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”Do you mean now?” – Baseball player and manager Yogi Berra, when asked for the time.22

1 Introduction23

Suppose a police officer on foot patrol happens upon a dead man with a knife in his24

back. An autopsy firmly establishes that the time of death was 5:00 AM earlier that day.25

Detectives would like to know when he was stabbed. With no witnesses, the stabbing26

could have occurred at 4:59 AM with the victim dying very quickly. Or, the stabbing27

could have occurred the evening before with the victim could have died very slowly.28

There are other possibilities, and thus, the time of the crime is not well identified.29

A time series analyst often faces a similar problem. Suppose the analyst observes a se-30

ries of outcomes (e.g. real GDP), each of which is indexed by a known time. Suppose the31

analyst does not observe the sequence of impulses (e.g. preference shocks) or their asso-32

ciated times. A current change in an observable might be due to immediate response to a33

contemporaneous impulse. Or, the current change might be a delayed response to an im-34

pulse that occurred long ago. To the analyst, this is known as the ”non-invertibility iden-35

tification problem.” It is distinct from the ”simultaneous equation problem” that arises36

with multiple unobserved shocks.137

The police detective and the time series analyst have different standard operating pro-38

cedures for dealing with this identification problem. The police detective would look for39

other evidences to inform when the shock (i.e. the stabbing) occurred, such as the stiff-40

ness of the dead body. Faced with the same crime, on the other hand, the time series41

analyst typically would usually assume that stabbing occurred at 4:59 because this is the42

response with the shortest delay from impulse to observable. In technical language, the43

analyst has dealt with the non-invertibility problem by assuming the invertible represen-44

tation, i.e. the one with minimal delay, is the correct one. In non-technical terms, the45

analyst has done shabby police work.46

In this paper, we develop a procedure for handling the identification problem with-47

1In most problems, a researcher must deal with both the simultaneous equations problem and non-
invertibility problem. Dealing with both is a part of our paper.
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out assuming that responses to structural shocks occur with minimal delay. Rather, we48

follow the police detective’s method. We ask whether other evidence, including the co-49

movement of the observable with other observables or the sign of impulse responses, are50

consistent or inconsistent with restrictions implied by economic theory. We wish to use51

as few clues given by economic theory as possible.52

This paper addresses non-invertibility in a limited information framework. We treat53

non-invertibility in a similar manner to the one that researchers already use in VARs to54

deal with the simultaneous equations identification problem. That is, compute all of the55

stochastic processes consistent with the data and then apply identifying restrictions from56

economic theory to exclude some (and potentially all but one) of these processes.57

Our procedure has four steps.58

Step One: Estimate a reduced-form VARMA(1,1) on the observables.59

We begin by assuming the time series has a state-space representation. Many dynamic60

economic models is consistent with this form. A large set of processes can be written as61

VARMA(1,1) by stacking the state space. To be concrete, let Yt represent a vector of k62

observable, stationary variables. In some very general conditions, observable variables63

have a VARMA(1,1) representation.64

Step Two: Calculate all covariance equivalent representations.65

With k observable variables, there are at most 2k state-space forms that have the iden-66

tical covariance functions, modulus the simulatenous equations problem. One of these67

state-space forms will be invertible, i.e. have minimal delay. However, there is no ra-68

tionale for simply choosing this one over a non-invertible representation without futher69

identification restrictions.70

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each71

representation.72

This step mimics that of the SVAR approach. A shock of interest might be to tech-73

nology or monetary policy. Short-run restrictions (e.g. output does not respond to cur-74

rent monetary policy changes) and long-run restrictions (e.g. only technological change75

affects long-run labor productivity) are examples of SVAR-type restrictions. This step76
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is necessary because non-invertibility neither mitigates nor intensifies the simultaneous77

equations problem.78

Step Four: Impose agnostic restrictions on each representation, delivered from step three, to fur-79

ther rule out structural respones.80

Uhlig uses the phrase ”agnostic restrictions” to describe identifying assumptions of81

the kind implemented in Faust (1998), Scholl and Uhlig (2005) and Uhlig (2005).2 For82

example, a positive innovation to the structural shock might be required to: (i) have a83

non-negative long-run effect on a particular observable; (ii) imply a positive response to84

an observable at the two-year horizon; (iii) explain the variation in one variable within a85

certain range.86

After step four, the researcher is left with one or multiple structural impulse responses87

to the shock of interest. When only one response remains, the impulse response is fully88

identified. When multiple remain, the impulse response is partially identified. In ei-89

ther case, the invertible form may or may not belong to the set. If the invertible form is90

consistent with the restrictions from step four, then it will be a valid structural response.91

Importantly, our procedure does not a priori choose this response.92

The problem of non-invertibility has received great attention in economics and time93

series analysis. In an introductory chapter of his textbook, Hamilton (1994, pg. 64) dis-94

cusses the issue and presents practical reasons for preferring the invertible representa-95

tion.3 Sargent (1987) presents another textbook discussion. FRSW (2006) explain that96

non-invertibility is induced by missing variables.97

Economists have pointed out that non-invertibility arises in many environments. Model98

features that can induce non-invertibility in the structural responses include: permanent99

income economies (Hansen and Sargent 1991 and FRSW 2006); learning-by-doing (Lippi100

and Reichlin 1993); anticipated fiscal policy shocks (Leeper, Walker and Yang 2009); an-101

ticipated technology shocks (Blanchard et. al. 2009). Non-invertibility can also arise102

from sticky information, time-to-plan and Townsend-type economies with ”forecasting103

2Examples of other papers using agnostic identification include: Cardoso-Mendonca, Medrano and
Sachsida (2008) and Owyang (2002).

3We discuss these reasons and how our addresses them in section two.
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the forecasts of others.”104

Most of the researches listed above emphasize the difficulties non-invertibility brings105

to empirical studies, which share the same spirit as the story we show in the beginning106

of this paper. Non-invertibility does not only mis-specify the timing of a certain struc-107

tural shock ( as in Hansen and Sargent (1991))but also entangle identifications of different108

shocks ( as in Leeper et al (2009)). Sims (2009) is an exception. Using data simulated from109

a calibrated DSGE model, he finds that the presence of non-invertibility introduces very110

little bias in the estimates delivered by a simple SVAR analysis.111

Alessi et all (2008) present a comprehensive review and history of developments re-112

lated on non-invertibility in structural estimation. Despite these extensive discussions of113

the problem and its practical relevance, there are few solutions. To our knowledge, our114

four step procedure is the first systematic, limited information method for dealing with115

non-invertibility.116

In existing research, three methods for handling non-invertibility have been offered.117

Each differs from ours in separate and important ways. These methods are: (i) using118

observed shocks rather than idnetified shocks; (ii) using full information estimation of a119

correctly specified DSGE model rather than our limited information approach; (iii) stan-120

dard SVAR estimation augmented with something akin to our step three.121

First, numerous researchers use data where shocks are directly observable. If the shock122

and its arrival time are known, the identification problem disappears. Case studies ap-123

plied to particular changes in tax policy are well-suited for this approach. However, in124

most cases, shocks are not directly observed.125

Second, FRSW’s method draws upon their discussion of the danger in using SVARS.126

SVARs always choose the invertible representation of a time series. When the actual struc-127

tural response is non-invertible, the SVAR leads to incorrect inference. Rather than an128

SVAR, they recommend correctly specifying a full dynamic, stochastic general equilib-129

rium (DSGE) model and using a full information technique. Our limited information130

procedure is less likely to suffer from misspecification than using a fully specified model.131

FRSW also provide a condition to use, case-by-case, to determine whether an SVAR132

would generate incorrect inferences. To check this condition, one uses the estimates or133
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calibration of the DSGE model relevant for the particular time series. However, with a134

correctly specified DSGE model in hand, one should use all of the information in the135

DSGE model rather than the limited information SVAR on efficiency grounds.136

Third, Lippi and Reichlin (1994) suggest a limited information approach. It is the clos-137

est anticedent of our work. They compute the structural impulse response using a VAR138

and a standard rotation restriction. The estimated structural response is by construction139

invertible, as discussed in FSRW. Recognizing that non-invertible solutions are also con-140

sistent with the observed data, they then do a visual inspection of roots from the estimated141

VAR in search of an MA structure. Based on the inspection, they plot both non-invertible142

and invertible structural responses implied by their VAR. This is similar to our step three.143

As they explain, their method is only suitable for a two variable system. On the other144

hand, our procedure works for a system with more variables because we estimate the145

MA component directly (i.e. our step one). Also, our procedure allows us to exclude146

some of the potential structural responses (i.e. our step four) in a systematic manner.147

More recently, Mertens and Ravn (2010) brings DSGE models, SVAR analysis and the148

method proposed by Lippi and Reichlin (1994) together in an inventive way, to address149

non-invertibility. They specify and calibrate a DSGE model with news shocks, and then150

use it to determin the placement of the non-invertibility in the system’s moving-average151

structure, along with the magnitude of the roots associated with the non-invertibility. In152

their exercise, they calibrate the values of the roots associated with the non-invertibility,153

while our procedure calculate these roots based on the data. Moreover, their procedure154

can only analyze a single shock with non-invertibility, while our procedure is suitable for155

cases with multiple non-invertible shocks.156

The next section contains scalar and bivariate examples the features of non-invertibility157

that our method will exploit. Section 3 presents the four-step procedure along with its the-158

oretical justification. Section 4 applies the procedure to two sets of model-generated data159

and section 5 applies the procedure to two real world applications. Section 6 concludes.160
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2 Introductory Examples: When Non-invertibility Emerges161

Non-invertibility arises in many situations. In this section, we will use two simple ex-162

amples to illustrate: (i) how non-invertibility emerges from those models; (ii) how non-163

invertibility affect the dynamic of the model and economists’ inference.164

First illustration: a scalar observable that is iid165

Suppose an economist knows a scalar variable yt to be Gaussian iid with expecta-166

tion zero and positive variance v0. He also knows that there is single unobserved shock,167

which drives the observed variable via a linear relationship. This is probably the simplest168

structural estimation problem imaginable.169

E
(
ytyt−j

)
=


v0 if j = 0

v1 if j = 1

0 ifj > 1

(1)

The economist asks, how might the unobserved shock influence yt? We interpret the170

economist’s question as equivalent to: what are all moving average representations that171

are consistent with yt? In particular, let us restrict attention to MA(1) processes. A general172

expression for an MA(1) is:173

yt = θj,0wj
t + θj,1wj

t−1 (2)

Here, j indexes a particular representation. Each particular j corresponds to a different174

process
{

wj
t

}
as well as a pair

(
θj,0, θj,1

)
.4175

What restrictions do the moments given by (1) put on
(

θj,0, θj,1,
{

wj
t

})
? We can find all176

such restrictions by matching moments from (1) with those implied by (2). These imply177

two independent restrictions:178 (
θj,0
)2

+
(
θj,1
)2

= v0 (3)

4According to the definition of a moving average process,
{

wj
t

}
is a mean zero, white noise process for

all j. As a normalization and without loss of generality, assume wj
t has unit variance for all j. Hamilton

and Sargent contain textbook treatments of non-invertibility. Each assumes θj,0 = 1 as a normalization and

allow the variance of wj
t to be free.
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Figure 1: Two covariance-equivalent structural forms; scalar observable is iid
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179

θj,0θj,1 = v1 (4)

We know that v1 = 0. As such, θj,0 = 0 and/or θj,1 must equal zero. If θj,0 = 0,180

then θj,1 =
√

v0 by equation (3).5 Similarly, if θj,1 = 0, then θj,0 =
√

v0. Note that both181

coefficients cannot be zero because v0 > 0.182

Figure 1 plots out two covariance-equivalent sets of impulse response functions. The183

lack of identifyability is straightforward. If the economist sees yt increase, the increase184

could be due to an instantaneous response to a shock this period (as in panel (a)) or the185

increase could be due to one period lagged response to a shock in the previous period (as186

in panel (b)). Because yt is observed to be iid, the economist does know that the impulse187

response is zero at all but one horizon.188

It is worth noting that the only reason that there are only two potential responses189

rather than three or more is because we restricted attention to structural forms that are190

MA(1). Without this restriction, a third covariance equivalent structural form would be a191

zero response in every period except period two, when there would be a unity response.192

For this form, an increase in yt would correspond to a shock that arrived two periods ago193

with a lagged effect of two periods. By this same logic, an increase in yt could be due to a194

5Here we maintain our sign restriction that θj,0 ≥ 0.
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shock that happened r periods ago that had its effect with a lag of r periods.195

196

Non-invertibility in Multivariate Enviroment197

Our second example is a simple example with two variables. Suppose an economist ob-198

serves y1t and y2t, output and money growth respectively. Each variable has expectation199

zero and unit variance. The covariance with each other and at every lead and lag equals200

zero.201

What are the set of MA(1) processes, each indexed by j, that are consistent with the202

observed covariance structure? In matrix form,203

yt = Γj
0ω

j
t + Γj

1ω
j
t−1

where Γj
0, Γj

1 are square matrices of dimension two and ω
j
t is 2 by 1.204

One obvious structure is that y1t and y2t are each driven by distinct and uncorrelated205

white noise processes. That is, Γj
0 = I and Γj

0 = 0 for j = 1. To be concrete, let us give an206

economic interpretation to these shocks. The first shock ω1
1t might be called a technology207

shock and the second shock ω1
2t might be called a monetary policy shock. We plot the208

impulse responses for this representation in panels (a) and (b) of figure 2.209

With these interpretations, the economist would conclude that monetary policy is neu-210

tral and also that monetary policy does not respond to changes in output.211

However, there are other MA(1) processes that satisfy the covariance restrictions. An-212

other example appears is213

y1t =

√
2

2

(
ω2

1t + ω2
2t−1

)
y1t = −

√
2

2

(
ω2

1t −ω2
2t−1

)
panels (c) and (d) of figure 2.214

Examining figure 2(d), the money growth and output impulse responses are zero on215

impact and positive at horizon one in response to a monetary shock. First, note that,216

because the output response happens with a one period delay, panel (d) is consistent217
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Figure 2: Two covariance-equivalent structural forms; bivariate observable with zero
covariance between variance and zero covariance at all leads and lags
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with the typical VAR restriction that output is predetermined relative to a policy shock.218

Second, panel (d) implies that money growth and output are perfectly, positively correlated219

with respect to the policy shock. At the same time, output and money growth must be220

uncorrelated. Therefore, money growth and output must be negatively correlated with221

respect to the technology shock in order to offset the positive correlation above. This is222

clear from panel (c). Third, each of the four impulse responses (in panels (c) and (d))223

is non-zero either on impact or at horizon one. This guarantees that there is no serial224

correlation in the observed money growth and output.225

It is important to note that there are more than two impulse responses that generate226

the same observed population moments for money growth and output. We plot only227

two sets for the sake of pedagogy. The exact number depends upon how many other228

restrictions are imposed on the system. In the next section, we show how imposing the229

standard restrictions from existing VAR research that assumes invertibility leads to k(k−1)
2230

restrictions where k is the number of observable variables.231

Panel (d) is the most straightforward non-fundamental form to interpret. In this case,232

every impulse response is either zero everywhere or else it is zero at every horizon except233

at horizon one. The policy shock affects only output, and with a one period delay. The234

technology shock affects only money growth, and with a one period delay. Because the235

two shocks are uncorrelated, observed output and money growth are uncorrelated. When236

there is non-invertibility shown as in panel (d) and the above system, traditional method237

can only give us panel (a) or (c). It not only just miss the timing of the shocks as both in238

(a) and (c), it also possibly miss the true effect of shocks,i.d, attributing all output growth239

to technology shocks as in (a).6 Comparison of panels (a) and (d) are consistent with240

observation (i): non-invertibility pushes the strongest impulses to later horizons.241

Based on the examples above, we can infer some basis properties of the non-invertible242

models:243

(i) Non-invertible forms likely push strongest impulse to later horizons.244

From the very simple example, it is obvious that the magnitude of impulse responses245

6Note that an instantaneous response of money growth to a technology shock and of output to a policy
shock is ruled out, by our upper diagonal assumption on all Dj.
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in later periods is larger than those on impact. We name this property as ”delayed re-246

sponse”. In more genernal cases, it is still the case that non-invertible models have de-247

layed response more often than their invertible counterpart.We will use the following248

derivation to illustrate why non-invertible models imply such a pattern.249

Without loss of generality, we can focus on a VMA(1) model. Any MA(q) model can250

be re-modelled as a VMA(1) model. Furthermore, it is staightforward to generalize the251

discussion here to a VARMA(p,q) model or VMA(∞) model.252

The model is given by253

Yt = Met + Net−1 (5)

where M is assumed to be a full rank matrix, et is a i.i.d shock following a standard nor-254

mal distribution. Without loss of generality, we normalize the responses on impact as the255

numeraire. It is straightforward to show that the responses after one period is given by256

NM−1 7. The normalized impulse responses at the longer horizon are represented by row257

vectors of the matrix NM−1. In other words, a weighted average of eigenvalues of NM−1
258

8. Since we can always normalize the eigenvector, so the magnitudes of eigen values are259

7If the model is a VMA(q) model defined as:

yt = N0et + N1et−1 + ... + Nqet−q. (6)

We can always define Yt = [y′te
′
t ... et−q+2]

′ and Et = [e′te
′
t−1e′t−2 ... et−q+1]

′, and the model is re-written as

Yt = MEt + NEt−1 (7)

. The matrices, M and N are given by

M =


N0 N1 N2 ... Nq−1
Ik 0 0 ... 0
0 Ik 0 ... 0
... ... ... ... ...
0 0 ... Ik 0



N =


Nq 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 ... 0 0

 . (8)

In this case, only the first k rows in NM−1 represent the normalized impulse responses of yt.
8Through some simple but tedious algebra, we can show that {NM−1}i,j = ∑k=1

K ai,kak,jλk}, where K is
the dimension of Yt, ai,k and ai,k are the kth entry on the ith row of the eigenvector matrix and the inverse
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more important factors determining the magnitude of those impulse responses. Com-260

pared to the invertible case, there is at least one eigvenvalue is higher in absolute value in261

each non-invertible case, since this eigenvalue is obtained by flipping the corresponding262

eigenvalue (inside the unit circle) in the invertible case. Therefore, it is more likely that263

impulse responses in later periods are higher than responses on impact in non-invertible264

cases.265

Furthermore, this pattern is consistent with the implication from models featuring266

”sticky information” or ”news shocks”. In models with sticky information, most agents267

can only respond to events or shocks several quarters before, thus, the contribution from268

earlier shocks is bigger at the aggregate level. If the model is featured by ”news shocks”,269

earlier information is more relevant for current economic situation, so agents act on ear-270

lier information rather than more recent information. In the next bullet point, we will271

elaborate how non-invertibility is implied by those economic models272

273

(ii) Non-invertible forms arise naturally from economic models with ”sticky information” or ”news274

shocks”.275

Non-invertible models correspond to cases where the zeros for the MA polynomials are276

inside the unit circle. A general VARMA(p,q) model is given by M(L)Yt = N(L)εt, where277

M(L) is the AR polynominal, with an order of p, and N(L) is the MA polynomial with278

an order of q. Non-invertibility implies that there is at least one z satisfying N(z) = is279

inside the unit circle. It implies the contribution of some ”old” shocks are higher than280

their ”recent” conterpart.281

This characteristics is shared by economic models featuring ”sticky information” or282

”news shocks”. In models with sticky information, most agents can only act on the old283

information while only a smal fraction of agents can act on the new information. As a284

consequence, aggregated data respond to ”old” shocks rather the most recent ones. In285

models with news shocks, agents put more weight on ”old” information than the ”new”286

information, because the information structure implies the current information only mat-287

ters for future economic condition, which should be discounted when making decisions.288

of eigenvector matrix of NM−1, and λk is the kth eigenvalue.
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The old information, on the contrary, is more relevant to the current economic condition,289

so it is optimal to respond to old rather than new information.290

291

(iii) Non-invertible forms have a ”hidden state variable” interpretation.292

A tradtional interpretation of non-invertibility is the story of ”missing variables”. If all293

shocks and state variables are observable, there won’t be non-invertbility anymore, since294

the model is just VAR(1).295

(iv) Non-invertible forms likely bear a relationship to zero restrictions in standard structural296

VARs.297

In the extreme case discussed above, if agents can only respond to shocks in previous pe-298

riods, we can recover the underlying economic model by imposing restrictions on the Γ0299

matrix, i.e, Γ0 = 0. This methodology is not at odds with existing research. When identi-300

fying monetary policy shocks, economists assume that every endogenous variable other301

than the policy variable is unable to respond to current monetary policy shock. In our302

example, it is equivalent to set Γ0(1, 2) = 0 and Γ0(2, 2) 6= 0. This identification scheme303

is widely used in empirical macroeconomic studies known as ”short-run restrictions”.304

Nevertheless, this type of structural models are never categorized as ”non-invertible”305

models. The insight we can get from this approach is to begin with an agnostic setup,306

i.e., a reduced form model and use economic theory to identify the underlying structural307

models.308

These characteristics are either found in empirical research on real world data or con-309

sistent with implications of state-of-the-art business cycle models. In the following sec-310

tion, we develop a systematic approach to study non-invertible models and use three real311

world application to illustate how this algorithm is applied.312
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3 Theory and A Four-Step Procedure313

A generic covariance-stationary stochastic process is given by:314

st+1 = Qst + Uet+1 (9)

rt+1 = Wst + Zet+1

where et+1 is k by 1 and N(0, I). We refer to (Q, U, W, Z) as a state-space form (with associ-315

ated shock process et) for the stochastic process {st, rt}. Here, Q, U, W, Z are real-valued.316

Only rt is observed by the economist.317

In addition, we make the following additional assumptions on the state-space form.318

Assumption 1 The left inverse of W, which we denote W̄, exists.319

Assumption 2 All eigenvalues of Q and WQW̄ are inside the unit circle320

Assumption 3 The matrix Z is invertible321

Assumption one requires that there are least as many observables as states. To identify the322

underlying system, economists need to have enough information,i.e, enough observable323

variables. This assumption is not as restrictive as it may seem. If the economy is actually324

driven by a few common factors, e.g. the dynamic factors as those identified by Stock and325

Watson (2002) or used by Bernanke, Boivin and Giannoni (2006), most multivariate time326

seris models have more observables than states. Assumption two ensures the observables327

are stationary. In our exercise, we rule out cases with non-stationary variables. However,328

it is straightforward to covert non-stataionary variables to stationary ones by detrending329

them. Our procedure then is ready to go. Assumption three requires there are at least330

as many observables as structure shocks of concern. This assumption is for technical331

purposes and not restrictive, since we can add include measurement errors as structural332

shocks. Fernandez-Villaverde et al (2006) also make this assumption.333

In lieu of additional information, the time series analyst knows or can estimate the co-334

variance generating function of the observables. Let this covariance structure be denoted335

Ci = E
(
rtr′t−i

)
for all i.336

To understand the theory that follows as we as our procedure, it is useful to compute337
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these covariances as functions of the underlying structural form:338

C0 = WQW̄C0 (WQW̄)
′
+ ZZ′ + WUU′W ′

−WQW̄C0 (WQW̄)
′

C1 = WQW̄C0 + WUZ′ −WQW̄ZZ′

Ci = (WQW̄)
i−1 C1 for all i > 1

In the theorem that follows, we find the number of matrix triples {Aj, Bj, Dj} corrre-339

sponding to covariance equivalent forms and also show how to conveniently compute340

each of them.341

Moving from the structural form to an observationally equivalent one changes the

amount of delay in the system, as we saw in the scalar and bivariate examples in section

2. Intuitively, this can be seen in the state space system by examing the MA representation

of the original structural system. This MA representation is:

rt+1 = Zet+1 + W
∞

∑
i=0

QiUet−i

Because the original and observational equivalent state-space forms differ in terms of U342

and Z, the corresponding impulse responses will differ in magnitude of a shock’s in-343

stantaneous effect, i.e. et+1, versus its lagged effect, et, et−1,.... Moreover, as seen in the344

bivariate example of section 2, changing the delay in the response of one variable to a345

shock has implications for all of the other impulse responses because of the known co-346

variance structure of the observables. The theorem below formalize the relation between347

the structural form and its covariance-equivalent cousins. Furthermore, it lays out the348

theoretical foundation for the practical procedure we use to tackle non-invertibilities.349

Theorem: If rt is a length k stochastic process with the structural state-space form350

(9) and assumptions 1 through 3 are satisfied, then there exists at most 2k infinite-order351

covariance equivalent moving average representations for {rt}, indexed by j, where the352
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innovations process ε
j
t satisfies E

(
ε

j
tε

j′
t

)
= Ik. Representation j is given by353

rt+1 = (I − AL)−1
[

Dj + C̃1(D′j)
−1
]

ε
j
t+1, (10)

The coefficient matrices, α and C̃i, i = 0, 1 are:354


A = C2C1

−1

C̃1 = C1 − AC0

C̃0 = C0 − AC0A′ − AC̃′1 − C̃1A′

(11)

where Ci is the ith order autocovariance of the observable vector. The matrix, Dj, satisfies:355

(i)356

(DjD′j)(C̃
′
1)
−1

(DjD′j)− C̃0(C̃′1)
−1

(DjD′j) + C̃1 = 0, (12)

(ii) Dj = Dc
j K, where Dc

j is the lower triangular matrix generated by the Cholesky357

decomposition of DjD′j. The orthonormal matrix, K, is given by (Zc)−1Z, where Zc is the358

lower triangular matrix derived from the Cholesky decomposition of ZZ′.359

(iii) one of the Djs is invertible and the corresponding MA form matches the Wold360

representation for rt.361

Proof : First, we prove equation (10) to equation (12) are necessary conditions for a valid repre-362

sentation of the structural form. That is, the MA representation of the structural form satisifies363

these conditions. We accompolish this component of the proof in a two-part manner364

Part One: The structrual form has a MA representation in the same format as (10).365

Let W̄ be the left inverse W, the MA representation of the transition equation of the state-space

form is given by:

st+1 = (I −QL)−1Uet+1 =
∞

∑
i=0

QiUet+1−i.

Substituting st with its MA representation in the obserable equation from the state-space form, we366

have:367

rt+1 = W
∞

∑
i=0

QiUet−i + Zet+1, (13)
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Premultiplying both side by W̄L and rearranging items, we have:368

∞

∑
i=0

QiUet−1−i = W̄(rt − Zet). (14)

Hence, equation (13) can be rewritten as:369

rt+1 = W[Uet + QW̄(rt − Zet)] + Zet+1 (15)

= WQW̄rt + Zet+1 + (WU −WQW̄Z)et,

The MA representation of model (15) is given by:370

rt+1 = [I −WQW̄L]−1
[Z + W(U −QW̄Z)L]et, (16)

371

In the next step, show that WQW̄ = A and W(U −QW̄Z) = C̃1(Z′)−1.372

Part Two: We show that the MA representation, equation (16), satisifies (11) and (12). Define373

Ci to be the ith order autocovariance matrix of rt. The autocovariance-generating function of a374

general VARMA(p,q) model yt = M(L)yt + N(L)wt, where wt N(0, I), is given by Gy(z) =375

(I −M(z))−1N(z)N(z−1)′(I −M′−1))−1. Therefore, we have:376

C0 = E{rtr′t}

= WQW̄C0(WQW̄)
′
+ ZZ′ + WUU′W ′

−WQW̄ZZ′(WQW̄)
′ (17)

C1 = E{rtrt−1}

= WQW̄C0 + WUZ′ −WQW̄ZZ′ (18)

Ci = E{rtrt−i
′}

= (WQW̄)
i−1C1, ∀i ≥ 2 (19)

We further simplify notation by defining A = WQW̄, B = WU− αZ and D = Z. Consequently,377
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we have:378

A = WQW̄ = C2C1
−1. (20)

Based on the definition, C̃0 and C̃1 satisfy:379

C̃1 = C1 − AC0

= BD′, (21)

C̃0 = C0 − AC0A′ − AC̃′1 − C̃1A′

= DD′ + BB′. (22)

Therefore, we have:380

B = W(U −QW̄Z) = C̃1Z′−1. (23)

We further substitute B in the equation with C̃0 to generate the following equation:381

C̃0 = ZZ′ + C̃1(ZZ′)−1C̃′1. (24)

Premultiplying both sides with C̃−1
1 (ZZ′), we get :382

(ZZ′)(C̃′1)
−1

(ZZ′)− C̃0(C̃′1)
−1

(ZZ′) + C̃1 = 0, (25)

Thus, ZZ′ satisfies condition (12). Furthermore, as ZZ′ is a symmetric positive semi-definite ma-383

trix, its Cholesky decomposition generates a lower triangular matrix Zc such that ZcZc′ = ZZ′.384

Based on Uhlig (2005), there is always an orthonormal matrix, K = (Zc)−1Z.385

386

Next, we show that equation (10) through (12) are also sufficient for a valid covariance equivalent387

representation : every model satisfying (10)-(12) is a valid representation of the structural form.388

It is obvious that the proposed representations have the same first-order unconditional mo-389

ments as the structural form. Hence, if the second order moments of the proposed models are also390

the same as those implified by the structural form, we can say the proposed forms are ”valid repre-391

sentations” of the structural form. Moreover, if the disturbance is Gaussian, all the implications392
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of the dynamics of the structural model are captured by the first two moments.393

Based on the construction, the general form of each candidate is:394

r̂t+1 = Ar̂t + Zjε
j
t+1 + C̃1(Z′j)

−1
ε

j
t (26)

where A, Zj and C̃1 are determined by constructed based on equation (11) and equation (12), and395

ε
j
t is N(0, I). Therefore ,the autocovariance of the process r̂t is:396

Ĉ0 = E{r̂t+1(r̂t+1)
′} (27)

= AĈ0A′ + AZj(Zj)
−1C̃1 + (AZj(Z′j)

−1C̃′1)
′
+ ZjZ′j + C̃1(ZjZj)

−1C̃′1

Ĉ1 = E{r̂t(r̂t−1)
′} (28)

= AĈ0 + C̃1(Z′j)
−1Zj

Ĉi = E{r̂t(r̂t−i)
′} (29)

= (A)i−1Ĉ1, i ≥ 2

Since ZjZ′j is a solution to equation (25), one can get:397

C̃0 = (ZjZ′j) + C̃1(ZjZ′j)
−1C̃′1 (30)

Therefore, the equation with regard to C̃0 becomes:398

Ĉ0 = AĈ0A′ + AC̃1 + C̃1A′ + C̃0 (31)

Hence, the solution of Ĉ0 is given by399

vec(Ĉ0) = [I − (A⊗ A)]−1vec(AC̃1 + C̃1A′ + C̃0) (32)

where vec(•) is the vectorization operation turning an m by n matrix into an mn by 1 vector.400

Based on the definition of C̃0 and C̃1, we know that401

vec(C0) = [I − (A⊗ A)]−1vec(AC̃1 + C̃1A′ + C̃0) (33)
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Therefore, we reach the conclusion:402

Ĉ0 = C0. (34)

Given the equivalence between C0 and Ĉ0, it is easy to see that403

Ĉ1 = AĈ0 + C̃1 = AC0 + C̃1 = C1 (35)

and404

Ĉi = Ai−1Ĉ1 = Ai−1C1 = Ci, ∀i ≥ 2. (36)

Hence, we can reach the conclusion that if a model satisfies condition (10) to (12), it shares the405

same first and second moments with the structural form. Therefore, such a model is a valid repre-406

sentation of the structural form407

408

As for the number of valid Zjs, there are

 2k

k

 solutions to equation (c). The format of409

ZjZj requires it to be symmetric and positive definite, thus the valid solution is less than

 2k

k

.410

With an alternative approach, we can show there are 2k valid representations in total. Furthermore,411

we show that among all the valid covariance-equivalent representations, there is one presentation412

which is invertible. The detail of this alternative approach is included in appendix (A)413

414

Q.E.D415

This theorem formalizes the relation between models with the same population mo-416

ments in observables: covariance equivalent invertible and non-invertible forms. It is the417

source of identification problem with VARs in the presence of non-invertibility. Equation418

(12) provides a way to find all covariance equivalent representations. Hence, it allows us419

to dramatically reduce the dimension of the identification problem.420

The theorem shows: (a) even if the structural form is non-invertible, economists can421

still find all ”covariance-equivalent” representations, (b) when there is non-invertibility422

implied by the structural form, unrestricted full information method does not necessarily423
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identify the right model, since there are multiple peaks of the likelihood function. Each424

corresponds to a ”covariance-equivalent” form. Those ”covariance-equivalent” forms425

share the same unconditional moments with the structural form up to the second order.426

The conditional moments, and especially impulse responses, are quite different. Based on427

the theorem, we develop our four-step procedure. In the section 4 and 5, we use model-428

generated data and real-world data to demonstrate the procedure.429

Our method will proceed according as follow:430

431

Step One: Estimate a reduced-form VARMA(1,1) model on the observables432

With Assumptions 1, 2 and 3, the structural model has a unique invertible VARMA(1,1)433

representation. This VARMA(1,1) model for this innovation form can be consistently es-434

timated with traditional methods.435

436

Step Two: Calculate all covariance equivalent representations.437

With the same assumptions used in step one, the true model could have multiple non-438

invertible VARMA(1,1) representations and one invertible representation. All of these439

representations share the same population moments with the invertible VARMA(1,1) es-440

timated in step one. Each of these model corresponds to a solution of a quadratic matrix441

equation, whose solution algorithm is offered by Potter (1964).442

443

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each444

representation.445

When the dimension of the observable variables is k, there are at most 2k solutions for446

fully specified rotation matrices. There is at least one solution, which is the innovation447

representation.448

449

Step Four: Impose agnostic restrictions on each representation, delivered from step three, to rule450

out futher structural representations.451

Usually there are multiple solutions after step three. More restrictions other than those on452

the pattern on the rotation matrix help reduce the set of valid models. If there is only one453
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solution left, the structural modle is fully identified, otherwise, the model is only partially454

identified.455

4 Two Model-Based Implementations of Our Procedure456

In this section, we use two model-generated example to illustrate how to use our proce-457

dure to identify the true model when traditional methods cannot. The first example is458

adopted from the permanent income example used by FRSW (2006). In thise case, our459

procedure identifies the true model, while traditional VAR model cannot do the job. The460

second example is from the model with news shock in Leeper, Walker and Yang (2009).461

In general, we achieve a partial idenfication in this example and a full idenfication is462

achieved only with a very strong restricion. However, we are successful to rule out the463

(wrong) invertible model in both applications.464

4.1 Savings and permanent income in FRSW (2009)465

FRSW show how applying structural VAR analysis to data from a permanent income466

model generates an incorrect conclusion about the consumption response to an income467

shock. We show how our procedure leads to the correct conclusion.468

The economic model has two equations.469

ct+1 = βct + σw(1− R−1)wt+1, (37)

zt+1 = yt+1 − ct+1 = −ct + σwR−1wt, (38)

Equation (37) is the intertemporal Euler equation and equation (38) defines saving. In470

the model, ct is the unobserved state, while zt = yt − ct is saving, the only observable in471

the model. This process invertible, since Q−UZ−1W = β + R− 1 > 1 as in FRSW, when472

β is close enough to one. The ARMA(1,1) representation of the observable is given by:473

zt+1 = βzt + σwR−1wt+1 − σw[1− R−1 + βR−1]wt, (39)
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which is non-invertible. The innovations representation is:474

ĉt+1 = βĉt + σw(
β− β2 + 1

R
− β)εt+1 (40)

zt+1 = −ĉt + σw(
β− 1 + R

R
)εt+1. (41)

Straightforwardly, the ARMA(1,1) model corresponding to the innovation representation475

is:476

zt+1 = βzt + σw(
β− 1 + R

R
)εt+1 −

σw

R
εt. (42)

The innovation representation is invertible, since Q− ÛẐ−1W ′ = 1
R+β−1 ∈ (0, 1). How-477

ever, since the implied state variable is not the true state variable, i.e, ĉt = E{ct|zt} 6= ct,478

so FRSW warn that inference based on the (estimated) innovation representation is not479

reliable.480

Suppose the economist knows the population moments for savings, zt. The economist481

is uninformed regarding consumtion and income. In sample, one could run a vector-482

autoregression, use spectral techniques or apply the state-space approach to approximate483

these moments. Our procedure uses the state-space approach.484

Step One: Estimate a reduced-form ARMA(1,1) on the observables.485

Step Two: Calculate all covariance equivalent representations.486

With only one observable variable, there are only two covariance equivalent MA rep-487

resentations.488

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each489

representation.490

We define a positive savings shock a disturbance that increases savings in the period of491

the shock. Different researchers may have different interpretations as to what exogenous492

factors drive savings changes, such as shocks to permanent income, transitory income or493

preferences. Since we have a scalar observable and a scalar shock, there is no simultaneity494

problem. As such, an SVAR-type restriction is unnecessary here.495

Step Four: Impose an agnostic restriction on each representation, delivered from step three.496

Before imposing step four, we plot the two impulse responses that come out of step497
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three. These appear in 3 in both the growth rate and level. The solid and dashed lines are,498

respectively, the invertible and non-invertible responses. Both of these impulse response499

functions give the same population moments as those from (??). The non-invertible re-500

sponse is the true response and the invertible representation is spurious. As FRSW ex-501

plain, a structural VAR always selects the invertible representation; therefore, in this case502

it would lead to the incorrect conclusion.503

Rather than a priori select the invertible form, we impose an agnostic restriction based504

on economic theory. We will impose the standard idea that people save now in order to505

consume more later. Formally, we require that: if savings is non-zero in at least one period,506

then it must switch signs at least once.507

Examining figure 3(b), only the invertible response satisfies the agnostic restriction.508

After step four, we have a single structural impulse response, plotted in figure 4, which is509

the true repsonse from the economic model. It is exactly the structural model’s impulse510

response.511

Figure 3: Covariance-equivalent impulse responses to a positive savings shock
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Notes: From the permanent income model with r = 0.2. Impulse responses to a one unit shock
from step three and before application of step four.

In a wide class of models, an individual increases current savings in order to finance512

greater future consumption. The use of agnostic restrictions is, in our view, very powerful513

exactly because it implies transparency regarding the source of identification.514
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Figure 4: Structural impulse response to a positive savings shock that satisfies the step
four identification restriction
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Notes: From the permanent income model with r = 0.2. Impulse responses to a one unit shock
after application of step four.

4.2 An anticipated fiscal shock in Leeper, Walker and Yang (2009)515

The second model-generated example has anticipated tax shocks as the source of non-516

invertibility. It is based on Leeper, Walker and Yang (2009, LWY, hereafter). This example517

has an anticipated fiscal shock: changes in the tax rate are announced two quarters before518

their implementation.519

Consider a neoclassical model with fixed labor supply and full capital deprecitation.

The capital stock kt is the single endogenous state variable. In equilibrium, it satisfies

(1− αL)(1− θL−1)kt = −
τ

1− τ
Et{τt+1}+ at − θEt{at+1}

where every variable is the log deviation from its steady-state value. The variables τt and520

at are the tax rate and technology level.521

LWY further assume there is a random componet to the tax rate, which is announced522

two periods before the tax implementation. This news is denoted by ετ,t. The equilibrium523
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law of motion for capital, consumption ct and output yt are:524

kt+1 = αkt + at+1 −
τ

1− τ
(1− θ)[θετ,t+1 + ετ,t], (43)

ct+1 = αkt + at+1 +
τ

1− τ
θ[θετ,t+1 + ετ,t], (44)

yt+1 = αkt + at+1. (45)

LWY show that non-invertibility affects not only the identification of fiscal shocks, but525

also the identification of the other shock (the technology shock). They assume that the526

tax rate has both the above anticipated random component as well as a contemporaneous527

response to technology. The tax rate is: τt = ψat + ετ,t−2.528

LWY demonstrate the non-invertibility problem using a structural VAR where τt and529

kt observed. In this case, the shocks identified by the structural VAR are not the true530

shocks, but rather combinations of the technology and tax/news shocks.531

Our four-step procedure can identify, at least partially, the structural shocks in the532

model. It is applied step-by-step below. We requires having enough observable variables,533

hence, we augment the observable space with consumption, ct and the shocks with ut, a534

measurement error on consumption. The addition of consumption does not remove the535

non-invertibility.536

The state-space representation is:537

st+1︷ ︸︸ ︷
kt+1

ετ,t+1

ετ,t

 =

Q︷ ︸︸ ︷
α − τ(1−θ)

1−τ 0

0 0 0

0 1 0


st︷ ︸︸ ︷
kt

ετ,t

ετ,t−1

+

U︷ ︸︸ ︷
1 − τθ(1−θ)

1−τ 0

0 1 0

0 0 0


et+1︷ ︸︸ ︷
at+1

ετ,t+1

ut+1

 (46)

rt+1︷ ︸︸ ︷
τt+1

kt+1

ct+1

 =

W︷ ︸︸ ︷
0 0 1

α − τ(1−θ)
1−τ 0

α τθ
1−τ 0


st︷ ︸︸ ︷
kt

ετ,t

ετ,t−1

+

Z︷ ︸︸ ︷
ψ 0 0

1 − τθ(1−θ)
1−τ 0

1 τθ2

1−τ 1


et+1︷ ︸︸ ︷
at+1

ετ,t+1

ut+1


Our analysis requires setting values for the parameters. We follow LWY for most538
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parameters.9 In additionl, we normalize the size of fiscal shocks to be 1, and the size of539

technology shock is set to be σa = 0.1, The standard deviation of the measurement error540

is 0.05.10
541

By checking the ”poor man’s invertibility condition” from FRSW, we see that the sys-542

tem is non-invertible. This is because the matrix Q−UZ−1W has eigenvalues outside the543

unit circle for our parameterization. The three eigenvalues of Q−UZ−1W are .33, −8.98544

and −0.45; therefore, there is one dimension of non-invertibility.545

The structural VAR approach ignores the embedded non-invertibility. On the other

hand, our procedure takes all possible non-invertibilities into consideration.

Step one: Estimate a reduced-form VARMA(1,1) on the observables. Denote the VARMA(1,1)

representation of the structural model as rt+1 =

A︷ ︸︸ ︷
WQW̄ rt +

D︷︸︸︷
Z et+1 +

B︷ ︸︸ ︷
(WU −WQW̄Z) et

with the following matrices:

A =


0 (τ−1)

τ
(1−τ)

τ

0 α 0

0 α 0

 , D =


ψσa 0 0

σa
τθ(θ−1)

1−τ 0

σa
τθ2

1−θ σu

 , B =


0 θ

(1−τ)
τ σu

0 τ(1−θ)
τ−1 0

0 τθ
1−θ 0


546

The traditional structural VAR approach can only give the innovation representation,

rt+1 = Art + D̂êt+1 + B̂êt, of the true model. The AR coefficient matrix, A is consistently

identified, but D̂ and B̂ are biased. In our numerical example, the true VARMA(1,1) rep-

resentation is:

A =


0 −3 3

0 .36 0

0 .36 0

 , D =


.12 0 0

.12 .065 0

.12 −.024 .05

 , B =


0 −.27 −.15

0 .24 0

0 .89 0

 .

9We choose α = .36, β = .99, τ = .25.
10The size of technology shock is set up to allow the contribution of technology shocks and tax shocks

on the variance of consumption is equalized in the long run. This parameterization is purely for analytical
simplicity, and it does not affect the result qualitatively
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The estimated innovation representation, on the other hand, is given by 11:

A =


0 −3 3

0 .36 0

0 .36 0

 , D̂ =


.29 0 0

.21 .14 0

−.01 −.01 .15

 , B̂ =


0 −.12 −.08

0 .13 .03

0 −.04 0.01

 .

The true VARMA(1,1) representation has eigenvalues outside the unit circle, while the547

innovation representation has no eigenvalues outside the unit circle.12
548

Step two: Calculate all covariance equivalent representations549

This step finds all the representations with the same autocovariance structure, i.e., the550

covariance equivalent representations. Each covariance equivalent representation has an551

associated triple {Aj, Dj, Bj}. It is easy to verify that Aj = A and every pair of {Dj, Bj}552

satisfies the following equations:553

DjD′j + BjB′j = (47)
ψ2σ2

a + θ2 + (σu
κ )

2
ψσ2

a + κθ(1− θ) ψσ2
a − κθ2

ψσ2
a + κθ(1− θ) σ2

a + κ2(1 + θ2)(1− θ)2 σ2
a − κ2θ(1− θ)(1 + θ2)

ψσa
2 − κθ2 σ2

a − κ2θ(1− θ)(1 + θ2) σ2
a + κ2θ2(1 + θ2) + σ2

u



BjD′j =


0 κθ2(1− θ) −κθ3 − σ2

u
κ

0 κ2θ(1− θ)2 −κ2θ2(1− θ)

0 −κ2θ2(1− θ) κ2θ3

 ,

where κ = τ/ (1− τ). The equation system (48) can be equivalently converted into a554

quadratic matrix equation in DjD′j. The solution of this quadratic matrix equation is given555

in Potter (1964). Since DjD′j is a 3× 3 matrix for each j, there are at most 23 = 8 different556

solutions to the quadratic matrix. Under this current parameterization, DjD′j has a pair of557

complex eigenvalues. As such, there are only four real-valued structural responses.558

Step three: Define the structural shock of interest and impose an SVAR-type restriction on each559

representation.560

11Here we only show the result after imposing a short run restricion.
12The true model has two eigevalues outside the unit circle, which are complex conjegutes of each other.

29



A positive technology shock is defined as a shock which increases consumption and561

does not reduce the tax rate. Consumption increases because of positive effect of technol-562

ogy shocks on production capacity. Obvioiusly, a positive tax shock increases the tax rate563

as well but the way it affect capital and consumption is not clear. One possible way to564

separate the positive tax shock from the positive technology shock is by assuming that an565

anticipated tax rate change cannot changes the current tax rate. Since we know that mea-566

surement error only affects the measurement of consumption, it should not affect the tax567

rate or capital on impact. Based on the definitions, we can impose a short-run restriction568

to identify the shocks: a valid D matrix should be lower triangular.569

Figure (5) shows impulse responses to a positive tax shock (upper panel) and those570

to a positive technology shock (lower panel) in all the four possible cases after imposing571

the short run restriciton. One of them overlaps with the VAR-based inference, which572

is the (invertible) innovation representation of the model. In response to a positive tax573

shocks, capital and output falls in all four cases and tax rate increases in all of them. The574

only difference is the magnitude of responses. When studying the responses to a positive575

technology shock, capital falls in two cases but rises in other three. Ouput falls in the576

innovation representation but rises in all the other three cases. The fall in output seems to577

contradict traditional wisdom, however, there are evidences in existing research to show578

technology shocks are contrationary. At this stage, we cannot rule out any the four cases579

for the time being without further justification.580

581

Step Four: Impose agnostic restrictions on each representation, delivered from step three, to fur-582

ther rule out structural responses.583

In this exercise, we use short-term forecast error variance decomposition to distin-584

guish models. In order to identify the true impulse responses, we employ multiple cri-585

teria based on reasonable economic intuition. Firstly, measurement errors should not be586

important factors to explain volatilities in any of the variables, especially in the longer587

term. Therefore, we setup a quantitative threshold of 30% for the average contribution588

of measurement errors on all observable variables. (criterion one) Secondly, technology589

shocks should not be the dominant factor to explain the volatilities in the tax rate, espe-590
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Figure 5: Response To Tax and Technology Shocks (after step three)
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nology shock. PS i: the ith solution based on the Potter equation.
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Table 1: Identification Based on Short-Term Variance Decomposition

Model One Model Two Model Three Model Four
The average contributions on different horizons of identified measurement errors on variables

tax rate 0 34.82 0 14.78
capital 0 39.32 0 0.51

consumption 7.84 39.45 7.84 70.51

The average contributions of technology on tax rate at different horizons

1.42 35.05 1.42 53.24

The contribution of technology shocks on capital and consumption when h = 1

capital 0 37.55 79.11 71.01
consumption 0 48.01 83.23 0.09

ically in longer time horizons. Quantitatively, we set up the threshold value to be 50%591

when the the time horizon is longer than two quarters (criterion two). The result of this592

variance decomposition exercise is shown in table (1)593

Based on criterion one, case 2 and case 4 are ruled out, since these two models at-594

tribute too many variations to measurement errors. In this model, case 4 is corresponding595

to the innovation representation, in other words, the model identified with traditional596

SVAR methods. This specification can be ruled out based on our second criterion as well,597

since technology shocks should not be the main driving force for tax rates. The economic598

intuition behind the variance decomposition exercise is that mis-identified models do not599

identify structrural shock correctly, instead, the shocks identified in these models are lin-600

ear combinations of structural shocks. Leeper et al (2009) makes a similar point from a601

different perspective. They view this as a failure in idenfication with traditional SVAR602

methods. Our procedure goes one step further: some mis-idenfication will give wildly603

implusible variance decomposition. Therefore, we can rule out such mis-identified mod-604

els.605

However, we still cannot achieve full identification in this model. As shown in table 1,606
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we cannot choose between case one and case three based on the first two criteria we pro-607

posed. Till this step, we achieve a partial idenfication of this model. Figure (6) compared608

the impulse responses implied by the remaining solutions to those implied by the true609

model and by the innovation representation. Both solutions recover the true responses610

to a positive tax shock in the structural model. One of them (the ”identified model”) re-611

cover the true responses to technology shocks as well. It means our procedure at least612

pertains the true model. The reason why we can use variance decompositions to identify613

the right model is that covariance-equivalent representations other than true models are614

likely to mix different shock together. Therefore, the variance decomposition is distorted615

in those representations. Such idenfication scheme share the same spirit as the identifi-616

cation methods proposed by Faust (1997) and Uhlig (2005). As long as economic theory617

gives us enough restrictions on the model, e.g, the variance decompostion, the sign of im-618

pulse responses or the sign of magnitude of a particular coefficient, we can always apply619

them to rule out mis-identified models.620

In this example, we cannot uniquely pin down the true model. The reason is that the621

first solution based on our procedure only mis-specifies the timing or invertibility of the622

technology shock, but it does disentangle tax shocks and technology shocks effectively. To623

further refine the result, we might to want to ask for stronger restrictions. For instance,if624

we have a strong belief that the transmission of technology shocks is fast enough, then the625

technology shock should explain the bulk of changes in capital and consumption in the626

short term. Hence, we set up a third criterion: the contribution of technology shocks to the627

one step forecast error variances in consumption and capital should be higher than 30%.628

With this extra restriction, we uniquely pin down the model as shown in table 1. In the629

true model, capital and output fall in response to an anticipated tax shock. Consumption630

rises on impact but falls in following period. The intial rise is due to the subsitution effect631

induced by higher tax rate in the future while the following decrease is because of the632

drop in production capacity. When the model is identified correctly, capital, output and633

consumption all rise in response to a positive technology shock, while the innovation634

representation shows capital and output falls in response to it.Adding this third criterion,635

the true model is uniquely identified. From our perspectivee, criteria three is too strong to636
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be used. Thus, our procedure has not achieved a slam dunk. Nevertheless, using criteria637

based on variance decompositions are not the only way to impose agnostic restrictions.638

Other criteria, e.g, based on the sign of responses or even some facts or statistics beyond639

the time series model could be used to identify models as well. Chances are we can640

further refine the models with these rich sets of restrictions.641

Figure 6: Response To Tax and Technology Shocks (after step four)
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5 Examples with Real Data642

5.1 First application: Irish hunger and emigration, 1820-1890643

Our first application using actual data is based the extraordinary and tragic experience644

in 19th century Ireland. A series of famines and hungers occurred over this period, with645
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the largest occurring between 1847 and 1850 which is estimated to have caused over one646

million deaths. During that century, there was significant immigration from Ireland to647

many countries, including the U.S.648

Figure 7 plots annual data on the immigration from Ireland to the U.S. as well as a649

dummy variable for whether Ireland experienced a hunger or famine during the year.650

Figure 7: Emigration from and hunger in Ireland, 1820-1890
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Notes: Migration data is log deviation from HP trend of the number of immigrants and hunger is
a binary variable based upon Wikipedia entry on the years of Irish famines and hungers.

This episode provides an interesting application of our procedure. First, the primary651

cause of most of these hungers and famines was potato diseases. It is reasonable to think652

about these as exogenous shocks. Second,one might expect to see a delayed response of653

the type illustrated in section XXX. Third, by considering a bivariate system, there will be654

only four covariance equivalent structural impulse responses for each variable (i.e. one655

invertible and three non-invertible).656

Step one: Estimate a reduced form VARMA(1,1) for the observables.657

Our observable vector contains two variables, the log number of immigrants to the U.S.658

and a binary hunger variable. We assume the state system contains two unobserved states659

and two shock variables.13
660

661

Step two: Define the structural shock and select the rotation restriction.662

13Migration data is log deviation from HP trend of the number of immigrant annually from Ireland to the
U.S. Hunger is a binary variable based upon Wikipedia entries that delineate in which years Irish famines
and hungers occurred.
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Figure 8: Structural impulse responses to a one-standard deviation positive hunger
shock, invertible and non-invertible responses
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Notes: The solid line contains the invertible structural response and the shaded region contains
the corresponding 95% confidence interval. Each dashed line corresponds to a non-invertible
structural response.

663

A positive famine shock is an exogenous increase in the hunger variable upon the im-664

pact of the shock. Second, we impose a rotation restriction via a recursive ordering of the665

variables so that migration does not respond within the period to the hunger shock. It666

seems that some people could move within the year. It would be nice to replace this with667

another restriction, although I am not sure what it would be.668

669

Step Three: Define the structural shock of interest and impose an SVAR-type restriction.670

A positive hunger shock increases hunger on impact. The historical record attributes the671

start of each famine to poor weather and/or crop disease. We treat these as exogenous.672

We make the short-run restriction that migration cannot respond within the year to a673

hunger shock. Booking cross-Atlantic steamers took time and, since most Irish has little674

income, laying back enough wages to buy these tickets also took time.675

Figure 8 plots the four covariance equivalent impulse responses to a one-standard676

deviation hunger shock. The solid line in each panel represents the invertible response.677

The invertible one looks very plausible, but the non-invertible ones look less plausible.678

Step Four: Impose an agnostic restriction on each representation, delivered from step three, to679
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further rule out potential stuctural responses.680

Here, we impose one restriction: the long-run cumulative migration from Ireland to the681

U.S. is non-negative in response to a positive hunger shock. The justification for this682

restriction is self-explanatory. Imposing this restriction, the structural impulse response683

is uniquely identified. It is the solid line and is also the invertible form.684

Although our procedure delivered the invertible representation as the truth, we did685

not choose this one a priori and ad hoc.686

5.2 Second application: long-run identified technology shocks in the687

U.S., 1955-2000688

Fisher (2006) uses a three-variable model to study the effect of technology shocks on the689

U.S. economy in the second half of the twentieth century. In his exercise, the investment-690

specific shock, which is captured by suprise changes in the relative price of investment, is691

important to explain the variation in output and working hours in U.S.692

Recently, studies on the effect of ”news shocks”, which is the anticipated component693

in technology shocks, have drawn more and more attentions of economists, since the sem-694

inal work by Beaudry and Portier (2006). They show that technology shocks identified by695

traditional long run restrictions can be well replicated by another shock originated in the696

stock index but are orthogonal to contemporaneous technology changes. They argue that697

this piece of evidence shows technology shocks are anticipated (”news shocks”) and they698

further show this news shock is important to explain business fluctuations. Jaimovich699

and Rebelo (2009) show that certain real frictions, including habit persistence in con-700

sumption, investment adjustment costs and costly capacity utilization, are important to701

the propagation of news shocks in a real business cycle model. Christiano et al (2009) es-702

timate a dynamic general equilibrium model featuring norminal and real frictions for the703

U.S. ecomony and show that news shocks are important sources of business fluctuations.704

However, Sims (2009) uses traditional SVAR methods to identify news shocks in a large705

scale VAR model and finds that news shocks fail to generate co-movement in macro vari-706

ables, so news shocks cannot be a valid candidate for the main driving force of business707
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cycles.708

To shed light on the effect of anticipated technology shocks or news shocks on the709

economy, we estimate a small scale VARMA model similar to Fisher (2006). There are710

three variables in the model: the growth rate of real equipment price, the growth rate of711

labor productivity and the log index of average working hours. The rationale behind this712

exercise is as follows: if there is a significant anticipated component in either the invest-713

ment specific technology shock or the neutral technology shock, the implied time series714

becomes non-invertible. With our four-step procedure, we should be able to identify the715

true model with enough reasonable restrictions, no matter it is non-invertible or not. The716

application of the four-step procedure is given as follows:717

718

Step one: Estimate a redued-form VARMA(1,1) on the observables719

First, we estimate a VARMA(1,1) model on the data. In practice, there are at least two ad-720

vantages of this VARMA(1,1) setup over the traditional long VAR models: (i) the model721

requires less parameters, which relieves the concern on too many estimated parameters722

to some extent; (ii) the VARMA(1,1) setting is more consistent with the DSGE models723

studied in macroeconomics.14 The VARMA model is estimated in a two-step manner.724

The first step is estimating a long VAR model to obtain a residual series. In the second725

step, we estimate a VARMA(1,1) model by adding the residual series from the first step726

as a regressor and check for convergence.15 After obtaining the estimated VARMA(1,1)727

model, we get variance matrix of error terms, Ω̂, which is the estimate of DjD′j, and the728

MA coefficient matrix,N, which is the estimate of BjD−1
j . These moment estimates are729

used in the second step.730

731

Step two: Calculate all covariance equivalent representations732

Second, we compute all covariance equivalent representations. As we show in section733

three, all the covariance equivalent representations are solutions of the Potter equation734

defined by the moments of observable variables, and the true model should be one of735

14See for example Kehoe (2007).
15The efficiency of estimation could be improved by employing a 3SLS procedure or iterated 2SLS proce-

dure. Kascha (2007) gives a good survey on estimation methods of the VARMA models.
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them. In the current application, the Potter equation is given by:736

DjD′j + BjB′j = Ω̂ + NΩ̂N′ (48)

BjD′j = NΩ̂.

Step three: Define the structural shocks of interest and impose an SVAR-type restrictions on each737

representation.738

Following Fisher (2006) and Altig et al (2009), a positive investment specific shock is de-739

fined as the only shock which lowers the real equipment price in the long run, while a740

positive neutral technology shock is define as the other shock which increases labor pro-741

ductivity in the long run apart from the positive investment specific shock. Based on the742

definitions, two long run restrictions are imposed on the estimated model to identify the743

two technology shocks. There are eight structural representations satisfying the Potter744

equation as well as the two long run restrictions.745

Figure 9 shows the impulse reponses of all eight cases along with the point estimate746

and the confidence interval based on the innovation representation. The latter is the coun-747

terpart of the tradtional VAR identification in our VARMA(1,1) setup. In the invertible748

case, the estimated effect of identified shocks are in line with existing research: in re-749

sponse to a positive investment shock, hours and output increase prominently, however,750

labor productivity falls for a long period after the shock. Output and labor hours increase751

less significantly in the case with a positive neutral technology shock. In non-invertible752

cases, the responses to the investment shocks are similar to those in the invertible case.753

In response to the neutral technology shock, hours rise faster and stronger in some non-754

invertible cases, but the response of output on impact becomes weaker. In those cases,755

labor productivity increases gradually, instead of jumping up as shown in the invertible756

case. If technology is only disseminated slowly in the economy, we should observe the757

slow buildup of labor productivity in response to technology shocks as shown here. The758

strong response of hours in can be readily explained by strong intertemporal substitution759

effect as in Jaimovich and Rebelo (2009). Up to this step, economic theory cannot distin-760

guish between the invertible and the invertible models. Therefore, we need additional761
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selection criteria to pin down the true model, which is the purpose of the fourth step in762

our procedure.763

Figure 9: Response To Technology Shocks (All Cases)
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Notes: solid blue line: the point estimate of impulse responses in the innovation representation;
gray area: 90% confidence interval in the innovation representation; dashed black lines: impulse
responses from the solutions of the Potter equation

764

Step four: Impose agnostic restrictions on each representation, delivered from step three, to fur-765

ther rule out structural responses.766

In this step, we impose agnostic restrictions on variance decompositions: (i) the invest-767

ment shock should explain the long run variance in the growth of real equipment price768

at least 10%; (ii) the neutral technology shock contributes the long run variance on the769

growth of labor productivities at least 10%; (iii) the third shock, with is a combination of770

other non-technology shocks and measurement errors, should not contribute more then771

30% to the long run volatility in either the real equipment price or the labor produtivity.772
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The result of the variance decomposition is summarized in table 2.773

As shown in the table, we successfully rule out some cases. Based on the third cri-774

terion, we can rule out case models 1, 3, 5 and 7. In all the four cases, the contribution775

of other non-technology shocks on the growth of technology in the long run are unrea-776

sonablly large. However, we cannot refine the outcome further, in other words, we only777

achieve a partial identification in this example.778

Figure 10 plot the responses of models satisfying the agnostic restrictions based on779

variance decompositions along with the invertible case. In all the four valid cases, im-780

pulse responses are very similar to each other. Furthermore, the invertible case is among781

the four cases we keep. The variance decomposition analysis also show similar result782

in all the four cases. Therefore, we can reach the conclusion that the inference based on783

analysis on an invertible VAR model is valid and reliable. In other words, news or an-784

ticipated components in technology shocks does not play important roles when studying785

the effect of these two types of technology shocks. Between the two technology shocks,786

the investment specific shock is more important to explain the dynamics in labor hours.787

6 Conclusion788

Traditional limited information econometric methods, including the widely applied struc-789

tural VAR apprach, cannot handle non-invertiblility embeded in many business cycle790

models. However, researchers need not abandon the limited information approach, which791

is the power and soul of the structural VAR. We show that non-invertible time series can792

be recovered with its invertible counterpart. That is, there is always an invertible innova-793

tion representation corresponding to a non-invertible model. The invertible innovation794

representation shares the same population moment with the structural model. There-795

fore, we can recover all the valid models through those consistently estimated moments,796

regardless of invertibility.797

Based on the theory developed in this paper, we propose a four step procedure to798

handle non-invertibility in practice. This four steps are: (i) estimate a reduced form799

VARMA(1,1); (ii) compute all VARMA(1,1) models with the same autocovariance struc-800
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Figure 10: Response To Technology Shocks (Identified)
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Notes: solid blue line: the point estimate of impulse responses in the innovation representation;
gray area: 90% confidence interval in the innovation representation; dashed black lines: impulse
responses from the solutions of the Potter equation

ture using Potter’s (1964) algorithm; (iii) use the outcomes from step two and an SVAR-801

type restriction to find a finite number of valid structural impulse responses; (iv) use ag-802

nostic restriction implied by economic theory to identify, at least partially, the true model.803

We then apply this procedure to two model-generated examples. In both the perma-804

nent income model FRSW and the anticipated fiscal shock model in LWY, our procedure805

recovers the true model. We further apply our method to cases with real data. We find806

that result in Fisher (2006)’s study on technology shocks holds even when we consider807

possible non-invertibilities in the model. It indicates that anticipated component technol-808

ogy shocks or ”news shocks” do not spoil the inference of the transmission mechanism of809

technology shocks.810
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Appendix858

A The equivalence between Blaschke Matrices and the Potter Equation859

Lippi and Reichlin (1994) show every noninvertible stationary VARMA(p,q) model has860

one invertible representation by multiplying an approrpiate Blaschke matrix. A Blaschke861

matrices, B(z), is a special matrix satistify the following property:862

863

B(z)B(z−1)
′
= I. (1)

As we know, every orthonormal matrix is a Blaschke matrix. In the remaing part of this864

section, we show how to use Blaschke matrices to get an invertible representation and865

how this alternative procedure is related to the proposed procedure in the main text.866

Lemma Every covariance-equivalent form can be achieved by multiplying an appropriate Blashke867

matrix on the original model868

Proof:869

rt+1 = WI −QL−1Uet + Zet+1 (2)

= W
∞

∑
i=0

QiUet−i

= WQW̄(rt − Zet) + WUet + Zet+1

= WQW̄yt + Zet+1 + (WU −WQW̄Z)et.

For simplicity in notations, define M = WQW̄, N0 = Z and N1 = WU −WQW̄Z. There-870

fore, we have the autocovariance generating function of rt is given by:871

Gr(z) = ([I −Mz])−1(N0 + N1z)(N0 + N1z−1)′[I −M′−1]
−1

(3)

Equation () is a VARMA(1,1) representation of the structural model, which might be in-872

vertible or non-invertible. Next, we show that there is an alternative VARMA(1,1) rep-873

resentation of the same model, and furthermore, this representation is invertible. To this874

end, we construct a square matrix A(L) of dimension m. This matrix depdends on the ma-875
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trix lag polynomial N(L) = N0 + N1L. More specifically, let {λi}m
i=1 be the eigenvalues of876

N(L). Define a matrix R(λi, z) as follows:877

R(λi, z) =




Ii−1 0 0

0 1−λ̄iz
1−λiz

0

0 0 Im−i

 , |λi| > 1

Im, otherwise

(4)

The matrix R(λi, z) is known as a Blaschke matrix. It satisfies the property R(λi, z)R′(λ̄i, z−1) =878

I. Now, we defines another matrix Ki. This matrix is an orthonormal matrix, whose ith879

column is the normalized solution of N(λi)x = 0.880

Firstly, we can construct another lag polynomial Ni(L) = Ni
0 + Ni

1L = (N0 + N1L)KiR(λi, L).881

By right multiplying N(L) with Ki, one can move all the entries containing the factor882

1− λiL on the ith column. By further right multiplying R(λi, L), one replaces 1− λiL with883

λi− L but leave other elements untouched, in other words, ”flips” a particular eigenvalue884

of the lag polinomial. At the same time, we even have:885

Gi
r(z) = ([I −Mz])−1(Ni

0 + Ni
1z)(Ni

0 + Ni
1z−1)′[I −M′−1]

−1

= ([I −Mz])−1(N0 + N1z)KiRi(λi, L)R′(λ̄i, L−1)K′i(N0 + N1z−1)′[I −M′−1]
−1

= ([I −Mz])−1(N0 + N1z)(N0 + N1z−1)′[I −M′−1]
−1

= Gr(z) (5)

Therefore, we construct another VARMA(1,1) representation of the structural model:886

rt+1 = Mrt + Ni
0ei

t+1 + Ni
1ei

t. (6)

Compared to the model in equation (A), model (6) has the same variance-covariance887

structure and the same likelihood. Based on construction, we know that the eigenval-888

ues of the covariance-equivalent forms are either the eigenvalues of the structural form889

or the reciprocal of them. Therefore, if there are eigenvalues outside the unit circle (non-890
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invertible), there has to be a covariance-equivalent form ”flipping” all the explosive eigen-891

values while keeping the stable eigenvalues untouched.892

Q.E.D893

894

Lemma The method with Blaschke matrices gives the same result as the procedure based on the895

Potter equation896

897

Proof: The proof applies to a general VARMA(p, q)model, M(L)xt = N(L)wt, where898

M(L) is stable. (i) Any solution implied by Blaschke matrices is a solution implied by the Pot-899

ter equation. This is obvious. Based on construction, a representation generated by using900

Blaschke matrices have the same covariance structure as the structural form. Hence, it is901

satisfies conditions (10) to (12)902

903

Any solution satisfying conditions (10) to (12) is a solution by using Blaschke matrices This904

is based on Theorem 2 in Lippi and Reichlin (1994). Assume the invertible VARMA(p, q)905

model is given by M(L)xt = N(L)ut. an arbitrary solution from the potter equation is906

given by M(L)xt = Ñ(L)wt. Based on definition, xt = M(L)−1Ñ(L)wt is a MA repre-907

sentation of the original VARMA model. Therefore, we have to have M(L)−1Ñ(L) =908

M(L)−1N(L)B(L), where B(L) is a Blaschke matrix. Thus, Ñ(L) = N(L)B(L).909

910

Q.E.D911
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