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Abstract
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1 Introduction

Firms grow by innovating and expanding the set of goods they produce. The knowledge

accumulated from different inventions varies greatly in its applicability to future innovations.

Some inventions, such as the transistor, create general purpose knowledge that can be applied

in a vast range of sectors. Other inventions, such as the space pen, introduce technologies

that are limited in their scope of application. Naturally, different types of innovation have

vastly different impacts on technological and economic growth; therefore, understanding the

effects of cross-sector knowledge spillovers on firm innovation and entry decisions is important

for analyzing the efficiency of R&D policies and resource allocation in the economy. It also

sheds light on path-dependent growth.

Existing theories of firm innovations, however, tend to treat different forms of technical

change as being isolated from each other and having equal importance. In this paper, we first

take an important step forward by constructing a quantitative measure that captures the

generality or applicability of different technologies. We explore empirically how firms make

their innovation decisions based on this measure and how their decisions, in turn, affect a

firm’s growth.

Motivated by the empirical observations, we develop a novel model of multi-sector firm in-

novation in which knowledge linkages across sectors are heterogenous. Our model has several

tractable implications. Most importantly, it captures the rich dynamics of firm innovation

and sequential entry into multiple sectors, which has not previously been explored. The

resulting sequential sectoral entry also explains scale dependent firm growth and volatility

of firm growth, sector size distribution, heterogeneous R&D intensities in different sectors

and the skewed concentration of firms across sectors. In addition, the model implies that

fixed R&D costs block knowledge circulation across sectors and distort the R&D resource

allocation by pushing research effort away from more applicable sectors to less applicable

ones. This R&D resource misallocation has a large negative impact on growth. A growth-

enhancing R&D policy thus not only encourages a firm’s overall R&D investment, but also

concentrates firm investment in sectors with highly applicable knowledge.

Based on the network formed by cross-sector patent citations, we employ Kleinberg’s

(1998) iterative algorithm to develop a measure, called the authority weight, which values a

sector’s importance as a knowledge contributor to the economy (i.e. knowledge generality

or applicability).1 Employing this measure, we find that, in U.S. patent data, different-sized

firms enter different sectors depending on the intrinsic knowledge utilization linkages among

sectors. Specifically, small firms tend to enter more general and more established sectors in

1A dual measure of the authority weight is the hub weight, which values a sector’s ability to learn from
other sectors.
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which the knowledge stock is large and the potential for future expansion into new sectors is

high. In contrast, large firms with a broader product scope enter younger, more pioneering

and less general sectors at the periphery of the technology space, where firms can enjoy

larger market shares. In addition, new firms self-select over a firm’s life cycle into sectors at

the center of the technology space and then gradually venture towards the fringe. Sequential

sectoral entrance appears to be a natural process of technological development.

More importantly, the knowledge authority weight of a firm’s existing product mix mat-

ters for its subsequent growth. After controlling for firm size, we find that firms who patent

in sectors with higher applicability are able to innovate faster in new sectors (extensive mar-

gin) and in their existing product set (intensive margin). While productivity and factor

inputs are important for a firm’s growth, the knowledge generality of its products matters

greatly as well.

Although a great deal of theoretical work has been done in recent years on innovation and

firm dynamics (e.g., Aghion and Howitt, 1992; Klette and Kortum, 2004; Luttmer, 2007;

Lentz and Mortensen, 2008; Bernard, Redding and Schott, 2009a, 2009b; Acemoglu and

Cao, 2010), most of these studies assume that a firm’s innovation applies to a product or

a sector that is randomly drawn from a potential pool.2 There are no explicit interactions

between different sectors or distinctions between innovations with different degrees of gen-

erality, hence there is no room to discuss explicitly the sequentiality of innovations among

different sectors and the relationship between R&D investment allocations across sectors and

economic growth.

Our second contribution is to develop a dynamic general equilibrium model of multi-

sector firm innovation and sectoral entry and exit that incorporates cross-sector knowledge

diffusion. Although only forty-one percent of U.S. manufacturing firms operate multiple

product lines, these firms account for ninety-one percent of total sales (Bernard, Redding

and Schott, 2006). Therefore, understanding how firms expand their product range adds

important insights to aggregate production. Our approach extends previous literature by

allowing for heterogeneous cross-sector knowledge spillovers, fixed sectoral R&D costs and

imitation (i.e. access to public knowledge). To provide economic incentives for developing

specific technologies, especially ones that could be widely applied to many sectors throughout

the economy, we assume that cross-firm knowledge spillover is incomplete and that firms can

accumulate private knowledge through previous innovations. At any given time, a multi-

sector firm makes sectoral entry, exit selections and R&D investment decisions, taking into

consideration the attributes of its current product mix and the exogenous knowledge linkages

across sectors. For a given sector, only firms that have accumulated enough knowledge capital

2Products and sectors are interchangable both in this paper and the papers listed.
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in related sectors self-select to enter.

The model provides a coherent framework to explain many observations at the firm

and sector levels and implies that fixed R&D costs distort the cross-sector R&D resource

allocation and generate a large negative effect on aggregate growth.

First, at the firm level, small firms and new firms grow faster because they self-select into

established sectors with general purpose knowledge, where the public knowledge stock is

abundant, allowing smaller firms to learn easily from other peers (intensive growth), and the

potential of applying the knowledge to innovating in other sectors is high (extensive growth).

By contrast, large multi-sector firms with significant private knowledge can afford to enter

less general sectors and enjoy larger market shares in these less developed frontier sectors.

Thus, after allowing for heterogeneous knowledge linkages between different sector pairs,

the two well-documented counteracting effects of R&D – the inter-firm knowledge spillover

effects and the rivalry effect – affect firms of varying sizes differently. Small firms focus more

on how much they can learn from public knowledge and extensive growth potential, while

large firms with ample knowledge are concerned more with their rivals and market shares.

Because knowledge in different sectors is related, firms can expand through the product

space by developing goods close to their current product mix. When the scope and generality

of a firm’s knowledge increase, so do the opportunities to innovate, profit and grow in related

sectors. As a feedback effect, existing sectors also benefit from the growth in the new

innovating sectors as a consequence of knowledge spillover in the opposite direction.

The fact that small firms self-select to enter center sectors also explains why small firms

exhibit more volatile growth relative to large firms. The central location on the product

network endows small firms with more open routes to new sectors and, on average, the

extensive margin contributes more to a smaller firm’s growth than that of a large firm.

The difficulty of overcoming entry costs when entering new sectors generates higher growth

rate turbulence. In addition, the model also endogenously gives rise to the Pareto firm size

distribution both within sectors and across all sectors, which is consistent with firm-level

evidence.

Second, at the sector level, our model provides a micro-founded explanation for heteroge-

nous sector sizes and R&D intensities. The cross-sector knowledge diffusion implies that

the value of the knowledge associated with a specific sector is not limited to the discounted

stream of future profits it generates in that sector, but more importantly, is determined by

the contribution of this knowledge to future innovations in related sectors. In general, the

knowledge of a better connected sector in the product space is more valuable. Hence, such

sectors attract a larger share of R&D investment from firms. In the patent data, we find

that both the numbers of firms and sector sizes (measured by the number of patents) are
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larger for sectors with higher applicability. These observations can be explained by firms’

sequential sectoral entry behavior. Every firm starts from highly connected center sectors,

but only large, highly knowledgable firms venture to the fringe of the product space. Thus,

center sectors accommodate a larger number of firms than peripheral sectors.

Third, our paper points out a new type of aggregate-level efficiency loss that occurs

because of sectoral entry barriers. Besides reducing the varieties available to consumers

and deterring extensive growth by small but fast growing firms, entry costs also cause a

misallocation of resources across sectors. An ideal resource allocation across sectors pushes

more resources towards sectors with high applicability, because these sectors are the centers

of knowledge circulation and impose a prominent, positive impact on economic growth. In

reality, only large firms can afford a series of fixed entry costs and reach the periphery

of the product space; small firms are excluded from cross-sector knowledge applications

between center sectors and peripheral sectors. The incomplete knowledge circulation across

the product space slows down growth in all sectors and reduces those of center sectors more

than the sizes of peripheral sectors. As a result, highly applicable sectors are smaller than

is justified by their knowledge contribution to the economy.

Our paper shows that innovation success does not arrive randomly at every sector and

that not all innovations in different sectors are equally valuable. The positive externalities

of knowledge spillovers from sectors with general purpose knowledge indicate that policies

should subsidize sectors that utilize and develop highly applicable, relevant and influential

technology. Since small firms tend to self-select into such sectors, this policy suggestion is

consistent with existing R&D subsidy programs that target small business growth.

To assess the success of the model and the growth effects of sectoral fixed R&D costs,

we estimate the model parameters using existing information of 42 SIC 2-3 digit sectors.

Specifically, we estimate the exogenous cross-sector knowledge diffusion matrix from patent

citation data and feed it into the model. For the scenario without fixed costs, we analytically

solve for general equilibrium. In the general case with sectoral entry costs, we simulate

an economy with a large number of multi-sector firms and set the sectoral fixed cost to

match the number of sectors for an average firm in the patent data. The simulation results

correspond to the empirical findings about scale-dependent sectoral entry decisions, the

positive correlation between a firm’s growth and initial product mix authority weight, and

the skewed concentration of firms, R&D investment and sector size distribution. We then

compare the growth rate of varieties and resource allocations under these two scenarios. In

the simulation, we find that when moving to the extreme case with no fixed R&D costs

in any sector, the growth of the total product varieties increases from 17 percent to 1200

percent; firms, R&D spending and varieties allocations become much less concentrated on
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the center sectors.

Our work contributes to the earlier literature in development economics that empha-

sizes the role of sectoral linkages and complementarity in explaining growth (Leontief, 1936;

Hirschman, 1958). Prior work in this area typically focuses on input-output relationships

between sectors (Jones, 2010a)3 or export-based measures of sectoral relatedness (Hidalgo,

Klinger and Hausmann, 2007). In our paper, we focus on sectoral linkages implied by knowl-

edge content. Our new measure exhibits several advantages. First, it is more suitable for

studying innovation and growth, as it reveals the intrinsic knowledge utilization between

sectors. Second, it is comparable across all sectors, instead of being sector-pairwise. Third,

it captures not only the direct impact of a given technology to the connected sectors but

also ranks its importance in the whole technology space.4

The observations in our paper add to the large empirical literature on knowledge spillovers

and externalities. Using firm-level R&D investment data in five high-tech industries and a dif-

ferent methodology, Bernstein and Nadiri (1988) find that inter-sectoral knowledge spillovers

are heterogenous and highly significant. In his survey paper, Wieser (2005) claims that

spillovers between sectors are more important than those within sectors, when considering

both the social and private return of R&D.

Our paper is also related to the expanding literature on misallocation and economic

growth.5 It is most closely related to Jones (2010b), who suggests that misallocation effects

can be amplified through the input-output structure of the economy. In the context of

knowledge spillovers, the misallocation of research resources affects growth because highly

applicable knowledge is not sufficiently internalized and utilized by innovating firms. In the

area of entry costs and growth, the paper also is related to Barseghyan (2008), Barseghyan

and DiCecio (2010) and Boedo and Mukoyama (2009), who study how entry and firing costs

affect productivity and output across countries through their impacts on firm size distribution

and the average productivity of producing firms.

The rest of the paper is organized as follows. Section 2 describes the construction of our

measure of authority weight and the empirical findings using patent citation data. Section

3 introduces the model and Section 4 discusses characteristics of the general equilibrium.

Section 5 simulates the economy with fixed R&D costs and tests the model’s implications.

Section 6 discusses welfare and policy implications. Section 7 concludes.

3Other research studies the role of input-output relationship in understanding sectoral co-movements and
the transmission of shocks over the business cycle, such as Lucas, 1981; Long and Plosser, 1993; Basu, 1995;
Horvath, 1998; Conley and Dupor, 2003; Carvalho, 2009.

4In the Appendix, we make a comparison between our measures of sectoral linkages and previous ones
based on input-output table and export data.

5For example, Ciccone (2002), Restuccia and Rogerson (2008), Hsieh and Klenow (2009).
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2 Empirical Evidence

2.1 Data Sources

We use patent applications in the 2006 edition of the NBER Patent Citation Data6 to

characterize firms’ innovation activities and their citations to trace the direction and intensity

of knowledge flows and to construct indices of knowledge linkages among sectors. The

data provides detailed information of every patent granted by the United States Patent

and Trade Office (USPTO) from 1976 to 2006.We summarize each firm’s patent stock in

each disaggregated technological class (intensive margin of innovation) and the number of

categories (extensive margin of innovation) for each year.7

Each patent corresponds to one of the 476 3-digit United States Patent Classification

System (USPCS) technological classes and also one of more than 800 7-digit International

Patent Classification (IPC) classes. We mostly report the results based on USPCS codes,

but we check for robustness using the IPC classes. We also present some evidence based

on industrial sector classification, as the model is estimated based on this categorization.

To translate the data into the industrial classifications, we use the 2005 edition of the con-

cordance table provided by the USPTO to map USPCS into SIC72 (Standard Industrial

Classification in 1972) codes, which constructs 42 industrial sectors.8 We summarize cita-

tions made to patents that belong to the same technological class to form the inter-sectoral

knowledge spillover network.

2.2 Construction of Sectoral Knowledge Authority Weight

This network structure formed by cross-sector patent citations contains rich information

about the knowledge linkages between sectors. Some sectors contain general purpose knowl-

edge that is widely applicable in other sectors. These sectors act as knowledge authorities

in the network. Other sectors rely on knowledge from many other sectors and serve as

important knowledge hubs. These sectors resemble focused hubs that direct users to the

recommended authorities in the network.

We apply an algorithm (Kleinberg, 1998) which extracts information from hyperlinked

6See Hall, Jaffe and Trajtenberg, 2001 for details.
7When firms accumulate more patents over time, they not only increase the number of patents in existing

patent categories, but also expand into new categories. These two measures of firm size are highly correlated.
8The patents are classified according to either the intrinsic nature of the invention or the function for which

the invention is used or applied. It is inherently difficult to allocate the technological category to economically
relevant industries in a differentiation finer than 42 sectors, even with detailed firm level information. First,
most of the patents are issued by multi-product firms that are present in multiple SIC-4 industries. Second,
in the best scenario, one only has industry information about the origin of the patents but not the industry
to which the patent is actually applied.
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environments to the cross-sector patent citation network. We use an index, the authority

weight, to capture the intuitive notions of the relevance, applicability and importance of

knowledge in different sectors. Sector i’s authority weight is proportional to the sum of the

hub weights of the sectors that utilize knowledge from sector i. Sector i’s hub weight is

proportional to the sum of the authority weights of the sectors that provide knowledge to

sector i.

Formally, let awi denote the authority weight and hwi denote the hub weight of sector i.

They are calculated according to the following iterative algorithm:

awi = λ
∑

j

W ijhwj

hwi = µ
∑

j

W jiawj

where λ and µ are the inverse of the norms of vectors aw and hw, respectively. W ij is

the weight of the link, corresponding to the strength of citations made by sector j (second

superscript) to sector i (the first superscript). We assume a simple form for that weight9

W ij =

{

1, if j is citing i

0, otherwise

Generally speaking, a sector with a high authority weight gives large knowledge flows

to sectors with highly ranked hub weights, and a sector with a high hub weight utilizes

large knowledge flows from sectors with highly ranked authority weights. This measure of

authority weight is more suitable for our purposes than a simple citation count (i.e. Garfield’s

impact factor) because not all citations are equally important. For example, when two sectors

receive the same number of citations, it is desirable to rank the sector that receives citations

from more important sectors higher than the other sector.

Figure 1 presents a three-dimensional network of inter-sectoral knowledge flows using

patent citation data. Each vertex corresponds to a sector defined at the 3-digit USPCS

level of disaggregation. Each directed link represents inter-sectoral citations, in which the

arrow points to the citing sector or the direction of the knowledge flow. These inter-sectoral

citations link all patent categories to form a globe-shaped network. The sectors located

at the center (fringe) of the globe have the highest (lowest) authority weights among all

categories.

In the data, the sectoral authority weight is positively correlated with the size of patent

9We also calculated aw and hw using the total number of citations from sector j to sector i as W ij and
find the results are robust to this alternative construction.
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Figure 1: Network of the Knowledge Flows Across Technological Classes

(a) Without Citation Links (b) With Citation Links

stocks and the total number of firms in that sector. Our model in Section 3 endogenously

generates this observation. In addition, authority weights and hub weights are highly cor-

related across sectors. Going forward, we only use the authority weight to measure the

applicability of a given sector to other sectors.

2.2.1 Properties of the Authority Weight

We find that the authority weight is greatly heterogenous across sectors, even using the most

disaggregated sector classification. The distribution of authority weights is highly skewed,

close to a log normal distribution. In addition, a sector’s authority weight ranking changes

over time. Table 1 presents the five technological categories with the highest authority weight

for the three years 1979, 1989 and 1999. In 1979, for example, the “Internal combustion

engines” technology is the most widely applicable, but it drops out of the top five in 1989

and in 1999. In 1999, “Semiconductor device manufacturing” becomes the most applicable

category.

We also translate the technological class into 42 industry sectors (at SIC 2-3 digit level)

and compute the authority weight using the same method as described.10 The variance of

log authority weight is smaller at the 42 sector level compared to the more disaggregated

classification. Table 2 shows the complete list of all 42 sectors sorted by authority weight in

2000. As one would expect, in general, the more complicated product classes such as “Elec-

tronics”and “Professional and scientific instruments”have higher authority weights, implying

10We use the total number of citations from sector j to sector i as W ij to calculate aw and hw. Because
most sectors cite each other at the less disaggregated 3-digit industrial level, using the previous weights
reduces significant heterogeneity in sectors’ authority weights and hub weights.
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Table 1: List of the Top Five Technological Categories in Terms of Authority Weight for 1979,
1989, and 1999

year category names authority weight

1999 438 Semiconductor device manufacturing: process 0.85278
1999 257 Active solid-state devices (e.g., transistors, solid-state diodes) 0.46518
1999 370 Multiplex communications 0.17430
1999 361 Electricity: electrical systems and devices 0.06167
1999 365 Static information storage and retrieval 0.04785

1989 514 Drug, bio-affecting and body treating compositions 0.93968
1989 424 Drug, bio-affecting and body treating compositions 0.29949
1989 428 Stock material or miscellaneous articles 0.05668
1989 604 Surgery 0.05495
1989 435 Chemistry: molecular biology and microbiology 0.05422

1979 123 Internal-combustion engines 0.99720
1979 514 Drug, bio-affecting and body treating compositions 0.04112
1979 60 Power plants 0.03811
1979 261 Gas and liquid contact apparatus 0.02636
1979 73 Measuring and testing 0.02058

that these sectors are more likely to be located at the center of the technology network. In

contrast, more primary products tend to be in the periphery. There are a few exceptions;

for example, “Transportation equipment” and “Aircraft and parts” both have low authority

weights, but this is not surprising given that the technologies in these sectors are likely to

be specialized.

2.3 Empirical Findings

We measure firm size by firm patent stock in all sectors.11 In the patent data, many firms

innovate in multiple sectors. Table 3 shows that more than half of firms innovate in more than

one sector, and larger firms innovate in many areas. For example, a firm that has registered

more than 10,000 patents by 2005 has inventions in some 260 different technological sector

categories on average. Even a small firm is likely to innovate in more than one sector

11We can use name-matching procedures provided by Hall, et al. (2005) to link the NBER patent data
to Compustat firm data; however, only 15% of the patenting firms are in Compustat. Based on this limited
information, we find that the patent stock is positively correlated with standard measures of firm size
(correlation coefficient is 0.6): sales and employment.
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Table 2: List of 42 Sectors Ranked According to the Authority Weight

Field Sector Name Authority Weight Hub Weight
36 Railroad equipment 0.00017 0.00021
38 Miscellaneous transportation equipment 0.00022 0.00027
37 Motorcycles, bicycles, and parts 0.00024 0.00022
35 Ship and boat building and repairing 0.00033 0.00029
28 Household appliances 0.00041 0.00070
25 Miscellaneous machinery, except electrical 0.00045 0.00033
14 Primary ferrous products 0.00059 0.00090
34 Guided missiles and space vehicles and parts 0.00069 0.00040
1 Food and kindred products 0.00093 0.00078
40 Aircraft and parts 0.00125 0.00108
39 Ordinance except missiles 0.00133 0.00102
7 Soaps, detergents, cleaners, perfumes, cosmetics and toiletries 0.00189 0.00158
11 Petroleum and natural gas extraction 0.00190 0.00170
3 Industrial inorganic chemistry 0.00232 0.00291
17 Engines and turbines 0.00268 0.00303
8 Paints, varnishes, lacquers, enamels, and allied products 0.00273 0.00346
24 Refrigeration and service industry machinery 0.00284 0.00304
15 Primary and secondary non-ferrous metals 0.00329 0.00358
9 Miscellaneous chemical products 0.00429 0.00428
5 Plastics materials and synthetic resins 0.00466 0.00657
18 Farm and garden machinery and equipment 0.00528 0.00593
19 Construction, mining and material handling machinery and equipment 0.00575 0.00614
13 Stone, clay, glass and concrete products 0.00670 0.00740
33 Motor vehicles and other motor vehicle equipment 0.00712 0.00693
2 Textile mill products 0.00776 0.00829
4 Industrial organic chemistry 0.00834 0.00898
6 Agricultural chemicals 0.00865 0.00651
20 Metal working machinery and equipment 0.00942 0.01143
10 Drugs and medicines 0.00982 0.00737
29 Electrical lighting and wiring equipment 0.01623 0.01278
30 Miscellaneous electrical machinery, equipment and supplies 0.01861 0.02048
22 Special industry machinery, except metal working 0.02046 0.02034
27 Electrical industrial apparatus 0.02110 0.02267
23 General industrial machinery and equipment 0.02431 0.02592
16 Fabricated metal products 0.02988 0.03529
31 Radio and television receiving equipment except communication types 0.03663 0.04815
42 All Other Sectors 0.03800 0.03936
12 Rubber and miscellaneous plastics products 0.04078 0.04329
26 Electrical transmission and distribution equipment 0.04212 0.05120
21 Office computing and accounting machines 0.32458 0.29495
41 Professional and scientific instruments 0.56854 0.56551
32 Electronic components and accessories and communications equipment 0.74939 0.76206
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Table 3: Number of Product Classes of Firm Innovation by Firm Size, 2005

number of patents average number average number of median number of percentage
of patents patent categories patent categories

1-10 3.1 1.7 1 46.4%
10-100 35.4 9.0 7 32.0%
100-1,000 320.7 42.1 35 16.7%
1,000-10,000 2733.9 128.3 119 4.3%
10,000-100,000 18410.9 259.4 254 0.6%

category.12

2.3.1 Firm Sizes, Innovation and Sectoral Entry

We first study how innovating firms expand across technological categories given the het-

erogenous authority weights of different patent classes. Our key finding is that the sectoral

entry decision is scale-dependent. Compared to small firms, large firms enter younger sectors

with lower authority weights, and the new sectors of large firms tend to be farther away from

their existing sectors in the technology space. Compared to existing sectors, the new sectors

of all firms tend to be younger, closer to those firms’ current product mixes, and have lower

authority weights. During a firm’s life cycle, a firm starts at the center of the technology

space and gradually ventures towards the periphery of the technology space. Our paper is

motivated by this finding and we will explain later that sequential sectoral entry is key to

understanding many other firm and sectoral level observations.

As a firm accumulates more patent stock and enters more sectors, its cross-sector distri-

bution of patents also changes. In order to summarize the position of a firm in the overall

technology space, we define a multi-product firm’s overall product authority weight, fawf,t,

as the patent stock-weighted average of the individual product’s authority weight. That is

fawf,t =
∑

i

awi,t(
psif,t
∑

i ps
i
f,t

),

where psif,t is the size of patent stock in technological category i owned by firm f in year t

and awi,t denotes the authority weight of the category i in year t.

The left panel in Figure 2 illustrates the scale dependence in the weighted average knowl-

edge applicability of the current product mix by distinguishing sectors new to a firm from

other sectors in which the firm innovates.13 A low authority weight of a given sector could

12Although our dataset is different, this observation is also consistent with the findings in Broda and
Weinstein (2007) that firms with higher sales also sell a greater variety of goods and sell in more sectors.

13We define a sector as new to a firm if the firm has not innovated in that sector in the past 10 years. In

12



Figure 2: Firm-level Observation: Scale Dependence of Authority Weight and Age of Firm’s Patents
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either imply that a sector is old and the knowledge is obsolete or that a sector is young and

pioneering, such that not many firms have entered it and produced patents. To distinguish

the former from the latter, we study the age of the sectors in which different-sized firms

innovate in the right panel of Figure 2.14 Firm sizes (i.e. patent stocks) are divided into 30

bins. Each graph presents the variable of interest according to the size bin of patent stocks

in 1990. To complement our findings, we also construct a sector-pair knowledge distance

measure in the Appendix which captures the shortest distance between two sectors in the

technology network formed by patent citations.

Two observations stand out. First, a larger firm’s product mix tends to be more applicable

and older; however, this observation is sharply reversed when focusing on the flow of newly

entered patent classes. Compared to small firms, large firms enter new sectors that have a

lower authority weight and are younger. Second, independent of firm size, the new sectors

entered by a given firm tend to be lower in applicability and younger relative to the existing

sectors.

To further investigate the innovation patterns over time, we run the following two fixed

the patent data, we find that the time gap between two innovations in the same sector by the same firm is
on average 2.2 years and, in rare cases, can be as high as 31 years. 95% of firms have a gap smaller than 7
years.

14The product age is defined as the prevailing year minus the first year in which the product exists in the
patent dataset. The NBER patent data (1963-99 version) includes patents back to 1901.
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effect regressions, controlling for firm fixed effects in each case.

ln xif,t = β0 + β1 ln psf,t + β2Iif,t + µf + t + εif,t

ln xif,t = β ′
0 + β ′

1 ln psf,t + β ′
2Iif,t · ln psf,t + µf + t+ εif,t

where psf,t is firm f ’s patent stocks over all sectors, Iif,t is a dummy variable equal to one if

firm f is a new entrant in sector i at time t and xif,t is the outcome variable, such as authority

weight, age and median distance from other sectors to sector i in which firm f innovates at

time t. The results shown in Table 4 are consistent with the cross-sectional findings. The

first regression results suggest that the new sectors that a firm enters are younger, and closer

to their existing products, but farther away from the center of the technology space than

the existing sectors. When we compare the new sectors that different firms choose to enter,

larger firms tend to enter less applicable, younger sectors that are also more technologically

isolated from the existing product mix, since β ′
1 + β ′

2 < 0.15

2.3.2 Firm Innovation Rates

We find that the applicability of a firm’s current product mix predicts its subsequent inno-

vation rate. The left panel of Figure 3 plots the growth rates of patent stock by firm size

over a one year interval. The figure shows that the difference in innovation rates between

small and large firms can be as high as 40 percent within a year. In the right panel of Figure

3, we plot the innovation rates against the initial firm product applicability levels (defined

below). We find that firms that initially produce highly applicable products innovate 30

percent faster than firms that produce poorly applicable ones.

We formally study this observation in a group of panel regressions, in which we regress

the average innovation rate, gf,t over the past three years on the initial firm size (i.e. patent

stock) and the initial authority weight of the firm’s product mix.16

gf,t = β0 + β1 ln psf,t−3 + β2 ln fawf,t−3 + µf + εf,t

It is also informative to study the extensive margin and the intensive margin of firm growth

rate separately. Let gext be the extensive growth rate attributable to patent applications in

15There is also a common exit pattern. We define that a firm exits a patent class if it stops applying
for patents in that class for 10 years. We also find that large firms give up center sectors (sectors with a
high authority weight) as they expand towards the fringe of the product space. This suggests there is an
increasing maintenance cost as firms carry a larger scope of products. We conjecture that large firms exit
center products to avoid intense competition from small firms, who enter center products for the prospects
of future extensive growth and the large public knowledge pool.

16Varying the time lag does not change the results.
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Figure 3: Firm-level Observation: Firm Innovation Rates, Firm Sizes and Initial Product Applica-
bility
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new technological classes and gint be the intensive growth rate coming from patent applica-

tions in existing classes. Define psNew
t as the number of patent applications in new classes

at time t. Therefore,

gext,t =
psNew

f,t

psf,t−3

gint,t =
(psf,t − psNew

f,t )− psf,t−3

psf,t−3

The panel regression results are recorded in the lower panel of Table 4. All three innova-

tion rates decrease with firm size but increase with the initial firm’s product authority weight.

There are two explanations for the decreasing intensive growth margin with respect to firm

size. First, products from the same firm may be closer substitutes than products of different

firms. Since a firm’s new products become closer competitors of its previous products in

the same category, the return from one more product in the existing category decreases as a

firm accumulates more products in the same class. Second, the gain from learning is smaller

for firms with significant knowledge in a particular class. It is worth noting that the initial

authority weight of the product mix counts more for a firm’s extensive growth than its inten-

sive growth. Intuitively, given the knowledge stock, firms that start from higher applicable

initial product mixes can effectively apply their knowledge to innovate in many other related

sectors. Simultaneously, the accumulated knowledge in the related sectors contributes to
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Table 4: Firm Entry, Innovation Rates and Knowledge Linkages

Dependent Independent variables

log ps Dummy(new sector) logps log ps*Dummy
log aw -0.039 -0.300 0.029 -0.111

(0.013)*** (0.010)*** (0.013)*** (-0.003)***
log dist 0.0129 0.027 0.0066 0.0084

(0.0008)*** (0.0009)*** (0.0008)*** (0.0002)***
log age 0.111 -0.532 -0.256 -1.603

(0.047)*** (0.073)*** (0.042)*** (0.016)***

log ps log faw
(t-3) (t-3)

g -16.71 0.538
(0.292)*** (0.049)***

gext -14.32 0.421
(0.287)*** (0.051)***

gint -2.38 0.117
(0.062)*** (0.022)***

Note: We also control for year, firm fixed effect and clusters *** significance at 1% level. Robust standard

errors are reported in parentheses.

innovation in existing sectors, driving growth along the intensive margin.17

2.3.3 Sectoral Sizes, Number of Firms and Sectoral Authority Weight

Figure 4 presents two observations at the sector level. We plot the total number of patents

and the number of innovating firms in various sectors against the sectoral authority weight.

It shows that there are significantly more patents and larger numbers of firms in center

sectors. Because the vertical axis is in logarithm, this implies that sectoral patent stocks

and the number of firms are highly skewed toward center sectors. These observations imply

that important obstacles exist that prevent small firms from reaching the far end of the

technology space. We model these obstacles as fixed sectoral R&D costs in the model.

17We also investigate quality-adjusted growth rates, which are measured by the growth rates of the forward-
citation-weighted number of patents. When adjusted by the number of inward citations, larger firms’ growth
rates drop even faster, because the number of inward citations per patent decreases with firm size in both
the extensive margin (number of classes) and the intensive margin (number of patents within the class). The
results above are also robust to different levels of disaggregation of the technology classes (800 categories
according to IPC or 42 industry sectors).
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Figure 4: Sector-level Observation: Sectoral Sizes, Number of Firms and Sector Applicability
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3 The Model

Our model focuses on firms’ innovation behavior. Understanding how innovation takes place

at the firm level is important because patenting firms account for a highly disproportionate

share of economic activity and play an important role in the aggregate production (Balasub-

ramanian and Sivadasan, 2008). We regard product innovation as a process of generating new

varieties in different sectors and knowledge as a particular type of know-how or technology

embodied in a sector that can be used to innovate in another sector by spillovers.18

There are three key features of the model: first, a firm conducting R&D in one specific

sector can apply knowledge accumulated in all related sectors; second, a firm has to pay a

fixed cost, F i, to rent a license or research facilities for conducting research in sector i, and

third, firms can learn from each other, even though not completely.

These elements are motivated by the following observations. First, 37 percent of citations

in NBER patent data are inter-sector citations (when sectors are defined at the 3-digit US

SIC level, and the percentage becomes higher when using more disaggregated classifications).

This highlights the important role of inter-sector spillovers in individual firms’ innovation

behavior. The percentage of inter-sector citations in total citations varies between 27 percent

18Balasubramanian and Sivadasan (2008) provide evidence showing that firms patenting significantly in-
creases firms’ product scope rather than reduce the cost of producing existing goods, consistent with our
interpretation of innovation in the model. Earlier evidence cited by Scherer (1980) also shows that firms
allocate 87% of their research outlays to product improvement and developing new products and the rest to
developing new processes. In our paper, we interpret “product improvement” as developing new varieties in
existing sectors and “new products” as varieties in sectors new to the firm.
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and 70 percent in different sectors. Second, firms develop products in multiple but not all U.S.

patent classifications. In our data, an average firm applies for patents in 3.8 out of 42 industry

categories. In a model without sectoral entry barriers, all firms would enter all sectors

because of the positive inter-sector spillovers, and firms would grow at rates independent of

their product mixes. In this case, we would also not observe a concentration of firms and

varieties in center sectors. Third, 85 percent of citations are given to patents owned by other

institutions, which suggests that public information and imitation are important knowledge

sources for R&D. The public knowledge in the model helps to explain why a newborn firm

can still enter the economy while paying a fixed entry cost and why they initially choose to

enter highly applicable sectors. Access to public knowledge also prevents firms from getting

too small, which helps to ensure a stationary firm size distribution.

There are three types of goods: a final consumption good, sectoral goods and sectoral-

differentiated goods. Sectoral goods are aggregated over differentiated goods that are pro-

duced by individual monopolistically competitive firms. We interpret varieties within a sector

in our model as corresponding to the lowest level of disaggregation of commodities and each

variety maps into a patent used in the patent data. Sectors, however, map into technology

categories in the patent data. Although the model corresponds well with analysis of sec-

tors with limited numbers of competitors, to make the analysis more tractable, we follow

Hopenhayn (1992) and Klette and Kortum (2004) by assuming each firm is relatively small

compared to the entire sector.

3.1 Demand

The representative infinitely lived consumer’s optimization problem is:

U = max
{Ct}

∞∑

t=0

βt logCt

where final goods consumption is a Cobb-Douglas combination of the sectoral consumption

Qi
t. There are K sectors in the economy. Let si capture the share of income spent in sector

i. β < 1 is the intertemporal discount rate. We have

logCt =

K∑

i=1

si log
(
Qi

t

)
, (1)
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where Qi
t and P i

t are the consumption and the price index of differentiated goods in sector

i. The consumption and price of good k in sector i is given by xi
k,t and pik,t.

Qi
t =

(
∫ Iit

0

(
xi
k,t

)σi−1

σi dk

) σi

σi−1

, i = 1, 2, ..., K,

where I it denotes (the measure of) the total number of varieties in sector i and σi > 1 is

the elasticity of substitution between differentiated goods of the same sector i. The demand

function for goods within a sector is given by:

xi
k,t =

(

pik,t
P i
t

)−σi

Qi
t. (2)

3.2 Firm Production

Each firm produces a set of goods in various sectors. In the model, every patent turns into

a product. Firm size zf,t is a K-dimension vector, where zif,t is the number of differentiated

sector i goods produced by firm f at time t.

Firms hire one unit of labor to produce one unit of a differentiated good. All goods in the

same sector are charged at the same price and are sold in the same quantity. We normalize

the wage to one and assume perfect competition in the final good sector. The final good

price is Pt = B
∏K

i (P
i
t )

si, where B is some constant consistent with the Cobb-Douglas

specification in Equation (1) and

P i
t = (I it)

1

1−σi
σi

σi − 1
.

Because σi > 1, the sectoral price decreases with the total number of varieties in that sector.

Given the demand equation (2), the aggregate profit from producing in sector i is time-

invariant:

πi =
siY

σi
,

where the total income Y is the same as total expenditure, PC, in the closed economy. Per-

unit profit of a differentiated good in sector i is πi/I it . When a sector expands, the profit per

variety decreases. Firm f ’s profit in sector i with current number of products zif,t is given

by πizif,t/I
i
t .
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3.3 Knowledge Diffusion Matrix

In the model, firms understand the magnitude of knowledge linkages between any two sectors.

We use matrix A to describe the knowledge diffusion network. The {i, j}th element, Aij ,

measures the innovation productivity when using knowledge in sector j to conduct R&D in

sector i. Sectors i and j are viewed as connected with a directed link pointing from j to i

when Aij > 0. Generally speaking, sector i is an important knowledge contributor if there

are many large positive elements in the ith column of matrix A; sector i is good at utilizing

knowledge if there are many large positive elements in the ith row of A.

3.4 Firm’s R&D Decision

We denote the set of sectors in which firm f is producing at time t as Sf,t, which includes

all sectors i such that zif,t > 0. The notation i represents the knowledge receiving sector and

j represents a knowledge providing sector. As an incumbent of sector i, firm f invents ∆zif,t
number of new goods by applying its private knowledge stock, zjf,t, from sectors j ∈ Sf,t,

and public knowledge stock z̄jft from every sector j. Here, the private knowledge stock is

measured by the number of varieties produced by the firm, which equals its past innovations

zf,t. z̄
j
t is the average number of goods per firm in sector j, which captures the size of public

knowledge pool generated by all firms in that sector.19 A sizable sector (i.e. high I i) can

have a small public knowledge pool if there are a large number of firms in the sector (i.e.

high M i). We allow firms to not only draw upon the internal sources for expansion (as in

Klette and Kortum, 2004) but also on external sources such as imitation. zf,t, z̄t and ∆zf,t

are K-dimensional vectors. The firm chooses the optimal investment in R&D, given the

accessible knowledge stock in each sector and the knowledge diffusion matrix A.

In a stationary equilibrium there always exist many large firms that have already entered

every sector. The knowledge capital market is efficient, and as a result, the value of one

variety (or patent) in every sector is equivalent to the price that an all-sector firm is willing

to pay. Thus, we derive the marginal value of one unit of sectoral knowledge from an all-

sector firm’s optimal R&D decision. In this case, the value of a small firm that has entered

only a subset of sectors is the total value of all its varieties. That is, if a small firm cannot

apply its sector j knowledge to sector i because it cannot afford the entry cost, it can still sell

its patents to large firms that have already entered sector i. As long as there are many such

19This assumption ensures that the sectoral growth rate is independent of the number of firms and pop-
ulation in the general equilibrium. When learning is costly, each firm is too small to access all existing
knowledge in the sector. When firms randomly meet and imitate a limited number of peers, the average
number of patents per firm is a better proxy for public knowledge pool than the total number of patents in
that sector.
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large potential buyers, the market price of knowledge capital will be bid up to its marginal

value for an all-sector firm.20

The per period net profit of an all-sector firm is given by the total profit from production

in all sectors minus the cost of hiring R&D researchers. We do not distinguish the production

labor from the researchers, and we assume that they are equally paid. Let Rij
f,t denote firm

f ’s R&D input when utilizing sector j’s knowledge to invent new goods in sector i. We

assume the research workers’ efficiency increases at the same rate as the average number of

innovations per firm in the innovating sector i, z̄it, thus the effective R&D is given by z̄itR
i
f,t.

This assumption is important in removing the “scale effect” from the model.

The all-sector firm f solves the following problem:

max
{Rij

f,t}i,j∈{1,2,...,K}

V (zf,t) =
K∑

j=1

πj
zjf,t

Ijt
−

K∑

i=1

K∑

j=1

Rij
f,t +

1

1 + r
E[V (zf,t+1)] (3)

subject to the knowledge capital accumulation condition in every sector

zif,t+1 = zif,t +∆zif,t, (4)

where the incremental innovation is

∆zif,t =
K∑

j=1

[

Aij
(
z̄itR

ij
f,t

)α (
zjf,t + γj z̄jt

)1−α
+ εijf,t(z

i
f,t + γj z̄jt )

]

(5)

Here, the innovation production is a Cobb-Douglas combination of innovation productivity,

a firm’s R&D investment and accessible knowledge stock. γ governs the relative effectiveness

of public knowledge to private knowledge in innovations. By its nature, innovation includes

the discovery of the unknown; therefore, the success of a research project can be uncertain.

We assume that in each period the success rate of innovation is subject to a zero mean

innovation shock εijf,t that is firm- and sector-pair specific. One important assumption is that

these shocks are identical and independently distributed across firm, sector pairs and time.

In addition, household time preferences pin down the discount factor 1
1+r

= β u′(Ct+1)/Pt+1

u′(Ct)/Pt
=

β CtPt

Ct+1Pt+1
= β.

The solutions (derived formally in the Appendix) are described by the following equations.

On the balanced growth path, the firm’s value is a linear combination of the value of its

20Without an efficient knowledge capital market, small firms might be unmotivated to conduct R&D, since
they could not internalize cross-sector knowledge spillovers when there is a fixed cost to enter every related
sector.
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knowledge in all sectors,

V (zf,t) =
K∑

j=1

vj
zjf,t

Ijt
+ uj,

where vj is the market value of sector j’s knowledge stock,

vj = (1− ρ)−1(πj +

K∑

i=1

ωij), (6)

and uj captures the rent from public knowledge equally shared by every firm in sector j,

uj = (1− ρ)−1
K∑

i=1

ωij γ
j

M j
. (7)

Here, ωij captures the marginal value (contribution) of applying sector j’s knowledge to

innovation in sector i,

ωij =
Ij

I i
1− α

α

(
Aijαρvi

) 1

1−α (M i)
α

α−1 . (8)

M j is the number (mass) of firms in sector j. For simplicity, let ρ ≡ β/g and g = It+1/It for

the rest of the paper. This marginal value increases with the relative size of sector j to i,

the value of application sector i, the knowledge spillover strength from j to i and decreases

with the number of firms in the application sector i.

The optimal investment in each type of R&D is proportional to the knowledge capital

and positively related to the connectivity between sector i and j, ωij. A larger share of R&D

input in innovation activity, α, also implies more R&D investment.

Rij
f,t =

α

1− α
ωij

zjf,t + γj z̄jt

Ijt
(9)

Importantly, Equation (6) shows that the market value of knowledge in sector j, vj, de-

pends on not only the direct economic value, i.e. the present discounted value of the future

profits in sector j, but also on its indirect technological value captured by its contribution to

future innovations in all K sectors. When knowledge from different sectors is not connected,

i.e. Aij = 0 for i 6= j, the marginal contribution of specific knowledge is limited to the

future innovation and production within its sector. In our paper, we emphasize the role of

transferrable knowledge, i.e. Aij > 0. A stronger knowledge contribution to other sectors Aij

and a higher marginal value of product from the knowledge-receiving sector vi increases the

marginal value of innovation in the knowledge contributing sector j. Fast sectoral growth

dilutes the marginal firm value vj. Similarly, Equation (7) implies that when public knowl-
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edge is easier to access or when knowledge in other sectors is more valuable, the rent from

external knowledge is higher.

The value of firm f is thus given by

V (zf,t) =

K∑

j=1

(1− ρ)−1[πj
zjf,t

Ijt
+

K∑

i=1

ωij
zjf,t + γj z̄jt

Ijt
]. (10)

3.5 Sectoral Entry and Exit

Firms need to rent a license or research facilities and devices to conduct research in a sector.

Every period, the opportunity cost to stay in sector i is equal to the discounted interest rate

loss associated with renting the license or facilities, r
1+r

F , which is also the entry cost for

a potential entrant. A firm chooses to enter or stay in sector i if its expected profit from

innovating in sector i using available private and public knowledge is greater than the fixed

cost of conducting R&D in that sector. The expected profit of entering or staying is the

difference between the expected value of investing in R&D in sector i and not investing,

liquidating the knowledge stock, and dismissing the research group in the next period. The

price of the knowledge a firm can sell is given by the knowledge value, vi as in Equation (6).

The fixed cost is the same for all firms innovating in a given sector, but the expected

profit of continuation or entry is firm-specific. Formally, the firm would enter or continue its

research in sector i if

r

1 + r
F ≤ −

K∑

j=1

Rij
f,t + β

viEt∆zif,t
I it+1

=
K∑

j=1

ωij

(
zjf,t + γj z̄jt

)

Ijt
(11)

Although zif,t = 0, a firm can apply its previous private and public knowledge from other

sectors to invent new goods and expect that the additional future value from innovating in

sector i will exceed the rental cost.

A firm exits sector i if the license cost is higher than the expected benefit of staying

(i.e. inequality (11) is reversed). The exiting firm sells its sector-i knowledge stock zif to an

all-sector firm immediately upon exit. This is because if the firm keeps the patents without

continuing research in that sector, these patents’ value, vizif/I
i would depreciate in the future

(I i increases over time but vi stays constant).

Since firm innovation is subject to stochastic shocks, there are a number of fortunate firms

in every period that accumulate just enough private knowledge capital in related sectors to

enter a new sector, and a number of unfortunate firms who lose knowledge capital and have

to exit. In this sense, entry and exit are both self-selection processes.

The series of sectoral entry and exit decisions govern the number of firms and the average
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firm size in each sector in the general equilibrium. Higher fixed costs cause fewer firms to

enter but increase the average firm size in sector i, because potential entrants have to increase

knowledge in related sectors before entry. In addition, more accessible public knowledge (i.e.

a larger γj) induces more entrants and a smaller average firm size in every sector, because if

the rent from public knowledge covers a larger share of entry cost, then potential entrants

can enter with less related private knowledge.

The entry and exit conditions also explain why, empirically, there are more firms in

general and more small firms in particular in highly applicable sectors compared to isolated

sectors. Operating in frontier sectors requires a minimum stock of knowledge in all related

sectors on a firm’s extensive growth path.

As shown in Equation (11), many large positive elements in the ith row of knowledge

diffusion matrix A means there are more and wider open routes that allow potential entrants

to enter sector i. An increase in the knowledge value in sector i, vi, also attracts entry and

deters exit. A larger number of existing goods, I i, and more incumbent firms, M i, deter

entry.

3.6 Aggregate Conditions

In this economy, the household owns all the firms and finances all the potential entrants.

In the stationary equilibrium, there are no net entrants. Therefore, the household’s total

income in the stationary equilibrium is

Y = wL+ r

∫

i∈Sf

∑

i

vi
zif
I i
df = L+ r

∑

i

vi (12)

In this economy, there are three types of labor: production workers, researchers and

workers who are engaged in making entry licenses. Hence, the labor input required to make

entries in sector i is F i∆M i. However, on the balanced growth path, the number of licenses

is fixed. The number of entering firms is the same as exiting firms, i.e. the number of net

entry ∆M i = 0. Formally, the labor market clearing condition is:

L =

K∑

j=1

σj − 1

σj
sjY +

K∑

i=1

K∑

j=1

∫

i,j∈Sf,t+1

Rij
f,tdf +

K∑

i=1

F i∆M i
t . (13)
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4 General Equilibrium Analysis

4.1 Firm Size Dynamics

In a typical firm’s life span, a firm starts from a relatively highly applicable sector. After

accumulating enough background knowledge, a small firm with a sequence of good draws

of innovation shocks can expand into related sectors along the knowledge diffusion network.

After several rounds of entry selection, only a few large, multi-sector firms can reach the

frontier sectors at the edge of the knowledge networks.

Putting (4), (5) and (9) together and normalizing the firm size in each sector by the total

size of that sector, i.e. z̃if,t = zif,t/I
i
t
21, yields the following firm size dynamics:

z̃f,t+1 = Φf,tz̃f,t +Θf,tγ ¯̃zt, (14)

where the {i, j}th elements of the K ×K matrices Φf,t and Θf,t are given by φij
f,t and θijf,t

respectively, defined as:

φij
f,t =

1

1 + g
[1{if i=j} +

(
Aij
) 1

1−α

(
αρvi

M i

) α
1−a

+ εijf,t]

θijf,t =
1

1 + g

(
Aij
) 1

1−α

(
αρvi

M i

) α
1−a

+ εijf,t

where 1{if i=j} is one if i = j and zero otherwise. In general, an incumbent firm innovates

faster, if there are more large elements in the ith row of matrix A, sectoral knowledge is more

valuable, and the number of incumbents is smaller.

The existence of public knowledge plays an important role in attenuating the size dis-

persion generated by idiosyncratic innovation shocks and generating constant firm size het-

erogeneity over time. In fact, without public knowledge, Equation (14) becomes z̃f,t+1 =

Φf,tz̃f,t; this would cause the variance to grow explosively over time and the distribution to

be lognormal without a steady state.

We assume that the shocks to the growth rate of firm size, εijf,t, are identically and in-

dependently distributed. According to Kesten (1973), equation (14) implies that firm size

distribution converges to a Pareto distribution with shape coefficient b such that Champer-

nowne’s equation holds, i.e. EΦb
f,t(εf,t) = 1.22

21In the stationary equilibrium, the number of firms is constant. Thus, this normalization is equivalent to
normalization by average firm size, which means the normalized mean size is always one.

22See Gabaix (2009) and Cai (2009) for more detailed explanations about size distribution. The relative
heterogeneity of firm sizes in a sector should negatively depend on the accessibility of public knowledge, γi

and the relatedness of this sector with other sectors, and positively relates to innovation shock σi in that
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4.2 Growth Rate and Fixed R&D Costs

The number of varieties in sector i evolves according to I it+1 = (I it +
∫

i∈Sf,t+1
△zif,tdf). Define

τ ij as the fraction of private knowledge of sector j owned by firms who innovate in both

sector i and j, i.e. τ ij =
∫

i,j∈Sf
zjfdf/I

j. Using Equation (5) we derive the (gross) growth

rate of the number of varieties in every sector, g = I it+1/I
i
t , as

g =

K∑

j=1

(1 + γ)ωij

(1− α)ρvi
τ ij . (15)

Combining (15) with (6) and (8), we obtain

g = (1− β)

[

λ

∑

i

∑

j ω
ij +

∑

i π
i

∑

i

∑

j ω
ijτ ij

− 1

]−1

, (16)

where λ = (1−α)β
(1+γ)

. Equation (16) shows that sectoral entry costs decrease the growth rate of

the total number of varieties in the economy, because τ ij < 1.

Without license costs, every firm in the economy is an all-sector firm. Combining (15)

with (6) and (8) allows us to express the growth rate of the number of products in the

economy by the ratio of total production profit in the economy and the total contribution

of all the knowledge from producing in every sector in Equation (17).

g = (1− β)

[

λ(1 +

∑K
i=1 π

i

∑K
i=1

∑K
j=1 ω

ij
)− 1

]−1

. (17)

Recall that the marginal value of an additional market share in sector i, vi, depends on two

elements: the profit flow, πi, and the value associated with knowledge spillovers from sector

i to all other sectors,
∑K

j ωij. Interestingly, Equation (17) implies that what is important

for growth is the share of the firm value accounted by knowledge spillovers across sectors

relative to the value generated by profit.

It is worth pointing out that by assuming that the efficiency of R&D workers is pro-

portional to the average knowledge stock in that sector, we eliminate the “scale effects” of

population on economic growth. This can be seen from equation (15). Both ωij and vi are

proportional to the total population in the economy; therefore, the growth rate of varieties

is independent of the level of population.23

same sector.
23Jones (1990) first pointed out that the “scale effects” that plague many endogenous growth models are

not consistent with empirical evidence. For a detailed discussion on this, also see Jones (1999).
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4.2.1 The Resource Allocation Effects of Fixed R&D Costs

Combining Equations (9) and (15), we find that sectoral R&D resources are allocated ac-

cording to the shadow values of the sectoral knowledge. With the same expenditure share,

si, in every sector, we have the sectoral R&D intensity given by

Ri ≡

∑K
j=1R

ij

sY
=

αβ

sY

g − 1

g
vi. (18)

Therefore, any policy that distorts {vi} also causes misallocation of research investment

across sectors.

We identify another efficiency loss due to sectoral fixed R&D costs – a misallocation

of research resources across sectors, which is an unexplored area in the literature. An ideal

economy would allocate significantly more research resources to sectors with more applicable

knowledge. However, sectoral fixed costs distort R&D resource allocation across sectors by

pushing research effort away from center sectors toward peripheral sectors; hence, the relative

sizes of center sectors are smaller than they would be without entry costs.

Later we show in our simulation that positive fixed R&D costs indeed lead to the flatten-

ing of the size distribution of sectors (see Figure 12) because firms enter center sectors before

venturing into fringe sectors, knowledge generated by center sectors is fully utilized in inno-

vation at fringe sectors, but since not all firms that innovate at the center are able to reach

the fringe, knowledge does not completely flow back to the center from the fringe. Secondly,

the lesser number of incumbent firms at fringe sectors means the market value per firm is

larger. According to Equation (9), each incumbent firm therefore invests a disproportionally

large research fund in these sectors.

At the aggregate, the sectoral fixed cost leads to the incomplete cross-sector knowledge

circulation in the technology network and insufficient R&D resource in the GPT sectors,

which constitute the knowledge engine of the economy. This reduces the innovation rate in

all sectors and decreases the growth rate of the economy.

4.3 Special Case with No Fixed R&D Costs: Analytical Results

When there is no fixed cost to enter a new sector, every firm produces and conducts research

in every sector in the stationary equilibrium. Hence M j = M . We define the second

component of the value of entry in (11) as F e ≡
∑K

j=1 ω
ijγj z̄j/Ij, which can be interpreted

as the registration cost of a new firm. Under the condition of free entry, the total number of

firms that exist in the economy is determined by this registration cost. The model can be
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solved analytically based on the following equilibrium conditions:

vj =
1

1− ρ
(πj +

∑

i

ωij)

ωij =
Ij

I i
1− α

α
(Aijαρvi)

1

1−α (M)
α

α−1

g =

∑

j(1 + γj)ωij

(1− α)ρvi

L =
∑

i

σi − 1

σi
siY +

α

1− α

∑

i

∑

j

ωij(1 + γj)

Y = L+ r
∑

i

vi

F e =
∑

i

ωijγj/M

For a set of parameter values, we can solve for K2 + 2K + 2 numbers of unknowns {vj}j,

{ωij}ij, {I
j/I i}ij, M , g, Y , using the same number of equations above.

We use industrial classifications with K = 42 sectors listed in Table 2 in our estima-

tion. The relevant patent citation data (1980-2000) is employed to discipline some of the

parameters.24 Each element of the knowledge diffusion matrix is estimated by the relative

contribution of sector j’s knowledge in sector i’s R&D using the patent citation data. Specif-

ically, it is the fraction of citations made to sector j by sector i, OC ij/OC i, adjusted by the

relative importance of sector j, ICj/IC, which is measured by the overall citations received

by j as a ratio of total citations. This adjustment is supported by the observation that

sectors with large patent stocks tend to be cited more frequently. Therefore,

Aij =
OC ij

OC i
/
ICj

IC
.

Figure 5 shows a contour graph of the knowledge diffusion matrix for these sectors. The

darkest area on the diagonal reflects the fact that a large proportion of citations goes to

patents in the same sector. This is not particularly surprising given that sectors in this case

are not highly disaggregated; however, most sectors also allocate a fair amount of citations

to patents from other sectors, reflecting the importance of cross-sector knowledge spillovers.

Our measures of the elasticities of substitution between varieties within a sector i, σi,

are adapted from Broda and Weinstein (2003).25 The parameter governing the relative

24The specific parameter values are available in our web Appendix.
25Their data use the SITC Rev. 2.3 industry classification. We match SITC 3 digit classifications to 3

digit SIC72 to be consistent with patent data.
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Figure 5: Contour Graph of Knowledge Diffusion Across Sectors

The citing sector i

T
he

 c
ite

d 
se

ct
or

 j

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

effectiveness of public knowledge, γ, is estimated by using the ratio between outside citations

and inside citations for average sized patenting firms in 1990.26 The discount factor β is set

to be 0.99. The R&D labor input share in the innovation production function, α, is set to

be 1/2. We assume the expenditure share si is equal to 1/K. F e = 1.56× 10−9 is calculated

to fit the empirical observation that the number of firms in the U.S. is 5.07 million relative

to the 249 million population in 1990 (Axtell, 2001).

Our model predicts that sectors with high applicability attract more R&D investment

and contain a larger number of varieties because the values of knowledge are higher in these

sectors (the correlation between vi and awi is 0.79). Figure 6 plots the model generated

sector sizes (i.e. total number of products) against the real sector sizes in the patent data

(i.e. total number of patents), both relative to a numeraire sector. These two series are

highly positively correlated, with the main difference being that the simulated sector sizes

are more dispersed than the real ones (the logged relative sizes vary between [−4, 15] as

opposed to [−2.5, 2.5]). In the next section, we will show that introducing fixed R&D costs

decreases the dispersion of sectoral sizes, and disproportionally reduces the size of sectors

with higher applicability.

26Since the public knowledge pool size is assumed to be equal to the average firm size, an average-sized
firm faces the same size of public and private knowledge pools.
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Figure 6: Model Generated Sector Sizes v.s. Empirical Sector Sizes (F = 0)
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5 Simulation and Quantitative Analysis

We cannot analytically solve for the general equilibrium in the case with sectoral fixed R&D

costs. We thus simulate the model by computing a large number of multi-product firms’

optimal innovation decisions to test several of the model’s key implications of firm dynamics,

product entry and exit, and estimate the growth effect of the fixed costs.27

Lacking direct information on sectoral fixed R&D costs, we assume the entry cost is

identical across sectors and calibrate it to match the observation that the average number

of sectors per firm in 1990 is 3.8 sectors out of 42 (see Appendix A.4 for details).

There are no aggregate shocks in the economy. The idiosyncratic innovation shocks

are specified as εijf,t = (Aij)
1

1−α (Aijαρvi)
α

1−α
(
ξijf,t − 1

)
, where ξijf,t is a random draw from

logN(− (σ̄ij )2

2
, σ̄ij), ∀f, t, i, j, and Eεijf,t = 0. We calculate σ̄ij according to the standard

deviation of
Cij

ff

Ci
f

△psi
f

psj
f

, where
Cij

ff

Ci
f

gives the percentage of firm f ’s self-citations from sector i

to sector j among its total number of citations made from sector i.

We run the simulation for 100 rounds and report the median values of relevant variables.

The detailed description of the simulation process is available in Appendix A.4.

27A center sector attracts a large number of entrants due to its high knowledge value, vi, but the number
of firm stops growing to a certain level, because a high number of firms deters future entry. Similarly, a
peripheral sector still accommodates a few incumbents, despite its low knowledge value. This mechanism
guarantees a stationary distribution of firms across sectors in the simulation.
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5.1 Simulation Results

5.1.1 Firm level

In this section, we focus on three main firm-level facts that our model can explain: sequen-

tial sectoral entry, the relationship between firm growth, firm growth volatilities and firm

knowledge generality.

Sequential sectoral entry. The simulation of the model generates the same obser-

vations as in the data: the new sectors that small firms enter have high applicability (see

Figure 2). Figure 7 shows that this negative relationship between firm size (measured by

total number of varieties) and the weighted average authority weight of the new sectors is

generated by the model. This is because a new firm self-selects into center sectors first and

then sequentially enters other related sectors, venturing towards the periphery.

Figure 7: Scale Dependence of Applicability of Firms’ New Sectors
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Firm growth. Substituting the optimal R&D from Equation (9) into the innovation

rate from Equation (5) yields the firm’s growth rate in expectation given by:

E
∆zf,t
zf,t

=
K∑

j=1

K∑

i=1

Aij(z̄i
α

1− α
ωij)α

zjf,t
zf,t

︸ ︷︷ ︸

wtd avg aw of product mix

+
K∑

j=1

K∑

i=1

Aij(z̄i
α

1− α
ωij)αγ

z̄jt
zf,t

︸ ︷︷ ︸

scale dependence

The first term resembles the initial (weighted) average applicability of the firm’s product mix

in our empirical section, and the second term indicates that larger firms tend to innovate more
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slowly. Figure 8 plots the simulated surviving firm’s average intensive and extensive growth

rate over 10 periods against its initial authority weight (one circle represents one firm). Firms

are divided into 30 size bins and one circle corresponds to an average firm in each size bin.

It is evident that both the extensive and intensive growth rates are positively related to the

authority weight of a firm’s starting product mix. A high product mix applicability opens

more potential routes for a firm to expand across sectors, thus boosting the firm’s extensive

growth rate. At the same time, a high applicability also allows a firm to apply knowledge

from many related sectors to innovating in the existing sector, which drives up the firms’

intensive growth rate.

Figure 8: Applicability of Firm’s Initial Product Mix and Firm Growth Rate

−8 −7 −6 −5 −4 −3 −2 −1
3.5

4

4.5

5

5.5

6

(weighted average) authority weight of the initial product mix (in log)

A
vg

 fi
rm

’s
 in

te
ns

iv
e 

gr
ow

th
 r

at
e

−8 −7 −6 −5 −4 −3 −2 −1
8.1

8.2

8.3

8.4

8.5

8.6

A
vg

 fi
rm

’s
 e

xt
en

si
ve

 g
ro

w
th

 r
at

e

Firm growth volatility. It has been documented that the volatility of growth rates is

higher for smaller firms (Klette and Kortum, 2004; Sutton 1997; Caves 1998). Our model

also predicts a similar pattern and offers an explanation based on the importance of extensive

growth. Extensive growth counts for a larger fraction of total growth for small firms, which

self-select into sectors with high knowledge applicabilities. In Figure 9 and Figure 10, one

circle corresponds to an average firm in each size bin. They show that the variance of a firm’s

growth rate is positively related to the firm-specific product mix applicability and negatively

correlated with firm size (normalized by overall firm sizes) in the first ten periods.

To understand this relationship, we need to compare the importance of extensive growth

versus intensive growth for firms of various sizes. A firm initially has a product mix with a

higher knowledge applicability, extensive growth contributes a larger share to the firm’s total

growth rate. Since extensive growth involves fixed costs and a minimum stock of knowledge
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Figure 9: Firm Growth Volatility and Applicability of Its Product Mix
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Figure 10: Firm Growth Volatility and Firm Sizes
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capital upon entering every new sector, the fixed cost causes kinks and bumps in a firm’s

growth path. Once the firm has already entered a sector, intensive growth within the sector

is relatively smoother. A firm’s growth therefore exhibits more volatility when its product

mix is highly authoritative and leads to more entries into new sectors.

5.1.2 Sector level

Number of firms. Although we start with the same number of firms across sectors in our

simulation, Figure 11 shows that there are more firms in sectors with general knowledge than

there are in isolated sectors at the end of the simulation. Center sectors are connected to

more sectors with stronger knowledge linkages, allowing firms in related sectors to enter more

easily. New firms choose to enter center sectors for their high potential of extensive growth

and more available public knowledge; only firms that receive good shocks in incumbent

sectors choose to expand into related sectors farther away from the center, where the market

share per firm is larger. In the end, only very large firms can cover a large enough product

scope to reach the fringe of the product space.

Figure 11: Sectoral Number of Firms and Applicability
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Sectoral sizes and fixed R&D costs. With the estimated fixed R&D costs, it is

still true that in the stationary equilibrium there are more varieties in sectors with highly

applicable knowledge. Figure 12, however, shows that compared to the case with zero fixed

costs, sectoral size distribution becomes much flatter when F > 0, bringing the sector size

dispersion closer to the data. This is because sectoral fixed costs distort R&D resource allo-

cation across sectors by pushing research effort away from highly applicable sectors toward
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less applicable sectors, as shown in Figure 13.

5.1.3 Aggregate level

As discussed before, Equation (16) implies that fixed R&D costs impede the growth of the

number of varieties in the economy (because τ ij < 1 when F > 0). Our simulation shows

that when fixed costs increase from zero to positive, the growth rate decreases from 1200

percent to 17 percent. Although it is unrealistic to remove all the fixed R&D costs, our

experiment suggests that there is potential to greatly increase growth when fixed costs are

reduced. Given the “love of variety” type of demand function, the real wage and consumer

welfare fall when less innovations shrink the range of differentiated goods.

According to theories of industry structure (e.g., Hopenhayn 1992), higher entry costs

lead to lower average firm productivity by protecting incumbent firms. Our model suggests

another channel. As explained in section 4.2.1, fewer firms when facing entry barriers are

able to use private and public knowledge in related sectors when innovating. This in turn

implies that less aggregate knowledge is accumulated in the economy under the Pareto firm

size distribution; therefore, the aggregate innovation rate and growth rate are reduced.

6 Final Remarks

Economic historians have emphasized the drastic impact of “technological prime movers” on

growth (David, 1991; Rosenberg, 1982; Landes, 1969). Without formal models, this insight

has not been incorporated in most theories of growth. In this paper, we explore the role

of inter-sectoral knowledge spillovers on firm innovations and growth. We propose a new

measure of sector relatedness based on a spillover network linking the knowledge receiving

and sending sectors. We then incorporate it into a model with endogenous innovation, entry

and exit decisions made by multiple-sector firms. We find that sectoral fixed R&D costs

lower economic growth by blocking cross-sector knowledge circulation and prevents R&D

resource from concentrating in the general purpose technology sectors.

In the patent data, we find that firms follow a common trend when they expand across

sectors: firms start from highly applicable center sectors and gradually expand to related

sectors towards the fringe of the product network. This sequential sectoral entry simultane-

ously explains many observations at firm and sector levels, including the dynamics of firm

innovation, firm size distribution, scale dependent firm growth and volatility of firm growth,

sector size distribution, heterogeneous R&D intensities in different sectors and the skewed

concentration of firms towards center sectors.
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Figure 12: Sectoral Sizes (With and Without Fixed Costs) and Applicability
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Figure 13: R&D Resource Allocation (With and Without Fixed Costs) and Applicability
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Our study has important implications for economic growth and R&D policies. First,

heterogenous sectoral knowledge spillovers suggest that industrial or R&D policies that favor

highly applicable sectors boost economic growth. Second, institutional reforms that lower

sectoral entry costs reinforce the effect of industry policies, because it can be challenging to

shift to more advanced industry given the fixed cost of learning and adapting technology in

new sectors. Third, competition policies that encourage joint R&D ventures in highly related

sectors can benefit growth, because firms are better able to internalize knowledge spillovers.

A successful example is China. Over the past two decades, China has significantly shifted its

industrial structure from specializing in exporting low or medium knowledge applicabile (e.g.

“Textile mill products” and “Food and kindred products”) to exporting proportionally more

highly applicable products (e.g. “Electronic components and communications equipment”

and “Office computing and accounting machines”). The Chinese government has adopted a

set of policies promoting structural transformation.

The sector relatedness implied by knowledge linkages could potentially help understand

the non-random products co-production phenomenon documented by Bernard, Redding and

Schott (2009a), in which some pairs of products (e.g., fabricated metal and industrial ma-

chinery) are systematically more likely to be produced by the same firms than other product

pairs. Our analysis suggests that the knowledge incorporated in these product pairs is highly

transferable between sectors. In addition, by emphasizing the future technological contribu-

tion from the innovating sectors to other using sectors, our model also predicts a positive

relationship between a firm’s market value and the authority weights of its patenting sec-

tors.28 Empirical investigation of these predictions could be interesting for future research.

Our empirical findings at the firm level also hold at the country level. In a related paper,

we measure a country’s product scope by its export product mix, and we find that in general

countries with an export mix of higher applicability exhibit accelerated economic growth.

Although it has long been recognized that industrialization creates spillover benefits that

fuel subsequent growth (Rosenstein-Rodan 1943; Hirschman 1958), these ideas have been

largely unstudied due to the lack of a concrete measure quantifying the spillover effects of

the menu of technology and models that incorporate this measure. Our results should be

of interest to researchers studying how a country’s location on the product space affects its

future economic performance.

28Hall, Thoma and Torrisi (2007) find that Tobin’s q is significantly positively associated with a firm’s
R&D and patent stock, and modestly increases with the quality of patents.
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A Appendix

A.1 Comparison with Alternative Sectoral Linkages Measures

We compare our measures of sectoral linkages with those constructed using the U.S. Input-

Output tables. A high authority weight using I-O tables implies the sector is an important

buyer of materials produced by other sectors, and a high hub weight signals the importance of

that sector as an input in the production of other sectors. We also compare our measure with

the outcome-based measure of relatedness by Hidalgo et al. (2007). Since the classification

of sectors varies for different measures, we simply report in Table 5 the top ten sectors from

each measure to get a sense of the differences.

The top sectors in Hidalgo et al. (2007) appear to be the median sectors according

to our measure of the authority weight. The reason is that in their paper, two products

are related if they are exported by the same set of countries. The product space topology

shows that the most related products lie in the center of the network, and the most isolated

products are located at the fringe of the network; in between them, the products with median

relatedness connect them in a complete network. If on average a country only covers a small

set of connected products with various authority weights, the products with a median level

authority weight are more likely to be exported, together with other products by more

countries.

The top manufacturing sectors in the I-O tables are a mixture of important sectors

in terms of knowledge linkages (for example, “Semiconductor and related devices”) and

important sectors in production linkages (for example, “Paperboard container”). As a result,

neither of these two measures is highly correlated with ours.

A.2 Distance between Sectors

In addition to the sector specific authority weight, we also construct a pairwise knowledge

distance measure to facilitate our studies. Define a K dimension distance matrix D, where

the {i, j}th element, Dij = d if (Cˆd)ij > 0 and (Cˆ (d− 1))ij = 0. Cˆd denotes the dth

power of the matrix C. Dij is the shortest path distance between the nodes i and j. If

(Cˆd)ij > 0, there is at least one indirect route via other d − 1 nodes between nodes i and

j. If (Cˆd)ij > 0, that means there exists at least one d-step route between i and j. If

(Cˆ (d− 1))ij = 0 is also true, then d is the shortest path distance between i and j.

The mean of D’s ith column is the average distance between product i and all other

products. The average distance to other products is negatively correlated (−0.49) with our

authority weight measure, since higher authority weight products are located closer to the
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Table 5: Comparison with IO Table Constructed Relatedness Measure and Hidalgo et al. (2007)’s
Relatedness Measures

Top 10 sectors with the highest authority weight using Patent data, 1995-2000

Code (USPS) Names
43 Electronic components and accessories and communications equipment
55 Professional and scientific instruments
27 Office computing and accounting machines
35 Electrical transmission and distribution equipment
42 Radio and television receiving equipment except communication types
16 Rubber and miscellaneous plastics products
56 All other SICs
21 Fabricated metal products
36 Electrical industrial apparatus
29 Special industry machinery, except metal working

Top 10 sectors with the highest authority weight using US IO table, 2002

code (NAICS) Names
336300 Motor vehicle parts manufacturing
324110 Petroleum refineries
32619A Other plastics product manufacturing
331110 Iron and steel mills and ferroalloy manufacturing
323110 Printing
325190 Other basic organic chemical manufacturing
334413 Semiconductor and related device manufacturing
325412 Pharmaceutical preparation manufacturing
322120 Paper mills
322210 Paperboard container manufacturing

Top 10 goods in the densest part of the product space 2000, Hausmann and Klinger (2007)

code (SITC) Names
6785 Tube and pipe fittings (e.g. joints, elbows) of iron steel
6996 Miscellaneous articles of base metal
6921 Reservoirs, tanks, vats and similar containers
6210 Materials of rubber (e.g., pastes, plates, sheets, etc.)
7849 Other parts and accessories of motor vehicles
8935 Art. of electric lighting of materials of Div. 58
8939 Miscellaneous art. of materials of Div. 58
7139 Parts of int. comb. piston engines of 713.2-/713.8-
7492 Taps, cocks, valves, etc. for pipes, tanks, vats, etc.
5822 Aminoplasts
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center of the network, which are connected to more other products. The negative correlation

is not perfect, because the average distance ignores the volume of knowledge flow between

products and the importance of connected products. Nevertheless, the distance measure

helps to understand the connectivity between products.

Since, by definition, large firms innovate in more sectors, their product distribution is

more spread out in the technology space than small firms, and naturally these large firms have

a higher average distance measure of their existing product. To avoid this bias, we investigate

the median distance between the new product and firms’ existing products instead of the

mean distance. Figure 14 shows that larger firms make significantly bigger jumps across the

technology space when they enter a new sector and, for firms of all sizes, the new sectors they

enter tend to be relatively close to their current product mix on the technology network.

Figure 14: Distance Between Products in the Technology Space and Firm Sizes

Distance btw new and existing sectors (median)
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A.3 Derivation of the Firm’s Innovation Problem

We adopt the guess-and-verify method to solve the all-sector firm’s problem. Guess that the

value of a firm is a linear combination of its accessible knowledge capital in all the sectors

in which it is producing:

V (zf,t) =

K∑

j=1

vjzjf,t + uj

Ijt
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Substituting it back to the Bellman equation, we get

V (zf,t) =
K∑

j=1

πj
zjf,t

Ijt
−

K∑

i=1

K∑

j=1

Rij
f,t+

1

1 + r
[

K∑

j=1

(vj
zjf,t +

∑K
i=1

[

Aji
(
z̄jtR

ji
f,t

)α (
zif,t + γiz̄it

)1−α
]

Ijt+1

+
uj

Ijt+1

].

(19)

Given that M iz̄it = I it , the first order condition with respect to Rij
f,t is:

Rij
f,t =

Ijt
I it

(
Aijαρitv

i

M i

) 1

1−α

M i

(

zjf,t + γz̄jt

Ijt

)

, (20)

Substituting the optimal R&D in Equation (20) back to the Bellman equation (19) and

comparing the coefficient of zif,t in the firm value function we get:

vj = (1− ρjt )
−1[πj +

1− α

α

K∑

i=1

Ijt
I it

(
Aijαρitv

i
) 1

1−α M i α
α−1 ].

Comparing the constant terms, we have

uj = (1− ρjt )
−11− α

α

K∑

i=1

Ijt
I it

(
Aijαρitv

i
) 1

1−α M i α
α−1γj z̄jt ,

where ρjt = 1
1+r

Ijt
Ijt+1

. To simplify the notations, define the value of sector j’s knowledge in

contributing to innovations in sector i as

ωij
t =

1− α

α

Ijt
I it

(
Aijαρitv

i
) 1

1−α M i α
α−1 ,

Substituting it back, we have

vj = (1− ρjt )
−1(πj +

K∑

i=1

ωij
t ),

uj = (1− ρjt )
−1

K∑

i=1

ωij
t

γj z̄jt

Ijt

and

Rij
f,t =

α

1− α
ωij
t

zjf,t + γz̄jt

Ijt
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The evolution of the number of differentiated goods in sector i is:

I it+1 = I it +

∫

i∈Sf,t

△zif,tdf

= I it +

∫

i.j∈Sf,t

K∑

j=1

[

Aij 1

1−α

(
αρitv

i

M i

) α
1−α (

zjf,t + γj z̄jt
)
+ εijf,t(z

i
f,t + γiz̄it)

]

df

= I it +

K∑

j=1

[

Aij 1

1−α

(
αβvi

git

) α
1−α

]

(1 + γj)Ijit

where Ijit represents the total number of goods that are produced by firms that produce in

both i and j sectors and git = I it+1/I
i
t . Rearranging the terms, we have

(git − 1)(git)
α

1−α = (1 + γj)

K∑

j=1

(
Aij
) 1

1−α
(
αβvi

) α
1−α

Ijit
I it

, (21)

The number of goods in every sector grows at the same speed, because inter-sector knowledge

spillovers keep all sectors on the same track. If one sector i had been growing slower than

other sectors for a lengthy period, its number of goods would be extremely small relative

to other sectors. Equation (21) implies that the cross-sector knowledge spillovers would

increase git tremendously through a large ratio Ijit /I
i
t until g

i
t is equal to the common growth

rate. Therefore, in the stationary equilibrium, Ijt /I
i
t is a constant, determined by the initial

relative sector sizes, and consequently, growth rate is a constant as well, i.e. git = gjt = g.

This result further implies that, ρjt = β/g ≡ ρ and ωij
t are both constants and independent

of sector or sector-pair, consistent with our original guess. In a stationary equilibrium, the

measure (number) of firms in sector j, M j , is constant. Therefore, we have Equations (8),

(6), (7) and (9). Now we can verify our previous guess that the firm’s value is a linear

constant-coefficient combination of its knowledge in all sectors.

V (zf,t) =

K∑

j=1

(1− ρ)−1[πj
zjf,t

Ijt
+

K∑

i=1

ωij
zjf,t + γj z̄jt

Ijt
].

A.4 Simulation Procedure

We start the simulation with N = 104 firms and K = 42 sectors.

The simulation procedure involves the following steps:

1. At the initial period, randomly assign N × 3.6/42 firms into each sector. The initial
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firm size in each sector is also a random draw from a log-normal distribution29 with

parameters 0 and 2. Guess a starting value of g0. Take Ij0/I
i
0 and M i

0, i, j = 1, 2, ..., K

from the random generated initial firm size data.

2. At the beginning of period t, calculate the firm value vector vt and matrix ωt using

gt−1, M
i
t−1, and Ijt−1/I

i
t−1 according to Equations (6) and (8). Calculate the expected

profit scoreif,t =
∑K

j=1 ω
ij (z

j
f,t

+γj z̄jt )
Ijt

of operating in sector i for each firm f according to

the right hand side of Equation (11). Rank all (i, f) pairs according to their scoreif,t.

A potential entrant enters sector i, if its scoreif,t is larger than the top 10×3.6/42/(1−

3.6/42) percentile of (i, f) pairs among potential entrants. An incumbent firm f of

sector i exits, if its scoreif,t is smaller than the bottom 10 percentile of (i, f) pairs

among incumbents30. Also, we make sure the entry cutoff is always larger or equal to

the exit cutoff. At the beginning, the exit cutoff level of expected profit is lower than

the entry cutoff. At the end of the simulation, the exit and entry cutoffs converge to

a common level c̄. F is, thus, pinned down by c̄1+r
r
.

3. As a new entrant to sector i, firm f ’s size evolves according to Equation (14) with

zif,t = 0.

4. A surviving firm’s size evolves according to Equation (14).

5. Calculate gt, M
i
t , and Ijt /I

i
t from the simulated data.

6. Take it to the next period.

7. Repeat the steps 2 to 6 until |vt − vt+1| ≤ 10−6.

We then repeat the same simulation procedure 100 times and report the median of the

all simulations; mean of the last 10 periods.

29The randomness initialization ensures that each firm starts from a different product mix, so that we can
compare a firm’s future growth rates conditional on its initial sector’s connectivity.

30Because the ratio between incumbents and potential entrants is 3.6/(42− 3.6), the number of entrants
is equal to the number of exits.
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