
VALUE FUNCTION ITERATION USING MONTE CARLO

JENÖ PÁLa AND JOHN STACHURSKIb

Abstract to be written.

KEYWORDS: Value iteration, Monte Carlo, empirical process theory.

1. INTRODUCTION

A large number of economic decision problems are naturally expressed as
stochastic dynamic programs (SDPs).1 These problems are intrinsically high
dimensional, and quantitative researchers have devoted a vast amount of com-
puter time to solving them numerically over the past few decades. While com-
puters are now faster and algorithms have improved, the need for richer and
more detailed models means that computational constraints remain the bottle-
neck in many applications.2

SDPs are solved by trading off current rewards with future rewards. Future
rewards are represented by a value function V, which returns the maximal ex-
pected discounted reward obtainable from each state. In the stationary, infinite
horizon case that is the focus of this paper, the standard algorithm for calcu-
lating V is value function iteration (VFI), which involves iterating with an op-
erator T (the Bellman operator) on some initial guess v0, producing a sequence
of functions v1 := Tv0, v2 := Tv1 = T2v0, etc. The VFI algorithm is typically
robust and globally convergent, in the sense that vk → V as k → ∞ for a large
class of initial v0.

For stochastic dynamic programs, VFI involves computing expected future val-
ues of different states and actions. In the general SDP treated here, these expec-
tations take the form

∫
w[F(x, a, u)]φ(du), where w = vk = Tkv0 for some k, x

aJenö’s address
bInstitute of Economic Research, Kyoto University, Sakyo-ku, Kyoto, Japan
1References?
2Numerical solution of SDPs is particularly challenging for in multidimensional settings

(Bellman, 1957). The difficulty is exacerbated when the SDP must be solved many times at dif-
ferent parameterizations, as is the case with, for example, Bewley models, or estimated mod-
els where unknown parameters are contained in the primitives of the dynamic programming
problem (citations?).

1

2 JENÖ PÁL AND JOHN STACHURSKI

is the state variable, a is the current action or control taken by the agent, u is
a possible realization of the shock, F(x, a, u) is the next period state associated
with x, a and u, and φ is the distribution of the shock process. For large SDPs,
the integral is evaluated millions of times for each iteration of T.

Except for the discrete case, or for special functional forms, this integral cannot
be evaluated exactly. Instead, a numerical integration procedure must be cho-
sen. A common practice is to apply a discretization procedure to φ, replacing
the integral with a sum (cite tauchen?). Another is to solve the integral using a
more sophisticated numerical routine such as Gaussian quadrature, typically
involving approximation of the function u 7→ w[F(x, a, u)] with polynomials
(cite?). A third is Monte Carlo, which requires sampling draws U1, . . . , Un from
φ using a random number generator, and computing n−1 ∑n

i=1 w[F(x, a, Ui)].
Convergence of this expression to the integral follows from the law of large
numbers.3

The appropriateness of these different methods depends on the problem at
hand. Discretization is suitable when the dimension of the integral is small,
and the solution to the problem is not overly sensitive on the specification of
the shock. Gaussian quadrature is efficient for integrating smooth functions in
low dimensions. Monte Carlo is used primarily when u is multi-dimensional,
since, unlike the other routines, the number of function calls does not increase
exponentially with the dimension of the integral.

In this paper we consider VFI when the integral is evaluated using Monte
Carlo. In effect, this involves replacing the true Bellman operator T with an
approximation R, where the former evaluates integrals exactly—but cannot
be implemented—while the latter approximates integrals using Monte Carlo.
Employing the techniques of empirical process theory, we show that iterating
with R generates a sequence of functions that converges, and that the limit
point is close to V when the sample size is large. We also prove a version of the
same result when the iterates of the Bellman operator must be approximated,
as is necessary in continuous state spaces. In addition, we provide results on

3Monte Carlo may be necessary even when the φ is finite (i.e., supported on a finite set). In
this case, the integral is a sum and can, at least in principle, be calcuated exactly. However, if
the support is large (probably due to multiple dimensions), then exact computation of the sum
may be infeasible or prohibitively slow. In that case, Monte Carlo can be used to approximate.
In effect, Monte Carlo ignores those points in the support with low probability.

VALUE FUNCTION ITERATION USING MONTE CARLO 3

asmptotic rates of convergence.

Using Monte Carlo to solve SDPs is a common practice in the economic and
financial literature. For example, Keane and Wolpin (1994) proposed and ana-
lyzed a method for solving and estimating discrete choice SDPs using Monte
Carlo. Pakes and McGuire (2001) developed a stochastic algorithm for comput-
ing Markov perfect equilibria in models of industry dynamics. Longstaff and
Schwartz (2001) introduced a popular stochastic algorithm for valuing Amer-
ican options. Den Haan and Marcet (1990) used simulation-based parameter-
ized expectations to solve for decision rules in economic models with rational
expectations.

These studies do not address the convergence problem treated in this paper.
One study that does provide related convergence results is Rust’s (1997) fa-
mous analysis of randomization for solving SDPs. Rust derives a number of
major results on convergence and computational complexity. This paper ex-
tends and complements Rust’s analysis, developing a simple and practical ran-
dom Bellman operator suitable for a broad range of applications. Unlike Rust,
we do not require that the choice set for the agent is finite, or that transition
probabilities can be represented by a density for each state-action pair. Our
state space is more general than the hypercube in Rn. We also treat the func-
tion approximation problem inherent in continuous state SDPs, developing an
algorithm that can be exactly implemented—modulo floating point arithmetic.
(On the other hand, we do not add to the theoretical analysis of computational
complexity that was Rust’s main objective.)

Section 2 introduces background concepts and notation. Section 3 defines the
model and outlines VFI. Section 4 introduces random VFI, and provides an
initial convergence result, while section 5 does the same in the case where
function approximation is present. Section 6 discusses rates of convergence.
Section 7 concludes. Remaining proofs can be found in section 8.

2. PRELIMINARIES

We begin by introducing some notation. For topological space T, the symbol
C (T) denotes the collection of continuous, bounded, real-valued functions on
T, while ‖ · ‖ is the supremum norm on C (T). Operator S : C (T) → C (T) is

4 JENÖ PÁL AND JOHN STACHURSKI

called a contraction of modulus ρ if ρ < 1 and

(1) ‖Sv− Sw‖ ≤ ρ‖v− w‖ for all pairs v, w ∈ C (T)

S is called nonexpansive if (1) holds when ρ = 1. By Banach’s contraction map-
ping theorem, every contraction S of modulus ρ on C (T) has a unique fixed
point W ∈ C (T), and, moreover, ‖Snw−W‖ = O(ρn) for each w ∈ C (T). We
will make use of the following elementary lemma.

LEMMA 2.1 Let S and S′ be operators from C (T) to itself.

1. If S is nonexpansive and S′ is a contraction of modulus ρ, then the composition
S ◦ S′ is a contraction of modulus ρ.

2. If S and S′ are both contractions of modulus ρ with fixed points W and W ′

respectively, then ‖W −W ′‖ ≤ (1− ρ)−1‖SW ′ −W ′‖.

Part 1 is trivial. For a proof of part 2, see, for example, Rust (1997, lemma 2.1).

In what follows, all random variables are defined on a common probability
space (Ω, F , P). If Y is a real-valued random variable on this space, then EY
denotes the expectation

∫
Y(ω)P(dω) of Y. As usual, given real valued ran-

dom variables (Yn)n∈N and positive real sequence (αn)n∈N, we write Yn =
OP(α−1

n) if, for any ε > 0, there exists an M ∈ N such that P{αn|Yn| > M} < ε

for all n ∈ N.

When applying the theory of empirical processes later in the paper, we will
need the concept of outer expectation. Let X be a map from Ω intoR that is not
necessarily measurable. For such an X, the outer expectation of X is denoted by
E∗X, and defined by infY EY, where the infimum is over all random variables
(i.e., F -measurable maps) Y such that X ≤ Y and EY exists. Note that if X is
measurable, then E∗X = EX.

For a sequence of possibly nonmeasurable maps (Un) from Ω into a metric
space (T, d) and a T-valued random variable U, we say that Un → U holds
P∗-almost surely if there exists a measurable real-valued sequence ∆n with
d(Un, U) ≤ ∆n and P{∆n → 0} = 1. We say that Un converges in distribution
to U if E∗g(Un)→ Eg(U) for every g ∈ C (T). For the former convergence we

write Un
a.s.∗→ U, while for the latter we write Un

d∗→ U.

The continuous mapping theorem continues to hold in this setting:

VALUE FUNCTION ITERATION USING MONTE CARLO 5

state

agent

x
x′ = F(x, a, U)

state-action pair

(x, a)

a ∈ Γ(x) U

r(x, a)
”nature”

FIGURE 1.— The programming problem

LEMMA 2.2 If T′ is another metric space and g : T→ T′ is continuous, then

Un
d∗→ U =⇒ g(Un)

d∗→ g(U)

Let (Xn)n≥1 be a sequence of (not necessarily measurable) maps from Ω into
R. We write Xn = OP∗(n−1/2) if there exists a sequence of real-valued random
variables (∆n)n≥1 such that Xn ≤ ∆n for all n and ∆n = OP(n−1/2).

3. SET UP

In this section we introduce a general stochastic dynamic programming prob-
lem and describe the value function iteration algorithm.

3.1. The Model

We consider a stochastic dynamic programming problem of the following form.
A controller observes the state x of a given system, and responds with an ac-
tion a from a feasible set Γ(x) determined by the state. Given this state-action
pair (x, a), the controller receives current reward r(x, a), and the new state is
determined as x′ = F(x, a, U), where U is a draw from a fixed distribution φ.
The process now repeats. The controller’s objective is to maximize expected
discounted rewards (for some discount factor ρ). Figure 1 illustrates.

More formally, let X and A be metric spaces representing the state and action
spaces respectively, and let Γ be a correspondence from X to A. Let G be the

6 JENÖ PÁL AND JOHN STACHURSKI

graph of Γ:

G := {(x, a) ∈ X×A : a ∈ Γ(x)}

so that G is the set of feasible state-action pairs. Let (Ut)t≥1 be an IID sequence
of random variables taking values in metric space U, and having common
distribution φ.4 Let F be a map fromG×U into X.

We assume throughout that X and A are compact, and that Γ is continuous
and compact-valued. We assume further that the reward function r : G→ R is
everywhere continuous, as is

G 3 (x, a) 7→ F(x, a, u) ∈ X

for all u ∈ U. For fixed (x, a) ∈ G, the map u 7→ F(x, a, u) is required to be
measurable.5

The model we have described is a standard SDP. Macroeconomists have tradi-
tionally used a more specialized formulation, with correlated shocks. For ex-
ample, consider the reduced form macroeconomic model considered in Santos
and Vigo-Aguiar (1998). The state space is a product space K× Z ⊂ Rm ×Rn,
where k ∈ K is a vector of endogenous variables and z ∈ Z is a vector of ex-
ogenous variables. Technology is summarized by a feasible set Θ ⊂ K×Z×K.
The exogenous process (zt)t≥0 evolves according to zt+1 = g(zt, εt+1), where
(εt)t≥1 is IID. Instanteneous rewards are given by v(k, z, k′).

This formulation is a special case of our SDP. To see this, for the state take x =
(k, z) ∈ K× Z, and for the action take a = k′ ∈ K. The feasible correspondence
is Γ(x) = Γ(k, z) = {k′ ∈ K : (k, z, k′) ∈ Θ}. The shock is u = ε, and the
transition function is F(x, a, u) = F(k, z, k′, ε) = (k′, g(z, ε)) ∈ K × Z. The
reward function is r(x, a) = r(k, z, k′) = v(k, z, k′).

3.2. Value Function Iteration

A feasible policy is a Borel measurable map σ : X→ A such that σ(x) ∈ Γ(x) for
all x ∈ X. Let Σ be the set of all such policies. Each feasible policy σ ∈ Σ and

4The distribution φ is a Borel probability measure onU satisfying P{Ut ∈ B} = φ(B) for all
t ≥ 0 and all Borel sets B ⊂ U.

5When stated without qualification, measurability refers to Borel measurability.

VALUE FUNCTION ITERATION USING MONTE CARLO 7

x ∈ X defines a Markov process on X given by

(2) Xt+1 = F(Xt, σ(Xt), Ut+1) with X0 = x

From this process, we let Vσ : X→ R be defined by

Vσ(x) = E

{
∞

∑
t=0

ρtr(Xt, σ(Xt))

}
=

∞

∑
t=0

ρt E r(Xt, σ(Xt)) (x ∈ X)

Let T : C (X)→ C (X) be the Bellman operator, defined by

(3) Tv(x) := max
a∈Γ(x)

{
r(x, a) + ρ

∫
v[F(x, a, u)]φ(du)

}
(x ∈ X)

For v ∈ C (X), a policy σ ∈ Σ is called v-greedy if, for all x ∈ X,

σ(x) ∈ argmaxa∈Γ(x)

{
r(x, a) + ρ

∫
v[F(x, a, u)]φ(du)

}
The value function V is defined pointwise on X by V(x) = supσ∈Σ Vσ(x). A
policy σ ∈ Σ is called optimal if Vσ = V. The following results are standard.

THEOREM 3.1 Under our assumptions,

1. T is a contraction of modulus ρ on C (X), and V is the unique fixed point;
2. a policy σ ∈ Σ is optimal if and only if it is V-greedy; and
3. at least one such policy exists.

From part 2 of the theorem, if V is known then an optimal policy can be calcu-
lated in a relatively straightforward way. In computing V, the most common
technique is value function iteration (VFI). The procedure is as follows:

Algorithm 1: VFI

fix v ∈ C (X) ;1

compute Tkv iteratively, where Tk is the k-th iterate of T ;2

compute a Tkv-greedy policy σ3

In view of theorem 3.1, we have ‖Tkv− V‖ = O(ρk). Using this fact and op-
timality of V-greedy policies, one can show that the Tkv-greedy policy σ pro-
duced by the algorithm is approximately optimal when k is sufficiently large
(see, e.g., Puterman, 1994, theorem 6.3.1, or Stachurski, 2009, theorem 10.2.1).
The appropriate k is usually chosen according to some stopping criterion that
depends on the deviation between successive iterates of the Bellman operator.

8 JENÖ PÁL AND JOHN STACHURSKI

4. RANDOM VFI

As discussed in the introduction, we consider the effect of replacing the exact
integral in (3) with a Monte Carlo approximation. The most straightforward
implementation of this idea is to generate a sample

(4) U1, . . . , Un
IID∼ φ

using Monte Carlo (i.e., a random number generator), and then iterate with
the random Bellman operator Rn defined by

(5) Rnv(x) := max
a∈Γ(x)

{
r(x, a) + ρ

1
n

n

∑
i=1

v[F(x, a, Ui)]

}
(x ∈ X)

Given its dependence on the sample (4), the operator Rn is clearly random.
A realization of ω ∈ Ω determines a particular realization (Ui(ω))n

i=1 of the
sample (4), which in turn defines a realization Rn(ω) of Rn. Each realization
Rn(ω) is an operator from C (X) to itself.

The complete procedure for random value function iteration is as follows:

Algorithm 2: Random VFI

generate the sample (U1, . . . , Un)
IID∼ φ in (4) ;1

fix v ∈ C (X) ;2

compute Rk
nv iteratively, where Rk

n is the k-th iterate of Rn ;3

compute a Rk
nv-greedy policy σ ;4

The error introduced by using random VFI is due to the deviation between
limk→∞ Rk

nv and V = limk→∞ Tkv. Without further analysis, one cannot rule
out the possibility that this deviation is large. Even if Rn and T are similar as
maps—as they should be for large n—the error ‖Rk

nv− Tkv‖ is compounded at
each iteration. Moreover, limk→∞ Rk

nv may fail to exist, or only exist for some v
or some realizations of uncertainly.

This turns out not to be the case. To show this, we begin with the following
result (proved in the appendix):

LEMMA 4.1 The operator Rn(ω) is a contraction of modulus ρ on C (X) for all
n ∈ N and all ω ∈ Ω.

VALUE FUNCTION ITERATION USING MONTE CARLO 9

As a consequence of lemma 4.1, for any ω ∈ Ω, there exists a unique Vn(ω) ∈
C (X) such that Rn(ω)Vn(ω) = Vn(ω). We refer to Vn as a random function,
although ω 7→ Vn(ω) may not be Borel measurable as mapping from Ω to
C (X). Our first aim is to show that ‖Vn − V‖ → 0 with probability one as
n → ∞.6 Since Borel measurability of ω 7→ Vn(ω) is problematic, we use the
concept of P∗-almost sure convergence.

THEOREM 4.1 ‖Vn −V‖ a.s.∗→ 0 as n→ ∞.

PROOF: By lemma 4.1, the operator Rn is a contraction of modulus ρ for all n
(with probability one). Applying lemma 2.1, we get

(6) ‖Vn −V‖ ≤ 1
1− ρ

‖RnV −V‖ (n ∈ N)

Hence, to prove theorem 4.1, it is sufficient to prove that ‖RnV−V‖ converges
to zero with probability one. To bound ‖RnV−V‖, we make use of the follow-
ing: If g, g′ ∈ C (Y) for some compact metric space Y, then

(7) |max g−max g′| ≤ max |g− g′| =: ‖g− g′‖

So let us consider the deviation ‖RnV − V‖ = ‖RnV − TV‖. Using (7), we
obtain

(8) |RnV(x)− TV(x)| ≤ ρ max
a∈Γ(x)

∣∣∣∣∣ 1n n

∑
i=1

V[F(x, a, Ui)]−
∫

V[F(x, a, u)]φ(du)

∣∣∣∣∣
where x ∈ X is arbitrary. To simplify notation, let y = (x, a) denote a typical
element ofG, and define

(9) hy(u) :=: h(x,a)(u) :=: V[F(x, a, u)] :=: V[F(y, u)]

Taking the supremum of (8) over x ∈ X, we now have

‖RnV − TV‖ ≤ ρ max
(x,a)∈G

∣∣∣∣∣ 1n n

∑
i=1

V[F(x, a, Ui)]−
∫

V[F(x, a, u)]φ(du)

∣∣∣∣∣
= ρ max

y∈G

∣∣∣∣∣ 1n n

∑
i=1

hy(Ui)−
∫

hy(u)φ(du)

∣∣∣∣∣(10)

6The relative optimality of the Rk
nv-greedy policy σ computed by the random VFI algorithm

depends on the deviation between Rk
nv and V. Using the triangle inequality, we can bound the

latter by ‖Rk
nv− Vn‖+ ‖Vn − V‖. By lemma 4.1, the first term is O(ρk) in k. Convergence of

Vn to V is less clear. Although the operators Rn and T should be “similar” for large n, their
differences may be compounded through iteration, and the fixed points Vn and V are the limits
of this iterative process. Hence the focus on the deviation ‖Vn −V‖.

10 JENÖ PÁL AND JOHN STACHURSKI

To bound (10), we now require some standard definitions from empirical pro-
cess theory.7 To this end, Let H be a family of bounded measurable functions
mapping U into R. For h ∈H , we use the notation

(11) φn(h) :=
1
n

n

∑
i=1

h(Ui) and φ(h) :=
∫

hdφ

By the scalar law of large numbers we have φn(h)→ φ(h) with probability one
for every h ∈H . Our interest, however, is in convergence of the term

(12) sup
h∈H

|φn(h)− φ(h)|

The class of functions H is called φ-Glivenko-Cantelli if (12) converges to zero
P∗-almost surely as n→ ∞.8 In our case, we are interested in convergence of

sup
y∈G

∣∣∣∣∣ 1n n

∑
i=1

hy(Ui)−
∫

hy(u)φ(du)

∣∣∣∣∣ = sup
y∈G
|φn(hy)− φ(hy)|

in (10), so the relevant class of functions is {hy}y∈G. SinceG is a compact metric
space and G 3 y 7→ hy(u) ∈ R is continuous for every u ∈ U, this class is
known to be φ-Glivenko-Cantelli whenever there exists a measurable function
H : U → R such that

∫
Hdφ < ∞ and |hy(u)| ≤ H(u) for every y ∈ G.9 Since

0 ≤ hy(u) ≤ ‖V‖ for every u ∈ U, this envelope condition is satisfied, and
{hy}y∈G is φ-Glivenko-Cantelli. This concludes the proof. Q.E.D.

5. RANDOM FITTED VFI

When implementing VFI in continuous state and action spaces, one issue that
must be addressed is approximation of the iterates: Except in special cases,
the iterates v, Tv, . . . , Tkv cannot be stored on a computer. The same is true
for the iterates of the random Bellman operator Rn. Indeed, a function such
as Rv cannot even be evaluated, since evaluation requires computation of a
maximum at an (uncountable) infinity of points x ∈ X. Thus, the iterates must

7IfG is a singleton, then (10) converges to zero with probability one by the scalar strong law
of large numbers. In fact, if G is finite, this same scalar law of large numbers can be used to
show probability one convergence to zero for the term in (10). However, in our case, the setG
is, in general, uncountably infinite, and hence the need for empirical process theory.

8Intuitively, the φ-Glivenko-Cantelli property holds if H is not too “diverse”.
9See, for example, van der Vaart, 1998, p. 272.

VALUE FUNCTION ITERATION USING MONTE CARLO 11

be approximated. We call this process random fitted VFI. In this section, our
aim is to develop convergence results for random fitted VFI analogous to those
obtained for random VFI in section 4.

Our random fitted VFI algorithm is the same as algorithm 2, but replacing Rn

with R̂n := L ◦ Rn :=: LRn. Here L : C (X) → C (X) is an approximation op-
erator mapping a given function w ∈ C (X) into Lw ≈ w, where Lw can be
stored on a computer. For example, the mapping w 7→ Lw might proceed by
evaluating w on a fixed and finite grid of points {xj}J

j=1, and then constructing
a spline Lw based on these “interpolation” points. In this example, when ap-
plying R̂n = LRn to some v ∈ C (X), the function Rnv need only be evaluated
J times; the function LRnv is the computed from this information.

In order to derive theoretical results on random fitted VFI, we assume through-
out that the operator L : C (X)→ C (X) is nonexpansive, in the sense that

‖Lv− Lw‖ ≤ ‖v− w‖ for all pairs v, w ∈ C (X)

EXAMPLE 5.1 Piecewise linear interpolation is well suited to VFI (see, e.g.,
Santos and Vigo-Aguiar, 1998). To describe it, let X be a subset of Rd, let V
be a finite subset of X such that the convex hull of V is X, and let T be a
V-triangularization of X.10 Given a simplex ∆ ∈ T with vertices ζ1, . . . , ζd+1,
each x ∈ ∆ can be represented uniquely as ∑d+1

i=1 λ(x, i)ζi, where λ(x, i) is its i-
th barycentric coordinate relative to ∆.11 For w ∈ C (X), we define L : C (X)→
C (X) by Lw(x) = ∑d+1

i=1 λ(x, i)w(ζi). The operator L is nonexpansive.

Several other well-known approximation schemes are nonexpansive. Stachurski
(2008) contains an extensive discussion.

LEMMA 5.1 The operator R̂n(ω) := LRn(ω) is a contraction of modulus ρ on
C (X) for all n ∈ N and all ω ∈ Ω.

This result follows immediately from lemmas 2.1 and 4.1. As a consequence,
for each ω ∈ Ω, there exists a unique V̂n(ω) ∈ C (X) such that R̂n(ω)V̂n(ω) =

10That is, T is a finite collection of non-degenerate simplexes such that the vertices of each
simplex lie inV and any two simplexes intersect on a common face or not at all. (A simplex is
called non-degenerate if it has positive measure inRd.)

11Note that, by definition, λ(x, i) ≥ 0 and ∑d+1
i=1 λ(x, i) = 1.

12 JENÖ PÁL AND JOHN STACHURSKI

V̂n(ω). As was the case for Vn, we refer to V̂n as a random function, although
ω 7→ V̂n(ω) may not be Borel measurable as mapping from Ω to C (X).

Our goal is to show that ‖V̂n −V‖ becomes small as n → ∞ with high proba-
bility. Denoting the fixed point of T̂ := LT by V̂, the triangle inequality yields

(13) ‖V̂n −V‖ ≤ ‖V̂n − V̂‖+ ‖V̂ −V‖ ∀ n ∈ N

Regarding the second term in the sum, one can show (using lemma 2.1) that
‖V̂ − V‖ ≤ (1− ρ)−1‖LV − V‖, and hence this term can be made arbitrarily
small if L approximates V arbitrarily well. Further discussion of L is somewhat
orthogonal to the concerns of this paper, and hence we just assume that ‖LV−
V‖ is small, and focus on convergence of the first term in the sum.

THEOREM 5.1 ‖V̂n − V̂‖ a.s.∗→ 0 as n→ ∞.

PROOF OF THEOREM 5.1: By lemma 2.1 and the nonexpansiveness of L,

(14) ‖V̂n − V̂‖ ≤ 1
1− ρ

‖R̂nV̂ − T̂V̂‖ ≤ 1
1− ρ

‖RnV̂ − TV̂‖

We can repeat the arguments of the proof of theorem 4.1, substituting V̂ in the
place of V. Using (7), we obtain

|RnV̂(x)− TV̂(x)| ≤ ρ max
a∈Γ(x)

∣∣∣∣∣ 1n n

∑
i=1

V̂[F(x, a, Ui)]−
∫

V̂[F(x, a, u)]φ(du)

∣∣∣∣∣
where x ∈ X is arbitrary. Taking the supremum over all x ∈ X, we now have

‖RnV − TV‖ ≤ ρ max
(x,a)∈G

∣∣∣∣∣ 1n n

∑
i=1

V̂[F(x, a, Ui)]−
∫

V̂[F(x, a, u)]φ(du)

∣∣∣∣∣
As before, let y = (x, a) denote a typical element ofG, and let

(15) ĥy(u) :=: ĥ(x,a)(u) := V̂[F(x, a, u)] :=: V̂[F(y, u)]

Using the notation from the proof of theorem 4.1 and (14), we can now write

(16) ‖V̂n − V̂‖ ≤ ρ

1− ρ
sup
y∈G
|φn(ĥy)− φ(ĥy)| ∀ n ∈ N

The class {ĥy}y∈G is φ-Glivenko-Cantelli, as can be seen from identical argu-
ments to the case of theorem 4.1. Therefore, the right-hand side converges to
zero P∗-almost surely. Q.E.D.

VALUE FUNCTION ITERATION USING MONTE CARLO 13

6. RATES OF CONVERGENCE

The result in theorem 5.1 gives no indication as to the rate of convergence. To
obtain a rate, we need to give a rate for the right-hand side of (16). Since G is
infinite, we require the convergence results of empirical process theory. These
results hinge on the diversity of the function class {ĥy}y∈G. The φ-Glivenko-
Cantelli property used in that proof of theorem 5.1 is not sufficient for rates, so
further restrictions on {ĥy}y∈G are required.

6.1. Donsker Classes

Let H be a class of uniformly bounded, measurable functions from U into R,
and let (bH , ‖ · ‖) be the Banach space of bounded, real valued functions on
H with the supremum norm. The class H is called φ-Donsker if the empirical
process

νn(h) :=
√

n(φn(h)− φ(h)) (n ∈ N, h ∈H)

converges in distribution to a tight Gaussian process ν on bH . Here ω 7→
νn(·)(ω) and ω 7→ ν(·)(ω) are maps from Ω into bH . The maps ω 7→ νn(·)(ω)
are not necessarily measurable, and convergence in distribution is to be under-

stood in the sense of νn
d∗→ ν.

Letting {ĥy}y∈G be the class of functions defined in (15), we can now state the
following result.

PROPOSITION 6.1 If {ĥy}y∈G is φ-Donsker, then ‖V̂n − V̂‖ = OP∗(n−1/2).

PROOF: We will need some preliminary results and additional notation. Let

Gn(y) := νn(hy) :=
√

n(φn(ĥy)− φ(ĥy)) (n ∈ N, y ∈ G)

Gn can be understood as a real-valued stochastic process indexed by y ∈ G:

Gn(y)(ω) =
√

n

(
1
n

n

∑
i=1

ĥy(Ui(ω))−
∫

ĥy(u)φ(du)

)
∈ R

Regarding measurability, we have the following result, proved in the appendix:

LEMMA 6.1 For each n ∈ N, the following measurability results hold:

14 JENÖ PÁL AND JOHN STACHURSKI

1. ω 7→ Gn(·)(ω) is a C (G)-valued random variable, and
2. ω 7→ ‖Gn(·)(ω)‖ = supy∈G |Gn(y)(ω)| is a real-valued random variable.

In view of (16), we have

‖V̂n− V̂‖ ≤ ρ

1− ρ
n−1/2 sup

y∈G
|n1/2(φn(hy)−φ(hy))| ≤

ρ

1− ρ
n−1/2 sup

y∈G
|Gn(y)|

Since H := {ĥy}y∈G is φ-Donsker, we have νn
d∗→ ν, where ν is a Gaussian

process on H . In view of lemma 2.2 and continuity of the norm ‖ · ‖ on bH ,

we then have ‖νn‖
d∗→ ‖ν‖ in R. Observe that

‖νn‖ = sup
h∈H

|νn(h)| = sup
y∈G
|νn(hy)| = sup

y∈G
|Gn(y)|

∴ sup
y∈G
|Gn(y)| d∗→ ‖ν‖

By part 2 of lemma 6.1, this is convergence in distribution in the regular sense,
and, as a consequence, supy∈G |Gn(y)| = OP(1). We then have

‖V̂n − V̂‖ ≤ ρ

1− ρ
n−1/2OP(1) = OP(n−1/2)

This concludes the proof of proposition 6.1. Q.E.D.

6.2. The Lipschitz Case

In this section and the next, we use proposition 6.1 to obtain sufficient condi-
tions for rates of convergence in different (and somewhat specialized) settings.
Our first result is based on a Lipschitz condition. To apply the method, we now
specialize to the caseG ⊂ Rd for some d ∈ N, and add the following assump-
tions to those imposed in sections 2–5:

(i) Lw is Lipschitz continuous for every w ∈ C (X).12

(ii) There exists a measurable m0 : U→ Rwith
∫

m2
0 dφ < ∞ and

(17) ‖F(y, u)− F(y′, u)‖2 ≤ m0(u)‖y− y′‖2 ∀ y, y′ ∈ G, u ∈ U
12This condition depends on the approximation architecture used in the fitted VFI routine,

and is satisfied by, for example, the piecewise linear interpolation operator in Example 5.1.

VALUE FUNCTION ITERATION USING MONTE CARLO 15

Here ‖ · ‖2 represents the euclidean norm on Rd.

PROPOSITION 6.2 If (i)–(ii) hold, then ‖V̂n − V̂‖ = OP∗(n−1/2).

The proof is given in the appendix.

EXAMPLE 6.1 If U ⊂ Rk, and F is linear, in the sense that

F(x, a, u) = Ax + Ba + Cu (x ∈ X, a ∈ Γ(x), u ∈ U)

for matrices A, B and C, then assumption (ii) is satisfied. To see this, observe
that for any y = (x, a) ∈ G, y′ = (x′, a′) ∈ G, and u ∈ U,

‖Ax + Ba + Cu− Ax′ − Ba′ − Cu‖2

= ‖A(x− x′) + B(a− a′)‖2 ≤ γ(‖x− x′‖2 + ‖a− a′‖2)

where γ is the maximum of the operator norms of A and B. Since y = (x, a) 7→
‖x‖2 + ‖a‖2 ∈ R defines a norm on Rd, and since all norms on Rd are equiva-
lent, we obtain

‖F(y, u)− F(y′, u)‖2 ≤ Mγ‖y− y′‖2 ∀ y, y′ ∈ G, u ∈ U

for some M < ∞. This verifies (ii).

6.3. The Monotone Case

Another way to establish the φ-Donsker property is via monotonicity. To this
end, we make the following assumptions (in addition to the basic assumptions
imposed in sections 2–5). Let X ⊂ Rd and let U ⊂ R. We assume now that

(i) L maps iC (X) to itself, where iC (X) is the increasing functions in C (X).
(ii) For all x, x′ ∈ Xwith x ≤ x′,

(a) Γ(x) ⊂ Γ(x′),

(b) r(x, a) ≤ r(x′, a) for all a ∈ Γ(x), and

(c) F(x, a, u) ≤ F(x′, a, u) for all a ∈ Γ(x) and u ∈ U.

(iii) For all y ∈ G, we have F(y, u) ≤ F(y, u′) whenever u ≤ u′.

Assumption (i) depends on the approximation architecture, and is satisfied by,
for example, the piecewise linear interpolation operator in Example 5.1. The
other assumptions are discussed below.

16 JENÖ PÁL AND JOHN STACHURSKI

PROPOSITION 6.3 If (i)–(iii) hold, then ‖V̂n − V̂‖ = OP∗(n−1/2).

The proof is given in the appendix.

7. CONCLUSION

We studied VFI when the integral in the Bellman operator is evaluated us-
ing Monte Carlo. Employing the techniques of empirical process theory, we
showed that iterating with the resulting random Bellman operator Rn gener-
ates a sequence of functions that converges, and that the limit point is close to
V when the sample size is large. We also proved a version of the same result
when the iterates of the Bellman operator must be approximated, as is neces-
sary in continuous state spaces. In addition, we provided results on asmptotic
rates of convergence.

We treated only VFI for stationary, infinite horizon SDPs. We did not treat non-
stationary SDPs, finite horizon models, or optimal stopping. Providing conver-
gence results for such models will require somewhat different methods, and
we leave these problems for future research.

8. REMAINING PROOFS

PROOF OF LEMMA 4.1: Fix n ∈ N and ω ∈ Ω. Let R := Rn(ω). Fix w, w′ ∈
C (X) and x ∈ X. In view of (7), we have

|Rw(x)−Rw′(x)| ≤ ρ max
a∈Γ(x)

∣∣∣∣∣ 1n n

∑
i=1

w[F(x, a, Ui(ω))]− 1
n

n

∑
i=1

w′[F(x, a, Ui(ω))]

∣∣∣∣∣
Using the triangle inequality and the definition of ‖ · ‖, we obtain

|Rw(x)− Rw′(x)| ≤ ρ‖w− w′‖

Taking the supremum over x ∈ X yields the desired result. Q.E.D.

PROOF OF LEMMA 6.1: We begin by proving measurability of ω 7→ H(·)(ω),
where

H(y)(ω) = ĥy(U(ω)) = V̂[F(y, U(ω))]

VALUE FUNCTION ITERATION USING MONTE CARLO 17

Note that since X and A are compact, and since Γ is continuous and compact-
valued,G is compact in the product topology. From the Stone–Weierstrass the-
orem it follows that C (G) is separable. Hence, by the Pettis measurability the-
orem, we need only show that ω 7→ `(H(·)(ω)) is measurable for each ` in
the dual space C (G)∗ of C (G). By the Riesz representation theorem, C (G)∗

can be identified with M (G), the space of finite signed Borel measures on G.
Thus, it remains to show that

Ω 3 ω 7→
∫

H(y)(ω) γ(dy) ∈ R is measurable ∀ γ ∈M (G)

To this end it is sufficient to show that H(y)(ω) = V̂[F(y, U(ω)] is measur-
able with respect to the product σ-algebra BG ⊗F , where BG is the Borel σ-
algebra onG. Since H is continuous with respect to y and measurable with re-
spect to ω, H is a Carathéodory function (Aliprantis and Border, 1999, def. 4.49).
AsG is separable, measurability with respect to BG⊗F is established (Alipran-
tis and Border, 1999, lem. 4.50).

Given measurability of ω 7→ H(·)(ω), measurability of ω 7→ Gn(·)(ω) follows
from the fact that linear combinations of measurable random elements of a
separable Banach space are themselves measurable.

Regarding the second claim in the lemma, measurability of ω 7→ ‖G(·)(ω)‖
follows from measurability of ω 7→ G(·)(ω), continuity of the norm as a map
from C (G) to R, and the fact that continuous transformations of Borel mea-
surable mappings are Borel measurable. Q.E.D.

PROOF OF PROPOSITION 6.2: By proposition 6.1, it suffices to show that the
class {ĥy}y∈G is φ-Donsker when (i)–(iii) hold. A sufficient condition for {ĥy}y∈G
to be φ-Donsker is the existence of a measurable function m : U→ R such that∫

m2dφ < ∞ and

(18) |hy(u)− hy′(u)| ≤ m(u)‖y− y′‖2 ∀ y, y′ ∈ G, u ∈ U

(see, e.g., van der Vaart, 1998, p. 271). To find such an m, observe that V̂ is
Lipschitz, as follows from (ii) and the relation V̂ = LTV̂. As a consequence,
there exists a K < ∞ such that, for any y, y′ ∈ G and u ∈ U, we have

|hy(u)− hy′(u)| := |V̂[F(y, u)]− V̂[F(y′, u)]|
≤ K‖F(y, u)− F(y′, u)‖2 ≤ Km0(u)‖y− y′‖2

18 JENÖ PÁL AND JOHN STACHURSKI

where m0 is the function in (iii). Letting m := Km0, we see that
∫

m2dφ =
K2
∫

m2
0dφ < ∞. All the conditions are now verified, and hence {ĥy}y∈G is

φ-Donsker. Q.E.D.

PROOF OF PROPOSITION 6.3: From van der Vaart (1998, p. 273), it suffices to
show that the class {ĥy}y∈G is uniformly bounded onU, and that each element
ĥy is monotone increasing on U. Since ĥy(u) = V̂[F(y, u)], uniform bounded-
ness will hold if V̂ is bounded on X. That this is the case follows from the fact
that X is compact and V̂ ∈ C (X).

Regarding monotonicity, we begin by showing that V̂ is monotone increasing.
To see that this is the case, observe that V̂ is the fixed point of LT in C (X). Since
iC (X) is a closed subset of C (X), we need only show that LT maps iC (X) into
itself. Since L : iC (X)→ iC (X) by assumption, it remains to verify that T also
has this property. For a proof of this fact, see Stachurski (2009, theorem 12.1.2).
As a result, V̂ is increasing, and the claim in the proposition now follows from
assumption 3 above. Q.E.D.

REFERENCES

[1] Aliprantis, C. D. and K. C. Border (1999): Infinite Dimensional Analysis, Springer-Verlag,
New York.

[2] Bellman, R.E. (1957): Dynamic Programming, Princeton University Press, Princeton, NJ.
[3] Den Haan, W. and A. Marcet (1990): “Solving the Stochastic Growth Model by

Parametrizing Expectations,” Journal of Business and Economic Statistics, 8, 31–34.
[4] Keane, M. P. and K. I. Wolpin (1994): “The Solution and Estimation of Discrete Choice

Dynamic Programming Models by Simulation,” The Review of Economics and Statistics,
76 (4), 648–672.

[5] Longstaff, F. A. and E. S. Schwartz (2001): “Valuing American Options by Simulation: A
Simple Least-squares Approach,” Review of Financial Studies, 14, 113–147.

[6] Pakes, A. and P. McGuire (2001): “Stochastic Algorithms, Symmetric Markov Perfect
Equilibrium, and the ’Curse’ of Dimensionality,” Econometrica, 69 (5), 1261–1281.

[7] Puterman, M. (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming,
John Wiley & Sons, New York.

[8] Rust, J. (1997): “Using Randomization to Break the Curse of Dimensionality,” Economet-
rica, 65 (3), 487–516.

[9] Santos, M.S. and J. Vigo-Aguiar (1998): “Analysis of a Numerical Dynamic Programming
Algorithm Applied to Economic Models,” Econometrica, 66(2), 409–426.

[10] Stachurski, J. (2008): “Continuous State Dynamic Programming via Nonexpansive Ap-
proximation,” Computational Economics, 31 (2), 141–160.

[11] Stachurski, J. (2009): Economic Dynamics: Theory and Computation, The MIT Press, Cam-
bridge MA.

VALUE FUNCTION ITERATION USING MONTE CARLO 19

[12] van der Vaart, A. W. (1998): Asymptotic Statistics, Cambridge series in statistical and prob-
abilistic mathematics, Cambridge University Press, UK.

