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1 Introduction

Reviewing the literature on Purchasing Power Parity (PPP), Rogoff (1996) found, using

single equation methods, a remarkable consensus on 3 to 5 year half-life estimates of real

exchange rate deviations from PPP. This is an important piece of Rogoff’s ”PPP puzzle” as

the question of how one might reconcile highly volatile short-run movements of real exchange

rates with an extremely slow convergence rate to PPP. This puzzle can be described in the

context of the New Keynesian model with Calvo pricing. For example, Gaĺı and Gertler

(1999) use U.S. aggregate data, the unit labor cost and CPI, to estimate the New Keynesian

Phillips curve (NKPC). Their preferred estimate implies that the average frequency of the

price change is about 5 quarters. On the other hand, a single-good version of Kehoe and

Midrigan’s (2007) model can be used to find the implication of the 3 to 5 year half-life

estimates from real exchange rate data for the same average pricing frequency (see Section 2

below). They imply 18 to 30 quarters. Thus, it is hard to reconcile Gaĺı and Gertler’s result

with the extremely slow convergence rate found in Rogoff’s remarkable consensus.

Using Rogoff’s remarkable consensus as the starting point, many possible solutions to the

PPP puzzle have been proposed in the literature.1 One important example is Imbs, Mumtaz,

Ravn, and Rey (2005), who point out that sectoral heterogeneity in convergence rates can

cause upward bias in half-life estimates, and claim that this aggregation bias explains the

PPP puzzle. While it is possible that the bias can solve the PPP puzzle under certain

conditions, it is also possible that the bias is negligible under other conditions. For example,

Chen and Engel (2005), Crucini and Shintani (2008), and Parsley and Wei (2007) have found

negligible aggregation biases. Broda and Weinstein (2008) show that the aggregation bias

of the form that Imbs, Mumtaz, Ravn, and Rey (2005) studied is small for their barcode

data, even though the convergence coefficient rises as they move to aggregate indexes. These

papers are about purely statistical findings.

Another delicate issue is how we should aggregate micro evidence of price stickiness for

dynamic aggregate models, such as dynamic stochastic general equilibrium (DSGE) models,

which Carvalho and Nechio (2008) have started to study. Thus, even though the aggregation

bias is an important possibility, much more research seems necessary before we reach a

consensus on whether or not the aggregation bias solves the PPP puzzle, and how we should

aggregate for DSGE models.

In this paper, we ask a different question: Should we really take Rogoff’s remarkable

consensus of 3-5 year half-life estimates as the starting point for the aggregate CPI data?

1See Murray and Papell (2002) for a discussion of other solutions which take Rogoff’s remarkable consensus
as a starting point.
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The consensus may at first seem to support the reliability of these estimates, but Kilian

and Zha (2002), Murray and Papell (2002), and Rossi (2005) have shown that the degree of

uncertainty around these point estimates is huge. Murray and Papell conclude that singe

equation methods provide virtually no information regarding the size of half-lives. Therefore,

it is not clear if the true half-lives are as slow as Rogoff’s remarkable consensus implies. If

we apply a more efficient estimator to the real exchange rate data, we may find much faster

convergence rates.

For the purpose of obtaining a more efficient estimator, we develop a system method that

combines the Taylor rule and a standard exchange rate model in order to estimate the half-

life of the real exchange rate. Several recent papers have provided empirical evidence in favor

of exchange rate models with Taylor rules (see Mark 2005, Engel and West 2006, Clarida

and Waldman 2007, Molodtsova and Papell 2007, and Molodtsova, Nikolsko-Rzhevskyy and

Papell 2007). Therefore, a system method using an exchange rate model with the Taylor rule

is a promising way to try to improve on single equation methods to estimate the half-lives.

Because standard asymptotic theory usually does not provide adequate approximations

for the estimation of half-lives of real exchange rates, we use a nonparametric bootstrap

method to construct confidence intervals. Median unbiased estimates based on the bootstrap

are reported.

As we review in Section 5 below, the contrast between the single equation methods and

our system method, in the context of PPP literature, corresponds with the contrast between

single equation methods for the NKPC and system methods for DSGE models with the

NKPC in the literature for closed economy models. Single equation methods such as Gaĺı

and Gertler’s (1999) GMM yield small standard errors for the average price duration based

on standard asymptotic theory. However, Kleibergen and Mavroeidis (2009), who take into

account the weak identification problem of GMM, report that the upper bound of their

95% confidence interval for the price duration is infinity. The estimators of average price

duration in system methods for DSGE models in Christiano, Eichenbaum, and Evans (2005)

and Smets and Wouters (2007), among others, may be more efficient.

We apply the system method to estimate the half lives of real exchange rates of 18

developed countries against the U.S. dollar. Most of the estimates from the single equation

method fall in the range of 3 to 5 years, with wide confidence intervals that extend to positive

infinity. In contrast, the system method yields median unbiased estimates that are typically

substantially shorter than 3 years with much sharper confidence intervals, most of which

range from three quarters to 5 years.

In the recent papers of two-country exchange rate models with Taylor rules cited above,

the authors assume that Taylor rules are adopted by the central banks of both countries.
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Because Taylor rules may not be used by some countries, we only assume that the Taylor

rule is used by the home country, and remain agnostic about the monetary policy rule in the

foreign country. None of these papers with Taylor rules estimates half-lives of real exchange

rates.

Kim and Ogaki (2004), Kim (2005), and Kim, Ogaki, and Yang (2007) use system meth-

ods to estimate half-lives of real exchange rates. However, they use conventional monetary

models without Taylor rules based on money demand functions. Another important differ-

ence of these works from the present paper is that their inferences are based on asymptotic

theory, while ours is based on the grid bootstrap.

The rest of the paper is organized as follows. Section 2 describes our baseline model.

We construct a system of stochastic difference equations for the exchange rate and inflation,

explicitly incorporating a forward looking Taylor rule into the system. Section 3 explains

our estimation methods. In Section 4, we report our empirical results. Section 5 reviews the

current empirical NKPC literature in relation to our findings. Section 6 concludes.

2 The Model

2.1 Gradual Adjustment Equation

We start with a univariate stochastic process of real exchange rates. Let pt be the log

domestic price level, p∗t be the log foreign price level, and et be the log nominal exchange

rate as the price of one unit of the foreign currency in terms of the home currency. And we

denote st as the log of the real exchange rate, p∗t + et − pt.
We assume that PPP holds in the long-run. Putting it differently, we assume that

there exists a cointegrating vector [1 − 1 − 1]′ for a vector [pt p
∗
t et]

′, where pt, p
∗
t , and et

are difference stationary processes. Under this assumption, the real exchange rate can be

represented as the following stationary univariate autoregressive process of degree one.

st+1 = d+ αst + εt+1, (1)

where α is a positive persistence parameter that is less than one.2

Recently, Kehoe and Midrigan (2007) show that the persistence parameter α is closely

related to a measure of price stickiness in Calvo (1983) pricing models. It can be shown that

2Note that this is a so-called Dickey-Fuller estimation model. One may estimate half-lives by an Aug-
mented Dickey-Fuller estimation model in order to avoid possible serial correlation problems. However, as
shown in Murray and Papell (2002), half-life estimates from both models were roughly similar. So it seems
that AR(1) specification is not a bad approximation.
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a single-good version of their model implies the stochastic process (1) for the real exchange

rate where α equals the probability that firms do not adjust their prices in any given period.

Along the line of Woodford (2007), Kim (2009) shows that (1) can be also derived from a

similar model as Kehoe and Midrigan’s (2007) with the Taylor Rule.

By rearranging and taking conditional expectations, the equation (1) can be written

by the following error correction model of real exchange rates with a known cointegrating

relation described earlier.

Et∆pt+1 = b [µ− (pt − p∗t − et)] + Et∆p
∗
t+1 + Et∆et+1, (2)

where µ = E(pt− p∗t − et), b = 1−α, d = −(1−α)µ, εt+1 = ε1,t+1 + ε2,t+1− ε3,t+1 = (et+1−
Etet+1) + (p∗t+1 − Etp

∗
t+1)− (pt+1 − Etpt+1), and Etεt+1 = 0. E(·) denotes the unconditional

expectation operator while Et(·) is the conditional expectation operator on It, the economic

agent’s information set at time t.3 Note that b is the convergence rate (= 1− α), which is a

positive constant less than unity by construction.

2.2 The Taylor Rule Model

We assume that the uncovered interest parity (UIP) holds. That is,

Et∆et+1 = it − i∗t , (3)

where it and i∗t are domestic and foreign interest rates, respectively.

The central bank in the home country is assumed to continuously set its optimal target

interest rate (iTt ) by the following forward looking Taylor Rule.4

iTt = r̄ + γπEt∆pt+1 + γxxt,

where r̄ is a constant that includes a certain long-run equilibrium real interest rate along

with a target inflation rate5, and γπ and γx are the long-run Taylor Rule coefficients on

3A single-good version of Mussa’s (1982) model implies this when we add a domestic price shock, pt+1 −
Etpt+1, that has a conditional expectation of zero given the information at time t.

4We remain agnostic about the policy rule of the foreign central bank, because the Taylor rule may not
be employed in some countries.

5See Clarida, Gaĺı, and Gertler (1998, 2000) for details.
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expected future inflation6 (Et∆pt+1) and current output deviations7 (xt), respectively. We

also assume that the central bank attempts to smooth the interest rate by the following rule.

it = (1− ρ)iTt + ρit−1,

that is, the current actual interest rate is a weighted average of the target interest rate

and the previous period’s interest rate, where ρ is the smoothing parameter. Then, we can

derive the forward looking version Taylor Rule equation with interest rate smoothing policy

as follows.

it = (1− ρ)r̄ + (1− ρ)γπEt∆pt+1 + (1− ρ)γxxt + ρit−1 (4)

Combining (3) and (4), we obtain the following.

Et∆et+1 = (1− ρ)r̄ + (1− ρ)γπEt∆pt+1 + (1− ρ)γxxt + ρit−1 − i∗t (5)

= ι+ γsπEt∆pt+1 + γsxxt + ρit−1 − i∗t ,

where ι = (1 − ρ)r̄ is a constant, γsπ = (1 − ρ)γπ and γsx = (1 − ρ)γx are short-run Taylor

Rule coefficients.

Now, let’s rewrite (2) as the following equation in level variables.

Etpt+1 = bµ+ Etet+1 + (1− b)pt − (1− b)et + Etp
∗
t+1 − (1− b)p∗t (2’)

Taking differences and rearranging it, (2’) can be rewritten as follows.

Et∆pt+1 = Et∆et+1 + α∆pt − α∆et +
[
Et∆p

∗
t+1 − α∆p∗t + ηt

]
, (6)

where α = 1− b and ηt = η1,t + η2,t − η3,t = (et − Et−1et) + (p∗t − Et−1p
∗
t )− (pt − Et−1pt).

From (4), (5), and (6), we construct the following system of stochastic difference equa-

tions. 1 −1 0

−γsπ 1 0

−γsπ 0 1


 Et∆pt+1

Et∆et+1

it

 =

 α −α 0

0 0 ρ

0 0 ρ


 ∆pt

∆et

it−1

+

 Et∆p
∗
t+1 − α∆p∗t + ηt

ι+ γsxxt − i∗t
ι+ γsxxt

 (7)

6It may be more reasonable to use real-time data instead of the final release data. However, doing so will
introduce another complication as we need to specify the relation between the real-time price index and the
consumer price index, which is frequently used in the PPP literature. Hence we leave the use of real-time
data for future research.

7If we assume that the central bank responds to expected future output deviations rather than current
deviations, we can simply modify the model by replacing xt with Etxt+1. However, this does not make any
significant difference to our results.
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For notational simplicity, let’s rewrite (7) in matrix form as follows.

AEtyt+1 = Byt + xt, (7’)

and thus8,

Etyt+1 = A−1Byt + A−1xt (8)

= Dyt + ct,

where D = A−1B and ct = A−1xt. By eigenvalue decomposition, (8) can be rewritten as

follows.

Etyt+1 = VΛV−1yt + ct, (9)

where D = VΛV−1 and

V =

 1 1 1
αγsπ
α−ρ 1 1
αγsπ
α−ρ 1 0

 , Λ =

 α 0 0

0 ρ
1−γsπ

0

0 0 0


Premultiplying (9) by V−1 and redefining variables,

Etzt+1 = Λzt+ht, (10)

where zt = V−1yt and ht = V−1ct.

Note that, among non-zero eigenvalues in Λ, α is between 0 and 1 by definition, while
ρ

1−γsπ
(= ρ

1−(1−ρ)γπ ) is greater than unity as long as 1 < γπ <
1

1−ρ . Therefore, if the long-

run inflation coefficient γπ is strictly greater than one9, the system of stochastic difference

equations (7) has a saddle path equilibrium, where rationally expected future fundamental

variables enter in the exchange rate and inflation dynamics. On the contrary, if γπ is strictly

less than unity, which might be true in the pre-Volker era in the US, the system would

have a purely backward looking solution, where the solution would be determined by past

fundamental variables and any martingale difference sequences.

Assuming γπ is strictly greater than one, we can show that the solution to (7) satisfies

8It is straightforward to show that A is nonsingular, and thus has a well-defined inverse.
9The condition γπ <

1
1−ρ is easily met for all sample periods we consider in this paper.
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the following relation (see Appendix A for the derivation).

∆et+1 = ι̂+
αγsπ
α− ρ

∆pt+1 −
αγsπ
α− ρ

∆p∗t+1 +
αγsπ − (α− ρ)

α− ρ
i∗t (11)

+
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j
Etft+j+1 + ωt+1,

where,

ι̂ =
αγsπ − (α− ρ)

(α− ρ)(γsπ − (1− ρ))
ι,

ft = −
[
i∗t − Et∆p

∗
t+1

]
+
γsx
γsπ
xt

ωt+1 =
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j
(Et+1ft+j+1 − Etft+j+1)

+
γsπ

α− ρ
ηt+1 −

αγsπ − (α− ρ)

α− ρ
υt+1,

and,

Etωt+1 = 0

Or, (11) can be rewritten with full parameter specification as follows.

∆et+1 = ι̂+
αγπ(1− ρ)

α− ρ
∆pt+1 −

αγπ(1− ρ)

α− ρ
∆p∗t+1 +

αγπ(1− ρ)− (α− ρ)

α− ρ
i∗t (11’)

+
γπ(1− ρ)(αγπ(1− ρ)− (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γπ(1− ρ)

ρ

)j
Etft+j+1 + ωt+1

Here, ft is a proxy variable that summarizes the fundamental variables such as foreign ex

ante real interest rates and domestic output deviations.

Note that if γπ is strictly less than unity, the restriction in (11) may not be valid, since the

system would have a backward looking equilibrium rather than a saddle path equilibrium.10

Put it differently, exchange rate dynamics critically depends on the size of γπ. As mentioned

in the introduction, however, we have some supporting empirical evidence for such a require-

ment for the existence of a saddle path equilibrium, at least for the post-Volker era. So we

believe that our specification would remain valid for our purpose in this paper.

One related research has been recently put forward by Clarida and Waldman (2007), who

10If the system has a purely backward looking solution, the conventional structural Vector Autoregressive
(SVAR) estimation method may apply.
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investigate exchange rate dynamics when central banks employ Taylor rules in a small open

economy framework proposed by Svensson (1999). In their paper, they derive the dynamics

of real exchange rates by combining the Taylor Rule and the uncovered interest parity (or

real interest parity), so that the real exchange rate is mainly determined by the ex ante real

interest rate. In their model, the real interest rate follows an AR(1) process of which the

autoregressive coefficient is a function of the Taylor rule coefficients. When the central bank

responds to inflation more aggressively, the economy returns to its long-run equilibrium at

a faster rate. Therefore, the half-life of PPP deviations is negatively affected by γπ.

It should be noted that their model does not explicitly incorporate the commodity view

of PPP in the sense that real exchange rate dynamics are mainly determined by the portfolio

market equilibrium conditions. Unlike them, we combine Kehoe and Midrigan’s (2007) model

with the UIP as well as the Taylor Rule. Under this framework, no policy parameters can

affect the half-life of the PPP deviations because real exchange rate persistence is mainly

driven by firms’ behavior. On the other hand, policy parameters do affect volatilities of

inflation and the nominal exchange rate in our model. For example, the more aggressively

the central bank responds to inflation, the less volatile inflation is, which leads to a less

volatile nominal exchange rate.

One interesting feature arises when another policy parameter, ρ, varies. As the value

for ρ increases, the volatility of ∆pt+1 decreases. This is due to the uncovered interest

parity condition. A higher value of ρ, higher interest rate inertia, implies that the central

bank changes the nominal interest rate less. Therefore, ∆et+1 should change less due to the

uncovered interest parity. When α = ρ, it can be shown that after the initial cost-push

shock, price does not change at all (see Appendix B). That is, ∆pt+1 instantly jumps and

stays at its long-run equilibrium value of zero. Hence, the convergence toward long-run PPP

should be carried over by the exchange rate adjustments. When α < ρ, price must decrease

after the initial cost-push shock, since the nominal exchange rate movement is limited by

the uncovered interest parity and domestic interest rate inertia.

3 Estimation Methods

We discuss two estimation strategies here: a conventional univariate equation approach and

the GMM system method (Kim, Ogaki, and Yang, 2007).
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3.1 Univariate Equation Approach

A univariate approach utilizes the equations (1) or (2). For instance, the persistence param-

eter α in (1) can be consistently estimated by the conventional least squares method under

the maintained cointegrating relation assumption. Once we obtain the point estimate of α,

the half-life of the real exchange rate can be calculated by ln(.5)
lnα

. Similarly, the regression

equation for the convergence parameter b can be constructed from (2) as follows.

∆pt+1 = b [µ− (pt − p∗t − et)] + ∆p∗t+1 + ∆et+1 + ε̃t+1, (2”)

where ε̃t+1 = −εt+1 = −(et+1 − Etet+1)− (p∗t+1 − Etp
∗
t+1) + (pt+1 − Etpt+1) and Etε̃t+1 = 0.

3.2 GMM System Method

Our second estimation strategy combines the equation (11) with (1). The estimation of the

equation (11) is a challenging task, however, since it has an infinite sum of rationally expected

discounted future fundamental variables. Following Hansen and Sargent (1980, 1982), we

linearly project Et(·) onto Ωt, the econometrician’s information set at time t, which is a

subset of It. Denoting Êt(·) as such a linear projection operator onto Ωt, we can rewrite (11)

as follows.

∆et+1 = ι̂+
αγsπ
α− ρ

∆pt+1 −
αγsπ
α− ρ

∆p∗t+1 +
αγsπ − (α− ρ)

α− ρ
i∗t (12)

+
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j
Êtft+j+1 + ξt+1,

where

ξt+1 = ωt+1 +
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j (
Etft+j+1 − Êtft+j+1

)
,

and

Êtξt+1 = 0,

by the law of iterated projections.

Rather than choosing appropriate instrumental variables that are in Ωt, we simply assume

Ωt = {ft, ft−1, ft−2, · · · }. This assumption would be an innocent one under the stationarity

assumption of the fundamental variable, ft, and it can greatly lessen the burden in our GMM

estimation by significantly reducing the number of coefficients to be estimated.

Let’s assume, for now, that ft be a zero mean covariance stationary, linearly indetermin-
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istic stochastic process so that it has the following Wold representation.

ft = c(L)νt, (13)

where νt = ft−Êt−1ft and c(L) is square summable. Assuming that c(L) = 1+c1L+c2L
2+· · ·

is invertible, (13) can be rewritten as the following autoregressive representation.

b(L)ft = νt, (14)

where b(L) = c−1(L) = 1−b1L−b2L2−· · · . Linearly projecting
∑∞

j=0

(
1−γsπ
ρ

)j
Etft+j+1 onto

Ωt, Hansen and Sargent (1980) show that the following relation holds.

∞∑
j=0

δjÊtft+j+1 = ψ(L)ft =

[
1− (δ−1b(δ))

−1
b(L)L−1

1− (δ−1L)−1

]
ft, (15)

where δ = 1−γsπ
ρ

.

For actual estimation, we assume that ft can be represented by a finite order AR(r)

process11, that is, b(L) = 1 −
∑r

j=1 bjL
j, where r < ∞. Then, it can be shown that the

coefficients of ψ(L) can be computed recursively (see Sargent 1987) as follows.

ψ0 = (1− δb1 − · · · − δrbr)−1

ψr = 0

ψj−1 = δψj + δψ0bj,

where j = 1, 2, · · · , r. Then, we obtain the following two orthogonality conditions.

∆et+1 = ι̂+
αγsπ
α− ρ

∆pt+1 −
αγsπ
α− ρ

∆p∗t+1 +
αγsπ − (α− ρ)

α− ρ
i∗t (16)

+
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ
(ψ0ft + ψ1ft−1 + · · ·+ ψr−1ft−r+1) + ξt+1,

ft+1 = k + b1ft + b2ft−1 + · · ·+ brft−r+1 + νt+1, (17)

11We can use conventional Akaike Information criteria or Bayesian Information criteria in order to choose
the degree of such autoregressive processes.
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where k is a constant scalar1213, and Êtνt+1 = 0.

Finally, the system method (GMM) estimation utilizes all aforementioned orthogonality

conditions, (2”), (16), and (17). That is, a GMM estimation can be implemented by the

following 2(p+ 2) orthogonality conditions.

Ex1,t(st+1 − d− αst) = 0 (18)

Êx2,t−τ

(
∆et+1 − ι̂− αγsπ

α−ρ∆pt+1 + αγsπ
α−ρ∆p∗t+1 −

αγsπ−(α−ρ)
α−ρ i∗t

−γsπ(αγsπ−(α−ρ))
(α−ρ)ρ (ψ0ft + ψ1ft−1 + · · ·+ ψr−1ft−r+1)

)
= 0 (19)

Êx2,t−τ (ft+1 − k − b1ft − b2ft−1 − · · · − brft−r+1) = 0, (20)

where x1,t = (1 st)
′, x2,t = (1 ft)

′, and τ = 0, 1, · · · , p.1415

3.3 Median Unbiased Estimator and Grid-t Confidence Intervals

We correct for the bias in our α estimates by a GMM version of the grid-t method proposed

by Hansen (1999) for the least squares estimator. It is straightforward to generate pseudo

samples for the orthogonality condition (20) by the conventional residual-based bootstrap-

ping. However, there are some complications in obtaining samples directly from (18) and

(19), since p∗t is treated as a forcing variable in our model. We deal with this problem as

follows.

In order to generate pseudo samples for the orthogonality conditions (18) and (19), we

denote p̃t as the relative price index pt−p∗t . Then, (2”) and (16) can be rewritten as follows.

∆p̃t+1 = bµ− b(p̃t − et) + ∆et+1 + ε̃t+1

∆et+1 = ι̂+
αγsπ
α− ρ

∆p̃t+1 +
αγsπ − (α− ρ)

α− ρ
i∗t

+
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ
(ψ0ft + · · ·+ ψr−1ft−r+1) + ξt+1

12Recall that Hansen and Sargent (1980) assume a zero-mean covariance stationary process. If the variable
of interest has a non-zero unconditional mean, we can either demean it prior to the estimation or include a
constant but leave its coefficient unconstrained. West (1989) showed that the further efficiency gain can be
obtained by imposing additional restrictions on the deterministic term. However, the imposition of such an
additional restriction is quite burdensome, so we simply add a constant here.

13In actual estimations, we normalized (16) by multiplying (α− ρ) to each side in order to reduce nonlin-
earity.

14p does not necessarily coincide with r.
15In actual estimations, we use the aforementioned normalization again.
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Or, in matrix form,[
∆p̃t+1

∆et+1

]
= C + S−1

[
−(1− α)

0

]
[p̃t − et] (21)

+ S−1

 0
αγsπ−(α−ρ)

α−ρ i∗t + γsπ(αγsπ−(α−ρ))
(α−ρ)ρ ·

(ψ0ft + · · ·+ ψr−1ft−r+1)

+ S−1

[
ε̃t+1

ξt+1

]
,

where C is a vector of constants and S is

[
1 − 1

... − αγsπ
α−ρ 1

]
.

Then, treating each grid point α ∈ [αmin, αmax] as a true value, we can generate pseudo

samples of ∆p̃t+1 and ∆et+1 by the conventional bootstrapping.16 The level variables p̃t and

et are obtained by numerical integration. It should be noted that all other parameters are

treated as nuisance parameters (η).17 Following Hansen (1999), we define the grid-t statistic

at each grid point α ∈ [αmin, αmax] as follows.

tn(α) =
α̂GMM − α
se(α̂GMM)

, (22)

where se(α̂GMM) denotes the robust GMM standard error at the GMM estimate α̂GMM.

Implementing GMM estimations for B bootstrap iterations at each of N grid point of α,

we obtain the (β quantile) grid-t bootstrap quantile functions, q∗n,β(α) = q∗n,β(α, η(α)). Note

that each function is evaluated at each grid point α rather than at the point estimate.18

Finally, we define the 95% grid-t confidence interval as follows.

{α ∈ R : q∗n,2.5%(α) ≤ tn(α) ≤ q∗n,97.5%(α)}, (23)

and the median unbiased estimator is,

αMUE = α ∈ R, s.t. tn(α) = q∗n,50%(α) (24)

4 Empirical Results

This section reports estimates of the persistence parameter α (or convergence rate parameter

b) and their implied half-lives from the aforementioned two estimation strategies.

16The historical data were used for the initial values and the foreign interest rate i∗t .
17See Hansen (1999) for detailed explanations.
18If they are evaluated at the point estimate, the quantile functions correspond to the Efron and Tibshi-

rani’s (1993) bootstrap-t quantile functions.
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We use CPIs to construct real exchange rates with the US$ as a base currency. We

consider 19 industrialized countries19 that provide 18 real exchange rates. For interest rates,

we use quarterly money market interest rates that are short-term interbank call rates rather

than conventional short-term treasury bill rates, since we incorporate the Taylor Rule in the

model where a central bank sets its target short-term market rate. For output deviations, we

consider two different measures of output gaps, quadratically detrended real GDP gap (see

Clarida, Gaĺı, and Gertler 1998)20 and unemployment rate gaps (see Boivin 2006).21 The

data frequency is quarterly and from the IFS CD-ROM. The sample period is from 1979:III

to 1998:IV for Eurozone countries, and from 1979:III to 2003:IV for the rest of the countries.

The reason that our sample period starts from 1979.III is based on empirical evidence on

the US Taylor Rule. As discussed in Section II, the inflation and exchange rate dynamics

may greatly depend on the size of the central bank’s reaction coefficient to future inflation.

We showed that the rationally expected future fundamental variables appear in the exchange

rate and inflation dynamics only when the long-run inflation coefficient γπ is strictly greater

than unity. Clarida, Gaĺı, and Gertler (1998, 2000) provide important empirical evidence for

the existence of a structural break in the US Taylor Rule. Put it differently, they show that

γπ was strictly less than one during the pre-Volker era, while it became strictly greater than

unity in the post-Volker era.

We implement similar GMM estimations for (4) as in Clarida, Gaĺı, and Gertler (2000)2223

with longer sample period and report the results in Table 1 (see the note on Table 1 for

detailed explanation). We use two output gap measures for three different sub-samples.

Most coefficients were highly significant and specification tests by J-test were not rejected.

More importantly, our requirement for the existence of a saddle path equilibrium met for

the post-Volker era rather than the pre-Volker era. Therefore, we may conclude that this

provides some empirical justification for the choice of our sample period.

Insert Table 1 Here

19Among 23 industrialized countries classified by IMF, we dropped Greece, Iceland, and Ireland due to
lack of reasonable number of observations. Luxembourg was not included because it has a currency union
with Belgium.

20We also tried same analysis with the cyclical components of real GDP series from the HP-filter with
1600 of smoothing parameter. The results were quantitatively similar.

21The unemployment gap is defined as a 5 year backward moving average subtracted by the current
unemployment rate. This specification makes its sign consistent with that of the conventional output gap.

22They used GDP deflator inflation along with the CBO output gaps (and HP detrended gaps).
23Unlike them, we assume that the Fed targets current output gap rather than future deviations. However,

this doesn’t make any significant changes to our results. And we include one lag of interest rate rather than
two lags for simplicity.
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Our GMM estimates and the conventional 95% bootstrap confidence intervals are re-

ported in Table 2. We also report our GMM version median unbiased estimates and the

95% grid-t confidence intervals in Table 3. We implemented estimations using both gap

measures, but report the full estimates with unemployment gaps in order to save space.24

We chose N = 30 and B = 500 totaling 15,000 GMM simulations for each exchange rate.

We chose p = r = 8 by the conventional Bayesian Information Criteria., and standard errors

were adjusted using the QS kernel estimator with automatic bandwidth selection in order to

deal with unknown serial correlation problems. For comparison, we report the corresponding

estimates by the least squares in Tables 4 and 5.

One interesting finding is that the system method provides much shorter half-life es-

timates compared with ones from the single equation method (see Tables 2 and 4). The

median half-life estimate was 2.59 years from the univariate estimations. However, we ob-

tained the 0.90-year median half-life from the system method. This finding remains valid

even when we adjust for the median bias using the grid-t bootstrap. The median value of the

GMM median unbiased estimates was still below 1 year, 0.94 year, while the least squares

method produced the 3.42-year median half-life when we correct for the bias. Interestingly,

our estimates are roughly consistent with the average half-life estimates from the micro-data

evidence by Crucini and Shintani (2008).2526

We also notice that our median-unbiased point estimate α̂GMM,MUE is consistent with the

price-stickiness parameter estimates by Gaĺı and Gertler (1999) who use the New Keynesian

Phillips Curve specification with Calvo pricing. Recall that a single-good version model by

Kehoe and Midrigan (2007) or Kim (2009) implies that α coincides with the Calvo probability

parameter.

Regarding efficiency, we obtained substantial efficiency gains from the system method

over the single equation method. Murray and Papell (2002) report a version of the grid-α

confidence intervals (Hansen, 1999)27 of which upper limits of their half-life estimates are

infinity for every exchange rates they consider. Based on such results, they conclude that

single equation methods may provide virtually no useful information due to wide confidence

24The results with quadratically detrended real GDP gaps were quantitatively similar.
25For the OECD countries, their baseline half-life estimates for traded good prices were 1.5 years, while

1.58 and 2.00 years for all and non-traded good prices.
26Our point estmtates are smaller than those of Murray and Papell (2002), but the differences of point

estimates between countries are very similar to theirs. The exceptions to this similarity are Japan and the
UK, as our point estimates for the countries are much smaller than others. Using the same sample period
of Murray and Papell (2002), however, we obtained the α estimates of 0.89 and 0.82 for Japan and the UK,
respectively. Therefore, these exceptions seem to have arisen from the difference in the sample periods.

27Their confidence intervals are constructed following Andrews (1993) and Andrews and Chen (1994),
which are identical to the Hansen’s (1999) grid-α confidence intervals if we assume that the errors are drawn
from the empirical distribution rather than the i.i.d. normal distribution.
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intervals.

Our grid-t confidence intervals from the single equation method were consistent with such

a view (see Table 5). The upper limits are infinity for most real exchange rates. However,

when we implement estimations by the system method, the standard errors were reduced

significantly, and our 95% GMM version grid-t confidence intervals were very compact. Our

results can be also considered as great improvement over Kim, Ogaki, and Yang (2007) who

acquired limited success in efficiency gains.

Insert Table 2 Here

Insert Table 3 Here

Insert Table 4 Here

Insert Table 5 Here

5 Comparisons with Estimates based on the New Key-

nesian Phillips Curve

As discussed in Section 2, α in the real exchange rate autoregression in Equation (1) is the

Calvo (1983) probability that a firm must keep its price unchanged in a given period in a

single-good version of Kehoe and Midrigan’s (2007) model. We denote this probability by

θ. Even though α = θ in our interpretation, the AR coefficient can be different from θ in

other models. In this section, we review various methods of estimating θ for the NKPC

and compare the results from U.S. quarterly data with our estimates of the probability. For

comparisons, note that the average time over which a price is fixed is (1− θ)
∑∞

k=0 kθ
k−1 =

1/(1− θ).
A classic method to estimate θ is a single equation method that applies GMM to the

NKPC as in Gaĺı and Gertler (1999) and Eichenbaum and Fisher (2007). Gaĺı and Gertler’s

preferred estimates of θ are about 0.8, implying an average duration of about 5 quarters.

Eichenbaum and Fisher’s estimates of θ are also about 0.8 for the baseline model, but are
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lower, around 0.6 with the implied average duration of about 2.5 quarters, when the model

is modified. A recurring problem with this method is the weak identification problem as

surveyed by Kleibergen and Mavroeidis (2009). The 95% confidence interval using their

recommended method gives a lower bound of two quarters and an upper bound of infinity

for the average price duration.

Another single equation method is the minimum distance method applied to the NKPC

as in Sbordone (2002, 2005). The minimum distance estimator is also subject to the weak

identification problem according to Magnusson and Mavroeidis (2009). Their 95% confidence

intervals give a lower bound average duration of about 3.3 quarters to an upper bound of

infinity. The minimum distance method gives sharper results than GMM.

Thus, the single equation methods for the NKPC yield results that are similar to the

single equation methods for the real exchange rate half-lives, and both those confidence

intervals are very wide.

System methods to estimate θ in the literature use DSGE models with the NKPC. Chris-

tiano, Eichenbaum, and Evans (2005) use a minimum distance estimator for the DSGE

model, and obtain a point estimate of θ of 0.6 for the benchmark model. Their estimate

implies the average duration of 2.5 quarters. At this point, it is not clear whether or not

the tight confidence intervals they report based on asymptotic theory is subject to the weak

identification problem.

Another popular system method is the Bayesian analysis of DSGE models with the

NKPC. The posterior mode of θ in Smets and Wouters (2007) is 0.65, implying the average

duration of about 2.9 quarters. Del Negro and Schorfheide (2008) show that posterior mean

estimates of θ depend on priors and range from 0.56 to 0.84.

It is interesting to compare these estimates from aggregate data with evidence from Micro

data. Nakamura and Steinsson (2008) use a substantially more detailed data set than Bils

and Klenow (2004), and find that the median duration of prices excluding sales was between

8 and 11 months in 1998-2005. However, given that the frequency of price changes differs

dramatically across goods in these and other micro studies, aggregating these results for

aggregate structural models is a challenge.

6 Conclusion

After recognizing that the degree of uncertainty for estimating the half lives of real exchange

rates from single equation methods is huge, we proposed a system method that combines

the Taylor rule and a standard exchange rate model, then estimated the half-lives of the real

exchange rates of 18 developed countries against the U.S.
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We used two types of nonparametric bootstrap methods to construct confidence inter-

vals: the standard bootstrap and Hansen’s (1999) grid bootstrap. The standard bootstrap

evaluates bootstrap quantiles at the point estimate of the AR(1) coefficient, which implic-

itly assumes that the bootstrap quantile functions are constant functions. This assumption

does not hold for the AR model, and Hansen’s grid bootstrap method, which avoids this

assumption, has better coverage properties. In our applications, we often obtain very differ-

ent confidence intervals for these two methods. Therefore, the violation of the assumption

is deemed quantitatively important.

When we use the grid bootstrap method, most of the (approximately) median unbi-

ased estimates from the single equation method fall in the range of 3 to 5 years with wide

confidence intervals that extend to positive infinity. In contrast, the system method yields

median unbiased estimates that are typically substantially less than one year with much

sharper confidence intervals, most of which range from 3 quarters to 5 years.

These results indicate that monetary variables from the exchange rate model based on

the Taylor rule provide useful information about the half-lives of the real exchange rates.

The estimators from the system method are much sharper in the sense that confidence

intervals are much narrower than those from a single equation method. Approximately

median unbiased estimates of the half-lives are typically about one year, which is much more

reasonable than consensus 3 to 5 years from single equation methods. It is also interesting

to see that our half-life estimates imply about 4 to 6 quarters of average price duration in

the context of the Calvo pricing model. Our 95% confidence intervals of half-lives of the

real exchange rates are consistent with most of the estimates of average price durations for

aggregate U.S. data for the NKPC and DSGE models.

Our paper is a first step toward moving to a system method with the exchange rate model

based on the Taylor rule. We followed most of the papers in the literature with this type of

the model by using the uncovered interest parity to connect the Taylor rule to the exchange

rate. Because the uncovered interest parity for short-term interest rates is rejected by the

data, one future direction is to modify the model by removing the uncovered interest parity.

This is a challenging task because no consensus has emerged as to how the deviation from

the uncovered interest parity should be modeled.
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A Derivation of (11)

Since Λ in (10) is diagonal, assuming 0 < α < 1 and 1 < γπ <
1

1−ρ , we can solve the system

as follows.

z1,t =
∞∑
j=0

αjh1,t−j−1 +
∞∑
j=0

αjut−j (a1)

z2,t = −
∞∑
j=0

(
1− γsπ
ρ

)j+1

Eth2,t+j (a2)

z3,t = h3,t−1 + υt, (a3)

where ut and υt are any martingale difference sequences.

Since yt = Vzt,  ∆pt

∆et

it−1

 =

 1 1 1
αγsπ
α−ρ 1 1
αγsπ
α−ρ 1 0


 z1,t

z2,t

z3,t

 (a4)

From first and second rows of (a4), we get the following.

∆et =
αγsπ
α− ρ

∆pt −
αγsπ − (α− ρ)

α− ρ
z2,t −

αγsπ − (α− ρ)

α− ρ
z3,t (a5)

Now, we find the analytic solutions for zt. Since ht = V−1ct,

ht =
1

1− γsπ


− α−ρ
αγsπ−(α−ρ)

α−ρ
αγsπ−(α−ρ) 0

αγsπ
αγsπ−(α−ρ) − αγsπ

αγsπ−(α−ρ) 1

0 1 −1


 Et∆p

∗
t+1 − α∆p∗t + ηt + ι+ γsxxt − i∗t

γsπ(Et∆p
∗
t+1 − α∆p∗t + ηt) + ι+ γsxxt − i∗t

γsπ(Et∆p
∗
t+1 − α∆p∗t + ηt) + ι+ γsxxt − γsπi∗t

 ,
and thus,

h1,t = − α− ρ
αγsπ − (α− ρ)

(
Et∆p

∗
t+1 − α∆p∗t + ηt

)
(a6)

h2,t =
1

1− γsπ

[
ργsπ

αγsπ − (α− ρ)
(Et∆p

∗
t+1 − α∆p∗t + ηt) + ι+ γsxxt − γsπi∗t

]
(a7)

h3,t = −i∗t (a8)
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Plugging (a6) into (a1),

z1,t = − α− ρ
αγsπ − (α− ρ)

∞∑
j=0

αj
(
∆p∗t−j − α∆p∗t−j−1 + ηt−j−1

)
+
∞∑
j=0

αjut−j (a9)

= − α− ρ
αγsπ − (α− ρ)

∆p∗t +
∞∑
j=0

αjut−j −
α− ρ

αγsπ − (α− ρ)

∞∑
j=0

αjηt−j−1

Plugging (a7) into (a2)28,

z2,t = − γsπ
αγsπ − (α− ρ)

∞∑
j=0

(
1− γsπ
ρ

)j (
Et∆p

∗
t+j+1 − αEt∆p

∗
t+j + Etηt+j

)
− 1

ρ

∞∑
j=0

(
1− γsπ
ρ

)j (
ι+ γsxEtxt+j − γsπEti

∗
t+j

)
=

αγsπ
αγsπ − (α− ρ)

∆p∗t −
γsπ

αγsπ − (α− ρ)
ηt −

ι

γsπ − (1− ρ)

− γsπ
ρ

∞∑
j=0

(
1− γsπ
ρ

)j
Et∆p

∗
t+j+1 −

γsπ
ρ

∞∑
j=0

(
1− γsπ
ρ

)j (
γsx
γsπ

Etxt+j − Eti
∗
t+j

)

Then, denoting ft as −
(
i∗t − Et∆p

∗
t+1

)
+ γsx

γsπ
xt = −

(
i∗t − Et∆p

∗
t+1

)
+ γx

γπ
xt,

z2,t =
αγsπ

αγsπ − (α− ρ)
∆p∗t−

γsπ
αγsπ − (α− ρ)

ηt−
ι

γsπ − (1− ρ)
−γ

s
π

ρ

∞∑
j=0

(
1− γsπ
ρ

)j
Etft+j (a10)

Finally, plugging (a8) into (a3),

z3,t = −i∗t−1 + υt (a11)

Now, plugging (a10) and (a11) into (a5),

∆et =
αγsπ
α− ρ

∆pt −
αγsπ
α− ρ

∆p∗t +
γsπ

α− ρ
ηt +

αγsπ − (α− ρ)

(α− ρ)(γsπ − (1− ρ))
ι (a12)

+
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j
Etft+j +

αγsπ − (α− ρ)

α− ρ
i∗t−1 −

αγsπ − (α− ρ)

α− ρ
υt

28We use the fact Etηt+j = 0, j = 1, 2, · · · .

20



Updating (a12) once and applying law of iterated expectations,

∆et+1 = ι̂+
αγsπ
α− ρ

∆pt+1 −
αγsπ
α− ρ

∆p∗t+1 +
αγsπ − (α− ρ)

α− ρ
i∗t (a13)

+
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j
Etft+j+1 + ωt+1,

where

ι̂ =
αγsπ − (α− ρ)

(α− ρ)(γsπ − (1− ρ))
ι,

ωt+1 =
γsπ(αγsπ − (α− ρ))

(α− ρ)ρ

∞∑
j=0

(
1− γsπ
ρ

)j
(Et+1ft+j+1 − Etft+j+1)

+
γsπ

α− ρ
ηt+1 −

αγsπ − (α− ρ)

α− ρ
υt+1,

and,

Etωt+1 = 0
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B The Solution When α = ρ

When α equals ρ, we have the following system of difference equations. 1 −1 0

−γsπ 1 0

−γsπ 0 1


 Et∆pt+1

Et∆et+1

it

 =

 ρ −ρ 0

0 0 ρ

0 0 ρ


 ∆pt

∆et

it−1

+

 Et∆p
∗
t+1 − ρ∆p∗t + ηt

ι+ γsxxt − i∗t
ι+ γsxxt

 ,
(b1)

which can be represented by the following.

Etyt+1 = VΛV−1yt + ct, (b2)

where

V =

 0 1 1

1 1 1

1 1 0

 , Λ =

 ρ 0 0

0 ρ
1−γsπ

0

0 0 0

 , V−1 =

 −1 1 0

1 −1 1

0 1 −1


The system yields the same eigenvalues, α = ρ and ρ

1−(1−ρ)γπ . Therefore, when γπ is greater

than one, we have the saddle-path equilibrium as before. By pre-multiplying both sides of

(b2) by V−1, we get,

Etzt+1 = Λzt + ht, (b3)

where V−1yt = zt and V−1ct = ht.

We solve the system as follows.

z1,t =
∞∑
j=0

ρjh1,t−j−1 +
∞∑
j=0

ρjut−j (b4)

z2,t = −
∞∑
j=0

(
1− γsπ
ρ

)j+1

Eth2,t+j (b5)

z3,t = h3,t−1 + υt, (b6)

where ut and υt are any martingale difference sequences.

Since yt = Vzt,  ∆pt

∆et

it−1

 =

 0 1 1

1 1 1

1 1 0


 z1,t

z2,t

z3,t

 (b7)
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Now, we find the analytical solutions for zt. Since ht = V−1ct,

ht =

 −1 1 0

1 −1 1

0 1 −1


 (Et∆p

∗
t+1 − ρ∆p∗t + ηt) + ι+ γsxxt − i∗t

γsπ(Et∆p
∗
t+1 − ρ∆p∗t + ηt) + ι+ γsxxt − i∗t

γsπ(Et∆p
∗
t+1 − ρ∆p∗t + ηt) + ι+ γsxxt − γsπi∗t

 ,
thus,

h1,t = −(1− γsπ)
(
Et∆p

∗
t+1 − ρ∆p∗t + ηt

)
(b8)

h2,t = Et∆p
∗
t+1 − ρ∆p∗t + ηt + ι+ γsxxt − γsπi∗t (b9)

h3,t = −(1− γsπ)i∗t (b10)

From (b4) and (b8),

z1,t = −(1− γsπ)
∞∑
j=0

ρj
(
∆p∗t−j − ρ∆p∗t−j−1 + ηt−j−1

)
+
∞∑
j=0

ρjut−j (b11)

= −(1− γsπ)∆p∗t +
∞∑
j=0

ρjut−j − (1− γsπ)
∞∑
j=0

ρjηt−j−1

From (b5) and (b9),

z2,t = −
∞∑
j=0

(
1− γsπ
ρ

)j+1 (
Et∆p

∗
t+j+1 − ρEt∆p

∗
t+j + Etηt+j + ι+ γsxEtxt+j − γsπEti

∗
t+j

)
(b12)

= (1− γsπ)∆p∗t −
(

1− γsπ
ρ

)
ηt −

(1− γsπ)ι

ρ− (1− γsπ)

− γsπ
∞∑
j=0

(
1− γsπ
ρ

)j+1(
Et∆p

∗
t+j+1 +

γsx
γsπ

Etxt+j − Eti
∗
t+j

)

Denoting ft as −
(
i∗t − Et∆p

∗
t+1

)
+ γsx

γsπ
xt = −

(
i∗t − Et∆p

∗
t+1

)
+ γx

γπ
xt,

z2,t = (1− γsπ)∆p∗t − γsπ
∞∑
j=0

(
1− γsπ
ρ

)j+1

Etft+j −
(

1− γsπ
ρ

)
ηt −

(1− γsπ)

ρ− (1− γsπ)
ι (b13)

From (b6) and (b10),

z3,t = −(1− γsπ)i∗t−1 + υt (b14)
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From (b7), (b13), and (b14),

∆pt = (1− γsπ)∆p∗t − γsπ
∞∑
j=0

(
1− γsπ
ρ

)j+1

Etft+j (b15)

−
(

1− γsπ
ρ

)
ηt +

(1− γsπ)

(1− γsπ)− ρ
ι− (1− γsπ)i∗t−1 + υt

Updating (b15) once and applying the law of iterated expectations,

∆pt+1 = ι̂+ (1− γsπ)∆p∗t+1 − (1− γsπ)i∗t − γsπ
∞∑
j=0

(
1− γsπ
ρ

)j+1

Etft+j + ωt+1, (b16)

where

ι̂ =
(1− γsπ)

(1− γsπ)− ρ
ι,

ωt+1 = −γsπ
∞∑
j=0

(
1− γsπ
ρ

)j
(Et+1ft+j+1 − Etft+j+1)−

(
1− γsπ
ρ

)
ηt+1 + υt+1,

and

Etωt+1 = 0

Note that there is no inertia for the domestic inflation in this solution, since there is

no backward looking component. Put it differently, when there is a shock, ∆pt+1 instantly

jumps to its long-run equilibrium.

On the contrary, ∆et+1 does have inertia. From (b7),

∆et = z1,t + ∆pt (b17)

Plug (b11) into (b17) and update it once to get,

∆et+1 = ∆pt+1 − (1− γsπ)∆p∗t+1 +
∞∑
j=0

ρjut−j+1 − (1− γsπ)
∞∑
j=0

ρjηt−j, (b18)

where ∆pt+1 contains rational expectation of future fundamentals as defined in (b16). Note

that ∆et+1 exhibits inertia due to the presence of the martingale difference sequences.

In a nutshell, in the special case of ρ = α, domestic inflation instantly jumps to its long-

run equilibrium and all the convergence will be carried over by the exchange rate adjustments.
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Table 1. GMM Estimation of the US Taylor Rule Estimation

Deviation Sample Period γπ (s.e.) γx (s.e.) ρ (s.e.)
Real GDP 1959:Q1-2003:Q4 1.466 (0.190) 0.161 (0.054) 0.820 (0.029)

1959:Q1-1979:Q2 0.605 (0.099) 0.577 (0.183) 0.708 (0.056)
1979:Q3-2003:Q4 2.517 (0.306) 0.089 (0.218) 0.806 (0.034)

Unemployment 1959:Q1-2003:Q4 1.507 (0.217) 0.330 (0.079) 0.847 (0.028)
1959:Q1-1979:Q2 0.880 (0.096) 0.217 (0.072) 0.710 (0.057)
1979:Q3-2003:Q4 2.435 (0.250) 0.162 (0.078) 0.796 (0.034)

Notes: i) Inflations are quarterly changes in log CPI level (ln pt− ln pt−1). ii) Quadratically
detrended gaps are used for real GDP output deviations. iii) Unemployment gaps are 5
year backward moving average unemployment rates minus current unemployment rates. iv)
The set of instruments includes four lags of federal funds rate, inflation, output deviation,
long-short interest rate spread, commodity price inflation, and M2 growth rate.

30



Table 2. GMM Estimates and 95% Bootstrap Confidence Intervals

Country α̂GMM s.e CIET HLGMM HLET

Australia 0.869 0.021 [0.795,0.906] 1.234 [0.755,1.758]
Austria 0.802 0.009 [0.737,0.835] 0.784 [0.568,0.964]
Belgium 0.813 0.010 [0.751,0.850] 0.839 [0.606,1.067]
Canada 0.980 0.017 [0.893,0.997] 8.653 [1.531,49.42]
Denmark 0.904 0.025 [0.828,0.927] 1.715 [0.918,2.286]
Finland 0.902 0.021 [0.827,0.903] 1.672 [0.912,1.699]
France 0.798 0.010 [0.727,0.840] 0.767 [0.543,0.994]
Germany 0.785 0.010 [0.704,0.828] 0.717 [0.493,0.918]
Italy 0.827 0.011 [0.729,0.865] 0.912 [0.548,1.196]
Japan 0.757 0.012 [0.714,0.795] 0.622 [0.515,0.754]
Netherlands 0.827 0.016 [0.749,0.860] 0.910 [0.599,1.147]
New Zealand 0.803 0.010 [0.747,0.834] 0.791 [0.594,0.956]
Norway 0.847 0.031 [0.791,0.878] 1.043 [0.737,1.337]
Portugal 0.791 0.006 [0.712,0.834] 0.739 [0.510,0.952]
Spain 0.883 0.018 [0.801,0.921] 1.391 [0.781,2.114]
Sweden 0.974 0.030 [0.887,0.987] 6.469 [1.445,13.24]
Switzerland 0.822 0.015 [0.775,0.846] 0.885 [0.680,1.039]
UK 0.779 0.011 [0.699,0.830] 0.693 [0.484,0.928]
Median 0.825 - [0.750,0.855] 0.898 [0.603,1.107]

Notes: i) The US$ is the base currency. ii) Unemployment gaps are used for output devia-
tions. iii) Sample periods are 1979.II-1998.IV (78 observations) for Eurozone countries and
are 1979.II-2003.IV (98 observations) for non-Eurozone countries. iv) 95% residual-based
bootstrap confidence intervals were obtained from 2.5% and 97.5% quantile estimates from
500 bootstrap replications at the GMM point estimates (Efron and Tibshirani, 1993).
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Table 3. GMM Median Unbiased Estimates and 95% Grid-t Confidence Intervals

Country α̂GMM,MUE CIgrid-t HLGMM,MUE HL CIgrid-t

Australia 0.884 [0.837,0.943] 1.404 [0.977,2.953]
Austria 0.804 [0.786,0.826] 0.793 [0.721,0.904]
Belgium 0.816 [0.794,0.844] 0.852 [0.751,1.019]
Canada 1.000 [0.967,1.000] ∞ [5.109, ∞ )
Denmark 0.937 [0.874,1.000] 2.675 [1.290, ∞ )
Finland 0.948 [0.897,1.000] 3.235 [1.587, ∞ )
France 0.799 [0.777,0.822] 0.772 [0.688,0.885]
Germany 0.786 [0.767,0.809] 0.721 [0.652,0.819]
Italy 0.832 [0.806,0.864] 0.945 [0.805,1.181]
Japan 0.754 [0.729,0.782] 0.613 [0.549,0.706]
Netherlands 0.838 [0.798,0.883] 0.984 [0.766,1.388]
New Zealand 0.805 [0.786,0.828] 0.799 [0.718,0.918]
Norway 0.873 [0.785,0.971] 1.271 [0.716,5.983]
Portugal 0.792 [0.779,0.806] 0.741 [0.694,0.803]
Spain 0.896 [0.856,0.943] 1.581 [1.114,2.954]
Sweden 1.000 [0.945,1.000] ∞ [3.088, ∞ )
Switzerland 0.831 [0.795,0.870] 0.937 [0.755,1.240]
UK 0.778 [0.756,0.806] 0.690 [0.620,0.801]
Median 0.832 [0.795,0.867] 0.941 [0.753,1.211]

Notes: i) The US$ is the base currency. ii) Unemployment gaps are used for output deviations.
iii) Sample periods are 1979.II-1998.IV (78 observations) for Eurozone countries and are
1979.II-2003.IV (98 observations) for non-Eurozone countries. iv) CIgrid-t denotes the 95%
confidence intervals that were obtained by 500 residual-based bootstrap replications on 30
grid points (Hansen 1999).
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Table 4. Univariate Estimates and 95% Bootstrap Confidence Intervals

Country α̂LS s.e. CIET HLLS HLET

Australia 0.935 0.033 [0.752,0.977] 2.572 [0.609,7.534]
Austria 0.936 0.038 [0.902,0.957] 2.608 [1.686,3.955]
Belgium 0.918 0.038 [0.894,0.935] 2.038 [1.552,2.597]
Canada 0.971 0.023 [0.821,0.994] 5.970 [0.877,29.85]
Denmark 0.929 0.035 [0.885,0.954] 2.351 [1.417,3.660]
Finland 0.945 0.037 [0.895,0.969] 3.051 [1.564,5.473]
France 0.918 0.041 [0.863,0.948] 2.015 [1.173,3.225]
Germany 0.910 0.042 [0.693,0.960] 1.841 [0.473,4.247]
Italy 0.936 0.039 [0.923,0.943] 2.607 [2.152,2.943]
Japan 0.947 0.032 [0.930,0.957] 3.188 [2.391,3.981]
Netherlands 0.902 0.043 [0.717,0.955] 1.688 [0.521,3.723]
New Zealand 0.946 0.017 [0.808,0.979] 3.142 [0.815,8.026]
Norway 0.922 0.037 [0.887,0.945] 2.142 [1.451,3.074]
Portugal 0.969 0.029 [0.957,0.978] 5.503 [3.964,7.696]
Spain 0.954 0.030 [0.942,0.964] 3.704 [2.889,4.686]
Sweden 0.947 0.028 [0.910,0.968] 3.152 [1.830,5.355]
Switzerland 0.916 0.039 [0.730,0.958] 1.976 [0.552,4.068]
UK 0.908 0.043 [0.784,0.949] 1.796 [0.711,3.293]
Median 0.936 - [0.886,0.958] 2.590 [1.434,4.025]

Notes: i) The US$ is the base currency. ii) Sample periods are 1979.II-1998.IV (78 obser-
vations) for Eurozone countries and are 1979.II-2003.IV (98 observations) for non-Eurozone
countries. iii) 95% residual-based bootstrap confidence intervals were obtained from 2.5% and
97.5% quantile estimates from 500 bootstrap replications at the least squares point estimates
(Efron and Tibshirani, 1993).

33



Table 5. Univariate Median Unbiased Estimates and Grid-t Confidence Intervals

Country α̂LS,MUE CIgrid-t HLLS,MUE HL CIgrid-t

Australia 0.972 [0.891,1.000] 6.173 [1.494, ∞ )
Austria 0.945 [0.866,1.000] 3.087 [1.205, ∞ )
Belgium 0.924 [0.847,1.000] 2.203 [1.045, ∞ )
Canada 1.000 [0.946,1.000] ∞ [3.122, ∞ )
Denmark 0.942 [0.866,1.000] 2.886 [1.200, ∞ )
Finland 0.959 [0.883,1.000] 4.107 [1.390, ∞ )
France 0.931 [0.847,1.000] 2.432 [1.044, ∞ )
Germany 0.950 [0.852,1.000] 3.349 [1.078, ∞ )
Italy 0.943 [0.859,1.000] 2.932 [1.138, ∞ )
Japan 0.952 [0.886,1.000] 3.511 [1.428, ∞ )
Netherlands 0.936 [0.839,1.000] 2.619 [0.990, ∞ )
New Zealand 0.959 [0.923,0.997] 4.089 [2.174,61.29]
Norway 0.934 [0.851,1.000] 2.529 [1.073, ∞ )
Portugal 0.975 [0.913,1.000] 6.765 [1.904, ∞ )
Spain 0.959 [0.898,1.000] 4.129 [1.604, ∞ )
Sweden 0.959 [0.891,1.000] 4.089 [1.497, ∞ )
Switzerland 0.951 [0.862,1.000] 3.481 [1.168, ∞ )
UK 0.932 [0.845,1.000] 2.442 [1.028, ∞ )
Median 0.951 [0.866,1.000] 3.415 [1.203, ∞ )

Notes: i) The US$ is the base currency. ii) Sample periods are 1979.II-1998.IV (78 obser-
vations) for Eurozone countries and are 1979.II-2003.IV (98 observations) for non-Eurozone
countries. iii) CIgrid-t denotes the 95% confidence intervals that were obtained by 500 residual-
based bootstrap replications on 30 grid points (Hansen, 1999).
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