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Abstract 

 
In many countries, the monetary policy instrument sometimes remains unchanged for a 
long period and shows infrequent responses to exogenous shocks.  The purpose of this 
paper is to provide a new explanation on why the central bank’s policy instrument 
remains unchanged.  In the following analysis, we explore how uncertainty on the 
private agents’ expectations affects robust optimal monetary policy.  We apply the 
Choquet expected decision theory to a new Keynesian model.  A main result is that the 
policymaker may frequently keep the interest rate unchanged even when exogenous 
shocks change output gaps and inflation rates.  This happens because a change of the 
interest rate increases uncertainty for the policymaker when how the private agents’ 
expectations are formed is not well known.  To the extent that the policymaker has 
uncertainty aversion, it can therefore be optimal for the policymaker to maintain an 
unchanged policy stance for some significant periods and to make discontinuous 
changes of the target rate.  Our analysis departs from previous studies in that we 
determine an optimal monetary policy rule that allows time-variant feedback parameters 
in a Taylor rule.  We show that if the policymaker has small uncertainty aversion, the 
calibrated optimal stop-go policy rule can predict actual target rates of FRB and ECB 
reasonably well. 
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1. Introduction 
  In monetary economics, it has widely been discussed what policy rules central banks 
follow.  A growing number of studies advocate a variety of monetary policy rules that 
can lead to good performance.  In particular, many argue that macroeconomic 
stabilization should be implemented through a “Taylor rule” in which interest rates are 
adjusted in response to output gap and inflation rate.  However, when we look at 
high-frequency data, the policy instrument sometimes remains unchanged for a long 
period and shows infrequent responses to frequent exogenous shocks.  Figure 1 plots 
daily data of targeted federal fund (FF) rates from January 2001 to December 2007.  It 
is easy to see that the changes of the targeted FF rates were rare from January 2002 to 
June 2004.  Since the Federal Reserve’s Trading Desk keeps the FF rate near a target 
set by the Federal Open Market Committee (FOMC), this implies that the baseline of 
the U.S. short-term interest rate changed infrequently.1 

One of the reasons why the changes of the targeted FF rates were infrequent is that 
the FOMC meeting is usually held only eight times a year.  It is the FOMC that 
decides some discontinuous jumps of the targeted rates.  However, except in 2001 and 
2005, the FOMC decided not to change the target rate in most of the meetings (see 
Table 1).  Infrequent FOMC meetings would not be enough to explain less frequent 
changes of the targeted rates.  More infrequent policy changes can be observed for the 
other central banks that face different environments.  For example, Table 2 summarizes 
the number of monetary policy decisions and the number of decisions with no policy 
change in the Bank of Japan, the European Central Bank, and the Bank of England from 
1999 to 2007.  It is easy to see that these central banks changed the targeted policy 
instruments less frequently than the Federal Reserve Board throughout the period. 

Why do the central banks decide not to change the policy targets frequently?  The 
purpose of this paper is to provide a new explanation on why the central bank’s policy 
instrument remains unchanged under uncertainty.  In general, the policymaker faces 
various types of uncertainty when making the policy decision.  This includes 
uncertainty on exogenous shocks and on structural parameters.  However, uncertainty 
on the private agents’ expectations is another uncertainty that the central bank usually 
faces.  Since the expectations affect output gap and inflation rate, it is important to 
identify how the private agents’ expectations are formed.  However, as recent 
contribution of behavioral economics suggests, it is far from easy to predict what 
expectations the private agents will form. 

                                                  
1 The realized federal fund rates that are called “effective federal fund rates” show some daily 
fluctuations over time.  However, they only show small fluctuations around the targeted rates. 
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In the following analysis, we explore how uncertainty on the private agents’ 
expectations affects optimal monetary policy in a new Keynesian model.  The 
decision-making theory we use in the analysis is that of expected utility under a 
nonadditive probability measure, that is, the Choquet expected model, developed by 
Gilboa (1987) and Schmeidler (1989).2  We apply the Choquet expected decision 
theory to a new Keynesian model.  A main result is that the policymaker may 
frequently keep the interest rate unchanged even when exogenous shocks change output 
gaps and inflation rates.  This happens because a change of the interest rate increases 
uncertainty for the policymaker when the private agents’ expectations are not well 
known.  To the extent that the policymaker has uncertainty aversion, it can therefore be 
optimal for the policymaker to maintain an unchanged policy stance for some 
significant periods and to make discontinuous changes of the target rate. 

In previous literature, there are a large number of studies that focused on model 
uncertainty and the performance of policy rules across different models.  Brainard 
(1967) is a seminal study that explored how the policymaker’s optimal rule is altered 
when faced with parameter uncertainty.  McCallum (1988) has argued for evaluating 
policy proposals in a variety of economic models as a means of assessing their 
robustness.  Using five macroeconomic models, Levin, Wieland, and Williams (2003) 
identify the robust rules that respond to the inflation forecast and the output gap but that 
incorporate a substantial degree of policy inertia.  Using a new Keynesian model, 
Giannoni and Woodford (2003a, 2003b) have analyzed policy rules that are robust to 
misspecification of the disturbance process of a known model, while Kimura and 
Kurozumi (2003) and Levin and Williams (2003b) have focused on whether parameter 
uncertainty leads to more cautious or more aggressive policy responses to shocks when 
the effects of structural parameters on the loss function are taken into account.  
However, since none of these studies considered Knightian uncertainty, the model 
uncertainty has never lead to the conclusion that it is optimal for the policymaker to 
keep the interest rate unchanged without responding to inflation and output gaps. 

Several recent studies explored “robust optimal policy rules” under a version of 
Knightian uncertainty, which are designed to be robust in the sense of minimizing the 
worst case scenario when the policymaker believes that the true model is in a 
neighborhood of a given reference model.  These studies include Hansen and Sargent 
(2003), Onatski and Stock (2002), Tetlow and von zur Muehlen (2001), and Giannoni 
(2006).  Walsh (2004) has argued that optimal monetary policy under Hansen-Sargent 

                                                  
2 Based on the Gilboa-Schmeidler’s axioms, studies such as Epstein and Wang (1994), Mukerji 
and Tallon (2004), and Fukuda (2008) incorporate Knightian uncertainty in economic models. 
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framework is equivalent to that of Giannoni and Woodford where the optimal policy 
rule becomes less aggressive under uncertainty.  In contrast, Onatski and Stock argued 
that the max-min approach of robust control provides robust monetary policies that are 
more aggressive than the optimal policies absent model uncertainty.3  However, unlike 
ours, none of these studies has reached a conclusion that the optimal policy is to keep 
the policy instrument unchanged for some periods. 

Our analysis departs from these previous studies in four important ways.   First, 
instead of restricting ourselves to time-invariant feedback parameters, we determine a 
robust optimal monetary policy rule that allows time-variant feedback parameters.  
This leads to an optimal stop-go policy rule that sometimes responds to output and 
inflation gaps but sometimes does not.  Second, we show that the calibrated optimal 
stop-go policy rules can predict actual target rates of FRB and ECB well if the 
policymaker has small uncertainty aversion.  In literature, Hamilton and Jorà (2002) 
showed that statistical tool for forecasting a discrete-valued time series is useful in 
forecasting the federal fund rates.  Our optimal stop-go policy rule not only supports 
their proposition but also provides theoretical background for the discrete-valued time 
series.  Third, we consider the case where the private agents’ expectations are 
uncertain for the policymaker before making the policy decision.  Previous studies 
widely discussed what happens when exogenous shocks or/and structural parameters are 
uncertain.  But few studies discussed when the private agents’ expectations are 
uncertain.  Our result suggests uncertainty on the private agents’ expectations is 
another important uncertainty in a robust control framework.  Fourth, we derive robust 
policy rules based on the Choquet expected utility model rather than on the max-min 
utility model.  In literature, it is known that the two models are essentially the same.  
But in macroeconomic policy analysis, previous studies used the max-min utility model 
almost exclusively.  Our analysis suggests that the Choquet expected utility model is 
an alternative useful framework to derive robust policy rules. 

Our result is similar to that of Dow and Werlang (1992) in that a player chooses the 
status quo under Knightian uncertainty.  Dow and Werlang provide a simple example 
where the optimal portfolio choice can be the status quo under Knightian uncertainty.  
However, given that the policy changes are rare, it deserves to pay a special attention to 
see why the central banks prefer the status quo under Knightian uncertainty.  Central 
bankers have multiple objectives and confront a variety of economic circumstances.  
They know that their actions have significant impacts on the economy, but the timing, 
magnitude, and channels of those impacts are not fully understood.  They, in contrast, 
                                                  
3 Giannoni (2002, 2006) supports this under more general environments. 
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have a concern that their reputation would deteriorate dramatically if their actions have 
wrong impacts on the economy.  Under the circumstances, it may become desirable for 
the central banks not to change the policy targets when the parameter uncertainty makes 
the impacts uncertain enough.   

In macroeconomics, it has been a conventional wisdom that central banks implement 
monetary policy in a gradual fashion (see, for example, Blinder [1997]).  Many 
researchers claim that this gradualism is due to 'optimal cautiousness', although some 
others suggest alternative interpretations (see, for example, Rudebusch [2005]).  
Interest-rate smoothing or monetary policy inertia is, however, different from monetary 
policy with infrequent changes and some discontinuous jumps.  When using low 
frequency data, the two types of monetary policies may be observationally equivalent.  
But their macroeconomic implications will be different at least in the short-run and may 
be so even in the long-run.  It is practically very important to pay a special attention to 
macroeconomic consequences of the stop-go policy that changes the policy instrument 
infrequently. 
  The paper proceeds as follows.  Section 2 sets up the basic model and section 3 
explains the policy objectives.  Sections 4 derives the optimal monetary rules in a 
general framework and section 5 extends them in the case where the nature takes two 
states.  Section 6 shows that the calibrated optimal stop-go policy rules can predict 
actual federal fund rates well. and section 7 checks their robustness.  Section 8 shows 
that the calibrated optimal stop-go policy rules can predict actual rates of MRO set by 
ECB well.  Section 9 summarizes our main results and refers to their implications. 
 
 
2.  The Basic Model 

Our basic model follows a simple new Keynesian model: 
 
(1)  xt = xt+1

e – α (it - πt+1
e) + ut, 

(2)  πt = β πt+1
e + k xt + wt, 

 
where xt = the gap between actual output and the flexible-price equilibrium output level, 
it = the nominal interest rate, πt = the inflation rate, ut = a demand disturbance, and wt = 
a supply shock.  The variable with superscript e, such as xt+1

e and πt+1
e, denotes the 

private agents’ expectations.   
  Equation (1) is the Euler condition from the representative household’s consumption 
decision, while equation (2) is a new Keynesian Phillips curve.  Subscript t denotes 
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time period.  All variables are expressed as log deviations from the steady state.  
Although there is some arbitrariness in the information structure, the model is standard.  
We can show that essential results in the following analysis remains the same even 
when equations (1) and (2) include a variety of lagged variables, xt-1, xt-2, …, πt -1, πt -2, 
…, in their right-hand sides.  We, however, impose an additional assumption that there 
is uncertainty on how the private agents will change their expectations when the interest 
rate changes.  
  In our model, we assume information structure in period t as follows.  At the 
beginning of period t, innovations to ut and wt are realized.  The policymaker observes 
the realized innovations without noises.  However, the policymaker cannot see how the 
private agents will change xt+1

e and πt+1
e when it changes the nominal interest rate.  

Define xt+1
e0 ≡ xt+1

e when it = it-1 and πt+1
e0 ≡ πt+1

e when it = it-1.  For analytical 
simplicity, we assume that the policymaker can observe xt+1

e0 and πt+1
e0 without 

uncertainty.  Uncertainty thus arises for xt+1
e and πt+1

e if and only if it ≠ it-1.  We 
suppose that the private agents update their expectations as follows. 
 
 (3)  xt+1

e – xt+1
e0  = – φt Δit, 

 (4)  πt+1
e – πt+1

e0 = – φt δ Δit. 
 
where Δit ≡ it - it-1. 
  Equations (3) and (4) state that how xt+1

e and πt+1
e will change depends on how it 

changes and that there exists uncertainty on the elasticity.  A straightforward 
justification is that the agents who follow a rule of thumb respond to the policy change 
sometimes aggressively but sometimes less aggressively in forming the expectation.  
However, the assumption might be consistent with behavior of rational agents who 
sometimes overestimate and sometimes underestimate parameters in a Taylor rule.  
The changeable behavior by the private agents, which is reflected in φt, is the source of 
uncertainty in the following model.   
  Under (3) and (4), the policymaker needs to decide the nominal interest rate it 
knowing that the private agents’ behavior is highly volatile.  Because of uncertainty on 
xt+1

e and πt+1
e, the policymaker will face uncertainty on what value will be realized for xt 

and πt when the nominal interest rate is changed in period t.  To distinct the states 
before and after the policy change, we define x0

t and π0
t as the realized values of xt and 

πt when the nominal interest rate remains unchanged.  By definition, it holds that 
 

(5)  x0
t = xt+1

e0 – α (it-1 - πt+1
e0) + ut, 
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   (6)  π0
t = β πt+1

e0 + k x0
t + wt. 

 
Define η≡ 1+αδ and μ≡ k +(αk +β)δ.  Equations (1)-(4) then lead to: 
 

(7)  xt = x0
t – (ηφt +α) Δit,  

(8)  πt = π0
t – (μφt + αk) Δit. 

 
where xt and πt denote the realized values after the nominal interest rate is determined. 

Equations (7) and (8) determine the equilibrium values of xt and πt in our model.  
Because of uncertainty on φt, the policymaker cannot see exact values of xt and πt in 
period t unless Δit = 0.  Our simplified assumption, in contrast, suggests that the 
policymaker can see x0

t and π0
t without uncertainty in period t.  However, the 

simplified assumption of information on x0
t and π0

t is not crucial in the following 
analysis.  What is crucial in the following analysis is that the change of the nominal 
interest rate induces additional model uncertainty for the policymaker.  In Appendix 1, 
we will show that our main proposition (Proposition 1) can be extended even if x0

t and 
π0

t are uncertain for the policymaker. 
 
 

3.  The Policy Objectives 
The policymaker chooses its policy instrument so as to achieve the policy objective. 

We suppose that the objective of the policymaker is to set the nominal interest rate at 
each point of time so as to minimize the “expected” value of the following loss 
function: 
 

(9)  Lt = λ(xt – x*)2 + (πt - π*)2 + ω(it - it-1)2.  
 

  In the loss function, loss in period t depends on deviations of output gap and inflation 
from their targets x* and π* as well as interest rate changes in period t.  Exogenous 
parameter λ and ω are greater than or equal to zero and are treated as independent of the 
specification of the structural equations.   

What makes the following analysis distinctive from the standard minimization 
problem is that we characterize the expected loss minimization of the policymaker by 
the Choquet expectation.  To distinguish it from standard expectation operator E, we 
defined the Choquet expectation operator by EQ.  Having aversion to Knightian 
uncertainty, the policymaker chooses its policy instrument Δit so as to minimize EQ Lt.  
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More general representation of the Choquet expectation is extensively discussed in 
Schmeidler (1989). 

Suppose that the random variable φt takes n alternative values, φ1, φ2, ..., φn.  Define 
Lj,t ≡ Lt when φt = φj (j = 1, 2, 3, …, n).  Then, if 0 ≤ L1,t ≤ L2,t ≤ L3,t ≤ …≤ Ln,t, the 
Choquet expectation of the loss function is written as 

 

(10)   EQ Lt = [ ]∑ −

= =+ ∪−
1

1 1,1, )()(n

i j
i
jtiti LL φθ + Ln,t, 

 
where θ(⋅) is a convex probability capacity (or a convex non-additive probability 
function).4 

If θ(⋅) is a probability measure, the problem is degenerated to the traditional expected 
loss minimization problem.  In this case, substituting (7) and (8) into (9), the first-order 
condition ∂ EQLt/∂Δit = ∂ ELt/∂Δit = 0 leads to the time-invariant policy rule such that 

 

(11)  Δit = 22

00

)()(
)*)(()*)((

tttt

tttttt

kEE
EkExx

μφαηφαλω
φμαππφηαλ

++++
+−++− . 

 
This simple monetary policy rule is similar to a Taylor rule in the sense that the 

nominal interest rate is adjusted in response to “output gap” and “inflation”.  Because 
of uncertainty in φt, the second moments of φt appear in the denominator of the feedback 
rule.  This reflects a version of Brainard’s effect where the policymaker’s optimal rule 
becomes less aggressive under parameter uncertainty.  It is noteworthy that the rule 
does not depend on how expectations are formed nor what stochastic processes the 
exogenous shocks follow.  However, “output gap” and “inflation” in (11) are those 
before the central bank sets the new interest rate.  In addition, unlike standard Taylor 
rules, the coefficient of lagged inflation is always equal to unity.5 

 
 

4.  Robust Optimal Policy Rules 

                                                  
4 Let Ω be a state space and let Γ(Ω) denote the set of all subsets of Ω.  Then, a convex 
probability capacity (or a convex non-additive probability function) is defined as function θ : 
Γ(Ω) → [0, 1] that satisfies θ(φ) = 0, θ(Ω) = 1, F ⊆ G ⇒ θ(F) ≤ θ(G) for all F, G ⊆ Ω, and 
θ(F∪G) + θ(F∩G) ≥ θ(F) + θ(G) for all F, and G ⊆ Ω.  Since it is additive, it is not a 
probability measure unless the last inequality is always satisfied as an equality. 
5 In previous literature, Levin, Wieland, and Williams (1999) provides strong support for rules 
in which the first-difference of the federal funds rate responds to output and inflation gaps. 
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The policy rule (11) is no longer optimal when the policymaker has some aversion to 
uncertainty.  One technical problem in deriving the optimal rule under uncertainty is 
that the “expected” loss function EQLt is not differentiable.  However, since EQLt is 
convex in Δit, it is optimal for the central bank to set Δit = Φ if and only if ∂EQLt/∂Δit ≥ 
0 when Δit approaches to Φ from above and ∂EQLt/∂Δit ≤ 0 when Δit approaches to Φ 
from below.  This implies that the central bank decides not to change the nominal 
interest rate if and only if ∂ EQ Lt /Δ∂it ≥ 0 as Δit →+0 and ∂ EQ Lt /Δ∂it ≤ 0 as Δit → 
-0.  We therefore obtain the following proposition. 

 
Proposition 1: Suppose that the random variable φt takes n alternative values such that 
φ1 ≤ φ2 ≤ φ3 ≤ …≤ φn.  Then, the central bank decides not to change the nominal 
interest rate if and only if 
 

(12)  { } 1
1

1 111 )()( φφθφφ +∪−∑ −

= −+=−−+
n

i jn
i
jIIinin  ≤ 

{ }
*)(*)(
*)(*)(

00

00

ππμλη
ππλα

−+−
−+−−

tt

tt

xx
kxx  

≤ { } n
n

i j
i
jIii φφθφφ +∪−∑ −

= =+
1

1 11 )()( . 

 
where θI(⋅) is a convex probability capacity in the case where 0 ≤ L1,t ≤ L2,t ≤ L3,t ≤ …≤ 
Ln,t and so is θII(⋅) in the case where L1,t ≥ L2,t ≥ L3,t ≥ …≥ Ln,t ≥ 0. 
 
Proof:  Since Lj,t ≡ λ{x0

t – (α +ηφj)Δit – x*}2 + {π0
t – (μφj+α k)Δit – π*}2 + ωΔit

2 when 
φt = φj (j = 1, 2, 3, …, n), it holds that Ll,t ≤ Lm,t if and only if [λ{x0

t – (α +ηφ*l,m)Δit – 
x*} + {π0

t – (μφ*l,m+α k)Δit – π*}] (φl–φm)Δit ≥ 0 where φ*l,m ≡ (φl+φm)/2.  When 
λη(x0

t – x*) + μ (π0
t – π*) > 0, this implies that Ll,t ≤ Lm,t as Δit → 0 if and only if 

(φl–φm)Δit ≥ 0.  Since φ1 ≤ φ2 ≤ φ3 ≤ …≤ φn, this shows that 0 ≤ L1,t ≤ L2,t ≤ L3,t ≤ …≤ 
Ln,t as Δit → -0 and that L1,t ≥ L2,t ≥ L3,t ≥ …≥ Ln,t ≥ 0 as Δit → +0 when λη(x0

t – x*) + 
μ (π0

t – π*) > 0. 
  When λη(x0

t – x*) + μ (π0
t – π*) > 0, the Choquet expectation (10) therefore implies 

that EQ Lt = ∑ −

= =+ ∪−
1

1 1,1, )())()((n

i j
i
jItiti LL φθιι  + Ln,t as Δit → -0 and EQ Lt = 

∑ −

= −+=−−+ ∪−
1

1 11,,1 )()(n

i jn
i
jIItintin LL φθ + L1,t as Δit → +0.  Since 

0

,,

→Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ∂

∂
−

Δ∂
∂

tit

tm

t

tl

i
L

i
L

= 

–2{λη(x0
t – x*) + μ (π0

t – π*)}(φl – φm), we obtain 
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0t

Q
t

t i

E L
i

Δ =−

∂
∂Δ

= –2{λη(x0
t – x*) + μ (π0

t – π*) } { }1
1 11

( ) ( )n i
i i I j j ni
φ φ θ φ φ−

+ ==
⎡ ⎤− ∪ +⎢ ⎥⎣ ⎦∑  

– 2α{λ (x0
t – x*) + k(π0

t –π*)}, 

0t

Q
t

t i

E L
i

Δ =+

∂
∂Δ

= –2{λη(x0
t–x*) + μ (π0

t–π*) } { }[ ]1
1

1 111 )()( φφθφφ +∪−∑ −

= −+=−−+
n

i jn
i
jIIinin  

– 2α{λ (x0
t – x*) + k(π0

t –π*)}. 
 

These equations imply that when λη(x0
t – x*) + μ (π0

t – π*) > 0,  the condition (12) 
holds if and only if ∂ EQ Lt /Δ∂it ≥ 0 as Δit →+0 and ∂ EQ Lt /Δ∂it ≤ 0 as Δit → -0.  
  Similarly, we can show that when λη(x0

t – x*) + μ (π0
t – π*) < 0, the condition (12) 

holds if and only if ∂ EQ Lt /Δ∂it ≥ 0 as Δit →+0 and ∂ EQ Lt /Δ∂it ≤ 0 as Δit → -0.  
This proves the proposition.     [Q.E.D.] 
 

The above result suggests that the policymaker may keep the policy instrument 
unchanged even if the exogenous shocks change output gaps and inflation rates.  In the 
absence of uncertainty aversion, that is, if θI(⋅)and θII(⋅) are the same probability 

measure, { } n
n

i j
i
jIii φφθφφ +∪−∑ −

= =+
1

1 11 )()( ={ } 1
1

1 111 )()( φφθφφ +∪−∑ −

= −+=−−+
n

i jn
i
jIIinin , so that 

the necessary and sufficient conditions in the above proposition are satisfied for no 
measurable parameter set.  However, to the extent that the policymaker has uncertainty 
aversion, that is, when θI(⋅)and θII(⋅) are a convex probability capacities, the conditions 
hold for some measurable parameter set.  The reason why the policymaker may choose 
Δit = 0 is that the policymaker faces additional uncertainty unless Δit = 0.  To the extent 
that the policymaker has uncertainty aversion, it can therefore be optimal to set Δit = 0 
for some measurable range.   

If φ1 ≥ 0, all terms in the condition (12) needs to be positive, so that the condition 
(12) does not hold unless (x0

t - x*)(π0
t - π*) < 0.  This implies that some conflict 

between output stability and inflation stability is an important source for the 
policymaker to keep the interest rate unchanged.  For example, when x0

t > x* and π0
t < 

π*, lowering the interest rate achieves output stability but sacrifices inflation rate 
stability.  The tradeoff is a source of infrequent changes of the interest rate under 
uncertainty in our model. 

Unless the condition (12) holds, the central bank changes its interest rate based on a 
feedback rule.  The rule is, however, time-variant in the sense that the feedback 
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parameters vary depending on realized exogenous shocks and parameters.  For 
example, note that Ll,t = Lm,t as Δit → zl,m for all l and m (l ≠ m), where zl,m ≡ 

0 0( *) ( *)
( ) ( )( ) / 2

t t

l m

x x
k

λ π π
α λ λη μ φ φ

− + −
+ + + +

.  It is then optimal for the central bank to set Δit = zl,m 

if and only if ∂EQLt/∂Δit ≥ 0 as Δit →zl,m+0 and ∂EQLt/∂Δit ≤ 0 as Δit →zl,m-0.  In 
contrast, when EQLt/∂Δit is differentiable around Δit = z*, it is optimal for the central 
bank to set Δit = z* if and only if ∂EQLt/∂Δit = 0 as Δit = z*.  The general time-invariant 
feedback rule , however, takes highly complicated forms.  

 
 
5.  The Case of Two States 

Our proposition can be understood more explicitly when the nature takes only two 
states: state A and state B.  Suppose that the parameter φt follows a binomial 
distribution that takes either φA or φB, where φA > φB.  Noting that Lj,t ≡ λ{x0

t – (α 
+ηφj)Δit – x*}2 + {π0

t – (μφj+α k)Δit - π*}2 + ωΔit
2 when φt = φj (j = A, B), it holds that 

LA,t < LB, t if and only if [λ{x0
t – (α +ηφ*)Δit – x*} + {π0

t – (μφ*+α k)Δit - π*}] Δit > 0 
where φ* ≡ (φA+φB)/2 and φA+φB ≥ 0.   

For the two states, we denote the convex probability capacity as follows: θ(φA) = 
ν(1-ε) and θ(φB) = 1 - θ(φA) when LA,t > LB, t, θ(φB) = (1-ν)(1-ε) and θ(φA) = 1 - θ(φB) 
when LA,t < LB, t, and θ(φA∪φB) = 1.  A parameter ε (> 0) denotes the degree of 
ε-contamination in the Choquet expectation.  Since the Choquet expectation puts more 
weight on the worst outcome, ν is contaminated to be smaller when LA, t < LB, t, so is 
1-ν when LA, t > LB, t in the Choquet expectation. 

The loss function is then written as 
 

(13) EQ Lt = ν(1-ε) [λ{x0
t – (α +ηφA)Δit – x*}2 + {π0

t – (μφA+α k)Δit - π*}2 ]  
+ {1-ν(1-ε)} [λ{x0

t – (α +ηφB)Δit – x*}2 + {π0
t – (μφB+α k)Δit - π*}2 ]  

+ ωΔit
2,  when LA,t < LB, t, 

= {1-(1-ν)(1-ε)}[λ{x0
t – (α +ηφA)Δit – x*}2 + {π0

t – (μφA+α k)Δit - π*}2 ] 

+ (1-ν)(1-ε) [λ{x0
t – (α +ηφB)Δit – x*}2 + {π0

t – (μφB+α k)Δit - π*}2 ] 
+ ωΔit

2,  when LA,t > LB, t. 
 

  When ε = 0, the problem is degenerated to the traditional expected loss minimization 
problem.  When ε = 1, the problem is degenerated to the classical mini-max problem 
where the policymaker minimizes only the worst case scenario.  An increase in ε 
implies that the policymaker becomes less certain that the subjective distribution is true 
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distribution.  Thus, an increase in ε can be interpreted as an increase in Knightian 
uncertainty. 

Unless ε = 0, the “expected” loss function EQLt is not differentiable.  However, the 
proposition in the last section leads to the following corollary. 

 
Corollary:  In the case where the nature takes the two states, the central bank decides 
not to change the nominal interest rate if and only if 
 

(14)  φI ≤
{ }

*)(*)(
*)(*)(

00

00

ππμλη
ππλα

−+−
−+−−

tt

tt

xx
kxx

≤ φII. 

 
where φI ≡ ν(1-ε)φA+{1-ν(1-ε)}φB and φII ≡ {1-(1-ν)(1-ε)}φA + (1-ν)(1-ε) φB. 
 
Proof:  Recall that θ(φA) = ν(1-ε) and θ(φB) = 1 - θ(φA) when LA,t > LB, t, θ(φB) = 
(1-ν)(1-ε) and θ(φA) = 1 - θ(φB) when LA,t < LB,t, and θ(φA∪φB) = 1.  For the 

probability capacity, { } 1
1

1 111 )()( φφθφφ +∪−∑ −

= −+=−−+
n

i jn
i
jIIinin  degenerated into φI and so 

does { } n
n

i j
i
jIii φφθφφ +∪−∑ −

= =+
1

1 11 )()(  into φII.  This leads to the corollary.  [Q.E.D.]   

 
In the absence of Knightian uncertainty, ε is equal to zero, so that there exists no 

measurable range of parameters that satisfy the above inequalities.  However, to the 
extent that ε > 0, some measurable range of parameters satisfy the above inequalities.  
Given the parameters, the range is wider as ε is larger.   

Unless the condition (13) holds, the central bank changes its interest rate based on a 
feedback rule.  The rule is, however, time-variant in the sense that the feedback 
parameters vary depending on realized exogenous shocks and parameters.  Define zA,B 

≡ 
0 0( *) ( *)

( ) ( ) *
t tx x

k
λ π π
α λ λη μ φ

− + −
+ + +

, σx,I
2 ≡ ν(1-ε)(α +ηφA)2 + {1-ν(1-ε)}(α +ηφB)2, σπ,I

2 ≡ 

ν(1-ε)(μφA+α k)2 + {1-ν(1-ε)}(μφB+α k)2, σx,II
2 ≡ {1-(1-ν)(1-ε)}(α +ηφA)2 + 

(1-ν)(1-ε)(α +ηφB)2, and σπ,II
2 ≡ {1-(1-ν)(1-ε)}(μφA+α k)2 + (1-ν)(1-ε)(μφB+α k)2.  We 

then obtain the following proposition. 
 
Proposition 2:  When λ(x0

t – x*) + (π0
t – π*) > 0, it is optimal for the central bank to 

set Δit = zA,B if and only if  
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(15)  2
,

2
,

00 )*)(()*)((

IIx

ItIt kxx

πσλσω
μφαππηφαλ

++
+−++− < zA,B  

< 2
,

2
,

00 )*)(()*)((

IIIIx

IItIIt kxx

πσλσω
μφαππηφαλ

++
+−++− . 

It is also optimal for the central bank to set  

(16) Δit = 2
,

2
,

00 )*)(()*)((

IIx

ItIt kxx

πσλσω
μφαππηφαλ

++
+−++−   

if and only if 0 < Δit < zA,B, and  
 

(17)  Δit = 2
,

2
,

00 )*)(()*)((

IIIIx

IItIIt kxx

πσλσω
μφαππηφαλ

++
+−++−   

if and only if Δit < 0 or zA,B < Δit. 
Similarly, when λ(x0

t – x*) + (π0
t – π*) < 0, it is optimal for the central bank to set Δit 

= zA,B if and only if  

(18)  2
,

2
,

00 )*)(()*)((

IIIIx

IItIIt kxx

πσλσω
μφαππηφαλ

++
+−++− < zA,B  

< 2
,

2
,

00 )*)(()*)((

IIx

ItIt kxx

πσλσω
μφαππηφαλ

++
+−++− . 

It is also optimal for the central bank to set  

(19)  Δit = 2
,

2
,

00 )*)(()*)((

IIx

ItIt kxx

πσλσω
μφαππηφαλ

++
+−++−   

if and only if zA,B < Δit < 0, and  

(20)  Δit = 2
,

2
,

00 )*)(()*)((

IIIIx

IItIIt kxx

πσλσω
μφαππηφαλ

++
+−++−   

if and only if Δit < zA,B or 0 < Δit. 
 
Proof:  See Appendix 2. 
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The monetary policy rules (16), (17), (19), and (20) as well as the rules Δit = zA,B are 
similar to a Taylor rule in the sense that the nominal interest rate is adjusted in response 
to “output gap” and “inflation”.  Except that Δit = zA,B, they also reflect a version of 
Brainard’s effect where the policymaker’s optimal rule becomes less aggressive when 
the variances increase.  However, the elasticity of Δit to output gap and inflation rate 
not only depends on the degree of uncertainty aversion (that is, ε) but also differs for 
different ranges of Δit.  Consequently, the nominal interest rate shows different 
responses to “output gap” and “inflation” depending on whether Δit is positive or not 
and whether Δit is greater than zA,B or not. 

It is also noteworthy that none of the Taylor type rules is optimal when the condition 
(14) holds.  This implies that the policymaker, who has uncertainty aversion, 
sometimes keeps the interest rate unchanged and sometimes implements discontinuous 
jumps of the interest rate.  This type of stop-go policy is different from standard 
interest-rate smoothing or monetary policy inertia that was regarded as a conventional 
wisdom in macroeconomics.  The macroeconomic consequences for xt and πt are also 
different because x t and πt take different values depending on whether it was changed or 
not. 
 
 
6.  Predictability of Federal Fund Rates 
  Until the last section, we have demonstrated that the policymaker who has 
uncertainty aversion may maintain an unchanged policy stance for some significant 
periods and may make discontinuous changes of the target rate following time-variant 
Taylor rule.  The purpose of this section is to examine how well this robust optimal 
monetary policy can predict actual central bank’s policy changes in the United States.  
Specifically, we explore how our stop-and-go Taylor rule can track monthly targeted 
federal fund (FF) rates from January 2001 to December 2007.6 

Our model has six constant parameters (α, β, k, δ, λ, and ω), two policy targets (x* 
and π*), and one random parameter φt.  The discount factor β is set equal to 0.999, 
appropriate for interpreting the time interval as one month.  We use the interest rate 
elasticity of the aggregate demand of α = 0.055 and the slope of Phillips curve of k = 
0.02, which imply α = 0.22 and k = 0.08 by quarterly data.7  We set a weight on output 
                                                  
6 We used target FF rates to predict the policymaker’s decision.  Since effective FF rates are 
highly correlated with effective FF rates, the essential results will remain the same even if we 
use effective FF rates in the following analysis. 
7 Since α is the inverse of the degree of relative risk aversion in New Keynesian models, α = 
0.22 indicates that the degree of relative risk aversion is about 4.5 which is consistent with 
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fluctuation of λ = 0.01 and a weight on interest change of ω = 0 in the loss function.  
We also set the elasticity of the private agents’ expectations of δ = 0.25.  For the policy 
targets, we set x* to be 2% and π* to be 2.7%, which implies that the policymaker 
allows moderate inflation. 

For the random parameter φt, we investigate the case of two states.  As in the last 
section, we consider the convex probability capacity such that θ(φA) = ν(1-ε) and θ(φB) 
= 1 - θ(φA) when LA,t > LB, t and that θ(φB) = (1-ν)(1-ε) and θ(φA) = 1 - θ(φB) when LA,t 
< LB, t, where ε denotes the degree of ε-contamination in the Choquet expectation.  In 
the benchmark case, we set φA = 0.25, φB = -0.25, ν = 0.5 and ε = 0.01.  It is 
noteworthy that we set the parameter ε to be very small.  This implies that the 
policymaker’s uncertainty aversion is very small in the benchmark case.  Comparing 
the case where ε = 0, we will see how the very small uncertainty aversion improves the 
predictability of our model. 

Given the parameter values and the policy targets, Corollary and Proposition 2 in the 
last section lead to the time-variant Taylor rule where Δit responds to “output gap”, x0

t – 
x*, and “inflation gap”, π0

t – π*.  For π0
t, we use monthly data of annual growth rate of 

consumer price index excluding food and energy.  For x0
t, we use monthly data of 

annual growth rate of Industrial Production Index (total industry excluding 
construction).  Both of the data series are from OECD Main Economic Indicator.  
The use of an industry production index for output gap is not necessarily standard in 
literature.  But since our main focus is to predict monthly changes of federal fund rate, 
the industry production index is one of the limited proxies for GDP.  Allowing 
transmission lag of the monetary policy, we use the values of one month ahead for 
“output gap” and “inflation gap” in the following experiments. 

Figure 2 depicts both predicted and actual targeted FF rates from January 2001 to 
December 2007.  The prediction is a dynamic simulation in the sense that it is 
forecasted based on predicted it-1.  We set the initial realized value of it by its realized 
value in January 2001.  We also use realized values of x0

t and π0
t in the following 

periods.  Although the experiment is based on a simple model and noisy data, our 
stop-and-go Taylor rule could track monthly FF rates remarkably well.  Since our 
model does not incorporate sub-prime shocks, the predicted FF rates could not follow 
sharp decline of FF rates in the second half of 2007.  However, they almost tracked 
sharp decline of FF rates in 2001 and rise of FF rates from late 2004 to early 2006.  

                                                                                                                                                  
literature.  The choice of k is also consistent with literature.  For example, Roberts (1995) shows 
that a value for k is 0.075 by quarterly data.  Jensen (2002) uses a baseline value of k = 0.1, 
while Walsh (2003) uses 0.05 for quarterly data. 
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The most noteworthy result is that our model could track infrequent policy changes in 
2002 and 2003 well.  In 2002 and 2003, FOMC decided not to change its target rates in 
fourteen out of sixteen meetings.  Consequently, actual FF rates remained unchanged 
for significant periods in 2002 and 2003.  The predicted FF rates capture this feature 
well in the figure, although they failed to track stable FF rates in early 2002 and rise of 
FF rates in early 2004. 

The superiority of our model can be seen more clearly when comparing our 
benchmark model with the model where the policymaker has no uncertainty aversion, 
that is, ε = 0.  Based on equation (11), Figure 3 depicts predicted FF rates from January 
2001 to December 2007.  The dynamic predictions were made not only for ω = 0 but 
also for ω = 0.004.  Except for ε and ω, the parameters used for the prediction are the 
same as those in Figure 2.  Even when ε = 0, the Taylor rule tracked long-run 
movements of FF rates.  However, we see that the predicted series frequently showed 
significant downward deviations from the actual series in the short-run especially when 
ω = 0.  When ω = 0, the deviations became serious in 2002 and 2003 when actual FF 
rates remained unchanged for significant periods.  In particular, the predicted series 
fell below zero for significant periods.  Since we set ω = 0 for Figure 2, this suggests 
that removing uncertainty aversion in the model worsens the predictability dramatically.   

Setting ω = 0.004 improves the model predictability.  This indicates that the model 
without uncertainty aversion could track actual FF rates if we allow some benefits from 
interest rate smoothing in the loss function.  However, even when ω = 0.004, the 
predicted series showed temporary increases in early 2003, which are followed by 
substantial decline from late 2003 to 2004.  These short-run fluctuations never 
happened in actual FF rates.  The predicted series also showed smaller increases in 
2005 and 2006.   
  The superiority of our model can be also confirmed even when comparing with a 
standard Taylor rule whose coefficients are estimated by ordinary least squares.  The 
standard Taylor rule we used is it = constant + ρit-1 + ϕx (x0

t+1 – x*) + ϕπ (π0
t+1 – π*).  

We estimated the coefficients by ordinary least squares for the sample period from 
January 2001 to December 2007.  Using the estimated coefficients, a dynamic 
prediction is made based on an initial value of it and realized values of x0

t and π0
t in the 

following periods.8  Figure 4 depicts both predicted and actual FF rates from January 
2001 to December 2007.  The standard Taylor rule with estimated coefficients tracked 
actual FF rates well for the first one and half years.  However, it could not track 

                                                  
8 From the estimation, we obtained the Taylor rule such that it = 0.086 + 0.961 it-1 + 5.818 (x0

t+1 – 
x*) + 8.442 (π0

t+1 – π*). 
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unchanged policy decision from 2003 to the first half of 2004 in the dynamic simulation.  
It also under-predicted FF rates in 2006 and 2007. 
 
 
7.  Prediction under Different Degrees of Uncertainty 

In the last section, we showed that our stop-and-go Taylor rule can track monthly FF 
rates very well.  The most noteworthy result is that uncertainty aversion of the 
policymaker is useful in tracking infrequent policy changes in actual FF rates.  In this 
section, we check how different degree of uncertainty will change the time series 
property of predicted FF rates.  In our model, φt is the only random structural 
parameter that changes over time.  In our benchmark case, we set φA = 0.25 and φB = 
-0.25 for the random parameter.  We first examine how the predicted series will change 
when we use alternative combinations of (φA, φB) = (0.175, -0.175), (0.3, 0.3), and (0.5, 
-0.5).  In all of the combinations, the average value of φt is set to be zero.  The 
experiment thus explores how a mean-preserving spread will affect the predicted FF 
rates.   

Figure 5 depicts the predicted FF rates for these alternative sets of φA and φB from 
January 2001 to December 2007.  Like previous predictions, the dynamic predictions 
are based on an initial value of it and realized values of x0

t and π0
t in the following 

periods.  However, unlike previous predictions, the initial value of it is chosen so that 
the predicted value is equal to the actual value in August 2001.  It is easy to see that 
the interest rates change most frequently when (φA, φB) = (0.175, -0.175) and least 
frequently when (φA, φB) = (0.5, -0.5).  This implies that a mean-preserving spread of φt 
will make the interest rates change less frequent.  

In contrast with φt, the degree of ε-contamination changes the policymaker’s aversion 
to uncertainty.  Therefore, given the distribution of φt, changes of ε will capture 
another type of uncertainty changes.  For the degree of ε-contamination, we set ε = 
0.01 in our benchmark case.  We examine how the predicted series will change when 
we use alternative values of ε = 0.001, 0.05, and 0.1.  Figure 6 depicts the interest rates 
for these alternative values of ε from January 2001 to December 2007.  Like Figure 5, 
the initial value of it is chosen so that the predicted value is equal to the actual value in 
August 2001.  It is easy to see that the interest rate changes are more infrequent when ε 
= 0.05 and much more infrequent when ε =0.1.  An increase of uncertainty aversion 
will make the interest rates change less frequent.  They are, however, more frequent 
when ε = 0.001 for which the policymaker’s uncertainty aversion is negligible.   
  The above results suggest that both a mean-preserving spread of φt and an increase of 
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uncertainty aversion will make the interest rates change less frequent.  However, in 
predicting actual FF rates, they have different implications.  To see this, we examine 
how the predicted series will change when we use alternative combinations of (φA, φB, ε).  
Specifically, we examine how the predicted series will change when we use alternative 
combinations of (φA, φB, ε) = (0.175, -0.175, 0.025) and (0.4, -0.4, 0.005).  Since (φA, 
φB, ε) = (0.25, -0.25, 0.01) in the benchmark case, the first is a combination that has 
smaller mean-preserving spread of φt but larger uncertainty aversion, while the second is 
a combination that has larger mean-preserving spread of φt but smaller uncertainty 
aversion.  Figure 7 depicts the interest rates for these two alternative combinations 
from January 2001 to December 2007.  The initial value of it is chosen so that the 
predicted value is equal to the actual value in August 2001.  The combination of (0.175, 
-0.175, 0.025) shows that the predicted series remain constant from April 2002 to 
September 2004 but change more dramatically in the other periods.  This implies that 
an increase of uncertainty aversion makes policy change more infrequent but smaller 
mean-preserving spread of φt makes policy changes more dramatic.  In contrast, the 
combination of (0.4, -0.4, 0.005) shows that the predicted series are very flat not only in 
2002 and 2003 but also in the other periods.  This implies that larger mean-preserving 
spread of φt cannot predict unchanged policy that happens only for some specific 
periods.  Larger mean-preserving spread of φt is helpful only in making the predicted 
series smooth throughout the period. 
 
 
8. Predictability of ECB’s Targeted Interest Rate 

In section 6, we have demonstrated that our stop-and-go Taylor rule can track 
monthly policy changes in the United States very well.  The purpose of this section is 
to explore whether the stop-and-go Taylor rule can also track policy changes by 
European Central bank (ECB).  Specifically, we investigate how well our robust 
optimal monetary policy can predict monthly interest rates on the main refinancing 
operations (MRO) set by ECB from January 2001 to December 2007.   

As in previous sections, we investigate the case of two states where Corollary and 
Proposition 2 in section 5 lead to the time-variant Taylor rule.  Unlike section 6, we set 
π* = 2.5% which implies that ECB has tighter inflation target than Federal Reserve 
Board (FRB) in the loss function.  However, to make the following results comparable 
to those in previous sections, we use the exactly same parameters as those in section 6.9 

                                                  
9 Specifically, we set α = 0.055, k = 0.02, and δ = 0.25 for structural parameters, x* = 2%, λ = 0.01 
and ω = 0 for the loss function, and φA = 0.25, φB = -0.25, ν = 0.5, and ε = 0.01 for the convex 
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For π0
t, we use monthly data of annual growth rate of the Harmonised Index of 

Consumer Prices (all-items excluding energy and food).  For x0
t, we use monthly data 

of annual growth rate of Industrial Production Index (total industry excluding 
construction).  Both of the data series are those of all Euro area and are downloaded 
from Euro Stat.  The prediction is a dynamic simulation where MRO rates are 
forecasted based on an initial value of it in January 2001 and realized values of x0

t and 
π0

t from January 2001 to December 2007.  Like previous sections, Δit is assumed to 
respond to one month ahead of x0

t – x* and π0
t – π*. 

Figure 8 depicts both predicted and actual rates of MRO from January 2001 to 
December 2007.  Although based on a simple model and noisy data, our stop-and-go 
Taylor rule could track monthly rates of MRO remarkably well.  The prediction 
underestimated the rates of MRO in 2002 and overestimated in the second half of 2007.  
However, the predicted rates are very similar to actual rates in the other periods.  In 
particular, they almost tracked the unchanged rates of MRO from 2003 to 2005 and the 
continuous rise of MRO rates in 2006.  From 2003 to 2005, the Governing Council of 
ECB decided not to change its target rates in thirty-three out of thirty-six meetings.  
Consequently, actual rates of MRO remained unchanged for significant periods from 
2003 to 2005.  The predicted rates of MRO capture this feature well in the figure.  It 
is noteworthy that we used the exactly same parameters as those in section 6 except for 
π*.  This implies that both FRB’ and ECB’ policy decisions can be described by the 
same stop-and-go Taylor rule with the same feedback parameters. 

The superiority of our model can be seen more clearly when comparing the 
benchmark model with the model where the policymaker has no uncertainty aversion, 
that is, ε = 0.  Figure 9 depicts both predicted and actual rates of MRO from January 
2001 to December 2007 in the case where ε = 0.  Like section 6, the dynamic 
predictions were made not only for ω = 0 but also for ω = 0.004.  Except for ε and ω, 
the parameters are the same as those in Figure 8.  Even when ε = 0, the Taylor rule 
which is determined by equation (11) tracked long-run movements of MRO rates.  
However, we see that the predicted series frequently showed significant downward 
deviations from the actual series.  In particular, the predicted series fell below zero 
from June 2005 to February 2006.  This suggests that removing uncertainty aversion in 
the model worsens the predictability dramatically.  Setting ω = 0.004, that is, allowing 
some benefits from interest rate smoothing in the loss function, improves the model 
predictability.  In particular, the predicted series tracked unchanged policy from March 
2002 to November 2002.  However, even when ω = 0.004, they overestimated MRO 
                                                                                                                                                  
probability capacity. 
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rates from 2003 to 2005.  They showed temporary increases in mid 2004, which are 
followed by substantial decline in the first half of 2005.  These short-run fluctuations 
never happened in actual FF rates.   

The superiority of our model can be also confirmed even when comparing with a 
standard Taylor rule whose coefficients are estimated by ordinary least squares.  Like 
section 6, we estimated the coefficients of the standard Taylor rule by ordinary least 
squares for the sample period from January 2001 to December 2007.10  Using the 
estimated coefficients, a dynamic prediction is made based on an initial value of it and 
realized values of x0

t and π0
t in the following periods.  Figure 10 depicts both predicted 

and actual FF rates from January 2001 to December 2007.  The standard Taylor rule 
with estimated coefficients tracked medium-run and long-run movements of MRO rates 
well.  However, the predicted series moved smoother than actual series.  They 
overestimated MRO rates from 2003 to 2005 and underestimated after 2006 in the 
dynamic simulation.  In addition, they failed to detect unchanged policy decision from 
2003 to 2005. 
 
 
9. Concluding Remarks 

In this paper, we explored why the central bank’s policy instrument remains so 
unchanged under uncertainty.  Although infrequent policy changes have been widely 
observed in many central banks, they have not been taken into account in previous 
macro models.  This is true even in previous studies that investigated optimal 
monetary policy under model uncertainty or robust optimal policy rules.  A large 
number of studies agreed that there is clearly much uncertainty over policy multipliers.  
However, most previous studies concluded that, under certain conditions, multiplier 
uncertainty may make optimal policy more conservative but does not lead to a policy of 
“doing nothing”.  A key departure of our paper from these studies is the introduction of 
a stop-go monetary policy under Knightian uncertainty or a robust control framework.  
This increases an incentive for the central bank to keep the policy instrument unchanged 
even when exogenous shocks change output gap and inflation rate.  The calibrated 
optimal stop-go policy rules could track actual target rates of FRB and ECB quite well. 

Needless to say, our stop-go monetary policy is not the only explanation for why the 
central banks’ policy changes are so infrequent.  Infrequent decision-making meetings 
would be one reason why the policy target changes so infrequently.  Infrequent 

                                                  
10 From the estimation, we obtained the Taylor rule such that it = 0.049 + 0.975 it-1 + 2.926 (x0

t+1 – 
x*) + 3.331 (π0

t+1 – π*). 
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observations of macroeconomic data could be another reason.  However, as we 
discussed briefly in the introduction, policy changes are less frequent than what these 
institutional constraints predict.  This paper filled the gaps that the institutional 
constraints cannot explain.  What we have not discussed in the paper but what seems 
important is an integer constraint where a unit of the target rate change is usually 25 
basis points for most central banks.  This could be another source for infrequent policy 
changes. 
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Appendix 1. Extension of Proposition 1. 
In this Appendix, we extend Proposition 1 to the case where the policymaker faces 

uncertainty even without any policy change.  Specifically, we consider the case where 
the policymaker cannot see exact values of x0

t and π0
t which are define by (5) and (6).  

We assume that the stochastic variables x0
t and π0

t are independent of the stochastic 
parameter φt for the policymaker. 

Suppose that the random variables (x0
t, π0

t) takes k alternative values, (x0
1, π0

1), (x0
2, 

π0
2), ..., (x0

k, π0
k).  Define Lj,t(ι) ≡ λ{x0

ι – (α +ηφj)Δit – x*}2 + {π0
ι – (μφj+α k)Δit – 

π*}2 + ωΔit
2.  It then holds that Ll,t(ι) ≤ Lm,t(ι) as Δit → 0 if and only if {λη(x0

ι – x*) + 
μ (π0

ι – π*)}(φl–φm)Δit ≥ 0.  Since φ1 ≤ φ2 ≤ …≤ φn, this derives that 0 ≤ L1,t(ι) ≤ L2,t(ι) 
≤ L3,t(ι) ≤ …≤ Ln,t(ι) as {λη(x0

ι – x*) + μ (π0
ι – π*)}Δit → -0 and that L1,t(ι) ≥ L2,t(ι) ≥ 

L3,t(ι) ≥ …≥ Ln,t(ι) ≥ 0 as {λη(x0
ι – x*) + μ (π0

ι – π*)}Δit → +0. 
  For ι = 1, 2, …, k , define the probability capacity πι with which (x0

t, π0
t) = (x0

ι, π0
ι).  

Suppose that λη(x0
ι – x*) + μ (π0

ι – π*) is greater than zero for ι = 1, 2, …, k0 and is 
less than zero for ι = k0+1, k0+2, …, k.  Then, we can show that as Δit → -0,  
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= –2{λη(x0
ι – x*) + μ (π0

ι – π*)}(φl – φm), this leads to 
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where Φ(+) ≡∑ =

0

1

k

ι ιπ {λη(x0
ι – x*) + μ (π0

ι – π*)} and Φ(–) ≡∑ +=

k

k 10ι ιπ {λη(x0
ι – x*) + 

μ (π0
ι – π*)}.  These equations imply that ∂ EQ Lt /Δ∂it ≥ 0 as Δit →+0 and ∂ EQ Lt 

/Δ∂it ≤ 0 as Δit → -0 if and only if 
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The above inequalities are the extended version of (12) to the case where x0

t and π0
t 

are uncertain for the policymaker.  The central bank decides not to change the nominal 
interest rate if and only if the above inequalities hold.  The result suggests that to 
derive infrequent policy changes, the assumption on information structure about x0

t and 
π0

t is not crucial in our analysis.  What is crucial is that the change of the nominal 
interest rate induces additional independent uncertainty for the policymaker.  This is 
the source for the central bank to decide no policy change under some circumstances. 

 
 

Appendix 2.  Derivation of Proposition 2 
  In this Appendix, we prove Proposition 2 in section 5.  Suppose that λ(x0

t – x*) + 

(π0
t – π*) > 0.  Then, zA,B ≡ 

0 0( *) ( *)
( ) ( )( ) / 2

t t

l m

x x
k

λ π π
α λ λη μ φ φ

− + −
+ + + +

 > 0.  It holds that LA,t < 

LB, t if and only if 0 < Δit < zA,B and that LA,t > LB, t if and only if Δit < 0 or Δit > zA,B.  
Equation (14) therefore leads to 
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(B1) 
t

t
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Δ∂

∂
= –2ν(1-ε) [λ(α +ηφA){x0

t – (α +ηφA)Δit – x*}  

+ (μφA+α k){π0
t – (μφA+α k)Δit - π*} ]  

–2{1-ν(1-ε)} [λ(α +ηφB){x0
t – (α +ηφB)Δit – x*}  

+ (μφB+α k){π0
t – (μφB+α k)Δit - π*} ] + 2ωΔit, 

when 0 < Δit < zA,B, 
= –2{1-(1-ν)(1-ε)}[λ(α +ηφA){x0

t – (α +ηφA)Δit – x*} 
+ (μφA+α k){π0

t – (μφA+α k)Δit - π*}2 ] 

–2(1-ν)(1-ε) [λ(α +ηφB){x0
t – (α +ηφB)Δit – x*} 

+ (μφB+α k){π0
t – (μφB+α k)Δit - π*}2 ] + 2ωΔit, 

when Δit < 0 or Δit > zA,B. 
 

This implies that 
t

t
Q

i
LE

Δ∂

∂
 > 0 as Δit approaches to zA,B from below and that 

t

t
Q

i
LE

Δ∂

∂
 < 

0 as Δit approaches to zA,B from above if and only if  
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2
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+−++− .   

 
This indicates that it is optimal for the central bank to set Δit = zA,B if and only if (B2) 
holds. 
  In addition, recall that φI ≡ ν(1-ε)φA+{1-ν(1-ε)}φB, φII ≡ {1-(1-ν)(1-ε)}φA + (1-ν)(1-ε) 
φB, σx,I

2 ≡ ν(1-ε)(α +ηφA)2 + {1-ν(1-ε)}(α +ηφB)2, σπ,I
2 ≡ ν(1-ε)(μφA+α k)2 + 

{1-ν(1-ε)}(μφB+α k)2, σx,II
2 ≡ {1-(1-ν)(1-ε)}(α +ηφA)2 + (1-ν)(1-ε)(α +ηφB)2, and σπ,II

2 
≡ {1-(1-ν)(1-ε)}(μφA+α k)2 + (1-ν)(1-ε)(μφB+α k)2.  It thus holds that when 0 < Δit < 

zA,B, 
t

t
Q

i
LE

Δ∂

∂
= 0 if and only if  
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and that when Δit < 0 or Δit > zA,B, 
t

t
Q
t

i
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Δ∂
∂ = 0 if and only if  
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,

00 )*)(()*)((
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++
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This proves the first part of Proposition 2.  Since the second part of Proposition 2 can 
be proved similarly, we can obtain Proposition 2.   
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Table 1. The Number of FOMC Release Dates and No Policy Change Announcement 

 
1991 1992 1993 1994 1995 1996 1997 1998 1999

Number of FOMC meetings 18 12 8 9 8 7 8 9 8
Number of meetings without policy change 9 9 8 3 4 6 7 6 5

2000 2001 2002 2003 2004 2005 2006 2007
Number of FOMC meetings 8 11 8 8 8 8 8 11
Number of meetings without policy change 5 0 7 7 3 0 4 4  
 
 
Table 2. The Number of Meetings and No Policy Change Announcement 

 

(1) Bank of Japan (Monetary Policy Meetings)
1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of Monetary Policy Meetings 19 18 17 16 16 16 15 14 14
Number of meetings without policy change 18 17 12 13 12 15 15 12 13

(2) European Central Bank (The Governing Council)
1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of Government Council meetings 24 24 24 12 12 12 12 12 12
Number of meetings without policy change 19 17 20 11 10 12 11 7 10

(3) Bank of England (The Monetary Policy Committee)
1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of MPC meetings 12 12 13 12 12 12 12 12 12
Number of meetings without policy change 6 10 6 12 9 8 11 10 8

(4) Reserve Bank of Australia (Reserve Bank Board)
1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of RBB meetings 11 11 11 11 11 11 11 11 11
Number of meetings without policy change 10 7 5 9 9 11 10 8 8

(5) Reserve Bank of New Zealand
1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of OCR review meetings 6 8 9 8 8 8 8 8 8
Number of meetings without policy change 5 4 4 4 5 2 5 8 4  
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Figure 1 . Federal Funds Target Rate :
From Dec. 2000 to Dec. 2007
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Figure 2.  Predicted and Actual FF Rates: Benchmark Case 
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Figure 3.  Predicted and Actual FF Rates: Cases of ε = 0 
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Figure 4.  Predicted and Actual FF Rates: Case of the estimated coefficients 
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Figure 5.  Predicted and Actual FF Rates for Alternative Combinations of φt 
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Figure 6.  Predicted and Actual FF Rates for Alternative Values of ε 
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Figure 7.  Predicted and Actual FF Rates for Alternative Combinations of φt and ε 
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Figure 8.  Predicted and Actual Rates of MRO: Benchmark Case 
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Figure 9.  Predicted and Actual Rates of MRO: Cases of ε = 0 
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Figure 10.  Predicted and Actual Rates of MRO: Case of the estimated coefficients 
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