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VERY PRELIMINARY!

Abstract

In this paper I study dynamic optimal taxation in a private information economy with

continuum of individual productivity shocks that are persistent over time. I formulate the

problem recursively and develop a first order approach in the spirit of Mirrlees (1971) to simplify

it. The main advantage of the first order approach lies in the fact that it allows us to reduce

the state space of the dynamic program dramatically. This allows numerical implementation of

the problem. I solve quantitatively for the optimal capital income taxes in a simplified economy

with persistent taste shocks. I find that whan the shocks follow random walk, the intertemporal

wedge, roughly corresponding to the capital income taxes, is on average about three times lower

than in the case of iid shocks.

1 Introduction

This paper studies optimal income taxation in a dynamic private information economy with con-

tinuum of idiosyncratic productivity shocks. I depart from the typical assumption of iid shocks

and allow them to be persistent over time. This assumption implies tremendous burden on the

dimensionality of the state space, as was shown by Fernandes and Phelan [6]. Therefore I develop a

first order approach and show that it simplifies the state space to a manageable dimension. Thus,

the advantage of the first order approach becomes twofold. First, it simplifies the incentive com-

patibility constraint, as is known from static models. Second, it reduces the state space of social

planner’s dynamic program.

This paper follows the Mirrleesian approach to the optimal taxation (see [11],[12],[13]). The

advantage of this approach lies in its explicit modelling of private information structure. This
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provides microfoundations for usage of nonlinear taxes. All tax instruments arise endogenously as

part of the competitive equilibrium with benevolent government. This stands in contrast to the

more traditional Ramsey approach where the tax instruments are exogenously given.

Originally, this approach studied static economies where it is optimal to put a wedge between

marginal rate of substitution between consumption and leisure and marginal productivity of labor,

due to the informational frictions. This gives rise to the nonlinear income tax in the optimum. Re-

cently, this literature was extended to dynamic private information economies by Golosov, Kocher-

lakota, Tsyvinski [7], Kocherlakota [9] or Albanesi and Sleet [2]. The importance of this extension

is twofold. First, it allows the government to improve upon static allocations by using history

dependent taxes. Second, it allows us to analyze capital taxation. The general conclusion is that

there is an additional wedge that arises in the optimum. It is an intertemporal wedge between

marginal rate of intertemporal substitution and the interest rate.1 This creates a role for capital

income taxes.

The literature on dynamic optimal income taxation follows two approaches. It either focuses on

quantitative implementation of solutions and simply assumes iid shocks (Albanesi and Sleet [2]) or

focuses on very general qualitative conclusions and gives up on numerical implementation (Golosov,

Kocherlakota, Tsyvinski [7], Kocherlakota [9]) This paper retains the ability to numerically compute

optimal allocations but allows for reasonably realistic class of Markov shock processes, thus getting

the best of both approaches. The assumption of shocks to be highly persistent appears to be rather

a realistic one. Heathcote, Storesletten and Violante [8] find that the autocorrelation of wage shocks

is about 0.94, and thus exhibits near random walk behavior.

Technically, the dynamic program presented in this paper builds on the work of Fernandes

and Phelan [6]. They consider private information economies with Markov shocks but restrict the

shocks to have only two possible values. They show how to formulate the program recursively.

The extension of their approach to the case of continuum of shocks is quite straightforward, but

not very useful per se. The reason is that, in contrast to the case of iid shocks, the continuation

utility becomes a function. Thus, the state variable is also a function. This is where the extreme

usefulness of the first order approach comes in. It helps to reduce the state space from a function to

two numbers. In comparison with the two shock economy, the dynamic becomes no more complex

with continuum of shocks.

1There are cases where this result does not hold and the intertemporal wedge is zero. See Shimer and Werning

([14]).
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For the numerical exercise I consider a simple private economy with taste shocks. While this

economy is not rich enough to study labor income taxes, it is convenient if one wants to focus on

the intertemporal wedge, i.e. on the optimal capital income taxes. I consider the extreme case of

shock persistence: the case when shocks follow a random walk. I compute the optimal intertemporal

wedges for such economy and compare the results with an economy with iid shocks. I find that the

intertemporal wedge is significantly reduced when we consider the economy with persistent shocks.

It constitutes about a fourth of the intertemporal wedge in the economy with iid shocks. Based on

the beforementioned research, the qualitative conclusion is to be expected. The contribution of the

paper is rather the quantitative assessment.

To understand why the first order approach simplifies the dynamic program, we must first

understand why the state space becomes so complicated without it. If shocks are persistent, the

continuation utility depends not only on what the agent reports today, but also what her true

shock is. The reason is that the probability distribution of future shocks depends on the true

shock. To ensure incentive compatibility, next period has to deliver the continuation utility for all

possible true shocks. I call this the continuation utility function (as a function of the true state). It

follows, that the whole continuation utility function must be a state variable of the social planner’s

problem.2 The first order approach, on the other hand, implies that only the marginal change of

the continuation utility is what matters. Thus, we can replace the continuation utility function by

marginal continuation utility. This is the gist of the usefulness of the first order approach. Besides

that, we have the ordinary promised keeping constraint and therefore the state space boils down

to a manageable set of two real numbers.

The main problem obviously lies in the justification of the first order approach. I will use the

envelope theorem of Milgrom and Segal (2003), but the problem with the first order approach is

more complicated. This is so because the utility of an agent consists of two parts: period utility

function and the continuation utility function. The latter is endogenous to the social planner’s

problem and we cannot simply impose any properties on it. Yet, using the envelope theorem

requires differentiability with respect to agent’s type and some other technical properties. It turns

out, that we can justify the required properties for the continuation utility function solely by

imposing some structure on the probability distribution of shock. The envelope theorem can then

be fully justified.

2In case of iid shocks, the continuation utility is independent of the current true shock, so we have only one value

of the continuation utility, instead of a function. That’s why models with iid. shocks are relatively easy to solve.
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The paper is organized as follows. Next section lays out the physical environment of a general

model. Section 3 formulates the social planner’s problem in a sequence space. Section 4 then

constructs recursive formulation of the social planner’s problem and shows the equivalence between

both solutions. First order approach is introduced and justified in section 5. Section 6 introduces

a simple taste shock economy and shows that the problem can be further simplified. Section 7

presents numerical simulations. Section 8 concludes and discusses further extensions. Most of the

proofs can be found in the Appendix.

2 The Model

The world begins at time t = 1. There is a continuum of agents, with a unit measure in this economy.

The agents have period utility that depends positively on consumption c ∈ R+, negatively on labor
supply l ∈ [0, 1] and is given by U : R+ × [0, 1] → R. We assume the utility function is bounded,
concave and twice differentiable with respect to both arguments. It also satisfies that Ucl ≥ 0.

At the beginning of each period, agents observe their current productivity shock θ ∈ Θ ⊆ R+.
If the agent supplies l units of labor, her output is given by y = θl. We will follow a standard

approach and substitute labor out of the problem. Thus, the period utility function depends on

consumption, output and productivity shock in the following way: U = U(c, yθ ).

The productivity shock follows first order Markov process π(θ0|θ) It is assumed that the function
π is twice differentiable with respect to both arguments. Moreover, we assume that the transition

function is such that there exists an integrable function κ : Θ → R such that
¯̄̄
π2(θ

0|θ)
π(θ0|θ)

¯̄̄
≤ κ(θ) for

all θ0 and almost all θ.

We denote an invariant distribution by π(θ). We can construct probability of an arbitrary

sequence θt that follows θ0 and write it as Π(θ
t|θ0). Unconditional distribution of this sequence is

denoted by Π(θt). We assume that the shock θ0 is the same for everyone and is observed by the

social planner.

Consumption and output are observed by the social planner, while the productivity shock is

not. It is a private information of the agent. The agents are infinitely lived and discount future by

factor β. Their objective is to maximize expected lifetime utility.

4



3 Sequence problem

For each period, the social planner designs a pair of consumption assignments Ct : Θ
t → R+

and output assignments Yt : Θ
t → R+. Call the collection of these assignments for all period

C = {Ct}t≥1 and Y = {Yt}t≥1 an allocation.
At the beginning of period t, the agents report their current type to the social planner. The

reporting strategy of an agent can be described by a collection of functions θ̂ = {θ̂t}t≥1 where
θ̂t : Θ

t → Θ is a report in period t. The history of reports up to period t is denoted by θ̂
t ∈ Θt.

The agent’s preferences over allocations are given by

u(C,Y, θ0) =
X
t≥1

Z
θt∈Θt

βt−1U(Ct(θ
t),

Yt(θ
t)

θt
)Π(θt|θ0)dθt

Since the shocks are private information to the agent, an allocation must satisfy the incentive

compatibility requirement. If the agent chooses reporting strategy θ̂ he receives consumption

assignment C ◦ θ̂ = {Ct(θ̂
t
(θt)}t≥1 and similarly with output assignment. If he reports truthfully,

he just receives C and Y. Thus, incentive compatibility constraint can be written as

u(C,Y, θ0) ≥ u(C ◦ θ̂,Y ◦ θ̂, θ0) ∀θ̂ s.t. Y ◦ θ̂ ≤ θ (1)

where the last inequality reflects the fact that the agent cannot choose unfeasible reports, i.e.

reports that would result in labor supply greater than 1.

Social planner maximizes the expected utility of all agents by a choice of an allocation. In

principle, the social planner could assign different Pareto weights to different agents, but since all

agents are ex ante identical, I will assume that they all have equal weights. This assumption can be

easily dropped. The social planner is constrained by the incentive compatibility constraint and by

a sequence of period by period resource constraint. Thus, we can write the social planner’s problem

as follows:

max
C,Y

u(C,Y, θ0)

subject to incentive compatibility constraint (1) and a sequence of period resource constraintsZ
θt∈Θ

[Ct(θ
t)− Yt(θ

t)]Π(θt|θ0)dθt = 0 ∀θt−1 ∈ Θt−1 (2)

I will refer to this problem as a sequence problem of the social planner. Denote the solution to

this program by C∗,Y∗.
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4 Recursive formulation

In this section I will write down a decentralized problem of minimizing the costs of delivering certain

promised utility and show how this program is related to the sequence problem In principle, there are

several intermediate steps between the sequence problem and the decentralized cost minimization

problem. Since they are fairly standard, I present them in the Appendix.

Define a recursive allocation to be a triplet of functions c : Θ → R+, y : Θ → R+ and

w0 : Θ2 → W.3 The first function corresponds to consumption, the second one to output and the

last one to continuation utility. Also define {qt}t≥1 to be a sequence of intertemporal prices of
consumption satisfying

P
t≥1

tQ
i=1

qi ≤ +∞.

Consider a social planner that minimizes costs of delivering promised utility w = w(θ−) to an

agent who incurred shock θ− at period t− 1. Call this planner a component planner. Define LΘ to

be a space of all functions Θ→W. The claim I will prove is that, for t > 1, the following dynamic

program of a component planner is an equivalent way of writing the sequence problem of a social

planner. 4

Vt(w(.), θ−) = min
c,y,w0

Z
θ

[c(θ)− y(θ) + qtVt+1(w
0(θ, .), θ)]π(θ|θ−)dθ

s.t.

w(θ̂−) =

Z
θ

[U(c(θ),
y(θ)

θ
) + βw0(θ, θ)]π(θ|θ̂−)dθ ∀θ̂− (3)

U(c(θ),
y(θ)

θ
) + βw0(θ, θ) ≥ U(c(θ̂),

y(θ̂)

θ
) + βw0(θ̂, θ) ∀θ̂ s.t. y(θ̂) ≤ θ, all θ (4)

w0(θ, .) ∈ B∗

The state space of the value function is given by LΘ ×Θ.The first constraint (3) incorporates
two distinct things. First, for θ̂ = θ , it is a promise keeping constraint. Second, for other θ̂

it is a threat keeping constraint, in terms of Fernandes and Phelan. The second constraint (4)

is a temporary incentive compatibility constraint. It implies that any one period deviations are

suboptimal. The last constraint ensures that it will indeed be possible to deliver the continuation

3We cna show by standard arguments that since utility is bounded, W can be restricted to be bounded as well.
4The value function depends on the whole sequence of intertemporal prices {qt}t≥1 but the dependence is kept

implicit to simplify the notation.
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utility function next period. The set B∗ is defined as a fixed point of the following operator:

T (B) = {w ∈ LΘ:∃c : Θ→ R+, y : Θ→ R+, w0 : Θ2 → R (5)

such that (3) and (4) holds and

w0(θ, .) ∈ B}

Standard arguments of Abreu, Pearce and Stacchetti [1] imply that the fixed point B∗ is

nonempty and compact.

The solution for the initial period is special, because the social planner is not bound by any

promised utility to the agents who deviated the period before. Thus, a component planner in period

1 solves

V̂1(w1, θ0) = min
w(.)∈LΘ

V1(w(.), θ0)

s.t. w(θ0) = w1

where V1(w(.), θ0) is given by the Bellman equation above.

Denote the solution to the recursive program for t > 1 by optimal policy functions c∗t : LΘ×Θ2 →
R+, y∗t : LΘ×Θ2 → R+ and w∗t+1 : LΘ×Θ3 →W. Note that time 1 optimal policy functions have
smaller domain, i.e. c∗1 :W×Θ2 → R+, y∗1 :W×Θ2 → R+ and w∗t+1 :W×Θ3 →W. Denote the
whole collection of optimal policy functions by c∗ = {c∗t}t≥1, y∗ = {y∗t }t≥1, w0∗ = {w∗t+1}t≥1.

It is well known that in the case of iid shocks the state space of the component planner’s problem

is just (w, θ−). Why is the state space now larger than that? The reason is that the last period

shock now affects the probability distribution of current shocks and therefore the continuation value.

The social planner observes only reported shocks and thus cannot distinguish between agents with

identical reports but different shocks. However, he must still deliver promised utility to all such

agents. Hence, different promised continuation value must be assigned, according to shock last

period. Consistently with this intuition, notice that it is the w0(θ, .) section of continuation utility

that becomes an argument of the value function, i.e. a section that keeps report constant (and

truthful) and varies along the true shock.

The evolution of the distribution of continuation utility functions can be defined as follows

Suppose ϕt is a distribution of continuation utility functions at time t and that D ⊆ LΘ. The

distribution next period ϕt+1 satisfies the difference equation

ϕt+1(D) =

Z
M

dϕtdθtdθt−1
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where M(D) = {(w(.), θt−1, θt) ∈ LΘ ×Θ2 : w0t+1(w(.), θt−1; θt, θt) ∈ D}. The first period distribu-
tion ϕ1 is just a mass 1 on a function that solves period 1 component planner’s problem.

We now make the relationship between the sequence problem and the component planner’s

recursive problem more precise. We first define an allocation that can be constructed from a

recursive allocation. In particular, we are interested in allocation that is constructed from the op-

timal recursive allocation. Suppose W̃t(w1, θ̂
t−1
; θt−1)5 solve a difference equation W̃1(w1, θ̂1; θ1) =

w0∗1 (w1, θ0; θ̂1, θ1) and W̃t+1(w1, θ̂
t
; θt) = w0∗t+1(W̃t(w1, θ̂

t−1
; θ̂t−1), θ̂t−1; θ̂t, θt) for t > 1. Define an

allocation C̃∗, Ỹ∗ as

C̃∗t (w1, θ̂
t
) = c∗t (W̃t(w1, θ̂

t−1
; θ̂t−1), θ̂t−1; θ̂t)

Ỹ ∗t (w1, θ̂
t
) = y∗t (W̃t(w1, θ̂

t−1
; θ̂t−1), θ̂t−1; θ̂t)

Call C̃∗, Ỹ∗ the allocation generated by the optimal recursive allocation. We have the following

result:

Theorem 1 Suppose c∗, y∗, w0∗ solves the component planner’s problem. Suppose also that C∗,Y∗

solves the sequence problem of the social planner. If there is a sequence of prices {qt}t≥1 and w1

such that, for all tZ
θt∈Θ

Z
θt−1∈Θ

Z
w(.)∈LΘ

[c∗t (w(.), θt−1, θt)− y∗t (w(.), θt−1, θt)]dϕtdθt−1dθt = 0 (6)

Then

i) u(C∗,Y∗, θ0) = w1

ii) C̃∗ = C∗ and Ỹ∗ = Y∗.

Proof. See the Appendix.

The theorem makes the following claim: Suppose we solve both the recursive problem and

the sequence problem. If the prices are such that the resource constrain in the recursive problem

happens to be cleared, then first, the lifetime utility delivered in the sequence problem is the same as

the promised utility in the recursive problem and second, the consumption and output assignments

are, loosely speaking, identical.

There is several distinct steps that lead to the proof of Theorem (1). First, it is shown, that

there is a cost minimization problem for the social planner such that if the resource constraint holds

for every period, then the optimum is the same as in the sequence problem (Lemma 7).

5The last argument of Ŵt is the true shock last period while the middle argument is the history of reports.
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The core of the proof lies in the second step which shows that the cost minimization problem

can be decentralized into a series of component planner’s problems (Lemma 8). More precisely,

if a recursive allocation solves the component planner’s problem, then there will be an allocation

defined in the sequence space such that the costs will be the same - namely the allocation generated

by the recursive allocation. The main obstacle in proving this result is to show that the incentive

compatibility constraint in the sequence problem can be related to the temporary incentive com-

patibility in the recursive component planner’s problem. The incentive compatibility constraint

involves checking all possible deviations while the temporary incentive compatibility constraint in-

volves only one period deviations. The bridge between these two is built on the separability result

of Phelan and Fernandes which is proved in Lemma 6 in the Appendix. Incentive compatibility

constraint implies that the agent will prefer to tell the truth even if he deviated in the past. Thus,

multiple deviation cannot make the agent better off unless there is also a one period deviation.

The proof of Theorem 1 itself then builds on the fact that the resource constraint (6) implies that

a resource constraint (2) holds for the generated allocation. By virtue of Lemma 7, the generated

allocation is identical to the allocation that maximizes the sequence problem, hence it delivers the

same utility as the recursive allocation, which is w1. Second part of the theorem states the most

important implication: If we solve the recursive component planner’s problem, we can construct an

allocation which will solve the sequence problem of the social planner.

5 First Order Approach

The use of first order approach is complicated by the fact that the value function of the agent

consists from a sum of two terms: U(c(θ̂), y(θ̂)θ ) and βw0(θ̂, θ). The first term is just period utility

function and we know its properties, namely differentiability with respect to θ. This is not true

about the other term, βw0(θ̂, θ). This function is endogenous to the social planner’s problem and

we do not know its properties immediately.

Fortunately, it turns out that we can pin down the properties of interest quite easily. The reason

is that, if we fix the report θ̂, the term w0(θ̂, θ) is just an expected utility from a fixed allocation.6

Thus, its dependence on θ is solely driven by the dependence of this expectations on θ, i.e. by

the dependence of π(., θ) on θ. If this function is differentiable, then w0(θ̂, θ) is also differentiable

with respect to θ.More precisely, the social planner will never be able to choose a non-differentiable

6This is because current report is fixed and all future reports are truthful.
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function since he couldn’t satisfy his constraints next period. The set B∗ contains only differentiable

functions. Lemma (9) in the Appendix shows this result more formally.

Next theorem derives necessary and sufficient conditions for a recursive allocation to be incentive

compatible. It also derives an envelope condition that is necessary for an allocation to be incentive

compatible. The derivation relies heavily on previously discussed result that the continuation utility

function is differentiable in agent’s type. The proof draws upon the envelope theorem of Milgrom

and Segal ([10]), Theorems 1 and 2.7

Theorem 2 The allocation is incentive compatible if and only if

i)

dy(θ̂)

dθ̂

Ul(c(θ̂),
y(θ̂)
θ )

Uc(c(θ̂),
y(θ̂)
θ )

1

θ
+ β

∂
∂θ̂
w0(θ̂, θ)

Uc(c(θ̂),
y(θ̂)
θ )

is increasing in θ for all θ̂ and

ii)

U(c(θ),
y(θ)

θ
) + βw0(θ) =

θZ
0

[−Ul(θ̃)
y(θ̃)

θ̃
2 + β

∂

∂θ
w0(θ̃|θ̃)]dθ̃ + U0

Proof. See the Appendix.

The condition in the first part of the theorem is a necessary and sufficient condition for an

allocation to be incentive compatible. It is more complicated than in case of iid shocks because of

the second term on the right hand side. In case of iid shocks, necessary and sufficient condition boils

down to a requirement that y(θ) is increasing (provided that the utility function satisfies Spence-

Mirrlees condition). In this case, however, this is neither sufficient nor necessary. In principle, we

can have y(θ) decreasing, if ∂
∂θ̂
w0 increases sufficiently fast in θ.We will have to check this condition

to determine if it holds for particular solution.

The validity of the first order approach indicates that not all the continuation utility function

is needed for the recursive formulation. In particular, everything except for marginal continuation

utility is irrelevant for the incentive compatibility - hence it is irrelevant for the dynamic program.

Define g(θ) = ∂
∂θw

0(θ, θ) We can then write the dynamic program of a component planner as

follows:

7The proof of second order conditions relies on differentiability of the policy functions. I will later generalize the

result.
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V (w, g, θ−) = min
c,y,w0,g0

Z
θ

[c(θ)− y(θ) + βV (w0(θ), g0(θ), θ)]π(θ|θ−)dθ

s.t.

w =

Z
θ

[U(c(θ),
y(θ)

θ
) + βw0(θ)]π(θ|θ−)dθ (7)

g =

Z
θ

[U(c(θ),
y(θ)

θ
) + βw0(θ)]π2(θ|θ−)dθ (8)

U(c(θ),
y(θ)

θ
) + βw0(θ) =

θZ
0

[−Ul(θ̃)
y(θ̃)

θ̃
2 + βg0(θ̃)]dθ̃ + U0 (9)

(w0(θ), g0(θ)) ∈ b∗(θ)

where b∗(θ) is a fixed point of the following operator:

T (b)(θ−) = {(w, g) ∈W ×R+:∃c : Θ→ R+, y : Θ→ R+, w0 : Θ2 → R
such that (7), (8) and (9) holds and

(w0(θ), g0(θ)) ∈ b(θ)}

The second constraint, (8) is a new feature of the dynamic program. It is a marginal version

of the threat keeping constraint. For an agent with last period shock θ− the social planner to

restricted to increase the marginal continuation value for at rate g.

The significance of the first order approach is that it does not increase the dimensionality of

the dynamic program as compared to Fernandes and Phelan, but allows for continuum of shocks.

6 Capital Income Taxation

To study capital income taxes I now consider a very simplified economy: An economy with taste

shocks and logarithmic utility. Formally, the mapping to the previous formulation is given by the

following specification:

U(c,
y

θ
) = θ ln c

Since this economy is not concerned with the determination of output, it says nothing about

the intratemporal wedge and hence about labor taxes. Nevertheless, a taste shock economy is a

convenient tool if one wants to focus on capital income taxation.
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The nature of the intertemporal wedge is rather different than in an economy with productivity

shocks and labor taxes. Golosov Kocherlakota and Tsyvinski show that for a very general set of

conditions we should expect the intertemporal wedge to be strictly positive. In other words, in an

economy with zero capital taxes, individuals would tend to oversave. This result holds if utility

is additively separable between consumption and the underlying shock. This is not the case in

the taste shock economy, however. In fact, the intuition is quite the opposite here. High shock

individuals would like to borrow from the future since they would like today to consume more than

what the social planner offers them. Thus, we should expect that the intertemporal wedge should

be negative for some fraction of high shock individuals. We will see that this intuition is confirmed.

I provide results for partial equilibrium where the intertemporal price is fixed at a value equal

to the discount factor: q = β. In later versions of the paper I will generalize the results for the

general equilibrium case where the intertemporal price of consumption is endogenous.

6.1 IID shocks

It is instructive to begin with the case of iid taste shocks: π(θ|θ−) = π(θ). This section also provides

some insights into the solution procedure which will become more complicated in the next section.

This section is closely related to the results of Atkeson and Lucas [3], the main difference being the

assumption of fixed intertemporal price and continuum of shocks.

We make the following change of variable: u = ln(c). It is easy to show that in this case the

incentive compatibility constraint becomes

θu(θ) + βw0(θ) =
θZ
0

u(θ̃)dθ̃ + βw0 (10)

The social planner responsible for delivering promised utility w allocates consumption according

to agent’s reports. In the light of the new notation the social planner minimizes its cost

V (w) = min
u,w0

Z
[eu(θ) + βV (w0(θ))]π(θ)dθ

subject to the incentive compatibility constraint (10) and the promise keeping constraint

w =

Z
[θu(θ) + βw0(θ)]π(θ)dθ

The following Lemma simplifies the computations tremendously as it allows us to normalize the

state variable w :
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Lemma 3 Let γ = E(θ). The solution to the social planner’s problem is given by the value function

V (w) = Ae
1−β
γ

w

and the policy functions

u∗(w, θ) =
1− β

γ
w + ū(θ)

w0∗(w, θ) = w + w̄0(θ)

for some functions u(θ) and w0(θ) and some constant A. Moreover, the function w0(θ) satisfies

Ew0 < 0.

The proof of this theorem is not provided as it is a special case of similar Lemma (4) in the

next section. The importance of this result is, however, hard to overstate. We can solve the whole

model as a simple static-looking problem and easily recover the policy functions u and w back.

In solving the static-looking problem I follow Mirrlees [11] in using variational approach to

obtain necessary conditions for the optimum. We can write the necessary conditions as a set of

differential equations, with appropriate boundary conditions.

The following change of variables becomes convenient: set t = ln(θ), x = e(1−β)γw̄0 and y =

( e
ū

θ − λx). Then it is easy to show that the optimum follows the following differential equations in

x and y:

dx

dt
=

σy + λ(1− 2x)
λ+ e−t β

(1−β)γ (
y
x + λ)

dy

dt
= λ(x− 1)− y(1 + σ)

where σ(θ) = θf 0
f and λ is the Lagrange multiplier on the resource constraint. The boundary

conditions for the two differential equations are given by y0 = y∞ = 0.

I will defer the discussion of quantitative results for later section.

6.2 Persistent shocks

I now focus on a case where any taste shock that an individual incurs persist over time. Consider

again the change of variable u = ln(c). Consistently with the general results of section (5), the social

planner that is allocated to an agent with promised utility w, promised marginal continuation utility

13



g and last period shock θ−solves the following problem8:

V (w, g, θ−) = min
u,w0,g0

Z
[eU(θ) + βV (W 0(θ), G0(θ), θ)]π(θ)dθ

and he is constrained by the promise keeping and marginal threat keeping constraints

w =

Z
[θU(θ) + βW 0(θ)]π(θ|θ−)dθ

g =

Z
[θU(θ) + βW 0(θ)]πθ(θ|θ−)dθ

and the incentive compatibility constraint which takes the form

θU(θ) + βW 0(θ) =
θZ
0

[U(ε) + βG0(ε)]dε+ βW0

Although the problem is now considerably more complicated, we can still show that promised

utility can be usefully normalized. The following Lemma parallels Lemma 3:

Lemma 4 Let γθ− = E(θ|θ−) and ϕ(θ−) = 1−β
γθ−

d
dθ−γθ− . Suppose that ĝ = g − ϕ(θ−)w. Then the

solution to the social planner’s problem is given by a value function

V (w, g, θ−) = v(g̃, θ−)e
1−β
γθ−

w

and the policy functions

U(w, g, θ−, θ) =
1− β

γθ−
w + u(g̃, θ−, θ)

W 0(w, g, θ−, θ) = w + w0(g̃, θ−, θ)

G0(w, g, θ−, θ) = g0(g̃, θ−, θ)

for some functions u(g̃, θ−, θ), w0(g̃, θ−, θ) and g0(g̃, θ−, θ).

Proof. See the Appendix.

Normalization of promised utility to 0 thus yields the following Bellman equation:

v(g, θ−) = min
u,w0,z

Z
[eu(θ) + βe

1−β
γθ−

w0(θ)
v(z(θ), θ)]π(θ|θ−)dθ

8I do not formulate explicitly the feasibility set for the social planner. It is assumed that the solution lies in the

interior.
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s.t.

0 =

Z
[θu(θ) + βw0(θ)]f(θ|θ−)dθ

g =

Z
[θu(θ) + βw0(θ)]fθ−(θ|θ−)dθ

θu(θ) + βw0(θ) =
θZ
0

[u(ε) + βz(ε) + βϕ(ε)w0(ε)]dε+ βw00

where we use the fact that if g0(θ) is the marginal continuation value then, by virtue of our rescaling,

z(θ) = g0(θ)− ϕ(θ)w0(θ) enters the normalized value function.

6.3 Lognormal distribution

Even with this result in hand, the solution is not a simple one. Fortunately, imposing an additional

restriction on the stochastic process for shocks yields additional simplifications. Assume that the

taste shock can be written as θ = et where

t0 = (1− ρ)µ+ ρt+ ζ.

The innovation ζ is normally distributed iid random variable with mean zero and variance ν2. The

unconditional mean of the taste shock is given by parameter µ and the persistence is driven by ρ.

A crucial implication of lognormality is, however, that we can normalize one state variable - the

last period shock - arbitrarily and therefore reduce the dimension of the dynamic program to one

state variable only - promised marginal utility.

Lemma 5 The value function satisfies v(g, θ−) = v(θ1−ρ− g, 1). The policy functions satisfy u(g, θ, θ−) =

u(θ1−ρ− g, θ
θρ−
, 1), w0(g, θ, θ−) = θρ−w0(θ

1−ρ
− g, θ

θρ−
, 1) and z(g, θ, θ−) = z(θ1−ρ− g, θ

θρ−
, 1).

Proof. See the Appendix.

To economize on notation, we write u(g, θ, 1) = u(g, θ), w0(g, θ, 1) = w0(g, θ) and z(g, θ, 1) =

z(g, θ). The value function is written concisely as v(g, 1) = v(g).

Using the new notation, we can write the dynamic program as

v(g) = min
u,w0,h

Z
[eu(θ) + βe

1−β
γ

w0(θ)v(h(θ)]π(θ)dθ

15



s.t.

0 =

Z
[θu(θ) + βw0(θ)]π(θ)dθ

g =

Z
[θu(θ) + βw0(θ)]πθ−(θ)dθ

θu(θ) + βw0(θ) =
θZ
0

[u(ε) + β
h(ε)

ε1−ρ
+ βρ(1− β)

w0(ε)
ε
]dε+ βw00

where h(g, θ) = θ1−ρz(g, θ) and γ = E(θ). In addition, lognormal distribution implies that

πθ−(θ) = ρ[ln θ − (1− ρ)µ]π(θ).

It becomes useful to partition the problem in two parts. Introduce again new variables t = ln(θ),

Define x = e
1−β
γ

w0 and y =
eu

θ
− 1−β

γ
v0x

1−ρ(1−β) . Denote the Lagrange multipliers on the promise keeping

and marginal threat keeping constraints as λw and λg. We can show that for some fixed functions

v(g) and h(g, θ) the functions x(t) and y(t) satisfy

dx

dt
=

η(σ + η − 1)y + η(λw + rλg) + β(ηy + 1−β
γ v0x)(e−(1−ρ)th+ e−tργ lnx)− (1 + η)1−βγ v0x− yeρt dhdt

1−β
γ v0 + βγ

1−β e−t(η
y
x +

1−β
γ v0)

dy

dt
= −λw − rλg +

1− β

γ
v0x− y(σ + 2− η)

where η = 1 − ρ(1 − β). The boundary conditions are the same as in the iid. case, i.e. y0 =

y∞ = 0. Here the term r =
πθ−(θ)
π(θ) represents the relative change in the density with respect to the

last period shock and the statistics σ is defined as before. Thus, we can easily solve for the function

x and y in dependence on the rest of the policy functions and then provide more time expensive

search for functions v and h. The numerical results are presented in the next section.

7 Numerical simulations

I look at the case of random walk with ρ = 1. Although the lognormal distribution is unbounded,

I impose an upper bound and discretize the space of shocks on a grid with 500 points.9

Figure 1 gives the intertemporal wedge for the iid case. The intuition from section 6 is confirmed.

The intertemporal wedge is positive for low shock agents as they would like to save more but becomes

negative for high shock ones, to deter them from borrowing from future. the intertemporal wedge

is quite sizable, ranging to almost 40% subsidy for the high taste agents.

9The discretization must be rather fine in order to allow to discretize the differential equations without much

precision loss.
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Figure 1: Intertemporal wedge, IID shocks

For the case of persistent shocks, Figure 2 illustrates the intertemporal wedge for various values

of marginal continuation value. We can see that while the pattern of the intertemporal wedge is

essentially unchanged (positive for low shock agents and negative for high shock agents) the size

of the effect is significantly smaller. Maximal value of the intertemporal wedge reaches 15%, three

times less than in the iid case.

8 Conclusions

The contribution of this paper is twofold. First, It develops a method of solving dynamic private

information models with persistent shocks which is simple enough to be solved numerically. Second,

it investigates the nature of optimal capital income taxes under realistic assumption of high shock

persistence. The finding is that the intertemporal wedge is possibly as much as three times reduced

when shocks are persistent.

Future versions of this paper will consider several extensions. First, one need to look at general

equilibrium framework and assess the whole distribution of shocks and other state variables to

get more meaningful results. Second, I plan to return the labor supply back to the model and

investigate the effect of shock persistence on labor income taxes. Another unresolved question is

the problem of implementation. While the intertemporal wedge has been found, the question of
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Figure 2: Intertemporal wedge, persistent shocks

how to implement it remains. It follows from Lemma 3 and 4 that capital income taxes will be

independent of individual’s assets. They will crucially depend on consumption. The exact nature

will appear in future versions of the paper.

More generally, one may want dispose the assumption that productivity shocks are exogenous

and model persistence of productivity shocks as partly endogenous. Human capital is a natural

candidate through which income persistence is generated. Such framework allows us to analyze

richer set of policies, including policies that promote human capital accumulation directly, not only

through income or capital income taxes. Bohacek and Kapicka [4] proceed in this direction.
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9 Appendix

The following Lemma shows that the incentive compatibility constraint implies that after any

history (not necessarily a truthful one) the agent still prefers to tell the truth.

Lemma 6 Consider an allocation C,Y and any θ0. Define θ̂
∞
t = {θ̂j}j≥t to be a reporting strategy

from period t on. If C,Y is incentive compatible then for any history of reports θ̂
t−1
, any last period

shock θt−1 and for any reporting strategy θ̂
∞
t

X
j≥0

Z
θt+jt ∈Θj

βjU(Ct+j(w1, θ̂
t−1

, θt+jt ),
Yt+j(w1, θ̂

t−1
, θt+jt )

θt+j
)Π(θt+jt |θt−1)dθt

≥
X
j≥0

Z
θt+jt ∈Θj

βj−1U(Ct+j(w1, θ̂
t−1

, θ̂
t+j
t (θt+jt )),

Yt+j(w1, θ̂
t−1

, θ̂
t+j
t (θt+jt ))

θt+j
)Π(θt+jt |θt−1)dθt

Proof. Define Ft(w1, θ̂
t
, θt) = U(Ct(w1, θ̂

t
), Yt(w1,θ̂

t
)

θt
) to simplify the notation.

The proof is trivial for θ̂
t−1

= θt−1. For θ̂
t−1 6= θt−1 suppose that there is a reporting strategy

θ̃
∞
t such that

X
j≥0

Z
θt+jt ∈Θj

βjFt+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θt−1)dθt

<
X
j≥0

Z
θt+jt ∈Θj

βjFt+j(w1, (θ̂
t−1

, θ̃
t+j
t (θt+jt )), θt+j)Π(θ

t+j
t |θt−1)dθt

For this equation to hold, the reporting strategy must improve upon the truthful strategy for a

set D ∈ Θ of nonzero measure. Thus, for all θt ∈ D,

Ft(w1, (θ̂
t−1

, θt), θt) +
X
j≥1

Z
θt+jt+1∈Θj

βjFt+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t+1|θt)dθt

< Ft(w1, (θ̂
t−1

, θ̃t(θt)), θt) +
X
j≥1

Z
θt+jt+1∈Θj

βjFt+j(w1, (θ̂
t−1

, θ̃
t+j
t (θt+jt )), θt+j)Π(θ

t+j
t+1|θt)dθt (11)

Define another strategy θ̄
∞
t that is identical with θ̃

∞
t if θt ∈ D and involves truthtelling if θt /∈ D.

By inequality (11), this strategy also dominates the truthtelling strategy.
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Consider now an agent with last period shock θ̂t−1. We haveX
j≥0

Z
θt+jt ∈Θj

βjFt+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θ̂t−1)dθt

=

Z
θt /∈D

X
j≥0

Z
θt+jt+1∈Θj

βjFt+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θ̂t−1)dθt

+

Z
θt∈D

⎧⎪⎪⎨⎪⎪⎩Ft(w1, (θ̂
t−1

, θt), θt) +
X
j≥1

Z
θt+jt+1

βjFt+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θt)dθt

⎫⎪⎪⎬⎪⎪⎭π(θt|θ̂t−1)dθt

<

Z
θt /∈D

X
j≥0

Z
θt+jt+1∈Θj

βjFt+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θ̂t−1)dθt

+

Z
θt∈D

⎧⎪⎪⎨⎪⎪⎩Ft(w1, (θ̂
t−1

, θ̄t(θt)), θt) +
X
j≥1

Z
θt+jt+1

βjFt+j(w1, (θ̂
t−1

, θ̄
t+j
t (θt+jt )), θt+j)Π(θ

t+j
t |θt)dθt

⎫⎪⎪⎬⎪⎪⎭π(θt|θ̂t−1)dθt

=
X
j≥0

Z
θt+jt ∈Θj

βjFt+j(w1, (θ̂
t−1

, θ̄
t+j
t (θt+jt )), θt+j)Π(θ

t+j
t |θ̂t−1)dθt.

The first equality follows from partitioning the space of current shocks to D and its complement.

The inequality follows from the inequality (11), i.e. from the fact that for all θt ∈ D, the allocation

θ̄
∞
t is preferred to truthtelling. The last equality follows from definition of θ̄

∞
t .

Thus, we have shown that there is a reporting strategy θ̄
∞
t that improves upon truthtelling

even after truthful history, which is a contradiction.

As a first step toward the proof of Theorem 8 we start with constructing the following sequence

cost minimization problem of the social planner: Suppose that there are intertemporal prices of

consumption {qt}t≥1 satisfying
P
t≥1

tQ
i=1

qi ≤ +∞. The social planner minimizes cost of delivering

lifetime utility w1:

Ω(w1, θ0) = min
C,Y

X
t≥1

Z
θt∈Θt

(
t−1Y
i=1

qi)[ct(θ
t)− yt(θ

t)]Π(θt|θ0)dθt

s.t.

u(C,Y, θ0) = w1 (A1)

u(C,Y, θ0) ≥ u(C ◦ θ̂,Y ◦ θ̂, θ0) ∀θ̂ s.t. Y ◦ θ̂ ≤ θ

where the last inequality is just the incentive compatibility constraint (1). Next Lemma shows that

this is just an equivalent way of writing the social planner’s sequence problem.
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Lemma 7 Suppose that there exist an allocation C∗,Y∗, initial utility entitlement w1 and prices

{qt}t≥1 satisfying
P
t≥1

tQ
i=1

qi ≤ +∞ such that

i) C∗,Y∗ solves the sequence cost minimization problem of the social planner and

ii) for all t, for all θt−1 ∈ Θt−1Z
θt∈Θ

[Ct(θ
t)− Yt(θ

t)]Π(θt|θ0)dθt = 0 (A2)

Then C∗,Y∗ solves the sequence problem of the social planner.

Proof. First consider a relaxed problem with inequality u(C,Y, θ0) ≥ w1 instead of constraint

(A1). Suppose that Ĉ∗, Ŷ∗ solves the sequence problem. By construction, C∗,Y∗ satisfies the

resource constraint for all periods and the incentive compatibility constraint. Thus, we must have

u(Ĉ∗, Ŷ∗, θ0) ≥ u(C∗,Y∗, θ0). This in turn implies that Ĉ∗, Ŷ∗ satisfies all the constraint of the re-

laxed program and thus u(Ĉ∗, Ŷ∗, θ0) ≤ u(C∗,Y∗, θ0) implying that u(Ĉ∗, Ŷ∗, θ0) = u(C∗,Y∗, θ0)

and that Ĉ∗ = C∗ and Ŷ∗ = Y∗. Finally, standard arguments imply that u(C,Y, θ0) ≥ w1 will

hold as a strict equality.

Next Lemma starts with the cost minimization problem and proves that the sequence cost

minimization problem can be as well written as a dynamic program decentralized among different

component planners. This Lemma thus shows that the optimal allocation can be decentralized.

Lemma 8

i) Suppose c,y,w0 is a recursive allocation and that C∗,Y∗ is an allocation generated by the

recursive allocation. Then C∗,Y∗ satisfies incentive compatibility constraint 1 and resource con-

straint 2 and Ω(w1, θ0) ≤ V̂1(w1, θ0) for all w1, θ0

ii) Suppose C∗,Y∗ is an allocation that solves the sequence cost minimization problem. Than

there exists a recursive allocation c,y,w0 such that the recursive allocation solves component plan-

ner’s problem and V̂1(w1, θ0) ≤ Ω(w1, θ0) for all w1, θ0
iii)V̂1(w1, θ0) = Ω(w1, θ0)

Proof of part i). It is immediate that C∗,Y∗ is an allocation. We need to show that it also

delivers expected utility w1 and that it is incentive compatible.
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i.1 (promise keeping) We will first show that the promise keeping constraint holds. To

simplify notation, let

f∗t (w(.), θ−; θ̂, θ) = U(c∗t (w(.), θ−; θ̂),
y∗t (w(.), θ−; θ̂)

θ
)

F ∗t (w1, θ̂
t
, θt) = U(C∗t (w1, θ̂

t
),
Y ∗t (w1, θ̂

t
)

θt
)

i.e f∗t represents period utility resulting from the recursive allocation and F ∗t represents period util-

ity resulting from the allocation. Recall from the definition of an allocation generated by the recur-

sive formulation, that we have defined a continuation utility Wt(w1, θ̂
t−1
; θt−1) that satisfies initial

condition W1(w1,∅; θ0) = w1 and solves a difference equation W̃2(w1, θ̂1; θ1) = w∗1(w1, θ0; θ̂1, θ1)

and W̃t+1(w1, θ̂
t
; θt) = w∗t+1(W̃t(w1, θ̂

t−1
, θ̂t−1), θ̂t−1; θ̂t, θt) for t > 1.

Fix w1, θ̂
t−1

and θt−1. The promise keeping constraint of the component planner implies that

Wt(w1, θ̂
t−1

, θt−1) (A3)

=

Z
θt

[f∗t (Wt(w1, θ̂
t−1
; θt−1), θt−1; θt, θt)) + βw0t+1(Wt(w1, θ̂

t−1
; θt−1), θt−1; θt, θt)]π(θt|θt−1)dθt

From the definition of Wt and Ft the right hand side can be as well written asZ
θt

[F ∗t (w1, (θ̂
t−1

, θt); θt) + βWt+1(w1, (θ̂
t−1

, θt); θt)]π(θt|θt−1)dθt.

Using component planner’s promise keeping constraint again and expanding the last term, we

have an expression for the right hand sideZ
θ0

F ∗t (w1, (θ̂
t−1

, θt); θt)π(θt|θt−1)dθt

+β

Z
θt,θt+1

[f∗t+1(Wt+1(w1, (θ̂
t−1

, θt); θt), θt; θt+1, θt+1)π(θt, θt+1|θt−1)dθt+1dθt

+β2
Z

θt,θt+1

w0t+2(Wt+1(w1, (θ̂
t−1

, θt); θt), θt; θt+1, θt+1)]π(θt, θt+1|θt−1)dθt+1dθt.

By definition of f∗ and w0 this equals toZ
θ0

F ∗t (w1, (θ̂
t−1

, θt), θt)π(θt|θt−1)dθt + β

Z
θt,θt+1

F ∗t+1(w1, (θ̂
t−1

, θt, θt+1); θt+1)π(θt, θt+1|θt−1)dθt+1dθt

+β2
Z

θt,θt+1

Wt+2(w1, (θ̂
t−1

, θt, θt+1), θt+1)]π(θt, θt+1|θt−1)dθt+1dθt
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By repeated substitution of the promise keeping constraint (TRANSVERSALITY - TO BE

COMPLETED) we have

Wt(w1, θ̂
t−1

, θt−1) =
X
j≥0

Z
θt+jt

βjF ∗t+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θt−1)dθt (A4)

Setting t = 1 and θt−1 = θ0 we have proven (A1). This is because the right hand side is equal to

u(C,Y, θ0) and the initial condition of the difference equation implies that W1(w1,∅; θ0) = w1.

i.2 (incentive compatibility) To show incentive compatibility, take any (w1, θ
t−1) pair. It

follows from equations (A3) and (A4) that

X
j≥0

Z
θt+jt

βjF ∗t+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θt−1)dθt

=

Z
θt

[F ∗t (w1, (θ̂
t−1

, θt), θt) + βWt+1(w1, (θ̂
t−1

, θt); θt)]π(θt|θt−1)dθt

=

Z
θt

[f∗t (Wt(w1, θ̂
t−1

, θt−1), θt−1; θt, θt)) + βw0t+1(Wt(w1, θ̂
t−1

, θt−1), θt−1; θt, θt)]π(θt|θt−1)dθt

Consider any function θ̂t(.) : Θ→ Θ that represents a reporting strategy in period t.10 By the

incentive compatibility of the component planner’s problem,Z
θt

[f∗t (Wt(w1, θ̂
t−1

, θt−1), θt−1; θt, θt)) + βw0t+1(Wt(w1, θ̂
t−1

, θt−1), θt−1; θt, θt)]π(θt|θt−1)dθt

≥
Z
θt

[f∗t (Wt(w1, θ̂
t−1

, θt−1), θt−1; θ̂t(θt), θt)) + βw0t+1(Wt(w1, θ̂
t−1

, θt−1), θt−1; θ̂t(θt), θt)]π(θt|θt−1)dθt

Right hand side can be equivalently written asZ
θt

F ∗t (w1, (θ̂
t−1

, θ̂t(θt)), θt−1); θt)dθt + β

Z
θt

Wt+1(w1, (θ
t−1, θ̂t(θt)); θt)π(θt|θt−1)dθt (A5)

We have shown that a one period deviation is not optimal. To show that an arbitrary deviation is

suboptimal, we must apply the incentive compatibility of the component planner repeatedly. The

10The history up to period t is soppressed to simplify notation.
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expression (A5) can be written asZ
θt

[F ∗t (w1, (θ̂
t−1

, θ̂t(θt)), θt−1); θt)dθt + β

Z
θt,θt+1

[f∗t+1(Wt+1(w1, (θ
t−1, θ̂t(θt)); θt), θt; θt+1, θt+1)dθt+1dθt

+β2
Z

θt,θt+1

w0t+2(Wt+1(w1, (θ
t−1, θ̂t(θt)); θt), θt; θt+1, θt+1))]π(θt, θt+1|θt−1)dθt+1dθt

≥
Z
θt

[F ∗t (w1, (θ̂
t−1

, θ̂t(θt)), θt−1); θt)dθt + β

Z
θt,θt+1

[f∗t+1(Wt+1(w1, (θ
t−1, θ̂t(θt)); θt), θt; θ̂t+1(θt, θt+1), θt+1)dθt+1dθ

+β2
Z

θt,θt+1

w0t+2(Wt+1(w1, (θ
t−1, θ̂t(θt)); θt), θt; θ̂t+1(θt, θt+1), θt+1))]π(θt, θt+1|θt−1)dθt+1dθt

where θ̂t+1(.) : Θ
2 → Θ is an arbitrary reporting strategy in period t + 1 and the inequality

follows from the component planner’s incentive compatibility. If we apply incentive compatibility

repeatedly, we get that

X
j≥0

Z
θt+jt

βjF ∗t+j(w1, (θ̂
t−1

, θt+jt ), θt+j)Π(θ
t+j
t |θt−1)dθt

≥
X
j≥0

Z
θt+jt

βjF ∗t+j(w1, (θ̂
t−1

, θ̂
t+j
(θt+j)), θt+j)Π(θ

t+j
t |θt−1)dθt

for any reporting strategy θ̂
∞
t = {θ̂j}j≥t .Setting t = 1, proves incentive compatibility of C̃∗, Ỹ∗.

Thus, the allocation C̃∗, Ỹ∗ satisfies all the constraints of the sequential problem. It is easy

to show by recursive substitution of the Vt function that the objective functions are the same and

therefore Ω(w1, θ0) = V̂1(w1, θ0)

Proof of part ii). We must first define a candidate recursive allocation. CONVEXITY -

LATER. Let F be defined as before. Define also

Wt(w1, θ̂
t−1

, θt−1) =
X
j≥t

Z
θt+jt

βj−1F ∗t+j−1(w1, (θ̂
t−1

, θt+j−1t ), θt+j)Π(θ
t+j
t |θt−1)dθt

For any function w(.) ∈ LΘ and θt−1 ∈ Θ construct a set

Ht(w(.), θt−1) = {w1, θ̂t−1 :Wt(w1, θ̂
t−1

, θt−1) = w(θt−1)}

It is the set of all histories and initial utility entitlements such that the promised utility function is

w(.) and last period shock was θt−1. If the set Ht(w(.), θt−1) is empty, then set ct(w(.), θt−1, θ̂t) =
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U−1[(1− β)w(.)] and w0t+1(w(.), θt−1, θ̂, θt) = w(.). If not, let

ct(w(.), θt−1, θ̂t) = C∗t (w1, θ̂
t
) for all w1, θ̂

t−1 ∈ Ht(w(.), θt−1)

yt(w(.), θt−1, θ̂t) = Y ∗t (w1, θ̂
t
) for all w1, θ̂

t−1 ∈ Ht(w(.), θt−1)

w0t+1(w(.), θt−1, θ̂t, θt) = Wt+1(w1, θ̂
t
, θt) for all w1, θ̂

t−1 ∈ Ht(w(.), θt−1)

To simplify the algebra, recall the the definition of period utility used before implies that

ft(w(.), θ̂t−1, θ̂t, θt) = F ∗t (w1, θ̂
t
, θt) for all w1, θ̂

t−1 ∈ Ht(w(.), θt−1)

We need to show that the recursive allocation satisfies temporary incentive compatibility,

promise keeping and that it belongs to set B∗.

ii.1(incentive compatibility)We first show that this recursive mechanism satisfies temporary

incentive compatibility. Take any w1, θ̂
t−1 ∈ Ht(w(.), θt−1). By definition, we have

ft(w(.), θt−1, θt, θt) + βw0t+1(w(.), θt−1; θt, θt) = F ∗t (w1, (θ̂
t−1

, θt), θt) + βWt+1(w1, (θ̂
t−1

, θt), θt).

We expand the term Wt+1 on the right hand side and apply incentive compatibility and the

separability result of Lemma (6). Since the allocation is incentive compatible, any reporting strategy

θ̂
∞
t = {θ̂j}j≥t is suboptimal. Consider in particular a one period deviation strategy where the agent
reports θ̂t after history (θ̂

t−1
, θt) and tells the truth otherwise. Incentive compatibility implies that

F ∗t (w1, (θ̂
t−1

, θt), θt) + β
X
j≥1

Z
θt+jt+1

βj−1F ∗t+j(w1, (θ̂
t−1

, θt, θ
t+j
t+1), θt+j)Π(θ

t+j
t+1|θt)dθt

≥ F ∗t (w1, (θ̂
t−1

, θ̂t), θt) + β
X
j≥1

Z
θt+jt+1

βj−1F ∗t+j(θ̂
t−1

, θ̂t, θ
t+j
t+1), θt+j)Π(θ

t+j
t+1|θt)dθt

But by definition of Wt+1, ft and w0t+1 the right hand side is equal to

F ∗t (w1, (θ̂
t−1

, θ̂t), θt) + βWt+1(w1, θ̂
t−1
; θ̂t, θt) = ft(w(.), θt−1; θ̂t, θt) + βw0t+1(w(.), θt−1; θ̂t, θt)

which proves that the recursive allocation is incentive compatible.
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ii.2(promise keeping) Next step is to show that the promise keeping constraint holds. We

have, for all w1, θ̂
t−1 ∈ Ht(w(.), θt−1),Z

θt∈Θ
[ft(w(.), θt−1, θt, θt) + βw0t+1(w(.), θt−1, θt, θt)]π(θt|θt−1)dθt

=

Z
θt∈Θ

F ∗t (w1, (θ̂
t−1

, θt), θt) + βWt+1(w1, (θ̂
t−1

, θt), θt)π(θt|θt−1)dθt

=
X
j≥t

Z
θt+jt

βj−1F ∗t+j−1(w1, (θ̂
t−1

, θt+j−1t ), θt+j)Π(θ
t+j
t |θt−1)dθt

= Wt(w1, θ̂
t−1

, θt−1)

= w(.)

The equality are repeated uses of definitions and the last equality uses the fact that w1, θ̂
t−1 ∈

Ht(w(.), θt−1). Hence, our candidate recursive allocation satisfies all the constraints of the dynamic

program. We must have V̂1(w1, θ0) ≤ Ω(w1, θ0).
ii.3 (inclusion in B∗) The last step to show is that w0t+1(w(.), θ̂t−1, θt, .) ∈ B∗ for all t, all

w(.). Fix T. Let BT = LΘ. Define for t = 1..T

BT
t−1 = {w ∈ LΘ:∃c : Θ→ R+, y : Θ→ R+, w0 : Θ2 → R

such that

w(θ̂−) =
Z
θ

[U(c(θ),
y(θ)

θ
) + βw0(θ, θ)]π(θ|θ̂−)dθ

U(c(θ), 1− y(θ)

θ
) + βw0(θ, θ) ≥ U(c(θ̂),

y(θ̂)

θ
) + βw0(θ̂, θ) ∀θ̂ s.t. y(θ̂) ≤ θ, all θ

w0(θ, .) ∈ BT
t }

It is easy to see that w0T (w(.), θ̂t−1, θt, .) ∈ BT
T−1 for all w(.) For instance, cT (w(.), θT−1, .),

yT (w(.), θT−1, .).and w0T+1(w(.), θT−1, θT , .) satisfies the conditions of the equation..An induction

argument implies that w0t+1(w(.), θt−1, θt, .) ∈ BT
t (θt),all w(.) ∈ LΘ, all θt, all t = 1...T. If we show

that lim
T→∞

BT
t = B∗ for all t then the proof is complete. To show this, note that by construction we

have BT
t = BT−t+1

1 . Thus, it is enough to show that lim
T→∞

BT
1 = B. This follows simply from the

fact that B∗ is a fixed point of (5). This concludes this part of the proof.

Proof of part iii). This is a trivial implication of parts i) and ii).

Proof of theorem (1). If c∗, y∗, w0∗ solves the component planner’s problem, then by

Lemma (8) there is an allocation C∗,Y∗ satisfying V̂1(w1, θ0) = Ω(w1, θ0). It is easy to show
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that the resource constraint (6) implies that the resource constraint (A2) in the cost minimization

sequence problem holds. It follows from Lemma (7) that w1 = u(C∗,Y∗, θ0). The proof of the

corollary follows.

Lemma 9 The continuation utility function w0(θ̂, θ) is twice differentiable with respect to θ. More-

over, ¯̄̄̄
∂

∂θ
w0(θ̂, θ)

¯̄̄̄
≤ κ̄(θ)

for some integrable function κ̄(θ).

Proof. We start with the observation that, from the definition of the set B∗, this function has

to satisfy, for any θ̂,

w0(θ̂, θ) =
Z
θ

[U(c̃(θ0),
ỹ(θ0)
θ0

) + βw̃0(θ0, θ0)]π(θ0|θ)dθ

for some functions c̃, ỹ and w̃0. (The argument of the proof goes through for any such functions,

so we do not need to worry about their properties). Notice that the left hand side of the equation

contains θ only as an argument in π(θ0, θ). We know that this function is twice continuously

differentiable. Thus, w0(θ̂, θ) must also be twice continuously differentiable in θ, otherwise the

promise keeping constraint can never be satisfied. Hence if w0(θ, .) is not twice differentiable then

w0(θ, .) /∈ B∗.Thus. w0(θ̂, θ) will always be twice differentiable with respect to θ.

We have assumed that there exists an integrable function b : Θ→ R such that
¯̄̄
π2(θ

0|θ)
π(θ0|θ)

¯̄̄
≤ κ(θ)

for all θ0 and almost all θ. Thus,

∂

∂θ
w0(θ̂, θ) =

Z
θ

[U(c̃(θ0),
ỹ(θ0)
θ0

) + βw̃0(θ0, θ0)]π2(θ0|θ)dθ

=

Z
θ

[U(c̃(θ0),
ỹ(θ0)
θ0

) + βw̃0(θ0, θ0)]
π2(θ

0|θ)
π(θ0|θ) π(θ

0|θ)dθ

≤

By properties of π2(θ
0|θ)

π(θ0|θ) we have¯̄̄̄
∂

∂θ
w0(θ̂, θ)

¯̄̄̄
≤ κ(θ)

¯̄̄̄
¯̄Z
θ

[U(c̃(θ0),
ỹ(θ0)
θ0

) + βw̃0(θ0, θ0)]π(θ0|θ)dθ
¯̄̄̄
¯̄

The second term is bounded by some constant κ̃ because the utility is bounded. Hence¯̄̄̄
∂

∂θ
w0(θ̂, θ)

¯̄̄̄
≤ κ̄(θ)
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where κ̄(θ) = κ(θ)κ̃.

Proof of Theorem (2). I first prove the envelope theorem first and then sufficiency and

necessity of the condition i).

Let X(θ̂, θ) = U(c(θ̂), 1− y(θ̂)
θ ) + βw0(θ̂, θ)). Let X(θ, θ) = X∗(θ).We have ∂

∂θX(θ̂, θ) = Ul
y(θ̂)

θ2
+

∂
∂θw

0(θ̂, θ). From Lemma 9, the derivative is correctly defined. The envelope theorem requires that,

in addition, the term X1(θ, θ̂) satisfies Lipschitz condition sup
θ̂

¯̄̄
Ul

y(θ̂)

θ2
+ ∂

∂θw
0(θ̂, θ)

¯̄̄
≤ κ̃(θ) for some

integrable κ̃(θ).By Lemma 9 again, the second term satisfies this property. The first one satisfies

the boundedness condition as well (SHOW- STANDARD ARGUMENTS).

¯̄
X∗(θ)−X∗(θ0)

¯̄
=

¯̄̄̄
¯sup
θ̂∈Θ

X(θ̂, θ)− sup
θ̂∈Θ

X(θ̂, θ0)

¯̄̄̄
¯

≤ sup
θ̂∈Θ

¯̄̄
X(θ̂, θ)−X(θ̂, θ0)

¯̄̄

= sup
θ̂∈Θ

¯̄̄̄
¯̄
θ0Z
θ

∂

∂θ
X(θ̂, ς)dς

¯̄̄̄
¯̄ ≤

θ0Z
θ

sup
θ̂∈Θ

¯̄̄̄
∂

∂θ
X(θ̂, ς)

¯̄̄̄
dς

≤
θ0Z
θ

κ̃(ς)dς

HenceX∗(θ) is absolutely continuous and differentiable almost everywhere, with derivativeX1(θ, θ̂).

Then we have

X(θ, θ) = X(0, 0) +

θZ
0

∂

∂θ
X(ς, ς)dς

Using U0 = X(0, 0) and the definition of X we conclude the proof.

I show second order conditions assuming differentiability of the policy functions. A standard

argument shows that second order condition can be equivalently written as

∂2

∂θ∂θ̂
X(θ, θ) ≥ 0

i.e.

(
∂

∂θ
Uc)

dc

dθ̂
+ (

∂

∂θ
Ul
1

θ
)
dy

dθ̂
+ β

∂2

∂θ∂θ̂
w0(θ, θ) ≥ 0

by using the first order condition

Uc
dc

dθ̂
+ Ul

1

θ

dy

dθ̂
+ β

∂

∂θ̂
w0(θ, θ) = 0
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to eliminate dc
dθ̂
and rearranging we get

(
∂

∂θ

Ul

Uc

1

θ
)
dy

dθ̂
+ β(

∂

∂θ

∂
∂θ̂
w0

Uc
) ≥ 0

The first term on the left hand side is positive by assumptions about utility function. However, the

properties of the second term are not known.

We can, however, see that if we define M(θ̂, θ) as follows:

M(θ̂, θ) =
dy

dθ̂

Ul

Uc

1

θ
+ β

∂
∂θ̂
w0

Uc

then M(θ̂, θ) must be increasing in θ. for θ̂ = θ.

Sufficiency of this condition can be shown as follows. Suppose it holds, but there is some θ̂ such

that X(θ̂, θ)−X(θ, θ) > 0. Therefore

θ̂Z
θ

∂

∂θ̂
X(ς, θ)dς > 0

which can be written as

θ̂Z
θ

Uc[
dc

dθ̂
(ς) +

Ul

Uc

1

θ

dy(ς)

dθ̂
+ β

∂
∂θ̂
w0(ς, θ)
Uc

]dς > 0

By using the term M(θ̂, θ) we have

θ̂Z
θ

Uc[
dc

dθ̂
(ς) +M(ς, θ)]dς > 0

and, since the term M(ς, θ) is increasing in its second argument, the equation implies that

θ̂Z
θ

Uc[
dc

dθ̂
(ς) +M(ς, ς)]dς > 0.

But this contradicts the first order condition.

Proof of Lemma (4). Denote the Lagrange multiplier on the resource constraint, threat

keeping constraint and incentive compatibility constraint as Λw,Λg and M(θ) respectively. The

first order conditions in U give us

feU = θ(fΛw + fθΛg +M)−
∞Z
θ

M(ε)dε

0 =

∞Z
0

M(ε)dε
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The first order condition in W 0(θ) is

fVw(W
0,G0, θ) = fΛw + fθΛg +M

and we also have a limiting condition lim
θ→0

fVw(W
0, G0, θ) =

∞R
0

M(ε)dε. The first order condition

in G0(θ) is

fVg(W
0, G0, θ) = −

∞Z
θ

M(ε)dε

Finally, the envelope conditions for the problem are

Vw(w, g, θ−) = Λw

Vg(w, g, θ−) = Λg

Now make a guess that the policy functions satisfy

U(w, g, θ−, θ) = auw + u(g̃, θ−, θ)

W 0(w, g, θ−, θ) = aww +w0(g̃, θ−, θ)

G0(w, g, θ−, θ) = agw + g0(g̃, θ−, θ)

Λw(w, g, θ−) = λw(g̃, θ−)eaλww

Λg(w, g, θ−) = λg(g̃, θ−)eaλgw

M(w, g, θ−, θ) = µ(g̃, θ−, θ)eaµw

and that the value function satisfies

V (w, g, θ−) = v(g̃, θ−)eaw

We will verify this guess and determine the coefficients a of the policy functions and the value

function and the value of rescaled promised marginal utility g̃. If these policy functions are valid,

the coefficients must be such that all the terms involving w cancel out. This is because the equations

must hold for all w.

Let γ(θ−) = E(θ|θ−). From the promise keeping constraint we have that the coefficients must

satisfy 1 = γ(θ−)au + βaw. The threat keeping constraint implies that g = auγθ−(θ−)w sinceR
awfθ− = 0. The incentive compatibility constraint holds for ag = 0 and for any au and aw

since the terms involving them cancel out. First order condition in U implies that we must have

au = aλw = aλg = aµ. First order condition in W 0 will be identically satisfied if awa = au while
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first order condition in g0 holds if awa = aµ. The envelope conditions hold if aλw = a and aλg = a.

Finally, we can verify the guess by checking that all the terms involving w also cancel in the Bellman

equation itself. This restricts the coefficients to be such that a = au = a.aw.

All these equalities are mutually consistent only if a = au = aλw = aλg = aµ =
1−β
γ(θ−) and that

aw = 1. The envelope condition also implies that 1−β
γ(θ−)v(g̃, θ−) = λw(g̃, θ−). The threat keeping

constraint can now be written as

g − auγθ−(θ−)w =
Z
[θu(θ) + βw0(θ)]fθ−(θ|θ−)dθ

and we therefore set ĝ = g − (1− β)
d

dθ− γθ−
γθ−

w. This completes the proof.

Proof of Lemma (5). We need to verify that these guesses satisfy the Bellman equation and

the constraints. For the sake of completeness, we also verify that the first order conditions satisfy

the guess and show how to normalize the Lagrange Multipliers.

Note first that since θ is from lognormal distribution, its density satisfies π(θ|θ−) = θ−ρ− π( θ
θρ−
|1).

In addition, its derivative πθ− satisfies πθ−(θ|θ−) = θ
−(ρ+1)
− πθ−(

θ
θρ−
|1).

The promise keeping constraint is

0 =

Z
[θu(g, θ, θ−) + βw0(g, θ, θ−)]π(θ|θ−)dθ

= θρ−

Z
[
θ

θρ−
u(θ1−ρ− g,

θ

θρ−
, 1) + βw0(θ1−ρ− g,

θ

θρ−
, 1)]π(

θ

θρ−
|1) dθ

θρ−

= θρ−

Z
[εu(θ1−ρ− g, ε, 1) + βw0(θ1−ρ− g, ε, 1)]π(ε|1)dε

= 0

where we have used substitution ε = θ
θρ−
.

The threat keeping constraint is

g =

Z
[θu(g, θ, θ−) + βw0(g, θ, θ−)]πθ−(θ|θ−)dθ

= θρ−

Z
[
θ

θρ−
u(θ1−ρ− g,

θ

θρ−
, 1) + βw0(θ1−ρ− g,

θ

θρ−
, 1)]πθ−(

θ

θρ−
|1) dθ

θρ+1−

= θρ−1−

Z
[εu(θ1−ρ− g, ε, 1) + βw0(θ1−ρ− g, ε, 1)]πθ−(ε|1)dε

= θρ−1− θ1−ρ− g

= g

so that threat keeping constraint is also satisfied.
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For the incentive compatibility constraint we use the fact that ϕ(θ) = (1− β)ρθ :

θ

θρ−
u(θ1−ρ− g,

θ

θρ−
, 1) + βw0(θ1−ρ− g,

θ

θρ−
, 1) = θ−ρ− [θu(g, θ, θ−) + βw0(g, θ, θ−)]

= θ−ρ− {
θZ
0

[u(g, ε, θ−) + βz(g, ε, θ−) + (1− β)
βρ

ε
w0(g, ε, θ−)]dε+ βw00(g, θ−)}

=

θZ
0

[u(θ1−ρ− g,
ε

θρ−
, 1) + βz(θ1−ρ− g,

ε

θρ−
, 1) + (1− β)

βρ

ε
θρ−w

0(θ1−ρ− g,
ε

θρ−
, 1)]

dε

θ−ρ−
+ βw00(θ

1−ρ
− g,

θ−
θρ−
)

=

θ

θ
ρ
−Z
0

[u(θ1−ρ− g, ε̃, 1) + βz(θ1−ρ− g, ε̃, 1) + (1− β)
βρ

ε̃
w0(θ1−ρ− g, ε̃, 1)]dε̃+ βw00(θ

1−ρ
− g,

θ−
θρ−
)

where the substitution ε̃ = ε
θ−ρ−

was used. Thus, the incentive compatibility constraint is satisfied

as well.

The Bellman equation is

v(g, θ−) =
Z
[eu(g,θ,θ−) + βe

1−β
γθ−

w0(g,θ,θ−)
v(z(g, θ, θ−), θ)]π(θ|θ−)dθ

=

Z
[e
u(θ1−ρ− g, θ

θ
ρ
−
,1)
+ βe

1−β
θ
ρ
−γ1

θρ−w
0(θ1−ρ− g, θ

θ
ρ
−
,1)
v(z(θ1−ρ− g,

ε

θρ−
, 1), θ)]π(

θ

θρ−
|1) dθ

θρ−

=

Z
[eu(θ

1−ρ
− g,ε,1) + βe

1−β
γ1

w0(θ1−ρ− g,ε,1)
v(z(θ1−ρ− g, ε, 1), θ)]π(ε|1)dε

= v(θ1−ρ− g, 1)

We guess that the Lagrange Multipliers satisfy λw(g, θ−) = λw(θ
1−ρ
− g, 1)θ−ρ− , λg(g, θ−) =

λg(θ
1−ρ
− g, 1)θ1−ρ− and µ(g, θ, θ−) = µ(θ1−ρ− g, θ

θρ−
, 1)θ−2ρ− . The first order condition for u is

π(
θ

θρ−
|1)eu(θ

1−ρ
− g, θ

θ
ρ
−
,1)
= θρ−π(θ|θ−)eu(g,θ,θ−)

= θρ−{θ[λw(g, θ−)π(θ|θ−) + λg(g, θ−)πθ−(θ|θ−) + µ(g, θ, θ−)]−
∞Z
θ

µ(g, ε, θ−)dε}

=
θ

θρ−
[λg(θ

1−ρ
− g, 1)π(

θ

θρ−
|1) + λg(θ

1−ρ
− g, 1)πθ−(

θ

θρ−
|1) + µ(θ1−ρ− g,

θ

θρ−
, 1)]− 1

θρ−

∞Z
θ

µ(θ1−ρ− g,
ε

θρ−
, 1)dε

=
θ

θρ−
[λg(θ

1−ρ
− g, 1)π(

θ

θρ−
|1) + λg(θ

1−ρ
− g, 1)πθ−(

θ

θρ−
|1) + µ(θ1−ρ− g,

θ

θρ−
, 1)]−

∞Z
θ

θ
ρ
−

µ(θ1−ρ− g, ε̂, 1)dε̂

Similar calculations go for other first order conditions.
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