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1 Introduction

In this paper, we propose a new methodological framework to estimate a general class of

games of incomplete information using Bayesian techniques. The central contribution of our

approach is to construct an MCMC estimation algorithm which is immune to the problem

multiple Nash equilibria, in the sense that it imposes very little assumptions about the

equilibrium selection process despite using all the restrictions imposed by the theory. The

only assumption required with respect to the equilibrium selection is that each observed

market is repeatedly playing the same equilibrium over time.

There are two key insights of our approach. The first is to add to the structural model

random payoffs parameters. By doing so, we propose a new Markovian stochastic algorithm

which simulates from the distribution of Nash equilibrium solution of the game without

solving for the Nash equilibrium. We then embed this algorithm into a Bayesian Metropolis-

Hastings algorithm we can simultaneously construct the posterior distribution of Nash equi-

librium strategies that is consistent with the actions selected by players in the data, and

estimate the structural parameters of the model. Here, the second key insight of our algo-

rithm is about how we draw the parameters from the posterior distribution. Conventionally,

if we were to use the Metropolis-Hastings algorithm, we would first draw the parameters

from the candidate distribution, and then, solve for all the multiple equilibria and the equi-

librium selection probabilities, and then based on them evaluate the likelihood to derive

the acceptance probability of the new parameter draw. Instead, we would draw the choice

probability from a proposal density, then derive the parameters of the model that makes the

choice probabilities drawn to be the Nash equilibrium, and then evaluate the Metropolis-

Hastings acceptance rate of the choice probability draw. The reason why the procedure is

simple is that essentially the problem of multiple equilibria arise because the relationship

from the parameter of the model to the equilibrium choice probabilities is not a function,

but a correspondence. But, it turns out that the relationship from the equilibrium choice

probability to the parameters including the heterogeneity parameters is a function. In other

words, the equilibrium choice probability is a sufficient statistics for the parameters including
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the heterogeneity parameters. Therfore, once the equilibrium choice probabilities are drawn,

then given those, the equilibrium is uniquely determined. Furthermore the parameters that

generates the equilibrium choice probability can be easily generated by the modified version

of the inversion theorem used by Hotz-Miller and many others, without solving for any equi-

libria of the game. In the classical two step or finite k-step approach, it is necessary that the

initial choice probability is an accurate estimator of the true equilibrium choice probability,

thus the need for the large sample data and/or the kernel techniques to try to overcome

the small sample problems. In Bayesian approach we propose, since we draw the choice

probabilities from a proposal density, as part of the MCMC iterations, there is no need for

any consistent initial guess of the choice probabilities at all. And as long as the model and

the MCMC algorithm is appropriately constructed to satisfy all the standard condition for

convegence, it is fairly straightforward to prove that the Markov Chain is going to converge

to the true posterior.

Moreover, like many MCMC estimation algorithm, we show that our estimation algo-

rithm can easily accommodate heterogeneity parameters that unobserved to the econome-

trician and have continuous distribution function. The method is very similar in spirit to

those by McCullogh and Rossi (1994) and many others, which draw different random effects

parameters for each market to construct the MCMC loop, except for the fact that for each

marekt we draw different choice probability for each market.

In contrast, the previous literature addressed the problem of multiple equilibria either by

imposing additional equilibrium selection restrictions on the game (e.g. Bresnhan and Reiss

(1990, 1991), Berry (1992), Bajari, Hong and Ryan(2007)), by assuming that the data is

generated by a single equilibrium (e.g. Moro and Norman (2005), Aguirregabiria and Mira

(2006), Bajari, Benkard and Levin (2006)), or by using only necessary equilibrium conditions

of the model to partially identify the parameters (e.g. Ciliberto and Tamer (2007), Pakes,

Porter, Ho, Ishii (2007)).

We contribute to this literature by proposing an estimation algorithm that is substantially

less restrictive about the (unobserved) equilibrium selection rule used by players, while still
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using the full solution of the theoretical model to identify the parameters.

It is also well known among Bayesian econometricians that the MCMC algorithm is very

effective in drawing from the high dimentional posterior distribution. The primary reason

is that researchers can very easily draw the parameters sequentially from blocks of small

number of parameters given other parameters fixed.

In the similar spirit, that our MCMC estimation will be computationally very effective

when the number of choice probability that needs to be drawn becomes large, because we

can also use the Metropolis-within Gibbs algorithm to sequentially estimate the model with

large state spaces in blocks of draws where during each block we only need to draw a small

number of choice probabilities. Thus, just like the way MCMC algorithm has dramatically

reduced the computational burden of evaluating a high dimentional posterior distribution in

Bayesina estimation, our algorithm would substantially reduce the curse of dimensionality

in estimating the game with many players and state variables.

Another advantate of our algorithm is that after we estimate the parameters of the

model, it is very straightforward to simulate the model. We would repeat the same MCMC

routine until convergence with only a very minor modification. That is, we only draw the

choice probabilities and take the parameters as given. Also, the “likelihood” which is used

to evaluat the Metropolis-Hastings acceptance probability is only a function of the random

effects parameters, not of the choice probability. If we then are interested in making a

policy recommendation, all we need to do is to run the above MCMC routine again with

the perturbed policy parameter. In short, our algorithm provides a comprehensive package

of straightforward estimation, simulation and policy experiments of the games of incomplete

information and unobserved heterogeneity, both static and dynamic.

Therefore, common criticism towards the choice probabilty based estimation algorithm

proposed by Hotz, Miller and others, that they do not provide any solution for simulating

the game after the estimation does not apply to our algorithm.

The remaining of the paper is organized as followed. The next section describes the class

of models that we are concerned with. Section 3 and ?? introduces the MCMC algorithm and
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discusses the theoretical properties of the estimates. In Section 4 we discuss two numerical

examples to illustrate the algorithm. Finally, the last section discusses extensions and the

general applicability of our approach.

2 Model notation and assumptions

We first discuss the estimation of discrete games of incomplete information, similar to the

ones studied in ?), ?), ?), ?), ?), ?), and ?). We then extend the model to include continuous

market level random effects as well.

The structure of the game is described as follows. A market is composed of I players who

face N options, A = {a1, ..., aN}, in periods t ∈ Z+. Each player i bases her action ait ∈ A

on a publicly observed variable xt ∈ X, where X is discrete, i.e. X =
{
x1, ..., xS

}
and a

privately observed utility shock εit = (ε1
it, ..., ε

N
it ) ∈ RN . Letting εt = (ε1t, ..., εIt), the state

of the system is given by the realization (xt, εt). We assume that xt’s evolve in a Markovian

fashion and use g(x, x′|a) to denote the 1-step transition probability from state x to x′ when

action a is chosen. In particular, we assume that the transition probabilities depend only

on the current state and the current action choice. We assume that εn
it’s are i.i.d. and have

full support on the real line, as well as being independent from xt’s. We use fε to denote

the density function of εt. When convenient, we also use εai
to denote the random shock

associated with action ai.

Denote a−it to be the action of players other than player i at period t. That is,

a−it ≡ (a1t, ..., ai−1 t, ai+1 t, ..., aIt)

The period t utility player i receives from action profile at = (ait, a−it) in state (xt, εt) is

assumed to be additive in the random shock, and is given by

ui(at, xt, εt, θ) ≡ πi(at, xt, θ) + εait
,

where θ ∈ RK is a vector of structural parameters. Since θ is fixed and known to the players,

it will be suppressed in the notation unless its role needs to be emphasized.
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Player i payoff from the outcome path (a,x, ε) ≡ (at, xt, εt : t ∈ Z+), is given by

vi(a,x, ε) ≡
∞∑

t=0

βtui(at, xt, εt) =
∞∑

t=0

βt (πi(at, xt) + εait
) ,

where β ∈ [0, 1) represents the players’ common discount factor.1

Now, we define the Markovian (pure) strategy. We first introduce notations for the steady

state. That is, let x be the state vector, i.e. x ≡ (x1, ..., xI) and x′ be the next period state

vector defined similarly. Similarly, let ε ≡ (ε1, ..., εI) where εi is a vector whose element is

εixai
A Markovian (pure) strategy of player i is a mapping si : X × RN → A that specifies

the player’s choice in each observable state (x, εix).

Given the Markovian assumptions on the evolution of the states, any Markovian strategy

profile s = (s1, ..., sI), together with an initial measure, induces a Markov chain, Zs =(
Zs

0, Zs
1, Zs

2, ...
)

that takes values in
(
AI ×X × RIN

)∞
. Let Zs(a0, x0, ε0) be the chain Zs

started with initial condition Zs
0 = (a0, x0, ε0), and let µ(a0, x0, ε0) denote the probability

measure for (a,x, ε) conditinal on (a0, x0, ε0). Player i’s expected utility given s and an

initial condition Zs
0 = (a0, x0, ε0) is

vi(s, a0, x0, ε0) ≡ Eµ(a0,x0,ε0)

[
∞∑

t=0

βtui(Z
s
t )

]

= ui(a0, x0, ε0) + Eµ(a0,x0,ε0)

[
∞∑

t=1

βtui(at, xt, εt)

]
.

The game has a Markov Structure. Here we focus on the Markov equilibria, that is, we

assume that the firms play Markov strategies2.

Assumption 1. The private information εixai
is distributed jointly normally with zero mean

and positive definite variance covariance matrix, with its support being on the real line. The

distribution function of ε is continuously differentiable.

Given the random strategy si(x, εi) for each player i, we can define a conditional choice

1When β = 0,
∑∞

t=0 βtui(at, xt, εt) ≡ ui(a0, x0, ε0), and the game is interpreted to mean a static game.
2We heavily borrow the notations and the definition of the equilibrium in the choice space from Aguir-

reagabiria and Mira (2007)
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probability associated with it. They are defined as follows:

ps
i (ai|x) = Pr (si(x, εi) = ai) =

∫
1 (si(x, εi) = ai) dfε (εi)

and

ps
i (x) =

(
ps

i (a
1|x), ps

i (a
2|x), ..., ps

i (a
N |x)

)
, ps

i =
(
ps

i (x
1), ..., ps

i (x
S)
)

Then, given ε−i being private information unknown for player i, the deterministic part

of per period profit can be expressed as follows.

πs
i (ai, p

s
−i, x) ≡

∑
a−i∈AI−1

[∏
j 6=i

ps
j(aj|x)

]
πi(a, x)

Similarly, the transition probability for player i can also be expressed as follows.

Gs
i

(
x′|x, ps

−i, ai

)
=

∑
a−i∈AI−1

[∏
j 6=i

ps
j(aj|x)

]
g (x′|x, ai)

The Bellman equation of the dynamic discrete choice problem of the individual can be

expressed as follows:

V s
i

(
x, εi, p

s
−i

)
= maxai∈A

{
πs

i (ai, p
s
−i, x) + εiaix + β

∑
x′∈X

[∫
V s

i

(
x′, ε′i, p

s
−i

)
fε (ε′i) dε′i

]
Gs

i

(
x′|x, ps

−i, ai

)}

where V s
i

(
x, εi, p

s
−i

)
is the value function of the optimal decision problem of individual i.

Let the choice specific value function be defined as follows.

V s
i

(
ai, p

s
−i, x, εi

)
= πs

i (ai, p
s
−i, x)+ εiaix +β

∑
x′∈X

[∫
V s

i

(
x′, ε′i, p

s
−i

)
fε (ε′i) dε′i

]
Gs

i

(
x′|x, ps

−i, ai

)
Then,

V s
i

(
x, εi, p

s
−i

)
= max

ai∈A

{
V s

i

(
ai, x, εi, p

s
−i

)}
The best response of player i to her belief ps

−i is given by

Ri(x, εi, p
s
−i) = arg max

ai∈A
V s

i (ai, p
s
−i, x, εi).

A strategy profile (s∗1, ..., s
∗
I) is a Markov Bayesian Nash equilibrium of this game if for all

(x, εi),

s∗i (x, εi) = Ri(x, ps
−i, εi),
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where ps
j(aj, x) = Pr(s∗j(x, εj) = aj) for all j, x, εj and aj. That is, if every player in every

state is best responding to her belief and the beliefs are consistent with the players’ actual

strategies.

Since the utility shocks are unobservable to a modeler, a more relevant definition of an

equilibrium is given below.

Definition 1. A vector of choice probabilities p = (p1, ..., pI) is a Markov Perfect Bayesian

Nash equilibrium (MPE) if for all i, x, and a ∈ A,

pi(a|x) = Prob (a = Ri(x, εi, p−i)) .

Thus, we follow Milgrom and Weber (1985) and Aguirregabiria and Mira (2007) and

express the Markov Perfect Bayesian Nash Equilibrium in the probability space. That is,

MPE is a fixed point of the folloing probability operator, i.e.

Λi (ai, x; p−i) =

∫
1

(
ai = arg max

a∈A
V s

i (a, x, εi, p−i)

)
fε(εi)dεi

Λ (p) = {Λi (ai, x; p−i)}

where Λi is called the best response probability function.

The main difficulty associated with the estimation of this model is the presence of multiple

equilibria. Under some regularity conditions, there exists an equilibrium in pure strategies

(see ?) for more details). However, its uniqueness is not guaranteed, and multiple equilibria

can be very prevalent in some cases (e.g. ?)). We let E(x) denotes the set of equilibria, which

is assumed to be countable. Assumption 2 describes the data generating process selecting

the type of equilibrium being played.

Assumption 2. In each market, a unique equilibrium is played.

The previous assumption highlights the fact that the observed choices can be generated

from multiple equilibria. For example, if repeated observations are available for one geo-

graphically isolated market and the game is dynamic, Assumption 2 requires only that one

equilibrium is being played for every time period in this market. Therefore, contrary to the

8



approach advocated by ?), we are not assuming that all cross-sectional markets are playing

the same equilibria. Moreover, if the game is static and a market corresponds to a time

period, this assumption does not rule out the possibility that two different equilibria are

played in two subsequent time periods.

A typical panel data set generated from the above model is described by

yd = (yd
1 , ..., y

d
M) =

(
(xd

m, ad
1m, ..., ad

Im) : m = 1, ...,M
)

and includes M observed sequences of covariates and choices, each of length Tm ≥ 1. For

example, ad
im = (ad

im1, ..., a
d
imTm

) ∈ ATm , where ad
imt is the action choice of player i in market

m at time t. Emphasizing the role of the structural parameter in the notation, the likelihood

contribution of market m is given by:

lm(yd
m|θ) =

∑
p∗∈E

π(p∗)

[∏
i

(∏
t

p∗i (a
d
imt|xd

mt, θ)F
s
i (xd

mt+1|xd
mt, a

d
imt, p

∗)I(1≤t≤Tm−1)

)
Hi(x

d
m1, p

∗)

]
. (1)

where Hi(x, p∗) is the stationary distribution of state x for player i, which satisfies the

following condition.

Hi(p
∗) = GiHi(p

∗)

where

Gi(x, x′) =
∑

a

[p∗i (a|x, θ)F s
i (x′|x, a, p∗)]

The presence of multiple equilibria is akin to the presence of finite-mixture market-level

unobserved heterogeneity, where the mixture types relate to different equilibria. A key dif-

ference however is that the presence of multiple equilibria typically depends on the structural

parameters θ. This feature seriously restricts the ability of the econometrician to specify the

number of mixtures ex-ante and maximize the likelihood function3.

3By pre-specifying the number of equilibria, the finite mixture approach requires that the model generates
the same number of equilibria for all parameter values which is false in general. If this assumption is violated,
the gradients of the likelihood with respect to the mixture parameters will not be defined everywhere and
the estimation algorithm will fail. Another idea recently proposed by Kasahara and Shimotsu, and Houde
and Imai is to extend the Hotz-Miller two-stage approach and estimate the number of equilibria and the
corresponding choice probabilities in the first stage based on a finite mixture model. Then, in the second stage
recover the structural parameters. This would require even more sample size than the original Hotz-Miller
approach.
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Rather than maximizing directly the likelihood function corresponding to the structural

model, our approach consists of estimating a “perturbed” version of the model which turns

out to be more tractable. In particular, we augment the model with a vector which represents

unobserved heterogeneity , i.e. c = (c1, ..., cI), where ci = (cixa : x ∈ X, a ∈ A). It is publicly

observable (to the players). These additional parameters satisfy the following assumption.

Assumption 3. The heterogeneity parameter vector c has mean zero and finite covariance

matrix Σc, and its joint distribution is given by a parametric function gc( · | Σc). Further-

more, for all i and x, cixaN = 0.

Here, we have normalized cixaN to be zero to identify the per period payoff function in

the discrete choice model, which will be discussed later. We define the perturbed current

period deterministic payoff function as follows: Let

π̂i : AI ×X × RK × R → R

be an extension of πi : AI × X × RK → R such that π̂i(a, x, 0) = πi(a, x) for all a and x.

Now, let

ui(a, x, ε, c) ≡ π̂i(a, x, cixai
) + εai

. (2)

be the utility function for the perturbed game. To economize on the notation, we drop

the hat from the notation and use πi(a, x, cixai
) rather than π̂i(a, x, cixai

). Except for this

extension of πi, the earlier defined functions remain the same for the perturbed game.

We then assume that the relationship between the heterogeneity term and the per period

profit function is monotonic. That is,

Assumption 4. The profit function is continuously differentiable in c, and the derivative is

uniformly positive 4. That is,
∂πi(a, x, cixai

)

∂cixai

> ηπ

for some small ηπ > 0

4What we need to assume is that the derivative is either strictly positive or negative, i.e. the profit function
is strictly monotonic. In this case, without loss of generality, we assume that it is strictly increasing.
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Let cix = (cixa1 , .., cixaN−1) and pi(x) = (pi(a
1|x), ..., pi(a

N−1|x)). The following assump-

tion guarantees that there is an well-defined function mapping p to c.

Assumption 5. For the choice probabilities pixa, we assume that for any i, x, and a, pixa ∈

[δp, 1− δp] for small δp > 0.

Assumptions 4 and 5 together imply that

∂πs
i (a, x, cixai

)

∂cixai

> δpηπ

This assumption is somewhat stronger than those in Hotz and Miller and others where

only pixa ∈ (0, 1) is assumed. If we assume a compact parameter space and the model

specification in such a way that the deterministic component of the static per period return

is bounded, then the above assumption is automatically guaranteed. Otherwise, we put

the above restriction to the prior to the choice probability. That is, we assume the prior

distribution of the choice probability to be uniformly distributed, i.e. U [δp, 1− δp]

Assumption 6. We assume that the transition probability to the next period state x′ condi-

tional on the current state x and action a does not depend on the current private information

shock ε.

The following proposition is similar to the Inversion Theorem by Hotz and Miller, and

others.

Proposition 1. Suppose Assumptions 1 to 6 hold. Then, given a vector of choice probabili-

ties p = (p1, ..., pI) there exists a unique vector of heterogeneity parameters c, with cixaN = 0

for all i and x, such that p is a Bayesian-Nash equilibrium of the perturbed game. Also the

function c(p) is continuous. Suppose in addition, Assumption 4 holds. Then the function

c(p) is differentiable in p.

Proof. Let ∆ = {(p1, ..., pN) : pn > 0 for all n and
∑

n pn = 1} be the interior of a N − 1

dimensional simplex. Let ∆̃ = {(p1, ..., pN−1) : (p1, ..., pN−1, 1 −
∑N−1

n=1 pn) ∈ ∆} be the set

consisting of first N − 1 components of elements of ∆. For each player i and state x ∈ X,
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suppose we fix vN
ix = 0 as normalization. Define a vector-valued function hix : RN−1 → ∆̃,

by

hn
ix(vix1, ..., vix,N−1) = Prob(εin−εik ≥ vixk−vixn for all k = 1, ..., N−1 and εin−εiN ≥ −vixn)

Then, by construction,

pi(a
n|x) = hn

ix(vix1, ..., vix,N−1), n = 1, ..., N − 1

Notice that

1−
N−1∑
n=1

hn
ix = 1−

N−1∑
n=1

Pr

(
n = arg max

k=1,..,N
{vixk + εixk}

)
= Pr

(
N = arg max

k=1,..,N
{vixk + εixk}

)
By Hotz and Miller’s inversion theorem, hix is invertible and its inverse function h−1

ix is differ-

entiable. This means that for any choice probabilities pix = (pix1, ..., pix,N−1, 1−
∑N−1

n=1 pixn),

vix = h−1(pix1, ..., pix,N−1) is the unique relative utility values that rationalize the choice

probabilities pix.

Given dF (εix) being continuous,∫ [
max

n=1,...,N
{vixn + εixn}

]
dF (εix)

=
∑

n=1,...,N

pi(a
n|x)

[
vixn +

∫
εixn1(εixn − εixk > vixk − vixn;∀k 6= n)dFε(εix)

]
≡ λ(vix)

is also continuously differentiable. We denote

λ(vi) = [λ(vix1), ..., λ (vixS)]′ =
[
λ(h−1

(
p−N

(
x1
))

), ..., λ
(
h−1

(
p−N

(
xS
)))]′

Now, let g(aN) be a matrix whose (l, k) th element is g(xl|xk, aN). Similarly, let πi(a
N , p−i, 0)

be a vector whose lth element is πi(a
N , xl, p−i, 0) Now, consider the following function

V̂ (pi,−N , p−i) =
[
I − βg(aN)

]−1 [
πi(a

N , p−i, 0) + βλ(vi)
]
.
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where

V̂ (pi,−N , p−i) ≡ (V̂
(
x1, pi,−N , p−i

)
, . . . , V̂

(
xS, pi,−N , p−i

)
)′

Then,

V̂ (x, pi,−N , p−i) = πi(a
N , x, p−i, 0) + β

∑
x′

[
V̂ (x′, pi,−N , p−i) + λ(vix′)

]
g(x′|x, aN).

Furthermore, for any n = 1, ..., N − 1, let

π̃xan = V̂ (x, pi,−N , p−i) + vixan (pi,−N)− β
∑
x′∈X

[
V̂ (x, pi,−N , p−i) + λ(vix′))

]
g (x′|x, ai, p−i)

Then, if we set V (an, x, pi) as follows:

V (an, x, pi,−N , p−i) ≡ V̂ (x, pi,−N , p−i) + vixan (pi,−N) , for i = 1, ..., N − 1

V (aN , x, pi,−N , p−i) ≡ V̂ (x, pi,−N , p−i)

Then, we will show below that V (an, x, pi) is the derministic value of choosing an given the

current deterministic return being πixaN = πi(a
N , p−i, x, 0) for the choice aN and πixan = π̃xan

for n = 1, ..., N − 1. This is simply because from the definition of λ, we get

V̂ (x, pi,−N , p−i) + λ(vix) =

∫
max

n

{
V (an, x, pi) + εixn

}
dF (εix)

and thus the following equation holds

V (an, x, pi) = πixan + β
∑
x′∈X

[∫
max

n

{
V (an, x′, pi) + εix′n

}
dF (εix′)

]
g (x′|x, ai, p−i)

That is, the value function defined as

V ∗ (x, εix, pi) = max
n

{
V (an, x, pi) + εix′n

}
is the fixed point of the following Bellman operator

T (V ) = Maxn

{
πixan + εixn + β

∑
x′∈X

[∫
V (x′, εix′ , pi) dF (εix′)

]
g (x′|x, an, p−i)

}
Now, because only πs

i (a, x, cixa, p−i) is a function of cixa, and πs
i has a strictly positive

derivative with respect to cixa, for any pi, there exists a unique cixa such that

πs
i (ai, x, cixai

, p−i) = πixai
for ai 6= N
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Because the above claim holds for any i given p−i, for any p there exists c with cN = 0 for

which p is a Bayesian-Nash equilibrium. Now,

∂πs
i (x, ci, p−i)

∂ci,−N

dci,−N

=

{
∂V̂ (x, pi,−N , p−i)

∂pi,−N

+
∂vixai

(pi,−N)

∂pi,−N

− β
∑
x′∈X

[
∂V̂ (x′, pi,−N , p−i)

∂pi,−N

+ λ′
∂vix′ (pi,−N)

∂pi,−N

]
g (x′|x, ai, p−i)

}
dpi,−N

Hence

dci,−N

dpi,−N

=

[
∂πs

i (ci, p−i)

∂ci,−N

]−1

[
∂V̂ (pi,−N , p−i)

∂pi,−N

+
∂vi (pi,−N)

∂pi,−N

− β

[
∂V̂ (pi,−N , p−i)

∂pi,−N

+ λ′
∂vi (pi,−N)

∂pi,−N

)

]′
g (ai, p−i)

]

Since
∂πs

i

∂ci,−N
is assumed to be diagonal and its derivative to be strictly postive and

bounded, it is always invertible. Therefore,
dci,−N

dpi,−N
is well defined.

Next, we show that dci,−N/dpi,−N is a continuous function of p−i. First, since
∂πs

i (ci,p−i)

∂ci,−N

is a continuous function of p−i, the denominator is continuous in p−i. Similarly, from the

definition of V̂ (pi,−N , p−i),
∂ bV (pi,−N ,p−i)

∂pi,−N
is continuous in p−i. So is

∂vi(pi,−N)
∂pi,−N

and λ′ = dλ
dvi

and

g (x′|x, p−i). Therefore, both denominator and numerator is continuous in p−i and thus, claim

holds. Now, for any vector ∆p−N , let ∆pj
−N ≡ (∆p1,−N , ..., ∆pj,−N , 0, , , 0), j = 1, ..., N − 1

and ∆p0
−N = (0, , , 0).

c−N (p−N + ∆p−N)− c−N (p−N) =
I∑

j=1

[
c−N

(
p−N + ∆pj

−N

)
− c−N

(
p−N + ∆pj−1

−N

)]
=

I∑
j=1

{[
∂cj,−N

(
pj, p−j + ∆pj−1

−N

)
∂pj,−N

]
∆pj,−N + r (∆pj,−N)

}
where

r (∆pj,−N)

|∆pj,−N |
→ 0 as |∆pj,−N | → 0

and because of continuity

∂cj,−N

(
pj, p−j + ∆pj−1

−N

)
∂pj,−N

→ ∂cj,−N (pj, p−j)

∂pj,−N

as
∣∣∆pj−1

−N

∣∣→ 0
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Together, we obtain

|c−N (p−N + ∆p−N)− c−N (p−N)− [∂c−N (p) /∂p−N ] ∆p−N |
|∆pj,−N |

≤
I∑

j=1

∣∣∣∣∣∂cj,−N

(
pj, p−j + ∆pj−1

−N

)
∂pj,−N

− ∂cj,−N (pj, p−j)

∂pj,−N

∣∣∣∣∣+
I∑

j=1

|r (∆pj,−N)|
|∆pj,−N |

→ 0 as |∆p−N | → 0

Therefore, c−N (p−N) is differentiable.

Following Proposition 1, we can define the inverse function of the best-response mapping

as follows.

ci,−N ≡ Bi(pi, p−i, θ)

Proposition 1 ensures that even though there is not a unique mapping from c to p, there is a

unique mapping relating Nash equilibrium choice probabilities to heterogeneity parameters,

i.e., from p to c. In other words, there can be multiple Nash equilibria associated by c, but

there is only one vector c associated with each Nash equilibrium choice probabilities.

3 MCMC algorithm

The conditional likelihood function of market m of the perturbed model is

lm(yd
m|θ) =∫

c

∑
p∗(c,θ)∈E(c,θ)

π∗(p∗(c, θ))

[∏
i

(∏
t

p∗i (a
d
imt|xd

mt, c, θ)G
s
i (x

d
mt+1|xd

mt, a
d
imt, p

∗)I(1≤t≤Tm−1)

)

Hi

(
xd

m1, p
∗) ]df(c, Σc). (3)

where π∗ is the ’equilibrium selection rule’, which is the probability that one of the

multiple equilibria is chosen. The formula of the likelihood function above illustrates the

computational difficulty of evaluating it when there are unobserved heterogeneities. That is,

to integrate over the random effects term c, at each simulation draw of the vector, one has

to evaluate choice probabilities of all the possible equilibria. Also, it is important to notice
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that the number of equilibria, i.e. the number of elements in E(c, θ) varies both with respect

to c as well. This makes any kind of first step estimation of equilibrium choice probabilities

impossible.

The existence of an inverse function from p to c implies that we can write the conditional

likelihood function of the perturbed model without specifying the equilibrium selection prob-

ability. To see this, note that conditional on a vector Nash equilibrium choice probabilities

p, the likelihood contribution of market m is given by:

lm(yd
m|c, θ)dc

∣∣
c=B(p∗,θ)

≡[∏
i

(∏
t

p∗i (a
d
imt|xd

mt, c, θ)G
s
i (x

d
mt+1|xd

mt, a
d
imt, p

∗)I(1≤t≤Tm−1)

)

Hi

(
xd

m1, p
∗) ]f(c|Σc)dc

∣∣
c=B(p∗,θ)

=

[∏
i

(∏
t

pi(a
d
imt|xd

mt)G
s
i (x

d
mt+1|xd

mt, a
d
imt, p)I(1≤t≤Tm−1)

)

Hi

(
xd

m1, p
) ]

f(B(p, θ)|Σc) |Bp(p, θ)| dp. (4)

where we denote the RHS to be lm(yd
m|p, θ)dp The previous representation allows us to

treat the Nash-equilibrium choice probabilities as a latent random variable and estimate the

model using a MCMC algorithm with data-augmentation (see for instance ?)). In particular,

if πθ(θ) denote the prior distribution of the parameters, our objective is to learn the posterior

distribution of {θ}:

P(θ|Y ) ∝

πθ(θ)

∫
p

[∏
i

(∏
t

pi(a
d
imt|xd

mt)G
s
i (xmt+1|xd

mt, a
d
imt, p)I(1≤t≤Tm−1)

)
Hi(x

d
m1, p)

]
f(B(p, θ)|Σc) |Bp(p, θ)| dp (5)

In order to simulate P(θ|Y ), we propose the following Metropolis-Hastings algorithm

with data-augmentation.

Algorithm 1 (Metropolis-Hastings). Start the chain at {p(0), θ(0)} . At iteration k iterate
over the following steps:
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1. Data augmentation step. For each market m:

(a) Sample candidate choice probability p∗ from the proposal density qp, i.e. p∗m ∼
qp(p

∗
m|p

(k)
m ).

(b) Evaluate the likelihood contribution of market m at p∗m using equation 4.

(c) Update choice probabilities:

p(k+1)
m =

{
p∗m with probability α(p∗m, p

(k)
m )

p
(k)
m with probability 1− α(p∗m, p

(k)
m )

Where the acceptance probability is given by:

α(p∗m, pk
m) = min

(
lm(yd

m|p∗m, θ(k))qp(p
∗
m|p

(k)
m )

lm(yd
m|p

(k)
m , θ(k))qp(p

(k)
m |p∗m)

, 1

)
(6)

2. Parameter updating step. Conditional on p(k+1),

(a) Sample θ∗ ∼ qθ(θ
∗|θ(k))

(b) Evaluate the conditional likelihood function at θ∗:

L(yd|θ∗, p(k+1)) = πθ(θ)
∏
m

lm(yd
m|p(k+1)

m , θ∗) (7)

(c) Update parameter vector:

θ(k+1) =

{
θ∗ with probability α(θ∗, θ(k))

θ(k) with probability 1− α(θ∗, θ(k))

Where the acceptance probability is given by:

α(θ∗, θ(k)
v ) = min

(
L(yd|θ∗, p(k+1))qθ(θ

∗|θ(k))πθ(θ
∗)

L(yd|θ(k), p(k+1))qθ(θ(k)|θ∗)πθ(θ(k))
, 1

)
(8)

Heuristically, the data-augmentation step plays two roles: (i) trace the distribution of

Nash-equilibrium choice probabilities of the perturbed game, and (ii) select which equilibrium

is more likely in each market.

The first is accomplished by imposing a common distribution for the heterogeneity pa-

rameters across markets and players. Since ciax is mean zero, the algorithm is likely to reject

any candidate choice probability which does not satisfy the Nash equilibrium condition of
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the original game. Moreover, the likelihood of accepting a candidate strategy which violates

the true Nash equilibrium condition is decreasing in the variance Σc.

The second task is accomplished by using the information contained in the observed

sequence of choices played. In particular, since the acceptance probability is function of

the likelihood contribution of each market, a candidate choice probability is more likely to

be accepted if it mimic the observed choices made by firms in the data. Consequently, the

posterior distribution of choice probabilities will be differ across markets that are in different

equilibria, and have more weight around the selected equilibria.

Proposition 2. The sequence of parameters θ(m) generated by the above MCMC algorithm

converges to the true posterior.

Proof. The invariant distribution from which we draw is proportional to

P(θ|Y ) ∝

πθ(θ)

∫
p

[∏
i

(∏
t

pi(a
d
imt|xd

mt)G
s
i (xmt+1|xd

mt, a
d
imt, p)I(1≤t≤Tm−1)

)
Hi(x

d
m1, p)

]
f(B(p, θ)|Σc) |Bp(p, θ)| dp

What the above Metropolis-Hastings algorithm does, is draw from the complete data version

of the RHS function

π (p, θ) ∝

πθ(θ)

[∏
i

(∏
t

pi(a
d
imt|xd

mt)G
s
i (xmt+1|xd

mt, a
d
imt, p)I(1≤t≤Tm−1)

)
Hi(x

d
m1, p)

]
f(B(p, θ)|Σc) |Bp(p, θ)|

Then, the chain produced is irreducible and aperiodic.

Denote u = (u1, ..., um, um+1) = (p1, ..., pm, θ) and f (u) = π (p, θ). This proof extends

Lemma 7.6 of Robert and Casella. Let the parameter space of u be Ξ. Consider x(0) an

arbitrary starting point and A ⊂ Ξ an arbitrary measurable set. Then, the connectedness

of Ξ implies that there exist m > 0 and a sequence x(i) ∈ Ξ such that x(m) ∈ A and∥∥x(i+1) − x(i)
∥∥ < δ, where the norm ‖‖ is defined to be the sup norm, i.e. It is therefore
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possible to link x(0) and A through as sequence of open sets B
(i)
δ such that for all x, x′ ∈

B
(i)
δ ,‖x− x′‖ < δ. Now, let B be the compact set that contains

{
B

(i)
δ

}m

i=1
. Then, the

likelihood is bounded and strictly positive in the set B. Now,

P
(
X(i+1) ∈ B

(i+1)
δ |X(i)

)
=

∏
k

P
((

X
(i)
k−, X

(i+1)
k , X

(i+1)
k+

)
, X

(i+1)
k ∈ B

(i+1)
δk |X(i)

k−, X
(i)
k , X

(i+1)
k+

)
Because the proposal density is at least partly random walk, for the proposal density of the

kth Metropolis-Hastings draw, whose support is either the real line or [δp, 1− δp] for any

positive δ̂ > 0 there exists positive number ε̂ such that for any x, (x−k, u) ∈ Ξ

q (xk−, u, xk+|xk−, xk, xk+) > ε̂ if |xk − u| < δ̂

Hence, if we let δ to satisfy δ < δ̂/2,then,

P
((

X
(i)
k−, X

(i+1)
k , X

(i+1)
k+

)
, X

(i+1)
k ∈ B

(i+1)
δk |X(i)

k−, X
(i)
k , X

(i+1)
k+

)
≥

∫
B

(i+1)
δk

min

f
(
X

(i)
k−, X

(i+1)
k , X

(i+1)
k+

)
f
(
X

(i)
k−, X

(i)
k , X

(i+1)
k+

) , 1

 q
(
X

(i)
k−, X

(i+1)
k , X

(i+1)
k+ |X(i)

k−, X
(i)
k , X

(i+1)
k+

)
dX

(i+1)
k

≥ ε̂

∫
B

(i+1)
δk

min

f
(
X

(i)
k−, X

(i+1)
k , X

(i+1)
k+

)
f
(
X

(i)
k−, X

(i)
k , X

(i+1)
k+

) , 1

 dX
(i+1)
k

≥ ε̂
infB f (x)

supB f (x)
λ
(
B

(i+1)
δk

)
> ε̂

infB f (x)

supB f (x)
2δ > 0

Therefore,

P
(
X(i+1) ∈ B

(i+1)
δ |X(i)

)
> 0

and

P
(
X(m) ∈ A|X(0)

)
≥

m−1∏
i=1

P
(
X(i+1) ∈ B

(i+1)
δ |X(i)

)
> 0

thus the Metropolis-Hastings within Gibbs algorithm is irreducible.

Furthermore, for any x and X ∈ Bδ (x),

P (A|X) ≥
p∏

k=1

[
ε̂

infB f (x)

supB f (x)
λ (BδkAk)

]

19



Hence, Bδ is small associated with the product measure of the uniform distribution over

Bδ (x). Thus, the chain is aperiodic. Furthermore, because all conditional samplers are

irreducible for any values of the fixed variables, Theorem 1 of Chan and Geyer (1994) applies

and thus the chain is Harris recurrent.

Therefore, all conditions for Theorem 6.51 of Robert and Casella (2006) are satisfied, and

thus

lim
n−→∞

‖Kn (x, .) µ (dx)− π‖TV = 0

for every initial distribution µ, where K is defined to be the transition probability of the

Markov Chain.

Finally, notice that the posterior distribution of the parameter θ is the integration of the

distribution π (p, θ), thus to derive the posterior distribution of θ we only need to marginalize

the joint distribution of (p, θ) generated from the MCMC draws over p. This procedure is

commonly called data augmentation. See Tanner and Wong (1987) for more details.

Next we describe a slightly modified version of the above MCMC algorithm which allows

researchers to conduct policy experiments given the parameter vector θ∗. Notice that the

above MCMC algorithm had two steps. In the first step the equilibrium choice probabilities

were drawn given the parameters of the model. In the second step, parameter vector θ was

drawn given the equilibrium choice probabilities. The policy simulation algorithm essentially

uses only the first step of the MCMC algorithm and omits the second step by keeping the

parameter to be fixed. Furthermore, since the policy simulation does not involve fitting the

data, the component of the likelihood where the actual choices in the data are incorporated,

are dropped.

Algorithm 2 (Metropolis-Hastings2). Start the chain at {p(0)} . At iteration k iterate over

the following steps:

1. Sample candidate choice probability p∗ from the proposal density qp, i.e. p∗m ∼ qp(p
∗
m|p

(k)
m ).

2. Evaluate the modified likelihood of market m at p∗m where the modified likelihood is:
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lm(c, θ∗)dc
∣∣
c=B(p∗,θ∗)

≡ f(B(p, θ∗)|Σc) |Bp(p, θ
∗)| dp. (9)

Notice that in this modified likelihood the data ~ym is dropped.

3. Update choice probabilities:

p(k+1)
m =

{
p∗m with probability α(p∗m, p

(k)
m )

p
(k)
m with probability 1− α(p∗m, p

(k)
m )

Where the acceptance probability is given by:

α(p∗m, pk
m) = min

(
lm(p∗m, θ∗)qp(p

∗
m|p

(k)
m )

lm(p
(k)
m , θ∗)qp(p

(k)
m |p∗m)

, 1

)
(10)

4 Examples

4.1 Static coordination game

In order to understand the mechanic of the algorithm it is useful to consider the following

two-players coordination game studied in ?). Both players simultaneously choose a binary

action {a1, a2} ∈ {0, 1}2 after privately observing a vector of utility shocks {εi1, εi2}. The

expected payoff of player i, conditional on choosing action ai is given by:

Via(εia) = ai

[
β + Pr(aj = 1)α

]
+ (1− ai)α Pr(aj = 0) + εia. (11)

If {εia} are distributed according to a Type-1 extreme value distribution, the set of symmetric

Nash equilibria corresponds to the choice probabilities p∗ that solves the following equation:

p∗ =
exp(β + αp∗)

exp(α(1− p∗)) + exp(β + αp∗)
=

1

1 + exp(−β + α(1− 2p∗))
. (12)

By restricting ourselves to symmetric equilibria, the perturbed version of the game is ob-

tained by adding a single random heterogeneity parameter c to the previous payoff function.

Conditional on c, a Nash equilibrium of the perturbed game is given by:

p∗(c) =
1

1 + exp(c− β + α(1− 2p∗))
. (13)
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Figure 1: Illustration of the Metropolis-Hastings algorithm used as a solution method
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(a) Kernel density of accepted choice probabilities
for two values of the variance of the perturbation
parameter
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(b) Best-response mapping of the true game

Parameters: β = 0.05, α = 3, σc ∈ {1/1000, 1/10}. Number of MCMC replications: 1M .

From the previous equation, it is easy to see that the inverse best-response probability

mapping is unique and can be written as:

c = B(p) = log
(1− p

p

)
− α(1− 2p) + β. (14)

For large enough values of the strategic interaction parameter α, the game admits three

Nash equilibria. Figure 2(b) illustrates the best-response mapping of the true game. The

two extreme equilibrium points are stable, and the middle one is unstable.

To illustrate how the MCMC algorithm can approximate the distribution of Nash equi-

libria, one can apply the Metropolis-Hastings algorithm using only the restrictions imposed

by the distribution function f(c). In particular, we repeatedly sample candidate Nash equi-

librium choice probabilities, holding fixed the structural parameters. In this case, the accep-

tance probability for a candidate choice probability p∗ is given by:

µ(p∗, pk) = min
(
1,

f(B(p∗))B′∗)

f(B(pk))B′k)

)
. (15)

where f(B(p)) is the density of the perturbation parameter c = B(p).

Figure 2(a) shows the kernel density of accepted choice probabilities generated from

the Metropolis-Hastings algorithm, using a normal density with variance σc = 1/1000 and
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σc = 1/10 to perturb the model. With a small variance of the perturbation parameter,

the algorithm is unlikely to accept candidate strategies that do not meet the equilibrium

conditions of the true game. As a result, the posterior distribution of strategies is very tight

around the three Nash equilibria. The dotted line, which corresponds to a larger variance,

is a lot smoother because strategies further away from the Nash equilibria correspond to

implicit c’s that have larger probability densities. Since the Metropolis-Hastings algorithm

cycles between equilibria, perturbing the model with a large variance will typically converge

faster to a stationary distribution. However, the perturbed model with a high variance will

introduce a bias, since the posterior distribution of strategies will have positive mass in

regions that are not Nash equilibria of the true game. This trade-off between bias and speed

of convergence will be important when choosing the size of the model perturbation (i.e. σc).

The choice of σc is thus similar to the choice of a bandwidth in kernel density estimation.

Next, we use the full algorithm to estimate the model from two artificial data-sets. Each

data-set is generated assuming that each equilibrium is equally likely to be picked (i.e.

πe = 1/3). The first data-set is a cross-section of 600 markets in which the game is played

only once. The second one is a panel, where the same 600 market repeatedly play the game

for 10 periods. To simulate the posterior-distribution of parameters and strategies, we use

50, 000 replications of the Metropolis-Hastings algorithm and fix the variance of the normal

perturbation parameter to σc = 1/105.

The results of the two estimation experiments are reproduced in Figure 3. The first two

figures plot the simulated Markov chains. Although the cross-sectional data-set provides

a less precise estimate of the parameters, the median parameters are reasonably close to

the truth in both cases. The panel data-set contains a lot more information about which

equilibria is being played however. As a result, the median simulated parameters are less

biased and the posterior distribution of strategies are centered around the selected Nash

5An alternative strategy is to treat σc as a parameter and estimate the degree of perturbation jointly
with the other parameters. While this procedure typically converges quickly to the true value, the value
of σc eventually becomes too small and the procedure stops accepting candidate parameters. This causes
convergence problem as our procedure requires a non-zero value for σc. To avoid this problem we can bound
the value of σc away from zero in the MCMC algorithm.
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(c) MCMC parameter draws (cross-section)

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000

2.8

2.9

3.0

3.1

3.2 α=3 × it ᾱ=2.96481 × it 

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000

−0.1

0.0

0.1
β=−0.05 × it β̄=−0.0460902 × it 

(d) MCMC parameter draws (panel)
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(e) Posterior distribution of choice probabilities for
four markets (cross- section)
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(f) Posterior distribution of choice probabilities for
four markets (panel)

Figure 2: Two simulated markov chains from the static coordination game

True parameters: β = 0.05, α = 3. Variance of perturbation parameter: σc = 1/10. Number of
MCMC replications: 50, 000. Burn-in period: 20, 000. Sample size: N = 600, T ∈ {1, 10}. MCMC tuning
parameters: σp = 0.04, σα = 0.03, σβ = 0.01.

equilibrium. Figures 2(e) and 2(f) illustrates the ability of the algorithm to predict the

distribution of Nash equilibria for four randomly selected markets. Figure 2(e) suggests that

observing only two choices is not enough to classify equilibrium strategies perfectly. However,

with repeated observations the posterior distribution of strategies is tightly centered around

the selected one. This suggests that our estimation algorithm will work better when repeated

time-periods are available or when more than two players play same static game.

Next we consider the impact of ignoring the unstable equilibrium on the estimation

results. Figure ?? illustrates the two simulated markov chains for the sample without the
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(a) MCMC parameter draws with two equilibria
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(b) MCMC parameter draws with three equilibria

Figure 3: Simulated markov chains from the static coordination game with two alternative
equilibrium selection rules

True parameters: β = 0.05, α = 3. Variance of perturbation parameter: σc = 1/10. Number of MCMC
replications: 50, 000. Burn-in period: 20, 000. Sample size: N = 600, T = 10. MCMC tuning parameters:
σp = 0.04, σα = 0.03, σβ = 0.01.

unstable equilibrium (the others are equally likely), and Figure ?? illustrates the simulated

chains generated from the sample with three equally likely equilibria. Although the scale

of the graphs are different, it is clear that ignoring one equilibrium in the data generating

process does not significantly affect the consistency of the estimates. The results from Figure

?? suggests however that the sample with two equilibria is more biased than the one with

three equilibria. This is consistent with the fact that in this class of model the presence of

multiple equilibria generates exogenous variation that allows the parameters to be identified

(see ?) and ?)). In fact if the data set was generated with only one equilibria the slope could

not be separately identified from the intercept.

Finally, we investigate the size of the bias generated by the heterogeneity added in the

model. To do so, we generated simulated Markov chains of equal length with different values

of σc. Figure 4 plots the median parameters against the variance of the random intercept

(i.e. σc ∈ [1/100, 1/2]). One thing to note from this figure is that both parameters are

consistently estimated when the size of the added heterogeneity is below 0.15. The previous

simulation results were generated with σc = 1/10 which allows the markov chain to rapidly

converge. Interestingly for large values of σc the bias of coordination payoff parameter α
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Figure 4: Illustration of the estimation bias. Median simulated parameters for various values
of the variance of the random intercept: σc ∈ [1/100, 1/2].
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True parameters: β = 0.05, α = 3. Number of MCMC replications: 50, 000. Burn-in period: 20, 000.
Sample size: N = 600, T = 10. MCMC tuning parameters: σp = 0.04, σα = 0.03, σβ = 0.01.

increases with σc. This is not the case however for the intercept which does not seem to

be affected by the size of the perturbation. One possible explanation for this is that the

coordination payoff parameter affects directly the slope of the best-response function (i.e.

steeper), which in turns determines the size of c in the inversion procedure. When σc is big,

the density of larger c (in absolute value) increases which requires the value of α to raise as

well.
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4.2 Dynamic game

We analyze an infinitely repeated game with 2 firms and 2 choices. We denote x ∈ X to be

the state which indicates the action chosen by each player in the previous period. That is,

x1t = {a1t−1, a2t−1}.

The private information state variables are denoted by εa
i , for all i = {1, 2} and a ∈ {0, 1}.

As before, we consider symmetric markovian strategies that depends solely on the current

period state variables. This leads to a stationary markov process, so we define current period

actions and states by {a′1, a′2} and {a1, a2} respectively.

As before we define strategies as conditional choice probabilities pi(x). A Nash equi-

librium of this game is thus represented by a four (4) dimensional vector of choice prob-

abilities ~p. The static payoff of the model with the additional heterogeneity parameters

~c = {c(0, 0), c(0, 1), c(1, 0), c(1, 1)} is given by:

ui(a
′, x, c, εi, p−i) =


cx − κ1(ai = 0) + αp−i(x)

−α(1− p−i(x)) + ε1
i

if a′i = 1

ε0
i if a′i = 0

The parameter vector is θ = {α, κ}, where α > 0 is a coordination payoff and κ is a

switching cost. Note that the dimension of the vector ~c is |X| × |A| − 1 = 4 because we

restrict our attention to symmetric strategies. To allow for asymmetric strategies and meet

the requirements for the existence of the inverse function describe in Section 2 we would

need increase the dimension of ~c to N × |X| × |A| − 1 = 8.

We define two 4 × 4 actions specific state transition probability matrices that depends

directly on players’ beliefs F
p−i

1 =
[
F p−i(z′|z, 1)

]
and F

p−i

0 =
[
F p−i(z′|z, 0)

]
such that,

F p−i(x′|x, a′) =


p−i(x) if x′ = (1, a′)

1− p−i(x) if x′ = (0, a′)

0 else.

The choice specific value function (without εi) is given by:

V̄ (a′i, x, cx, p−i) = πi(a
′
i, x, cx, p−i) + δ

∑
x′

EV (x′, cx′ , p−i)F
p−i(x′|x, a′i)
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where πi(a
′, x, cx, p−i) ≡ ui(a

′
i, x, cx, εi, p−i)− εa′

i . We assume that ~ε is distributed according

to an extreme value distribution. The expected continuation value is then given by:

EV (x, cx, p−i) =

∫ [
max

a′
V̄ (a′, x, cx, p−i) + εa′

i

]
dgε(ε)

= log
(
exp(V̄ (0, x, cx, p−i)) + exp(V̄ (1, x, cx, p−i))

)
(16)

A symmetric Markov Perfect Nash equilibrium is a choice probability p∗(x, c) which is a

fixed point of the best-response probability mapping:

p∗(x, c) = Λ(x, c, p∗) =
exp(V̄ (1, x, cx, p

∗))

exp(V̄ (0, x, cx, p∗)) + exp(V̄ (1, x, cx, p∗))
, (17)

∀x ∈
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
.

To obtain the inverse function cx(p) we first define the value function difference mapping

V̂ (x, cx, p−i). As in Hotz-Miller, we can use the extreme value distribution to write the value

function difference as:

V̂ (x, cx, p−i) ≡ V̄ (1, x, cx, p−i)− V̄ (0, x, cx, p−i) = log
( px

1− px

)
(18)

where px denotes element x of the vector ~p. Note that V̂ (~p) is a 4×1 vector which is function

solely of choice probabilities.

Moreover the expected continuation value at the Nash equilibrium choice probability p

is6:

EV (x, cx, p) = log
(
exp(V̄ (1, x, cx, p)) + exp(V̄ (0, x, cx, p))

)
= V̄ (1, x, cx, p)− log(px)

Using the previous equality, the choice specific value function can be written as:

V̄ (1, x, cx, p) = π(a′, x, cx, p) + δ
∑
x′

[
V̄ (a′, x, cx, p)− log(px)

]
F p(x′|x, a′)

6To reduce the notation burden p and c are understood to be vectors of dimension 4× 1.
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In matrix form, the vectors choice specific value function are:

V̄ (0, c, p) = (I − δF p
0 )−1

[
π(0, p)− δF p

0 log(1− p)
]

= −(I − δF p
0 )−1δF p

0 log(1− p)

V̄ (1, c, p) = (I − δF p
1 )−1

[
π(1, c, p)− δF p

1 log(p)
]

Where the second line follows from the normalization of the payoff of action 0. Joining the

last two equalities with the expression for the vector of value function differences V̂ (p):

V̂ (p) = (I − δF p
1 )−1

[
π(1, c, p)− δF p

0 log(p)
]

+(I − δF p
0 )−1δF p

0 log(1− p)

π(1, c, p) = (I − δF p
1 )V̂ (p) + δF p

1 log(p)

−(I − δF p
1 )(I − δF p

0 )−1δF p
0 log(1− p)

Let π̃(1, x, p−i) = κ1(ai = 0) + αp−i(x)− α(1− p−i(x)) be the unperturbed payoff function

(i.e. without heterogeneity). Then the vector c which rationalize p as a Nash equilibrium is

given by:

c(p) = −π̃(1, p) + (I − δF p
1 )V̂ (p) + δF p

1 log(p)

−(I − δF p
1 )(I − δF p

0 )−1δF p
0 log(1− p)

As in the static coordination game example, the function c(p) is continuous and differentiable

for all p(x) ∈ (0, 1).

To analyze the performance of our estimator in a dynamic setting we generated a ran-

dom sample of 200 markets over 20 time periods. Note that we generated the data without

heterogeneity (i.e. σc = 0). We chose the remaining parameter values such that the game

generates potentially three Nash equilibria (1 being unstable). We use two selection rules to

generate the data: one with equal selection probability and the other assigning zero proba-

bility on the unstable equilibrium. The three Nash equilibrium strategies are reproduced in

Tabel 1.
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Table 1: Nash equilibrium strategies of the dynamic game for α = 1.5 and κ = 1/10.

States Eq. 1 Eq. 2 Eq. 3
(unstable)

(0,0) 0.501 0.152 0.180
(0,1) 0.334 0.838 0.609
(1,0) 0.379 0.864 0.645
(1,1) 0.261 0.821 0.929

Before discussing the estimation results, we first present Monte-Carlo simulations used as

a solution algorithm. In particular we set the joint density of ~c to N(0, σ2
cI) and perform 1

million replications of the Metropolis algorithm using only the density of c as the “likelihood”.

This procedure is akin to a random search algorithm which simulates various candidate Nash

equilibrium choice probabilities, and keep the ones for which the density of ~c is large (i.e.

cx ∼ 0 for all x).

Figure 5 plots the simulated markov chain of accepted choice probabilities for the four

states over the full set of iterations. Figure 6 presents the density of accepted strategies,

where the vertical lines indicates the stable Nash equilibria. With a value of σc = 0.05

the MCMC algorithm easily cycles between all three equilibria. This simulation process

successfully approximates all Nash equilibria, including the unstable one. In particular,

the density of strategies in Figure 6 has multiple local modes corresponding to each Nash

equilibria. Note that the upper left and lower right corner graphs have only two local modes

since the unstable equilibrium strategy is numerically close to the first Nash equilibrium in

those two states.

We now turn to the estimation results. For this exercise, we estimate the size of the

perturbation by imposing a strong prior on σc. In particular we assume that σc ∈ [0.02, 0.2].

This strategy seems to yield better convergence properties than fixing σc. We used 50, 000

Monte-Carlo replications and drop the first 20, 000 iterations.

Figure 4.2 presents the results for the sample with 3 equally likely equilibria. The mean

estimated parameters are α̂ = 1.479 and κ̂ = 0.36. These estimates are very close to the
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Figure 5: MCMC solution algorithm applied to the dynamic game: Markov chain of choice
probabilities for the four states.
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Figure 6: MCMC solution algorithm applied to the dynamic game: Density of accepted
probabilities for the four states.
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true parameters used to generate the data, despite the fact that the data does not contain

any heterogeneity. The bottom figure shows that the simulated values for the size of the

perturbation stays very close to the lower bound.

Next, we illustrate the ability of the estimation algorithm to sort markets into different

equilibria through the data-augmentation step. Recall that the Metropolis-Hastings algo-

rithm allows each market to be playing a different candidate Nash equilibria, and that its

acceptance probability depends only the observed sequence of choices made in that market.

Therefore, if the data is rich enough the distribution of accepted choice probabilities will be

different across markets that select different equilibria. That is the posterior distribution of

Nash equilibria will differ across markets.

Figure 8 illustrates this point by constructing the distribution of accepted choice proba-

bilities for the full sample (top left corner) and for the three sub-samples corresponding to

each equilibria. The vertical lines again indicate the true Nash equilibria. The density for the

full sample corresponds more or less to the density generated without the data (i.e. Figure

6). The other figures however clearly suggest that the algorithm successfully sort markets

in the “right” equilibrium category. In particular, for each sub-sample the distribution of

accepted choice probabilities has a mode corresponding to the equilibrium played in the

data. This is especially true for the first equilibria which is very different for the two others.

For the second and third equilibria, the mode is less pronounced because the strategies are

similar.

5 Extensions and future work

To be done.
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Figure 7: Markov Chain of the parameters for the dynamic model (Sample with equally
likely 3 Nash equilibria)
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Figure 8: Density of accepted choice probabilities for the dynamic model with three Nash
equilibria.
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