̂t)
−1 of goods per capital net of depreciation. Unproductive agents buy capital in

the secondary market for storing their wealth as they cannot invest in new capital.
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B Proof of Proposition 2

Proposition 2 is a corollary of the following two propositions:

Proposition B.1 There exists unique equilibrium in the basic model. The values of Qt and

µt in equilibrium are such that:















































µt = δ̄ +∆ and 1−Qtφ ≥ µt, if φβαt ≤ (1− β)(1− δ̄),

µt = δ̄ and 1−Qtφ = δ̄, if φβαt ∈ ((1− β)(1− δ̄),Λ) and ∆ = 0,

µt ∈
(

Ξ, δ̄ +∆
)

and 1−Qtφ ∈ (δ̄ −∆, µt), if φβαt ∈ ((1− β)(1− δ̄),Λ) and ∆ > 0,

µt = Ξ and 1−Qtφ ≤ δ̄ −∆, if φβαt ≥ Λ,

(B.1)

where Ξ ≡ δ̄ + (1−√
ρ)(1 +

√
ρ)−1∆ and:

Λ ≡ 1− δ̄ +∆

1− Ξ

[

1− δ̄

1− ρ
− β

(

∫ Ξ

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

Ξ

1− Ξ

2∆
dδ

)]

> (1− β)(1− δ̄). (B.2)

Proof. Eqs. (A.1) and (A.2) imply that each agent sells the fraction of capital whose

depreciation rate is greater than δi,t, which is defined as:

δi,t =















1−Qtφ, if φi,t = φ,

δ̂t, if φi,t = 0.

(B.3)
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Substituting this into Eq. (7) yields:

δ̂t =
ρ
∫ δ̄+∆

max{δ̄−∆, min{1−Qtφ, δ̂t}}
δ(2∆)−1 dδ + (1− ρ)

∫ δ̄+∆

δ̂t
δ(2∆)−1 dδ

ρ
∫ δ̄+∆

max{δ̄−∆, min{1−Qtφ, δ̂t}}
(2∆)−1 dδ + (1− ρ)

∫ δ̄+∆

δ̂t
(2∆)−1 dδ

. (B.4)

Due to the log utility function, each agent consumes a fraction 1 − β of net worth and

saves the rest in each period:

ci,t = (1− β)

(

αt +

∫ δi,t

δ̄−∆

λi,t(1− δ)

2∆
dδ +

∫ δ̄+∆

δi,t

Qt

2∆
dδ

)

ki,t−1, (B.5)

λi,tki,t = β

(

αt +

∫ δi,t

δ̄−∆

λi,t(1− δ)

2∆
dδ +

∫ δ̄+∆

δi,t

Qt

2∆
dδ

)

ki,t−1. (B.6)

In these equations, capital that the agent keeps is evaluated by its shadow value, λi,t, and

capital that the agent sells is evaluated by the secondary market price, Qt. Combining Eqs.

(5), (8), (A.1) and (B.6) and normalizing the combined equation by unproductive agents’

capital at the beginning of the period,
∫

{i|φi,t=0}
ki,t−1 di, I can obtain:

Qt

1− δ̂t

{

1− δ̄

1− ρ
− ρ

1− ρ

∫ max{δ̄−∆, min{1−Qtφ, δ̂t}}

δ̄−∆

1− δ

2∆
dδ

}

= β

(

αt +
Qt

1− δ̂t

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

δ̂t

Qt

2∆
dδ

)

. (B.7)

Given the normalization, the left-hand side is the shadow value of capital net of depreciation

that must be held by unproductive agents at the end of the period for a given amount of

capital sold by productive agents, and the right-hand side is the fraction of unproductive

agents’ net-worth that is spent on capital net of depreciation for saving. The market clearing

condition (Eq. 8) requires both sides to be equal. Overall, Eqs. (B.4) and (B.7) jointly

determine the equilibrium values of Qt and δ̂t given the aggregate productive shock, αt.
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Rewrite Eqs. (B.4) and (B.7) as:

0 = Ψ(Qt, δ̂t) ≡ (1− ρ)(δ̂t)
2 − 2δ̂t(δ̄ +∆− ρmax{δ̄ −∆, min{1−Qtφ, δ̂t}})

+ (δ̄ +∆)2 − ρ(max{δ̄ −∆, min{1−Qtφ, δ̂t}})2, (B.8)

0 = Γ(Qt, δ̂t) ≡ 1− δ̄ − ρ

∫ max{δ̄−∆, min{1−Qtφ, δ̂t}}

δ̄−∆

1− δ

2∆
dδ

− β(1− ρ)

[

(1− δ̂t)αt

Qt

+

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

δ̂t

1− δ̂t
2∆

dδ

]

. (B.9)

Hereafter a “root” means a root for Ψ(Qt, δ̂t) = 0 and Γ(Qt, δ̂t) = 0 unless mentioned

otherwise.

Given max{δ̄ −∆, min{1 − Qtφ, δ̂t}} in Eqs. (B.8) and (B.9), it is convenient to split

the domain of Qt into three regions, [0, (1− δ̄−∆)φ−1), [(1− δ̄−∆)φ−1, (1− δ̄+∆)φ−1], and

((1− δ̄ +∆)φ−1,∞). For each of the three regions, I will derive the necessary and sufficient

conditions under which Γ(Qt, δ̂t) = 0 and Ψ(Qt, δ̂t) = 0 have a root in the region, given

δ̂t ∈ [δ̄ −∆, δ̄ +∆].

First, suppose Qt ∈ ((1− δ̄ +∆)φ−1,∞). In this case max{δ̄ −∆, min{1−Qtφ, δ̂t}} =

δ̄ −∆ as δ̂t ≥ δ̄ −∆ > 1−Qtφ. Then Eq. (B.8) yields that δ̂t = δ̄ + (1−√
ρ)(1 +

√
ρ)−1∆.

Note that ∂Γ(Qt, δ̂t)/∂Qt > 0 given max{δ̄ − ∆, min{1 − Qtφ, δ̂t}} = δ̄ − ∆. Thus, there

exists unique root that satisfies Qt ∈ ((1− δ̄+∆)φ−1,∞) and δ̂t ∈ [δ̄−∆, δ̄+∆] if and only

if Γ((1− δ̄ +∆)φ−1, δ̄ + (1−√
ρ)(1 +

√
ρ)−1∆) < 0, which is equivalent to:

φβαt >
1− δ̄ +∆

1− Ξ

[

1− δ̄

1− ρ
− β

(

∫ Ξ

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

Ξ

1− Ξ

2∆
dδ

)]

, (B.10)

where Ξ ≡ δ̄ + (1−√
ρ)(1 +

√
ρ)−1∆.

Second, suppose Qt ∈ [0, (1− δ̄−∆)φ−1). In this case max{δ̄−∆, min{1−Qtφ, δ̂t}} = δ̂t

as δ̂t ≤ δ̄+∆ < 1−Qtφ. Then Eq. (B.8) implies that δ̂t = δ̄+∆. Eq. (B.9) in turn implies
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that Qt = (1 − δ̄ − ∆)βαt(1 − β)−1(1 − δ̄)−1. Thus, there exists unique root that satisfies

Qt ∈ [0, (1−δ̄−∆)φ−1) and δ̂t ∈ [δ̄−∆, δ̄+∆] if and only if (1−δ̄−∆)βαt(1−β)−1(1−δ̄)−1 <

(1 − δ̄ − ∆)φ−1, which is equivalent to φβαt < (1 − β)(1 − δ̄) given the assumption that

∆ ∈ [0,min{δ̄, 1− δ̄}). It can be shown that Γ((1− δ̄+∆)φ−1, δ̄+(1−√
ρ)(1+

√
ρ)−1∆) < 0

and φβαt < (1− β)(1− δ̄) are mutually exclusive, given the assumption that ρ < 1.

Third, suppose Qt ∈ [(1− δ̄−∆)φ−1, (1− δ̄+∆)φ−1]. In this case, max{δ̄−∆, min{1−

Qtφ, δ̂t}} = min{1 − Qtφ, δ̂t} as 1 − Qtφ ≥ δ̄ − ∆ and δ̂t ≥ δ̄ − ∆. Moreover, min{1 −

Qtφ, δ̂t} = 1−Qtφ because, given Eq. (B.8), 1−Qtφ > δ̂t would imply δ̂t = δ̄+∆ as shown

in the second case above, which contradicts 1 −Qtφ ≤ δ̄ +∆. Given max{δ̄ −∆, min{1 −

Qtφ, δ̂t}} = 1 − Qtφ, Eq. (B.8) implies that 1 − Qtφ = [1 + (
√
ρ)−1]δ̂t − (

√
ρ)−1(δ̄ + ∆).

Substituting this equation in Eq. (B.9), denote Γ(φ−1{1−[1+(
√
ρ)−1]δ̂t+(

√
ρ)−1(δ̄+∆)}, δ̂t)

by Θ(δ̂t). It is possible to show that dΘ(δ̂t)/dδ̂t < 0, given the assumption that δ̄ +∆ < 1.

Note that Qt ∈ [(1 − δ̄ − ∆)φ−1, (1 − δ̄ + ∆)φ−1] is equivalent to δ̂t ∈ [δ̄ + (1 − √
ρ)(1 +

√
ρ)−1∆, δ̄ +∆] given 1−Qtφ = [1 + (

√
ρ)−1]δ̂t − (

√
ρ)−1(δ̄ +∆). Thus there exists unique

root that satisfies Qt ∈ [(1 − δ̄ − ∆)φ−1, (1 − δ̄ + ∆)φ−1] and δ̂t ∈ [δ̄ − ∆, δ̄ + ∆] if and

only if Θ(δ̄ + (1 − √
ρ)(1 +

√
ρ)−1∆) ≥ 0 and Θ(δ̄ + ∆) ≤ 0, which are equivalent to

Γ((1− δ̄ +∆)φ−1, δ̄ + (1−√
ρ)(1 +

√
ρ)−1∆) ≥ 0 and φβαt ≥ (1− β)(1− δ̄).

Hence combining the three cases for the value of Qt described above proves uniqueness

of equilibrium.

Proposition B.2 Denote
∫

xi,tdi by Xt and
∫

yi,tdi by Yt. Then, in equilibrium in the basic
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model:

Xt

Yt



































































= 0, if φβαt(1− δ̄)−1 ≤ 1− β,

< β − (1− β)(1− δ̄)

φαt

, if ∆ > 0 and φβαt(1− δ̄)−1 > 1− β,

<
βρ

1− β(1− ρ)
, if ∆ > 0 and φβαt(1− δ̄)−1 ≥ (1− ρ)−1 − β,

= β − (1− β)(1− δ̄)

φαt

, if ∆ = 0 and φβαt(1− δ̄)−1 ∈ (1− β, (1− ρ)−1 − β),

=
βρ

1− β(1− ρ)
, if ∆ = 0 and φβαt(1− δ̄)−1 ≥ (1− ρ)−1 − β.

(B.11)

Proof. First, suppose φβαt ≤ (1− β)(1− δ̄). The part of the proof of Proposition B.1 for

this case shows δ̂t = δ̄ +∆ ≤ 1− Qtφ in this case. Similarly to Eq. (A.2), it can be shown

that xi,t = 0 for agents with φi,t = φ, if φ−1 > Qt(1− δ̂t)
−1. Thus Xt/Yt = 0.

Second, suppose φβαt > (1− β)(1− δ̄) and ∆ > 0. The part of the proof of Proposition

B.1 for this case shows φ−1 < Qt(1− δ̂t)
−1 in this case. Then, the equilibrium value of Xt/Yt

is determined by:

Xt

Yt

=
ρ

αt

[

βαt + β

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

Qt

2∆
dδ − (1− β)

∫ max{δ̄−∆, 1−Qtφ}

δ̄−∆

1− δ

2∆φ
dδ

]

, (B.12)

which is derived from Eqs. (5) and (B.6) for productive agents and Yt = αt

∫

ki,t−1di, given

φβαt > (1− β)(1− δ̄).
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Substituting Eq. (B.12) in the second line of Eq. (B.11), it can be shown that:

φαt

[

β − (1− β)(1− δ̄)

φαt

− Xt

Yt

]

= φβαt − (1− β)(1− δ̄)

− ρ

[

φβ

(

αt +

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

Qt

2∆
dδ

)

− (1− β)

∫ max{δ̄−∆, 1−Qtφ}

δ̄−∆

1− δ

2∆
dδ

]

= (1− ρ)φβαt −
∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

ρφβQt

2∆
dδ

− (1− β)

[

ρ

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

1− δ

2∆
dδ + (1− ρ)

(

∫ δ̄+∆

δ̂t

1− δ

2∆
dδ +

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ

)]

> (1−ρ)

[

φβαt − (1− β)

(

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

δ̂t

1− δ̂t
2∆

dδ

)]

−
∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

ρφQt

2∆
dδ.

(B.13)

The last inequality is obtained by substituting φ−1 < Qt(1 − δ̂t)
−1 and Eq. (B.4), which

implies:

ρ

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

1− δ̂t
2∆

dδ + (1− ρ)

∫ δ̄+∆

δ̂t

1− δ̂t
2∆

dδ

= ρ

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

1− δ

2∆
dδ + (1− ρ)

∫ δ̄+∆

δ̂t

1− δ

2∆
dδ. (B.14)

Substituting Eq. (B.14) into Eq. (B.7) yields that:

βαt =

Qt

1− δ̂t

[

ρ

1− ρ

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

1− δ̂t
2∆

dδ + (1− β)

(

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

δ̂t

1− δ̂t
2∆

dδ

)]

.

(B.15)
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Then substituting this into the right-hand side of Inequality (B.13) implies that the right-

hand side of Inequality (B.13) equals:

(1− ρ)(1− β)

(

φQt

1− δ̂t
− 1

)

[

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

δ̂t

1− δ̂t
2∆

dδ

]

, (B.16)

which is positive given φ−1 < Qt(1 − δ̂t)
−1. Thus β − (1 − β)(1 − δ̄)(φαt)

−1 > Xt/Yt if

φβαt > (1− β)(1− δ̄) and ∆ > 0.

Third, suppose φβαt ≥ [(1− ρ)−1 − β](1− δ̄) and ∆ > 0. Eq. (B.12) implies that:

φαt

ρ

[

βρ

1− β(1− ρ)
− Xt

Yt

]

=
(1− ρ)β2φαt

1 − β(1− ρ)

−
[

φβ

(

αt +

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

Qt

2∆
dδ

)

− (1− β)

∫ max{δ̄−∆, 1−Qtφ}

δ̄−∆

1− δ

2∆
dδ

]

. (B.17)

Solving Eq. (B.15) for Qt(1− δ̂t)
−1 and substituting it in the right-hand side of Eq. (B.17),

it can be shown that βρ[1− β(1− ρ)]−1 −Xt/Yt > 0 if and only if:

β2φαt(1− ρ)

1− β(1− ρ)

(

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ −

∫ δ̂t

max{δ̄−∆, 1−Qtφ}

1− δ̂t
2∆

dδ

)

+

∫ max{δ̄−∆, 1−Qtφ}

δ̄−∆

1− δ

2∆
dδ

[

ρ

1− ρ

∫ δ̄+∆

max{δ̄−∆, 1−Qtφ}

1− δ̂t
2∆

dδ

+(1− β)

(

∫ δ̂t

δ̄−∆

1− δ

2∆
dδ +

∫ δ̄+∆

δ̂t

1− δ̂t
2∆

dδ

)]

> 0. (B.18)

This strictly inequality holds, as the part of the proof of Proposition B.1 for φβαt ≥ [(1 −

ρ)−1 − β](1− δ̄) and ∆ > 0 shows that δ̂t > δ̄ −∆, given ∆ > 0.

Forth, suppose φβαt > (1 − β)(1 − δ̄) and ∆ = 0. The part of the proof of Proposition

B.1 for this case shows δ̂t = δ̄ ≥ 1 − Qtφ in this case. Aggregating Eqs. (5) and (B.6) for
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each type of agent yields that:

φ−1

∫

{i|φi,t=φ}

ki,tdi = β(αt +Qt)ρ

∫

ki,t−1di, (B.19)

Qt(1− δ̄)−1

∫

{i|φi,t=0}

ki,tdi = β(αt +Qt)(1− ρ)

∫

ki,t−1di, (B.20)

∫

ki,tdi = φXt + (1− δ̄)

∫

ki,t−1di, (B.21)
∫

{i|φi,t=0}

ki,tdi ≤ (1− δ̄)

∫

ki,t−1di. (B.22)

It is straightforward to show that, if δ̄ = 1−Qtφ, then Xt/Yt = β − (1− β)(1 − δ̄)(φαt)
−1.

Inequality (B.22) implies that φβαt ≤ [(1−ρ)−1−β](1− δ̄) must hold. (Note that Xt > 0 is

satisfied given φβαt > (1− β)(1 − δ̄).) On the other hand, if δ̄ > 1 − Qtφ, then productive

agents sell all of their capital, given Eq. (A.1). Thus Inequality (B.22) must hold in equality,

which implies Xt/Yt = βρ[1 − β(1 − ρ)]−1. In this case, δ̄ > 1 − Qtφ is equivalent to

φβαt > [(1− ρ)−1 − β](1− δ̄).

C The market clearing condition for Qt and the definitions of δ̂t, ΛV,t, and ΛR,t

in the model of banking

The definition of the average depreciation rate of capital sold in the secondary market, δ̂t,

is:

δ̂t =

∫ ∫ δ̄+∆

δ̄−∆
δ li,δ,t dδ di+ δ̄LB,t

∫ ∫ δ̄+∆

δ̄−∆
li,δ,t dδ di+ LB,t

. (C.1)

Note that the average depreciation rate of capital sold by each bank is the unconditional

average, δ̄. Thus, δ̄LB,t is the total depreciation of capital sold by banks.

38



The market clearing condition for the secondary market price of capital, Qt, is:

∫

hi,t di+HB,t =

∫ ∫ δ̄+∆

δ̄−∆

li,δ,t dδ di+ LB,t, (C.2)

which adds the sale and the purchase of capital by banks to Eq. (8) in the basic model.

The definitions of the stochastic discount factors for the agents holding bank equity and

deposits, ΛV,t+1 and ΛR,t+1, are:

ΛV,t+1 ≡
βci∗,t
ci∗,t+1

, i∗ ≡ argmax
i∈[0,1]

Et

[

βci,t(Dt+1 + Vt+1)

(1 + ζ)ci,t+1

]

, (C.3)

ΛR,t+1 ≡
βci∗∗,t
ci∗∗,t+1

, i∗∗ ≡ argmax
i∈[0,1]

Et

[

βci,tR̃t+1

ci,t+1

]

, (C.4)

respectively. These definitions imply that the buyers of bank deposits and equity are those

who value them most. Otherwise, there would exist some agents whose first-order conditions

with respect to si,t or bi,t do not hold with equality. In such a case, the optimum condition

for the agents’ utility maximization problem would be violated.

D Proof of Proposition 3

I solve the banks’ profit maximization problem (15) to prove Proposition 3. As assumed in

the main text, the number of exogenous states is two in each period. Given the values of

period-t variables, denote the smaller value of αt+1 + Qt+1 by ωt+1 and the larger value by

ω̄t+1. The conditional probability that αt+1 + Qt+1 = ω̄t+1 is denoted by Pt(ω̄t+1), and the

one for αt+1 +Qt+1 = ωt+1 is denoted by Pt(ωt+1).

I start from proving the following lemma:

Lemma 1 Suppose that Ωt+1 satisfies Eqs. (D.9)-(D.11) for period t+1. Split the constraint

set of the maximization problem (15) into three regions: R̄tBB,t ≤ ωt+1KB,t; R̄tBB,t ∈
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(ωt+1KB,t, ω̄t+1KB,t]; and R̄tBB,t > ω̄t+1KB,t. Then, in equilibrium, R̄tBB,t equals ωt+1KB,t

at optimum in the first region and ω̄t+1KB,t at optimum in the second region.

Proof. Use the Lagrange method to solve the maximization problem in the first and the

second region. For the second region, solve the maximization problem in the closure of the

region and suppose that Ωt+1 takes the limit value when R̄tBB,t = ωt+1KB,t. This makes the

function Ωt+1 differentiable in each region. This expansion of the second region does not affect

the solution to the maximization problem, since it will be shown that R̄tBB,t = ω̄t+1KB,t at

optimum in the second region.

In the first region, R̄t is determined solely by Eq. (11) and can be taken as exogenous

for a bank. Eq. (11) implies that R̄t > 0, since agents never choose zero consumption with

the time-separable log utility function in equilibrium. The first-order condition with respect

to BB,t is:

1− 1

1 + ζ
Et

[

βci,tR̄t

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

− θ̄rgn1,tR̄t+1 = 0, (D.5)

where θ̄rgn1,t is the Lagrange multiplier for the upper bound of the first region (R̄tBB,t ≤

ωt+1KB,t). Thus, θ̄rgn1,t = ζ(1 + ζ)−1(R̄t)
−1 > 0, given ζ > 0 and R̄t > 0. Hence, R̄tBB,t =

ωt+1KB,t at optimum in the first region.

For the second region, if KB,t = 0, then the claim in the lemma is automatically satisfied

since Eq. (11) implies that BB,t must be 0, given thatKB,t(BB,t)
−1 in the equation is replaced

with infinity if BB,t = 0. Hereafter suppose KB,t > 0 in the second region. In equilibrium,

Qt is alway positive and thus ωt > 0 for all t, since otherwise each agent would demand an

infinite amount of capital in the secondary market, which would violate the market clearing

condition for the secondary capital market. In the second region, KB,t > 0 and ωt+1 > 0

imply that BB,t > 0 and R̄t > 0, since BB,t must be non-negative by the non-negativity

constraint. The first-order conditions with respect to BB,t and R̄t in the second region are
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respectively:

1− Pt(ω̄t+1)

1 + ζ
Et

[

βci,tR̄t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

+ (θrgn2,t − θ̄rgn2,t)R̄t

− θPC,tPt(ωt+1)Et

[

βci,tωt+1KB,t

ci,t+1(BB,t)2

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ωt+1

]

= 0, (D.6)

− Pt(ω̄t+1)

1 + ζ
Et

[

βci,tBB,t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

+ (θrgn2,t − θ̄rgn2,t)BB,t

+ θPC,tPt(ω̄t+1)Et

[

βci,t
ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

= 0, (D.7)

where θ̄rgn2,t is the Lagrange multiplier for the upper bound of the closure of the second

region (R̄tBB,t ≤ ω̄t+1KB,t), θrgn2,t is the Lagrange multiplier for the lower bound of the

closure of the second region (R̄tBB,t ≥ ωt+1KB,t), and θ̄PC,t is the Lagrange multiplier for

Eq. (11). Eqs. (D.6) and (D.7) imply that θPC,t = BB,t. Substituting this into Eq. (D.6)

leads to:

(θ̄rgn2,t − θrgn2,t)R̄t =
ζPt(ω̄t+1)

1 + ζ
Et

[

βci,tR̄t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 +Qt+1 = ω̄t+1

]

, (D.8)

which in turn indicates that θ̄rgn2,t > 0 and θrgn2,t = 0, given ζ > 0 and R̄t > 0. Thus,

R̄tBB,t = ω̄t+1KB,t at optimum in the second region.

Given this lemma, the following proposition holds:
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Proposition D.3 Suppose Eqs. (18)-(20) hold in equilibrium. Then:

R̃tBB,t−1 + (Dt + Vt)SB,t−1 =














[

αt + λB,t(1− δ̄)
]

KB,t−1, if R̄t−1BB,t−1 ≤ (αt +Qt)KB,t−1,

(αt +Qt)KB,t−1, if R̄t−1BB,t−1 > (αt +Qt)KB,t−1,

(D.9)

where λB,t ≡ max{λ′
B,t, λ

′′
B,t} and:

λ′
B,t ≡ Et

{

βci,t
[

αt+1 + λB,t+1(1− δ̄)− ωt+1

]

(1 + ζ)ci,t+1
+

βci,t ωt+1

ci,t+1

∣

∣

∣

∣

∣

φi,t = 0

}

, (D.10)

λ′′
B,t ≡ Pt(ω̄t+1)Et











βci,t
[

αt+1 + λB,t+1(1− δ̄)− ω̄t+1

]

(1 + ζ)ci,t+1

∣

∣

∣

∣

∣

φi,t = 0

αt+1 +Qt+1 = ω̄t+1











+ Et

[

βci,t (αt+1 +Qt+1)

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

, (D.11)

R̄tBB,t =















ωt+1KB,t, if λ′
B,t > λ′′

B,t,

ω̄t+1KB,t, if λ′
B,t < λ′′

B,t.

(D.12)

Also:

λB,t =
Qt

1− δ̂t
, if HB,t > 0, (D.13)

LB,t = 0, if δ̂t > δ̄ and HB,t > 0. (D.14)

Proof. Suppose that Ωt+1 satisfies Eqs. (D.9)-(D.11) for period t+1. Note that Eq. (D.9)

satisfies Eqs. (13) and (14).

To verify Eq. (D.9), split the constraint set of the maximization problem (15) into
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three regions: R̄tBB,t ≤ ωt+1KB,t; R̄tBB,t ∈ (ωt+1KB,t, ω̄t+1KB,t]; and R̄tBB,t > ω̄t+1KB,t.

First of all, any point in the third region, R̄tBB,t > ω̄t+1KB,t, is weakly dominated by

R̄tBB,t = ω̄t+1KB,t, since the feasible set of the choice variables is identical and the value of

Ωt+1 is always 0 in the third region while it can be positive with R̄tBB,t = ω̄t+1KB,t. Thus,

the third region can be ignored.

By Lemma 1, R̄tBB,t = ωt+1KB,t and R̄tBB,t = ω̄t+1KB,t at optimum in the first and

the second region, respectively. Denote the maximum values of the objective function of the

maximization problem (15) in the first and the second region by Ω′
t and Ω′′

t , respectively.

Given that Ωt+1 satisfies Eqs. (D.9)-(D.11) for period t+ 1, substituting the optimal values

of R̄tBB,t in the first and the second region and Eqs. (11), (13), and (14) into the objective

function of the maximization problem (15) yields:

Ω′
t = αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 + λ′

B,tKB,t, (D.15)

Ω′′
t = αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 + λ′′

B,tKB,t. (D.16)

The global solution to the maximization problem (15) can be obtained by maximizing the

values of Ω′
t and Ω′′

t with satisfying Eq. (16), LB,t ∈ [0, KB,t−1], and HB,t ≥ 0. Since the first

and the second region have the same feasible set of HB,t and LB,t, Ωt = Ω′
t if λ

′
B,t ≥ λ′′

B,t and

Ωt = Ω′′
t if λ′

B,t ≤ λ′′
B,t. This result proves Eqs. (D.10)-(D.12).

Given this result, now prove Eqs. (D.13) and (D.14). The maximization problem (15)

can be rewritten as:

Ωt = max
{HB,t,LB,t}

αtKB,t−1 −Qt(HB,t − LB,t)− R̃tBB,t−1 + λB,tKB,t,

s.t. Eqs. (13), (14) and (16), LB,t ∈ [0, KB,t−1], HB,t ≥ 0, (D.17)

where λB,t = max{λ′
B,t, λ

′′
B,t}. Note that Eq. (11) is already incorporated by the definitions
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of λ′
B,t and λ′′

B,t. The maximization problem (D.17) implies that the equilibrium value of

λB,t satisfies:

λB,t















































= Qt(1− δ̂t)
−1, if HB,t > 0,

= Qt(1− δ̄)−1, if LB,t ∈ (0, KB,t−1),

≤ Qt(1− δ̄)−1, if LB,t = KB,t−1,

∈ [Qt(1− δ̄)−1, Qt(1− δ̂t)
−1], if HB,t = 0 and LB,t = 0.

(D.18)

When δ̂t > δ̄, Eq. (D.18) implies that LB,t = 0 if HB,t > 0 and that HB,t = 0 if LB,t > 0.

Thus Eqs. (D.13) and (D.14) are proved. Substituting Eqs. (16) and (D.18) into the

objection function in the maximization problem (D.17) proves Eq. (D.9).

This proposition is sufficient to prove Proposition 3. In this proposition, λ′
B,t and λ′′

B,t

denote the presented discounted values of marginal income from capital net of depreciation

to a bank, when R̄tBB,t = ωt+1KB,t and R̄tBB,t = ω̄t+1KB,t, respectively. The proposi-

tion implies that a bank chooses the face value of bank deposits, R̄tBB,t, to maximize the

present discounted value of its future income. Also, the total market value of bank securities,

R̃tBB,t−1 + (Dt + Vt)SB,t−1, equals the present discounted value of the current and future

income from the bank’s capital, [αt + λB,t(1 − δ̄)]KB,t−1, given no bank run in the current

period. Note that a bank maximizes bank deposits given the risk of a bank run that the

bank chooses to take, because the bank equity holding cost, ζ, makes equity financing costly.

Also, Eq. (D.13) is a standard arbitrage free condition for a bank, in which the right-

hand side of the equation is the marginal acquisition cost of capital net of depreciation in the

secondary capital market. If the equality were violated, then the quantity of capital bought

by each bank in the market, HB,t, would be either infinity or 0, which would violate the

market clearing condition for the secondary capital market, or would contradict HB,t > 0.
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Finally, Eq. (D.14) implies that a bank is worse off by selling its capital randomly without

knowing the depreciation rate of each unit of its capital, if it buys capital in the secondary

capital market with an higher average depreciation rate (δ̂t) than the average depreciation

rate of its own capital (δ̄).

E The equilibrium laws of motion for aggregate variables in the model of bank-

ing

I show the equilibrium laws of motion in the model of banking. Suppose Eqs. (18)-(20) hold

in equilibrium.

E.1 The fraction of capital sold by each agent in the secondary capital market

Eq. (A.1) for the basic model holds in the model of banking. Thus:

λi,t =















φ−1, if φi,t = φ,

λU,t, if φi,t = 0,

(E.1)

where λU,t denotes the common value of λi,t for unproductive agents, which satisfies:















λU,t = Qt(1− δ̂t)
−1, if hi,t > 0 for all i s.t. φi,t = 0,

hi,t = 0 for all i s.t. φi,t = 0, if λU,t < Qt(1− δ̂t)
−1.

(E.2)

Substituting the value of λi,t for each type of agent into Eq. (A.1) yields the lower bound

of the depreciation rates of capital sold by each agent, δi,t:

δi,t =















δP,t ≡ max
{

δ̄ −∆, 1− φQt

}

, if φi,t = φ,

δU,t ≡ max
{

δ̄ −∆, 1−Qt(λU,t)
−1
}

, if φi,t = 0.

(E.3)
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The maximum operator ensures that the value of δi,t is within the range of the distribution

of depreciation rates. Eqs. (18) and (E.3) indicate that δP,t < δ̂t and δU,t ≤ δ̂t. Thus,

δi,t ≤ δ̄ + ∆ for all i. Also, substituting Eq. (18) into Eq. (E.3) yields δP,t < δ̂t, which

implies δ̂t < δ̄ +∆ given Eq. (C.1).

E.2 Consumption and saving by each agent

Given the log utility function, each agent consumes a fraction 1− β of net worth and saves

the rest in each period:

ci,t = (1− β)wi,t, (E.4)

λi,tki,t + bi,t + (1 + ζ)Vtsi,t = βwi,t, (E.5)

where wi,t is the agent’s net worth defined by:

wi,t ≡
(

αt +

∫ δi,t

δ̄−∆

λi,t(1− δ)

2∆
dδ +

∫ δ̄+∆

δi,t

Qt

2∆
dδ

)

ki,t−1 + R̃tbi,t−1 + (Dt + Vt)si,t−1. (E.6)

In Eqs. (E.5) and (E.6), the fractions of capital kept and sold by the agent are evaluated by

the shadow value of capital net of depreciation for the agent, λi,t, and the secondary market

price of capital, Qt, respectively.

E.3 The equilibrium laws of motion for aggregate variables

Given Eqs. (18)-(20):

xi,t > 0, hi,t = bi,t = si,t = 0, if φi,t = φ, (E.7)
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as described in Section 4.2. Also, in Proposition D.3, suppose that λ′
B,t > λ′′

B,t, HB,t > 0, and

λU,t < Qt/(1− δ̂t) for all t. Note that λ′
B,t > λ′′

B,t implies δ̂t > δ̄. Thus, R̄tBB,t = ωt+1KB,t,

LB,t = 0, and λB,t = Qt/(1− δ̂t). Also, hi,t = 0 and bi,t + si,t > 0 if φi,t = 0, given Eq. (E.2).

Now aggregate Eq. (E.5) for productive and unproductive agents separately. Then

substitute the equalities described in the previous paragraph and Eqs. (22), (E.1), (E.2),

(E.3) and (E.7) into Eqs. (5), (16), (C.1) and (C.2) and Eq. (E.5) after aggregating these

equations for each type of agent. It holds that:

KP,t

φ
= βρ

{(

αt +

∫ δP,t

δ̄−∆

1− δ

φ · 2∆ dδ +

∫ δ̄+∆

δP,t

Qt

2∆
dδ

)

(KP,t−1 +KU,t−1)

+

[

αt +
Qt(1− δ̄)

1− δ̂t

]

KB,t−1

}

, (E.8)

λU,tKU,t +

[

(1 + ζ)Qt

1− δ̂t
− ζωt+1

R̄t

]

KB,t =

β(1− ρ)

{[

αt +

∫ δU,t

δ̄−∆

λU,t(1− δ)

2∆
dδ +

∫ δ̄+∆

δU,t

Qt

2∆
dδ

]

(KP,t−1 +KU,t−1)

+

[

αt +
Qt(1− δ̄)

1− δ̂t

]

KB,t−1

}

, (E.9)

KP,t = φXt + ρ (KP,t−1 +KU,t−1)

∫ δP,t

δ̄−∆

1− δ

2∆
dδ, (E.10)

KU,t = (1− ρ) (KP,t−1 +KU,t−1)

∫ δU,t

δ̄−∆

1− δ

2∆
dδ, (E.11)

KB,t = (1− δ̂t)HB,t + (1− δ̄)KB,t−1, (E.12)

KP,t +KU,t +KB,t = φXt + (1− δ̄)(KP,t−1 +KU,t−1 +KB,t−1), (E.13)

δ̂t =
ρ
∫ δ̄+∆

δP,t
δ dδ + (1− ρ)

∫ δ̄+∆

δU,t
δ dδ

ρ(δ̄ +∆− δP,t) + (1− ρ)(δ̄ +∆− δU,t)
, (E.14)

Qt

1− δ̂t
= Et







βci,t

[

αt+1 +
Qt+1

1−δ̂t+1

(1− δ̄)− ωt+1

]

(1 + ζ)ci,t+1
+

βci,t ωt+1

ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0







, (E.15)
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where KP,t ≡
∫

{i|φi,t=φ}
ki,t di and KU,t ≡

∫

{i|φi,t=0}
ki,t di, and BU,t and SU,t are similarly

defined. Also, given the value of αt+1, Eqs. (E.4)-(E.6) imply:

βci,t
ci,t+1

=
λU,tKU,t +

[

(1+ζ)Qt

1−δ̂t
− ζωt+1

R̄t

]

KB,t

(αt+1 +Ψt+1)KU,t +
[

αt+1 +
Qt+1(1−δ̄)

1−δ̂t+1

]

KB,t

, (E.16)

where:

Ψt+1 ≡















∫ δP,t+1

δ̄−∆
1−δ
φ·2∆

dδ +
∫ δ̄+∆

δP,t+1

Qt

2∆
dδ, if φi,t+1 = φ,

∫ δU,t+1

δ̄−∆

λU,t+1(1−δ)

2∆
dδ +

∫ δ̄+∆

δU,t+1

Qt

2∆
dδ, if φi,t+1 = 0.

(E.17)

Given Eqs. (11) and (C.4) for R̄t, Eq. (E.3) for δP,t and δU,t, and the definition of ωt+1,

Eqs. (E.8)-(E.17) determine the equilibrium dynamics of (KP,t, KU,t, KB,t, HB,t, Xt, δP,t,

δU,t, δ̂t, Qt, ωt+1, R̄t, λU,t) recursively. Once the dynamics is obtained, the values of λ′
B,t,

λ′′
B,t and VtSB,t/(BB,t + VtSB,t) can be derived from Eqs. (D.10), (D.11), and (25), in order.

F The numerical solution method for dynamic equilibrium in the model of

banking

I solve the dynamic equilibrium with the set of parameter values specified in Section 4 by

approximating the equilibrium laws of motion, Eqs. (E.8)-(E.15), by the following projection

method:
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Step 0. Because the equilibrium laws of motion are homogeneous of degree 1

with respect to KP,t−1, KU,t−1 and KB,t−1, set grid points on the state

space for KP,t−1, KU,t−1, and the aggregate productivity shock, αt. The

value ofKB,t−1 is set to 1−KP,t−1−KU,t−1 on each grid point. Guess the

equilibrium values of endogenous variables on each grid point, including

ω̄t+1 and ωt+1. Call this correspondence between state variables and

endogenous variables as a “candidate array”.

Step 1. Suppose the candidate array returns the correct equilibrium values for

each state of KP,t, KU,t, KB,t, and the aggregate productivity shock in

the next period. The points between the grid points in the state space

are approximated by linear interpolation. Given this, derive another

candidate array for the current period that satisfies the equilibrium

laws of motion.

Step 2. Compare the candidate array for the current period and the one for

the next period. If the ratio of each element between the two arrays

becomes sufficiently close to 1, then take the candidate array as the

equilibrium correspondence. Otherwise, update the candidate array by

a linear combination of the two arrays and go back to Step 1.

In the numerical examples in this paper, I set grid points in the ± 5% range of the

deterministic steady state values of KP,t−1 and KU,t−1. The number of grid points are 20

for each of the two variables. The convergence criterion in Step 2 is 1e-03. In updating the

candidate array in Step 2, the weight on the candidate array for the current period is 0.001.

The initial guess in Step 0 is obtained through homotopy starting from the set of parameter

values with which the deterministic steady state provides a successful initial guess of the

candidate array that leads to convergence.
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The equilibrium laws of motion, Eqs. (E.8)-(E.15), are valid if Eqs. (18)-(20), λ′
B,t > λ′′

B,t,

HB,t > 0, and λU,t < Qt/(1−δ̂t), as described in Appendix E, and also if all variables are non-

negative. These inequalities are checked for each element of the converged candidate array.

Starting from the deterministic steady state, I run random simulations of the dynamics for

5000 periods to confirm that the equilibrium dynamics move within the grid points satisfying

the inequalities.
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