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Abstract

This paper considers continuous time asset pricing models with stochastic dif-
ferential utility incorporating decision makers’ concern with ambiguity on true
probability measure. In order to identify and estimate key parameters in the
models, we use a novel econometric methodology developed recently by Park
(2008) for the statistical inference on continuous time conditional mean models.
The methodology only imposes the condition that the pricing error is a con-
tinuous martingale to achieve identification, and obtain consistent estimates, of
parameters. Under a representative agent setting, we empirically evaluate alter-
native preference specifications including a multiple-prior recursive utility. Our
empirical findings are summarized as follows: Relative risk aversion is estimated
around 2-5 with ambiguity aversion and 6-14 without ambiguity aversion. Re-
lated, the estimated ambiguity aversion is both economically and statistically
significant and including the ambiguity aversion clearly lowers relative risk aver-
sion. The elasticity of intertemporal substitution (EIS) is higher than 1, around
2-5 with ambiguity aversion, and quite high without ambiguity aversion. The
identification of EIS appears to be fairly weak, as observed by many previous
authors, though other aspects of our empirical results seem quite robust.
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1 Introduction

Since the seminal papers by Hansen and Singleton (1982) and Mehra and Prescott (1985),
a large body of work has sought after more relevant forms of the preferences of economic
agents to explain asset market behaviors. The main reason for this direction of the study
is because time-separable expected utility functions equipped with a constant relative risk
aversion (CRRA) impose a potentially restrictive relationship between the risk aversion
and intertemporal substitution. Specifically, under power utility models, the elasticity of
intertemporal substitution (EIS) is given by the reciprocal of the coefficient of relative risk
aversion, which may result in various complications, such as equity premium, volatility and
interest rate puzzles. Epstein and Zin (1989, 1991) investigated an important generalization
of the standard power utility model by considering a class of recursive utility functions.5

They provide a theoretical framework in which the agent can have distinct attitudes toward
intertemporal substitution and risk. This flexibility may offer a possible solution for various
asset price anomalies because a high (low) risk aversion does not necessarily imply a low
(high) elasticity of intertemporal substitution.6

Even though the recursive utility model allows the distinction between risk aversion and
willingness to substitute intertemporally, the preference toward Knightian uncertainty or
ambiguity is difficult to model within the original recursive utility framework due to the
assumption of single prior held by investors. However, the Ellsberg paradox suggests that
decision makers prefer an unambiguous situation, other things being equal. In response to
this, Gilboa and Schmeidler (1989) built a multiple-priors model to incorporate ambiguity
aversion in an atemporal setting.7

Epstein and Wang (1994) develop a dynamic version of Gilboa and Schmeidler in a
discrete-time framework. Chen and Epstein (2002) focused on the formulation of utility in
continuous time that allows a distinction between risk aversion and ambiguity aversion, as
well as the distinction from EIS. In order to achieve the additional dimension of flexibility,
they extended the continuous time version of the recursive utility (stochastic differential
utility) investigated by Duffie and Epstein (1992), such that the model includes a set of
priors rather than a single prior.

According to Chen and Epstein (2002), the economic agents will have multiple prior
beliefs on the state of the nature, and they form a set of expectations based on their beliefs.
Due to the fact that fundamental shock processes are Brownian motion, the degree of
ambiguity is described by an additional term distorting the conditional mean component

5The basic structure of recursive utility is due to Koopmans (1960) and Lucas and Stokey (1984), which
decompose a utility function into current consumption and future utility in a non-linear fashion. In this
context, Epstein and Zin (1989) can be regarded as a stochastic extension of the recursive utility framework.

6In addition, this preference has a preference ordering for temporal resolution of uncertainty. Recently,
Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008) exploit this aspect to explain equity premium
puzzle together with a time-varying, conditional mean component. Kim, Lee, Park, and Yeo (2008) develop
a stochastic volatility model with two asymptotic regimes and transition regimes and show that this type of
preference can explain aversion to uncertainties in regimes.

7Simply put, they assume that economic agents have a class of probability distributions, say P on some
events in a measurable space (Ω,F). Then the agents will make decisions following a max-min rule. For
instance, if the agent decides consumption c to maximize utility u(c), she solves max

c
min
Q∈P

EQ[u(c)]
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of the implied asset return processes and the decision maker chooses a probability measure
using the maxmin principle following Gilboa and Schmeidler (1989).8

Despite the appealing features of the multiple-priors recursive utility model, there has
been little econometric work on estimating the model compared to other utility specifica-
tions. The purpose of this paper is to identify the important preference parameters, such
as the ambiguity aversion as well as the elasticity of intertemporal substitution and risk
aversion coefficients, and compare the extent to which each model explains financial market
data.

The multiple-priors recursive utility model has a multi-factor beta representation of asset
returns; (i) covariance between returns and consumption growth, (ii) covariance between
returns and aggregate wealth return, and (iii) covariance between returns and ambiguity.9

However, this structure makes identification of the model difficult because the aggregate
wealth and the volatility of returns are unobservable latent variables, and there is a lack of
econometric methodology for estimating continuous time models.

With regard to the unobservable aggregate wealth, several approaches have been sug-
gested. The baseline approach would be to use a market return as a proxy for the aggregate
wealth return (e.g., Epstein and Zin (1991), Bakshi and Naka (1997) and Normandin and
St-Amour (1998)). However, the aggregate wealth portfolio is a broader measure than the
market portfolio, because the former includes human capital, natural resources, and hous-
ing wealth etc. as well as the financial wealth. Therefore, the market return only covers a
subset of the aggregate wealth returns. Another approach is to use a specific structure for
the unobservable wealth by incorporating the dynamics of consumption growth and utility
continuation value (e.g., Chen et al. (2008)) Given the imposed structure, the aggregate
wealth is implicitly given by consumption and utility continuation value. Therefore, this
approach enables them to replace the unobservable wealth return with the specific structure
imposed on the consumption and the future utilities. Chen et al. (2008) exploits the Euler
equation to estimate future continuation utility in a non-parametric way.

Although this method is attractive, it is difficult to use in our continuous-time framework
handling mixed frequencies of data. Instead, we consider a different approach to overcome
the difficulties from the unobservable aggregate wealth. The aggregate wealth return is
a return on the claim which gives a stream of future consumption. In this sense, the
consumption of each period is financed by the aggregate wealth return, and therefore, we
can think of the aggregate wealth as the sum of financial wealth and human capital, which
are the two largest sources of the income in an economy. That is, the unobservability of
aggregate wealth falls mostly on the human wealth. Following Campbell (1993), we assume
that the proportion of the financial wealth to the human wealth is stationary, and moreover,
the labor income is homogeneous of degree one with respect to the human wealth. In this
case, the unobservable wealth can be substituted by a linear combination of market return

8There exists a related line of work on robust decision making. Hansen and Sargent (2001) and their co-
authors emphasize ‘model uncertainty’ and the concern on the misspecification, which is similar to ambiguity
aversion à la Gilboa and Schmeidler.

9Note that this representation, especially in closed form is available only in continuous time due to
Girsanov transformation which allows different subjective probability measures to be expressed via tilting
the drift component in an equilibrium asset pricing equation.
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and labor income growth. This simple structure makes the asset pricing formula tractable
so that we can directly compare the results of alternative models.

For econometric evaluation of the model, we consider a martingale regression developed
by Park (2008). The martingale regression estimator is a minimum distance estimator based
on discrepancy between empirical distribution and normal distribution. The spirit of the
estimator is similar to the GMM estimator for the nonlinear Euler equation models (e.g.
Hansen and Singleton (1982)). If the parameter is the true parameter, the conditional ex-
pectation of pricing error will be zero and otherwise it is non-zero for any time interval. This
implies that the pricing error as a process will be a continuous martingale, and moreover,
it can be transformed into a Brownian motion by a proper time change. Especially, if the
time change is defined by a generalized inverse of the quadratic variation of the pricing error
process, then the error process read after time change will be given as a Brownian motion.
Then we define our martingale estimator as a minimizer of a Cramer-von Mises distance
between an empirical distribution of normalized error increments and the standard normal
distribution.

There are several attractive features of our estimator. First, as mentioned earlier, the
estimation does not assume any parametric model for the volatilities. Therefore it is robust
to possible misspecification of the volatility process. For example, many empirical works on
the financial data suggest that stock returns possess time-varying or stochastic volatilities
while the exact nature of the volatilities is difficult to find in general. In this case, possible
misspecification of the volatilities may occur, but the martingale estimator will be robust to
the misspecification error. Second, the martingale estimator does not use the orthogonality
condition to identify the true parameters. It utilizes the well-known time change theorem
of Dambis (1965), Dubins and Schwarz (1965) that the martingale is essentially a Brownian
motion, but only different with respect to its quadratic variations. Therefore, the martingale
estimator is robust to any kind of endogeneity problem.

Last but not least, this method allows applied econometricians to directly tackle asset
pricing models written in continuous time. Many asset pricing models are developed in
continuous time partly because of its mathematical elegance. However, we believe that it is
also because continuous time models better describe the observation that financial markets
clear at a very high frequency. Choosing a model to estimate in a relevant frequency can
greatly reduce the possibility of data missaggregation bias and decision bias. Alas, macro
variables such as consumption growth are sampled at a lower frequency. To deal with this
issue, we use a non-parametric method to compute volatilities of macro variables. According
to our robustness checks with parametric estimations, our results are very robust. Thus, our
estimation strategy can be understood as a semi-parametric approach to deal with mixed
frequencies of data. Although it is still far from resolving those fundamental issues, this
paper attempts to initiate a baby step toward this goal.

Using daily data on asset returns and monthly and quarterly macroeconomic data from
1960 to 2006, we estimated several specifications of recursive utility framework. According
to our results, relative risk aversion is estimated around 2-5 with ambiguity aversion and
6-14 without ambiguity aversion. In addition, the estimates of ambiguity aversion is both
economically and statistically significant. Ambiguity can be a source of uncertainty which
may require premium to bear. Therefore, our results suggest that risk aversion parameter
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can have an upward bias sans an adjustment for ambiguity aversion. Another important
preference parameter is the elasticity of intertemporal substitution (EIS). Recently, estimat-
ing the EIS has drawn much attention and existing studies report a wide range of values
including even negative numbers. According to our estimations, the EIS is higher than 1;
specifically 2-5 with ambiguity aversion, and quite high without ambiguity aversion. We find
that the objective function of our minimum distance estimator measured by the Cramer-von
Mises statistic is very flat around the values of the reciprocal of the EIS between 0 and 1.5.
Based on extensive robustness checks, we argue that the weak identification issue of the EIS
parameter results from the combination of smooth variations of consumption growth and
parametric restrictions imposed in preferences.

The remainder of the paper begins with describing our theoretical model in Section 2.
For comparison, we also consider other baseline models, which can be considered as special
cases of our model. Section 3 accounts for the econometric methodologies in detail. Section
4 shows and discusses our main results. Then we conclude in Section 5.

2 A Recursive Utility Model with Ambiguity Aversion

Consider a probability space (Ω,F , P ) which describes the uncertain nature of the economy.
Define a standard one dimensional Brownian motion (Wt) on (Ω,F , P ), and the Brownian
filtration (Ft)0≤t≤T , where Ft is the σ-field generated by (Ws)s≤t. The time horizon T ∈
(0,∞] is finite. Suppose that the representative decision maker does not know the true
probability measure and has to choose a subjective probability measure from the set of all
priors P, which are uniformly absolutely continuous with respect to the true P in P.10.
Duffie and Epstein (1992) show that for a fixed consumption process C and a probability
measure Q ∈ P, there exists a utility process V Q

t uniquely solving

V Q
t = EQ

[∫ T

t
f(Cs, V

Q
s )ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ T, (1)

where EQ [·|Ft] is the conditional expectation operator and f(C, V ) is called a normalized
aggregator function linking current consumption and the future value. From the Martingale
representation theorem, we can express (1) in a differential form of

dV Q
t = −f(Ct, V

Q
t )dt+ σv

t dW
Q
t , (2)

where V Q
T = 0, WQ

t is the standard Brownian motion under Q-measure, and σv
t is endoge-

nously determined.
From now on, we use the following functional form

f(C, V ) =
C1−β − φ(αV )

1−β
α

(1− β)(αV )
1−β

α

(3)

10P is uniformly absolutely continuous with respect to P if for every ε > 0 there exists δ > 0 such that
E ∈ F and P (E) < δ imply Q(E) < ε, for all Q ∈ P .
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for some φ ≥ 0, β 6= 1, α ≤ 1. This can be regarded as the continuous-time version of Kreps-
Porteus utility function in which α and β measure the degree of relative risk aversion (RRA)
and the elasticity of intertemporal substitution (EIS) respectively. Specifically, the RRA is
measured by (1 − α), and the EIS is 1/β. In addition, following Epstein and Zin (1989),
relative sizes of these two measures are related to the investor’s attitude toward the speed of
resolving uncertainty: If the RRA (1− α) is larger (smaller) than the reciprocal of the EIS
(β), the investor prefers an early (a late) resolution of uncertainty. The additional feature
of this model compared to the conventional recursive utility model is that the consumer
chooses a probability measure from available priors, hence justifies the name, ‘multiple-
priors utility’. Under this extra layer of uncertainty which leads to the Ellsberg paradox,
Gilboa and Schmeidler (1989) suggested the following minimax type of value function

Vt = min
Q∈P

V Q
t , 0 ≤ t ≤ T. (4)

The multiple-priors recursive utility is given by the lower envelope of the utility process
V Q

t which is determined by the conditional expectation of future consumption and utility
values. Chen and Epstein (2002) showed that there exists a unique solution to (4) satisfying
the dynamic consistency. As clearly seen from (2), the Girsanov transformation lies at
the heart of constructing a set of priors P on (Ω,FT ). Specifically, they define a density
generator λt for which the process zλ

t is a P -martingale, where

dzλ
t = −zλ

t λtdWt, zλ
0 = 1,

equivalently,

zλ
t ≡ exp

(
−1

2

∫ t

0
λ2

sds−
∫ t

0
λsdWs

)
, 0 ≤ t ≤ T.

Then, zλ
t is set as the Radon-Nikodym derivative dQ/dP |Ft and P is defined as the set of

Q-measures produced by the density generator. Since all the prior beliefs are absolutely
continuous with P , we can expect from the Girsanov’s theorem that any subjective utility
V Q given an equivalent measure Q ∈ P will modify the drift function of the utility contin-
uation process by λtσ

v
t . This is because (Wt) is the Brownian motion under P measure,

but not under Q. That is, by shifting λt, we can generate a continuum of subjective utility
functions differing in terms of probability distribution within the class of absolutely con-
tinuous multiple-priors. Chen and Epstein (2002) showed that the differential form of (4)
is

dVt = −
{
f(Ct, Vt) + max

λt∈L
λtσ

v
t

}
dt+ σv

t dWt. (5)

To further analyze the additional term in (5), assume that λt is bounded by some
constant κ > 0. That is, the subjective beliefs have some boundary defined by κ. We
can interpret this multiple-priors as the subjective beliefs for which the worst case scenario
of the economic agents is confined by the case defined by κ. Hereafter, we examine the
multiple-priors model with a boundary restriction for λt with κ > 011.

11Chen and Epstein (2002) call this specification “κ-ignorance” case.
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Under the standard environment of the economy, first order conditions for optimal
consumption choice can be expressed in terms of the supergradient of utility at the optimal
consumption C.12 Especially, C is optimal if

Λt = exp
{∫ t

0
fv(Cs, Vs)ds

}
fc(Ct, Vt)zλ∗

t , for all t, (6)

where Λt is the state-price process (or intertemporal marginal rate of substitution process,
IMRS) and λ∗ is the maximizer of the ambiguity compensation λtσ

v
t for any given λt such

that |λt| ≤ κ for all 0 ≤ t ≤ T . Then the IMRS in our case is given as

Λt = exp

{∫ t

0

(
−φ+

φ

1− β

(φ− 1− β)(C(1−β)
s − (αVs)(1−β)/α

(αVs)(1−β)/α

)
ds

}
φC−β

t (αVt)β/αzκ
t .

Using Ito’s lemma and no arbitrage principle, we can show that

dpi
t

pi
t

− rf
t dt = E

(
dpi

t

pi
t

dΛt

Λt

∣∣∣∣Ft

)
+ σi

tdWt (7)

=
{

βα

1− β
ρcσ

c
tσ

i
t +
(

1− α

1− β

)
ρaσ

a
t σ

i
t + κσi

t

}
dt+ σi

tdWt,

where σa
t is the volatility of aggregate wealth At for which the return is given by

dra
t = µa

t dt+ σa
t dWt, dAt = At(dra

t )− Ctdt,

and σc
t is the volatility of consumption growth.

Equation (7) is a three-factor CAPM of the cross-sectional asset pricing model; the risk
premium of any tradable asset with return dpi/pi is determined by the covariance between
returns and consumption growth, covariance between returns and aggregate wealth, and
covariance between returns and density generator. Notice that the standard CRRA utility
specification, such as power utility, only has the first factor, while the single-prior recursive
utility models (e.g. Epstein and Zin (1989, 1991) and Duffie and Epstein (1992)) have the
first two factors.

In order to include unobservable wealth, we assume the wealth process A has two com-
ponents - financial wealth M and human wealth H,

At = Mt +Ht. (8)

From Ito’s lemma we have
σa

t = πtσ
m
t + (1− πt)σh

t , (9)

where πt = Mt/At is the proportion of financial wealth to the total wealth at time t, and
σa

t and σh
t are the diffusion coefficient of dM/M and dH/H respectively. In particular, we

specify the human capital process by

dHt = Ht(drh
t )− Ytdt, drh

t = µh
t dt+ σh

t dWt (10)

12A supergradient for V at C is a process Λt with E
{∫ T

0
Λt · (C′

t − Ct)dt
}
≥ V (C′) − V (C) for all

admissible C′. For more details, see Duffie and Skiadas (1994) and Chen and Epstein (2002).
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where Yt is real labor income at time t. Note that the labor income Yt is financed from the
return on the human capital Ht at time t. For simplicity, we assume that πt = π for all
t. This is true, for instance, under steady state of the economy, in which the proportion of
aggregate wealth to the financial wealth is constant over time. Moreover, we assume that
the labor income is homogeneous of degree one with respect to human capital, especially,
Yt = ψHt for some constant ψ. Furthermore, we use a proxy for market index to estimate
the preference parameters. Thus, the asset pricing equation of the multiple-priors recursive
utility models is expressed as

dpt

pt
− rf

t dt =
βα

1− β
ρcσ

c
tσ

m
t dt+

(
1− α

1− β

)
(σm

t )2πdt (11)

+
(

1− α

1− β

)
ρyσ

m
t σ

y
t (1− π)dt+ κσm

t dt+ σm
t dWt,

where p is the price of the market index, σy
t is the instantaneous conditional volatility of

labor income growth, and ρc, ρy are the correlation coefficients of consumption growth and
labor income with the market return, respectively. From now on, we turn our attention to
estimating the key preference parameters (α, β, κ) in (11).

Note that (11) nests many popular asset pricing models as special cases. Thus by
imposing a priori restrictions to (11), we can estimate different models to compare the
common set of parameters. First three models estimated are the power (CRRA) utility
case (Model I), recursive utility with financial wealth only (Model II), and a multiple-priors
recursive utility with financial wealth only (Model III). Specifically, we can express Model
I, II, III as

dpt

pt
− rf

t dt = βρcσ
c
tσ

m
t dt+ σm

t dWt,

dpt

pt
− rf

t dt =
βα

1− β
ρcσ

c
tσ

m
t dt+

(
1− α

1− β

)
(σm

t )2dt+ σm
t dWt,

dpt

pt
− rf

t dt =
βα

1− β
ρcσ

c
tσ

m
t dt+

(
1− α

1− β

)
(σm

t )2dt+ κσm
t dt+ σm

t dWt.

As emphasized by many authors such as Epstein and Zin (1991), Bansal and Yaron
(2004), Chen et. al. (2008), and Kim et. al. (2008), financial wealth may be insufficient to
proxy the aggregate wealth of the representative investor. To address this issue, we include
another source of risk premium resulting from labor income risk and this is the setup of
(11). This is not a completely innocuous assumption because the fraction of human wealth
to total wealth is assumed to be constant. However, it turns out that this restriction has
little effect on empirical results according to our robustness checks.

One important observation from our empirical setting is that time-varying volatilities
of macroeconomic variables and asset returns play key roles in both the conditional mean
(drift) part and the error (diffusion) terms. Given the ample evidence that those volatilities
are highly persistent, this makes identification of the models statistically challenging because
of heteroskedasticity, endogeneity, and measurement problems. In addition, the equilibrium
relationship (11) that continuously holds need to be properly treated for correct empirical
evaluations with discretely sampled data points. In the below, we tackle those issues.
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3 Econometric Methodology

3.1 Martingale Estimation

Here we explain how to specify and estimate our model (11). Tentatively, we assume that
the volatility processes (σm

t ), (σc
t ) and (σy

t ) are observed. In the next subsection, we will
explain in detail how we may extract theses processes. Moreover, we will set the correlation
coefficients ρc and ρy of consumption and labor income with market returns, as well as the
fraction π of financial wealth, to be known. These parameters will be calibrated using the
values obtained or often assumed in the empirical literature. In what follows, we assume
that (σm

t ), (σc
t ) and (σy

t ) are non-constant and time-varying, and that ρc and ρy are non-zero.
These assumptions are necessary for the identification of our model.

Now we let θ = (α, β, κ) be the parameter in our model with the true value θ0 =
(α0, β0, κ0), and define (Λt(θ)) to be the state-price deflator (or IMRS) that is given by

Λt(θ) =
βα

1− β
ρcσ

c
tσ

m
t +

(
1− α

1− β

)
{πσm

t + (1− π)ρyσ
y
t + κ}σm

t . (12)

Subsequently, we define the pricing error process (Zt(θ)) from our model as

dZt(θ) =
dpt

pt
− rf

t dt− Λt(θ)dt,

and write
Zt(θ) = At(θ) +Mt, (13)

where dAt = −{Λt(θ)− Λt(θ0)}dt and dMt = σm
t dWt.

It is clear that the pricing error process (Zt(θ)) is a semimartingale with the bounded
variation component (At(θ)) and the martingale component (Mt). Note in particular that
(Mt) is a continuous martingale with respect to the filtration (Ft), to which the Brownian
motion (Wt) is adapted. Furthermore, the bounded variation component (At(θ)) vanishes if
and only if θ = θ0 under the trivial identification conditions introduced above.13 Therefore,
we may conclude that the pricing error process (Zt(θ)) becomes a continuous martingale if
and only if θ = θ0.14

Recently, Park (2008) developed a general methodology to estimate and test the continuous-
time conditional mean model that is identified by this type of martingale condition for the
error process. Below we explain how we can implement his methodology to estimate the
unknown parameter θ in our model. The methodology relies on the celebrated theorem by
Dambis, Dubins and Schwarz, which will be referred to the DDS theorem throughout the
paper. To introduce the DDS theorem, we denote by ([M ]t) the quadratic variation of (Mt),

13As can be clearly seen, we may identify up to four unknown parameters in our model. Therefore, for
instance, we may regard π as unknown and estimate it as an additional unknown parameter. However, the
estimate for π is unstable and unreliable.

14We temporarily assume that there is no jump in the pricing error process to focus on the main idea of
the methodology. Indeed, it can be applied to the processes with jumps with some simple modifications,
which we will explain later in this subsection.
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which is given by
[M ]t = plim

|tk|t→0

∑
k

(Mtk −Mtk−1
)2,

where |tk| is the mesh of partition (tk) of the interval [0, t]. We assume that [M ]t →∞ a.s.
as t→∞. Moreover, we introduce the time change (Tt), which is defined as

Tt = inf{s ≥ 0|[M ]s > t}.

The DDS theorem says that if (Mt) is a continuous martingale, then there exists a standard
Brownian motion B such that Mt = B[Z]t , or equivalently,

MTt = Bt.

The Brownian motion B is called the DDS Brownian motion of M . See, e.g., Revuz and Yor
(2005) for the proof and more discussions about the DDS theorem. In most applications,
([M ]t) is strictly increasing, in which case T is just the time inverse of ([M ]t). Roughly, the
DDS theorem implies that if we read a continuous martingale using a clock that is running
at a speed inversely proportional to its quadratic variation, it reduces to a Brownian motion.

If we apply the time change to the original pricing error process (Zt(θ)), then we may
deduce from (13) that

ZTt(θ) = ATt(θ) +MTt = ATt(θ) +Bt.

Therefore, we may now claim that (ZTt(θ)) becomes the standard Brownian motion if and
only if θ = θ0, due to the DDS theorem. Obviously, the bounded variation component
(ATt(θ)), even after time change, vanishes when and only when θ = θ0. The martin-
gale method by Park (2008) uses this fact and defines the value of θ, which makes the
time-changed pricing error process best approximate the standard Brownian motion, to be
the martingale estimator of the unknown parameter θ0. It is important to note that we
may obtain the time change (Tt) without any knowledge on the true parameter value θ0,
since the bounded variation component contributes nothing to the quadratic variation of a
semimartingale. Therefore, for instance, the quadratic variation ([M ]t) of the martingale
component, which is required to get the time change (Tt), is identical to the quadratic
variation of (Pt), say, dPt = dpt/pt − rf

t dt, i.e., d[M ]t = d[P ]t = d[p]t/p2
t .

To implement the methodology, we set ∆ > 0 to be fixed,15 and consider the normalized
increments of the pricing error process that are given by

zi(θ) =
1√
∆

{
ZTi∆

(θ)− ZT(i−1)∆
(θ)
}

for i = 1, . . . , N . The discrete samples (zi(θ)) of size N obtained for each θ ∈ Θ are then
used to estimate the unknown parameter θ0. Recall that the samples are obtained from
the pricing error processes as their increments over the random intervals [T(i−1)∆, Ti∆] for

15The choice of ∆ is more of an empirical matter, which we will discuss in detail later in our empirical
section.
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i = 1, . . . N . It is quite clear that (zi(θ)) are i.i.d. normals for θ = θ0, regardless of the
choice of ∆. For all other values of θ ∈ Θ, this is not true at least for some value of ∆.

We let zd
i (θ) = (zi(θ), . . . , zi−d+1(θ)) be the d-dimensional random vector consisting of

d-adjacent samples starting from i = 1, . . . , N − d+ 1, so that (zd
i (θ)) is the d-dimensional

standard multivariate random vector, i.e., the multivariate normal random vector with mean
zero and identity covariance matrix, under θ = θ0. Moreover, we denote by ΦN (·, θ) the
empirical distribution of (zd

i (θ)) for each θ ∈ Θ, and define the criterion function QN by

QN (θ) =
∫ ∞

−∞
{ΦN (x, θ)− Φ(x)}2 dΦ(x),

where Φ is the distribution function of the d-dimensional multivariate standard normal
random vector. The martingale estimator θ̂N of θ0 is then defined as the minimizer of the
criterion function QN , i.e.,

θ̂N = argmin
θ∈Θ

QN (θ).

The martingale estimator is therefore a minimum-distance estimator with the Cramer-von
Mises (CvM) distance between the empirical distribution of the sample under the unknown
parameter values and the distribution under the true parameter values. Park (2008) shows
that this type of minimum distance estimator is consistent, and asymptotically normal,
under mild regularity conditions. The asymptotic variance of the estimator can be obtained
by the usual subsampling method.

To introduce the main idea of the methodology more effectively, we assume thus far
that the pricing error process (Zt(θ)) is observed continuously in time for all θ ∈ Θ. This,
of course, is not true in our analysis, as is the case for virtually all other potential applica-
tions. The methodology can be easily implemented and all the theoretical results continue
to hold for discretely sampled observations, as long as the sampling intervals are sufficiently
small relative to the time horizon of the samples. This was shown in Park (2008). For
our empirical analysis, we use daily observations over approximately fifty years. The nec-
essary modifications required to deal with discretely observed samples are largely trivial
and obvious. To obtain the time change, for instance, we use the realized variance of (Pt),
dPt = dpt/pt − rf

t dt, given by

[P ]δt =
∑
iδ≤t

(Piδ − P(i−1)δ)
2,

instead of its quadratic variation ([P ]t), if (Pt) is observed at intervals of length δ > 0 over
time horizon [0, T ] with T = nδ, where n is the size of discrete samples.

Finally, we may readily allow for the existence of jump components in our model (11).
Indeed, we may easily deal with the presence of discrete jumps in our methodology, simply
by discarding the observations of (Pt), dPt = dpt/pt − rf

t dt, over the random time interval
[T(i−1)∆, Ti∆] that is believed to have jumps. All other procedures in our methodology are
valid for the remaining observations. In our empirical studies, we use the Hausman-type
test of Barndorff-Nielsen and Shephard (2006) for the detection of jumps for each of the
random intervals [T(i−1)∆, Ti∆], i = 1, . . . , N . Although it is well-known that the jumps
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are frequently observed for many intra-day samples, it appears that jumps are rare for the
samples of daily or lower frequency observations. We detected some evidence of jumps in
our daily observations, but their number is relatively small.

3.2 Measuring Volatilities of Macroeconomic Variables

Now we explain how to extract the volatility processes (σc
t ) and (σy

t ). It is much more diffi-
cult than to extract the volatility process (σm

t ), since the observations on their underlying
processes are available at relative low frequencies like many other macroeconomic variables.
As we explained in the previous subsection, (σm

t ) can be readily measured and estimated
by the realized variance of market returns at high frequencies.16 However, the identification
and estimation of volatility for the processes that are not observed at high frequencies are
not straightforward. In the paper, we let the underlying process (Xt) follow an Ito-diffusion

dXt

Xt
= µtdt+ σtdBt,

where (Bt) is the standard Brownian motion, and consider the problem of estimating (σt),
σt = σc

t or σy
t , under some realistic assumptions, using discrete samples (Xtj ) of (Xt). It

is assumed in our setup here that the sampling intervals tj − tj−1, j = 1, . . . ,m, are not
sufficiently small.

Over the interval [tj−1, tj ], we have∫ tj

tj−1

dXt

Xt
=
∫ tj

tj−1

µtdt+
∫ tj

tj−1

σtdBt. (14)

For many macroeconomic variables, the values of the level Xt is relatively much larger than
its increment Xt − Xtj−1 in any of the intervals [tj−1, tj ] of frequency such as monthly
and quarterly. Therefore, it seems reasonable to approximate

∫ tj
tj−1

dXt/Xt by (Xtj −
Xtj−1)/Xtj−1 , i.e., the growth rate of (Xt) over the interval [tj−1, tj ], for j = 1, . . . ,m.17

Moreover, if we assume the drift term (µt) is continuous, then there exists sj ∈ [tj−1, tj ]
such that µsj (tj − tj−1) =

∫ tj
tj−1

µtdt for all j = 1, . . . ,m, by the mean value theorem. If,
furthermore, (µt) varies smoothly over time, then we may approximate (µsj ) by (µtj ). This
appears to be realistic in our case, so we assume that (µt) is an exogenous function of time
for which these approximations are valid. Given the assumption, the drift term (µt) can be
consistently estimated by the standard nonparametric method applied to (14). We adopted
the local linear estimation, using the least squares cross-validation method to obtain the
optimal bandwidth parameter. The reader is referred to Li and Racine (2007, p.83) for
more details.

16See, e.g., Barndorff-Nielsen and Shephard (2002) for more discussions on the estimation of volatility
processes using high-frequency data.

17Note that the approximation error is given by
∫ tj

tj−1
(Xt − Xtj−1)/(XtXtj−1)dXt and (Xt −

Xtj−1)/(XtXtj−1) ≈ 0 for many macroeconomic variables including those we consider here.
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We exploit two different approaches to extract the volatility process (σ2
t ). First, we

consider(∫ tj

tj−1

dXt

Xt
−
∫ tj

tj−1

µtdt

)2

=
∫ tj

tj−1

σ2
t dt+


(∫ tj

tj−1

σtdBt

)2

−
∫ tj

tj−1

σ2
t dt

 , (15)

the left-hand side of which we may approximate well using discrete observations (Xtj ) of
(Xt) as explained above. Note that

E


(∫ tj

tj−1

σtdBt

)2

−
∫ tj

tj−1

σ2
t dt

∣∣∣∣∣∣Ftj−1

 = 0

for j = 1, . . . ,m.
As for the drift term (µt), we may regard the diffusion term (σt) as an exogenous function

of time varying smoothly over intervals [tj−1, tj ] for all j = 1, . . . ,m. In this case, we may
approximate in (15) ∫ tj

tj−1

σ2
t dt = σ2

sj
(tj − tj−1) ≈ σ2

tj (tj − tj−1),

where sj ∈ [tj−1, tj ], j = 1, . . . ,m, and the volatility process (σt) can be estimated by
the standard nonparametric method such as the local linear estimation. We use this ap-
proach to extract the volatility processes (σc

t ) and (σy
t ), again with the optimal choice of

bandwidth based on the least squares cross-validation. The volatility processes extracted
by this method appears to be overly smooth, though they correctly represent the overall
fluctuations of the underlying processes.

Second, we suppose that the volatility process is stochastic with an additional source of
randomness. For this approach, we let the volatility process (σt) be random, but remain to
be constant over each of the intervals [tj−1, tj ], j = 1, . . . ,m. More specifically, we set∫ tj

tj−1

σtdBt = σj(Btj −Btj−1) (16)

and (σ2
j ) to be driven by the logistic transformation of a latent autoregressive factor (wj),

i.e.,

σ2
j = a+

b

1 + exp{−c(wj − d)}

with wj = ρwj−1 + εj , where (εj) is assumed to be an i.i.d. sequence of standard normals.
Note that (16) is the standard Gaussian volatility model in discrete time. We let (εj)
be correlated with the Brownian motion (Bt) to allow for the leverage effect. The model
parameters a > 0, b > 0, c > 0 and d determine the actual volatility function. In particular,
a and a + b represent the two asymptotic values of volatility, and c and d respectively the
speed and location of transition.
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The volatility model introduced above was developed and investigated recently by Kim,
Lee and Park (2008). The model can be regarded as an extension of the usual discrete-time
stochastic volatility model, which relies on the autoregressive modeling for the logarithmic
transformation of volatility. The former is indeed much more flexible than the latter, and has
implications that are much more realistic. The latent factor (wj) and unknown parameters
a, b, c and d can be estimated by the density-based Kalman filter, or by the Bayesian method
using Gibbs sampling method. The reader is referred to Kim, Lee and Park (2008) for more
details about the computation procedure and comparison with other existing discrete-time
stochastic volatility models.

4 Empirical Results

4.1 Data

We use daily returns on the S&P500 index including dividends and monthly real per capita
consumption of nondurables plus services as a measure of the market return and aggregate
consumption. The data covers January 1, 1960 to December 29, 2006. The real consumption
of nondurables plus services is obtained by the Bureau of Economic Analysis. The consump-
tion level is adjusted by mid-month population from the Bureau of Economic Analysis in
order to get per capita observation. We identify the parameters based on the martingale
regression of market return. Hence, the time change and new observation in volatility time
will be based on the market returns. This will provide a simpler form of the three-factor
CAPM result because the original form in Equation (11) includes the market return in its
IMRS. Especially, the covariance between the market return and the MRS will include the
variance of the market return (or

∫
(σm2

t dt) and the covariance between the market return
and the consumption growth (or

∫
ρcσ

c
tσ

m
t dt if their correlation is constant). We use the

definition of labor income in Lettau and Ludvigson (2001), which is, wages and salaries plus
transfer payments plus other labor income minus personal contributions for social insurance
minus taxes. We use the quarterly labor income in real per capita, which is provided by
Martin Lettau’s webpage.

4.2 Implementation

Our martingale estimation framework involves the time change which enables us to observe
the asset return in the volatility time, not in the usual calendar time. Before calculating the
time change, one needs to preset a constant volatility length ∆ which determines the degree
on how often the data should be observed in terms of the volatility time. Since the total
quadratic variation is finite for most of asset returns observed in finite time horizon, it is
easy to deduce that higher volatility length would imply lower number of samples and vice
versa. Common sense will choose the smallest ∆ to obtain the largest number of samples.
This is because usual estimators are more efficient as the number of samples gets larger.
Adopting this idea, we find the volatility length ∆ which is the smallest among all the
admissible values of ∆. Note that the admissible range of ∆ is determined by a number of
factors that are difficult to evaluate in practice. In general, extremely small values of ∆ can
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harm the effectiveness of the time change. For instance, if ∆ is too small, then from the
definition of the time change, [τi−1, τi] often becomes the same as the observation interval
of the data, and therefore the time changed data will have similar property as the original
data. On the other hand, if ∆ is too large, the number of samples will be too small, and
this might affect the finite sample property of the estimator.

In this paper, we use the Cramer-von Mises (or CvM) distance for the standardized
returns dPt = dpt/pt− rf

t dt over the random interval [T(i−1)∆, Ti∆] divided by
√

∆ in order
to determine the smallest possible value of ∆. The CvM distance can show how far the
empirical distribution is departed from N(0, 1). If it is closer to 0, then the time change
based on ∆ works effectively, while if it is far from 0, then the ∆ is supposedly too small.
Figure 2 plots the CvM distance for each k with ∆ = [P ]Tk/K. Note that k is the number
of days to be considered to calculate the average quadratic variation and K is the total
number of days in the dataset. The CvM measure drastically decreases as k increases from
0 (or daily frequency without time change) to 20 and then it stabilizes around the level of
0.1 - 0.3. This implies that the time change will work effectively if k is greater or equal
to 20. Therefore, we use k = 20 as the volatility length which is used to generate a set of
normal samples for the pricing errors.

4.3 Estimates

4.3.1 Baseline Case: Financial Wealth Only

Table 1 presents estimation results of three configurations for the recursive utility models;
power utility (Model I), stochastic differential utility (Model II), and the stochastic differ-
ential utility with ambiguity aversion (Model III). In all three settings, it is assumed that
financial wealth proxies the total wealth, i.e. π = 1 is imposed. As mentioned earlier, finan-
cial wealth is only a subset of the aggregate wealth and we may miss important interactions
between human wealth and asset returns. However, to better understand the importance of
excluding human wealth, we believe that it is important to compare the results across dif-
ferent specifications. In this light, we set this as our baseline case. The results from Model
II are comparable to Epstein and Zin (1991), Baskshi and Naka (1997), and Normandin and
St-Amour (1998). To the best of our knowledge, Model III which follows Chen and Epstein
(2002) has not been empirically studied. Model I is used to verify if the equity premium
puzzle arises in our setting and data set.

In estimating the models, we assume that the correlation between consumption growth
and the market return, ρc is 0.2. We obtained this value by computing the sample correlation
between the two variables and it is consistent with the existing studies.

Model I results state that there does exist the famous ‘equity premium puzzle’ showing
roughly 258 as the relative risk aversion (RRA). Increasing the correlation coefficient to
a counter-factual value of 1 still generates a high estimate of RRA around 52, confirming
that the main reason for the puzzle is the smooth consumption growth. In this case, the
elasticity of intertemporal substitution (EIS) is given by a reciprocal of the risk aversion,
and it is estimated to be close to 0. This, in fact, is also consistent with the existing studies
estimating the EIS such as Hall (1988) or Yogo (2004). In most cases, they use a linearized
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Euler equation with consumption growth and asset returns especially, Treasury bills. In
case of non-linear Euler equation, there are numerous studies such as Hansen and Singleton
(1983). Interesting enough, both lines of literature often have conflicting results in terms of
the EIS estimate with interest rate data. It is often ascribed to weak instrument problem,
which reveals difficulty of identifying preference parameters. We now examine how this
result is affected by alternative specifications of preferences.

With the stochastic differential utility, the estimates of the two parameters α and β
in Model II are −3.6 and 0 respectively. This means that the estimated risk aversion
(1− α) is dramatically decreasing to 4.6, while the estimated EIS (1/β) is reaching a very
high number. Although high values of EIS have no problem in explaining the behaviors
of stock returns or risk-free rates, high standard errors of β estimates hint that it requires
further investigation. In addition, β being zero implies that asset returns have no link to
consumption growth, which is somewhat puzzling.

First of all, notice that the estimated EIS is measured by the reciprocal of β. Thus, a
small perturbation of β coefficient can lead to a large swing of the EIS. Say β = 0.1 implies
the EIS of 10, while β = 0.8 means 1.25. That is, if β is in the range of say [0.1, 4], then
the resulting EIS can be in the [0.25, 10], which is much widely spread. Of course, this
wide range of EIS esimates is not new in the related literature of estimating this preference
parameter in both linearized and non-linear Euler equations. Several authors reported
the EIS estimates between some negative numbers and large positive numbers. Our setup
helps understand the difficulty in identifying the EIS parameter. Although Model II is an
extension of Model I by adding the conditional return variance, the two models have very
different implications for linking asset returns to conditional covariances of consumption
growth and returns. In case of Model I, small volatility of consumption growth without
an additional explanatory variable implies a large coefficient (i.e. a small EIS) to match
the market risk premium. Meanwhile, Model II has an additional variable with non-linear
parametric restrictions which can potentially yield a wide range of the EIS values even with
small changes in the original coefficient.

Furthermore, between two explanatory variables, consumption growth and return from
the aggregate wealth, the latter is likely to be more fluctuating, unless human wealth or
labor income wealth significantly negatively correlated with financial wealth such that the
resultant aggregate wealth is much less volatile. Assuming that both variables have similar
degrees of correlations with asset returns, it is likely that there exists some statistical tension
for estimating two parameters. Given that the EIS is related more closely to shifting
consumptions across periods without uncertainty, its identification can be difficult. That
is, all these problems lead to a weak identification problem of the EIS parameter.

To further analyze this issue, we draw both the surfaces and contours of the CvM mea-
sures in alternative forms of preferences. Figure 3 shows that estimating the risk aversion
appears to be easy, while the elasticity of intertemporal substitution is not. The left panel
in Figure 4 corroborates our conjecture. One clear pattern is that the reciprocal of the EIS
is small and close to one.

Next we incorporate the ambiguity aversion to Model II. The result suggests that the
RRA drops from 4.6 to 1.4, the EIS is estimated around 2, and the ambiguity aversion
parameter (κ) is estimated around 0.36. κ measures how much the representative household
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distorts her beliefs to a worst case scenario given the ignorance of the true conditional
probability distribution. Recall that the conventional notion of market price of risk measures
the degree to which an investor will adjust her probability to be risk neutral. Thus, κ
quantifies a constant adjustment of probability in order to be neutral against a Knightian
sense of uncertainty.

Although it is true that a more sophisticated model of ambiguity aversion such as time-
varying ambiguity aversion would further clarify the nature of this new source of premium,
our empirical results state that modeling uncertainty differentiated from the usual sense
of risk is an important, first-order business to understand the behaviors of asset returns.
Given that, the lower RRA estimates in Model III is understandable because ambiguity
aversion captured by conditional volatility in our setup is likely to alleviate the burden of
the return variance in accounting for the average return behaviors.

Related but not expected, it appears that ambiguity aversion helps identify the EIS as
well. Admittedly, it is still a noisy measurement. But the estimated EIS is little lower
than 2, which is consistent with the recent empirical literature focusing on equity returns
(Bansal, Kiku, and Yaron (2007), Kim et. al. (2008)). We conjecture that the inclusion of
ambiguity aversion provides the other two explanatory variables, consumption growth and
the rate of return from wealth, with fair chances of explaining asset returns by correctly
specifying the existence of ambiguity aversion such that the contribution of the aggregate
wealth return is evaluated with an upward bias.

It should be also noted that both Models II and III results show that agents prefer
an early resolution of uncertainty whether or not there exists a static sense of uncertainty
aversion. This makes economic agents unhappy about fluctuations in future utilities, often
called the long-run risk channel. For more details on the mechanisms, see Bansal and Yaron
(2004), Hansen, Heaton and Li (2008), and Kim et. al. (2008).

4.3.2 Human Wealth

Now we state our main results from our continuous-time recursive utility model with human
wealth, (11). This involves fixing two more parameters π and ρy, the fraction of financial
wealth, and the correlation between labor income growth and the market return. For the
former, we tried two values (1/3 and 2/3). Our robustness checks reveal that different values
give similar results to either of our chosen values.18 Regarding the value of ρy, there is little
consensus about it. Several empirical studies report that this correlation is positive, while
other studies based on structural models such as Lustig and Van Nieuwerburgh (2006), and
Chen et. al. (2008) report a strong negative correlation such as −0.7. According to our
computation it was 0.03. Thus, we tried different values such as 0.03and − 0.03, and the
results are reported in Table 2.

Major difference of the Table 2 in comparison with Table 1 is that the risk aversion
coefficient increased. In case of Model II counterparts, the RRA increases from 4.6 up to
14. With ambiguity aversion, the RRA increases from 1.4 up to 5.2. The EIS estimates

18We also tried estimating this parameter directly and the estimated values are around 0.2 0.3 in some
cases. But due to the weak identification problem, its identification is heavily affected by alternative model
settings.
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increase as well. With ambiguity aversion and ρy = −0.03, the estimated EIS is 7.24 but
with high standard error or 21. When the fraction of financial wealth is 2/3, the estimated
EIS is around 2 with standard errors of 2. Interestingly, when we impose a strong negative
number as used in the papers mentioned above, we have somewhat lower EIS around 1.2,
which is consistent with the literature. However, in all of the settings we have tried, the
point estimates of the EIS is higher than one, meaning that economic agents will change
their consumptions rather elastically when real interest rate changes.

Lastly, the estimates of ambiguity aversion rarely vary across settings and the estimates
of κ is around 0.36.

In a summary, the recursive utility models with both financial and human wealth give
most reasonable results when ambiguity aversion is included and the estimates of ambiguity
aversion do not depend on alternative setting. Although the estimates of the risk aversion
increase, those are still in an acceptable range of values. The weak identification problem
of the EIS is also a prevalent feature across different model specifications.

5 Conclusion

Our paper began with a title asking if there is an important role played by decision mak-
ers’ concern with ambiguity on true probability measure. Our answer to this question is
positive from both economic and econometric perspectives. In terms of economic theory,
the inclusion of ambiguity aversion can overcome the Ellsberg paradox. In addition, one
can view that a multiple-priors utility as an extension of the rational expectation in that
investors may be of insufficient knowledge about the true probability density. When am-
biguity aversion is assumed, economic agents are basically endowed with a set of beliefs
on the true probability distribution and choose the one that is the least ambiguous. Our
estimation results strongly suggest that this is indeed the case. Even with various speci-
fications, the preference parameter indicating the ambiguity aversion is both economically
and statistically significant. Another interesting finding is that the models with ambiguity
aversion have lower relative risk aversion. With regard to the elasticity of substitution, there
exists a weak identification problem due to its non-linear parametric restrictions and the
weak signal from consumption growth. That said, the models with ambiguity aversion still
produce quite reasonable estimates of the intertemporal substitution. Therefore, ambiguity
aversion not only matters in terms of explaining the behaviors of asset returns, but also
helping identify key preference parameters.

In addition to the empirical findings, another contribution of our paper is that we pro-
vide a novel econometric approach estimating and testing for continuous-time asset pricing
models including both financial and macroeconomic variables. In the empirical analysis of
such models, it has long been a tradition that we ignore the availability of high-frequency
observations on financial variables, mostly for the lack of ideas about how to use them
constructively. Virtually all empirical studies of such models have been done only using
lower-frequencies, at which all involved macroeconomic variables are also available. Our
paper makes it clear that this is an important loss of information. In our analysis, we use
the available high-frequency observations directly to identify our model, and also nonpara-
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metrically correct for time-varying stochastic volatility in the price equation errors. It is
widely known that many asset returns show strong evidence for the presence of time-varying
stochastic volatility. Unless properly and carefully taken care of, the time-varying stochastic
volatility may well have a fatal effect on our estimation results. We believe that our method
can be used in many other interesting applications, to unravel the complicated interactions
between financial markets and macroeconomy.
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Table 1: Estimation Results for Baseline Models

Model I Model II Model III

β 258.161 (72.734) 0.000 (0.418) 0.507 (0.395)
α - - -3.572 (1.386) -0.445 (0.736)
κ - - - - 0.359 (0.134)

RA 258.161 (72.734) 4.572 (1.386) 1.445 (0.736)
EIS 0.004 (0.001) ∞ - 1.973 (1.540)

CvM 0.035 0.034 0.031

Note: The table reports the estimation results for the asset pricing models in which the aggregate
wealth consists of only financial wealth. All results are for the sample 1/2/1960-12/29/2006. The first
column is Model I with standard additive CRRA utility, the second column is Model II with recursive
utility, and the third column is Model III with multiple-priors recursive utility. The correlation
between the market return and the consumption growth (ρc) is set to be 0.2. The standard errors
in parenthesis are obtained by the subsampling method.
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Table 2: Implications of Human Wealth

Without Ambiguity With Ambiguity

Calibrated Values

π 0.333 0.333 0.667 0.667 0.333 0.333 0.667 0.667
ρy 0.030 -0.030 0.030 -0.030 0.030 -0.030 0.030 -0.030

Estimated Values

β 0.000 0.000 0.000 0.000 0.100 0.138 0.245 0.435
(0.428) (0.425) (0.436) (0.437) (0.412) (0.412) (0.420) (0.422)

α -12.629 -12.831 -5.842 -5.866 -4.234 -4.069 -1.397 -1.048
(4.136) (4.193) (2.077) (2.085) (2.183) (2.016) (1.227) (1.137)

κ - - - - 0.358 0.361 0.359 0.360
- - - - (0.136) (0.141) (0.136) (0.138)

RA 13.629 13.831 6.842 6.866 5.234 5.069 2.397 2.048
(4.136) (4.193) (2.077) (2.085) (2.183) (2.016) (1.227) (1.137)

EIS ∞ ∞ ∞ ∞ 10.003 7.237 4.075 2.301
- - - - (41.206) (21.601) (6.977) (2.233)

CvM 0.034 0.034 0.034 0.034 0.031 0.031 0.031 0.031

Note: The table reports the estimation results for the asset pricing models in which the aggregate
wealth consists of financial wealth and human wealth. All results are for the sample 1/2/1960-
12/29/2006. In each panel, each column represents the point estimates and their standard errors
for the recursive utility model given the proportion of financial wealth to the aggregate wealth (π)
and the correlation between the return on human wealth and financial wealth (ρy). The correlation
between the market return and the consumption growth (ρc) is set to be 0.2. The standard errors
in parenthesis are obtained by the subsampling method.
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Figure 1: Extracted Volatilities of Macroeconomic Variables

Note: The consumption and labor income growth are spanned from 1960 to 2006. The smoothing
parameter of the local linear kernel estimation is based on the least squares cross-validation (see Li
and Racine (2007, p. 83)).
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Figure 2: Signature Plot of CvM Measure for S&P 500 Index Returns

Note: The x-axis represents the number of days k included to calculate the volatility length ∆, i.e.,
∆ = [P ]δT k/K, where [P ]δt is the realized variance of (Pt), dPt = dpt/pt−rf

t dt, computed using daily
observations over the time horizon [0, T ], and K is the total number of days. The y-axis represents
the CvM distance for the standardized excess returns after time change.

Figure 3: Surface Plots of CvM Measure for Model II and Model III

Note: The CvM measure is calculated for given parameter values of (−α/(1 − β), β). In case of
Model III, the surface plot is obtained with κ = 0.359.
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Figure 4: Contour Plots of CvM Measure for Model II and Model III

Note: The CvM measure is calculated for given parameter values of (−α/(1 − β), β). In case of
Model III, the contour plot is obtained with κ = 0.359.

Figure 5: Value Plot of CvM Measure for Model III

Note: The value plot of κ is obtained with (α, β) = (−0.445, 0.507).


