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Abstract

The paper introduces a novel approach to statistical inference in the nonsta-
tionary panels. The approach takes a new contour on which the nonstationary
models yield standard normal asymptotics free of nuisance parameters. The
new contour is drawn along the line given by the equi-squared-sum, instead of
the traditional one given by the equi-sample-size. Along the new contour, we
show that the distributions of commonly used unit root tests are normal in large
samples. The normal asymptotics hold under both the null of a unit root and
the local-to-unity alternative, and for the IV t-ratio as well as the usual t-ratio.
Moreover, they are applicable also for the models with intercept or linear time
trend, as long as is used the demeaning or detrending method relying only on
the past information. Subsequently, we demonstrate that this startling finding
may be exploited to invent tools and methodologies for the effective inferences in
nonstationary panel context. In particular, our theory implies that the individ-
ual tests may be viewed as asymptotically normal samples if they are computed
using the samples which have the same sum of squares across all cross-sectional
units. Consequently, we may use various functionals of those individual tests to
do valid inferences in nonstationary panels.
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1. Introduction

Inference in nonstationary panels has recently drawn much attention as more panel datasets
covering long time spans became available. In particular, the unit root tests in panels have
been frequently used by numerous authors to investigate many important economic inter-
relationships among countries or regions, which may imply convergence, divergence or parity
of some sets of economic variables. The growth convergence and the purchasing power parity
of exchange rates are prime examples, and routinely examined by the unit root tests applied
to the time series observations across the countries or regions under investigation. The unit
root tests that are applicable for the panel data have been developed by many authors
including Levin, Lin and Chu (2002), Quah (1994), Im, Pesaran and Shin (2003), Maddala
and Wu (1999), Choi (2001a, 2001b), Chang (1999, 2002), Chang and Song (2002), Moon
and Perron (2001), Phillips and Sul (2001), Bai and Ng (2002) and Pesaran (2003). See, e.g.,
Phillips and Moon (2000) and Baltagi and Kao (2000) for surveys on the recent development
of the unit root tests in panels.

All of the existing panel unit root tests combine some transformations of the individ-
ual unit root statistics obtained across cross-sectional units. Quite naturally, under the
assumption of cross-sectional independence, the appropriately transformed and standard-
ized combinations of individual tests are well expected to be approximately normal as the
number of cross sections N gets large. Indeed, virtually all the panel unit root tests rely
on normal N -limit theory, whose validity requires the appropriate normalizations of indi-
vidual tests, as well as the asymptotic cross-sectional independence. It is therefore fair to
say that a good panel test is the one which efficiently normalizes the individual tests and
effectively deals with cross-sectional dependency. In this paper, we concentrate more on
efficient normalization of the individual tests. The problem of cross-sectional dependency
was first addressed in Chang (2002), and dealt with the methodology based on nonlinear
instrumental variable estimation. Subsequent authors introduced common factors in their
models to allow for cross-sectional dependency.

The efficient normalization of the individual tests is much more difficult than one might
think. As is well known, the individual unit root tests have null distributions that are
nonstandard and nonnormal. Their time T -asymptotics yield distributions commonly rep-
resented by various functionals of Brownian motions, and in particular, known to be asym-
metric and skewed. See, e.g., Fuller (1996) for the tabulations of them. Consequently, the
standardization through the mean and variance adjustment or the p-value transformation,
which are two most frequently used methods for normalization, often works poorly even if
T is relatively large. Worse, the errors made in the normalizations for individual tests are
accumulated as N of them are combined to compute the panel unit root test. Obviously,
the problem gets worse as N increases. We require, however, N tend to infinity to obtain
the normal N -asymptotics. This is a serious dilemma. To overcome this difficulty, we take a
totally different method in this paper: A novel approach based on a new contour to achieve
efficient normalization of the individual tests.

The sampling distribution of a statistic is usually obtained for a given sample size.
Using the conventional sampling distribution of the statistic for the purpose of statistical
inference thus implies that we evaluate the likelihood of a realized value of a statistic along
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Figure 1: Sample Paths with Equal Sample Size

the contour given by the fixed sample size. In this paper, we suggest to take a different
contour in obtaining the sampling distribution of the statistic, i.e., the contour that is given
by the fixed sum of squares. In order to assess the likelihood of the statistic, we therefore
look for other possible realizations with their sum of squares, rather than their sample
sizes, holding fixed. For the observations from stationary time series, the sum of squares
becomes a constant multiple of the sample size for large samples. The contours of the
equi-sample-size and the equi-squared-sum to evaluate the likelihood of a realized sample
are thus virtually identical if the size of the sample is large enough. This is not so for the
samples from unit root processes. If normalized as necessary, the sum of squares of the
samples from unit root processes remain to be random. For the unit root samples, it would
thus yield a new meaning different from the conventional one to evaluate the likelihood of
a given realization against all other possible realizations with the same sum of squares.

As an illustration, we provide ten simulated sample paths with equal sample size, and
another ten with equal sum of squares, respectively, in Figures 1 and 2.2 For the equi-
sample-size paths provided in Figure 1, the one with largest sum of squares are presented in
the top-left corner and the one with the smallest sum of squares in the bottom-right corner.
For the sample paths with equi-squared-sum in Figure 2, the one with the smallest sample
size to attain the required squared sum is presented in the top-left corner, and the one with
the largest sample size in the bottom-right corner. Figures 1 and 2 represent two different

2More precisely, ten sample paths at 5%, . . . , 95% percentiles were chosen out of ten thousand realizations.
The sample size is fixed at 100 for Figure 1, while we set the sum of squares to be 0.23 times 100 squared
for Figure 2. The setting yields the most comparable results for the two contours considered here.
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Figure 2: Sample Paths with Equal Sum of Squares

contours we may take to obtain the sampling distributions of the statistics involving unit
root processes. Here the choice is whether to look at other possible realizations along the
contour of the samples either of fixed sample size (with varying sums of squares as required
to have the same sample size) as in Figure 1, or of fixed sum of squares (with varying
sample sizes as required to have the same sum of squares) as in Figure 2.

Both the size and the sum of squares represent the information contents in the sample
on population. Needless to say, the larger dataset and the dataset with larger sampling
variations would help us perform more precise inference on the underlying data generating
mechanism. The asymptotics, however, become completely different depending upon which
contour we take. In sharp contrast with the conventional contour of the equi-sample-size,
the contour of the equi-squared-sum yields normal asymptotics and conventional statistical
theories for the unit root tests. Indeed, we show in the paper that the asymptotics obtained
for large sum of squares, along the contour of the equi-squared-sum, are normal. The
critical values for the t-ratio can therefore be obtained from the standard normal table,
and all other relevant statistical theories both under the null of a unit root and under the
alternative of local-to-unity just follow exactly as in the standard regression model given
in the elementary econometrics textbook. This is true for models with fitted mean as well,
as long as they are removed properly using only the past information for each observation.
Our normal asymptotics also well extend to the nonlinear IV approach by Phillips, Park
and Chang (2004).

The new asymptotics along the contour of the equi-squared-sum we derive have very
important and far-reaching implications for inference in nonstationary panels. For the
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independent panels, it would imply that the individual unit root tests behave asymptotically
as if they were independent and identically distributed standard normals, if we observe their
values along the contour of the equi-squared-sum. That is, if we set the sum of squares to
be the same across all cross-sectional units, the resulting individual unit root tests can be
regarded as standard normal samples. This rather startling result would certainly give us a
great opportunity to do effective inferences in nonstationary panels. For instance, we may
now use the order statistics such as the maximum or minimum to test the null hypothesis
that all (some) cross-sections have unit roots against the alternative that some (all) do not.
Under the equi-squared-sum scheme, the individual tests have normal T -asymptotics for
each N , regardless of being small or large, or letting it be fixed or tend to infinity. We may
indeed rely on standard normal distribution theory for both T , N or their joint asymptotics
if we simply aggregate the individual test statistics along the new contour.

There is one special case where two contours become identical. This is when the usual
sign function is used as the instrument generating function. The resulting estimator, which
is often called the Cauchy estimator, has the fixed sum of squares given by the sample size
for all its realizations. The Cauchy t-ratio therefore has the standard normal T -asymptotics,
along the contours of both the equi-squared-sum and the equi-sample-size. This is rather
important, since usually the data are collected along the contour of the equi-sample-size.
When the data are given for a fixed sample size, to do inference along the contour of
the equi-squared-sum necessarily implies that we do not use some part of our data. For
the standard t-ratio, for instance, we must discard some of our observations to take new
contour. This, however, is unnecessary for the Cauchy t-ratio, and we may utilize full
samples. Therefore, under the usual circumstances that the individual cross-sectional units
have the equal number of time series observations, the use of the Cauchy t-ratio is preferred.
In this case, the panel unit root test based on the Cauchy t-ratio may perform better than
that based on the standard t-ratio, though individually the OLS estimator is known to be
more efficient than the Cauchy estimator. In fact, this is what we found in our simulations.

The rest of the paper is organized as follows. In Section 2, we derive the main results
of the paper for the simple unit root test. There we introduce the unit root model and the
test statistic, and develop new asymptotics for the unit root test along the contour of the
equi-squared-sum. The asymptotics are shown to be normal. Section 3 extends our main
results into several directions. In particular, it is shown that our main results continue to
hold under the local alternatives and for the models with intercept and linear trend. The
Cauchy and other nonlinear instrumental variable estimators are also considered. Section
4 demonstrates that our normal asymptotics along the new equi-squared-sum contour may
be exploited to construct tools and methodologies for effective inferences in nonstationary
panels. Also discussed are various issues on the inference in nonstationary panels such
as cross-sectional dependencies, heterogeneities, and formulations of hypotheses. Order
statistics for testing more flexible forms of hypotheses are also considered. Finite sample
performance of the newly proposed tests are evaluated via a set of simulations in Section
5. The concluding remarks are given in Section 6, and the mathematical proofs are given
in Appendix.

A word on notation. As usual, →d and →a.s. are used to signify respectively the con-
vergence in distribution and the almost sure convergence, and ∼ denotes the equivalence in



5

distribution. The standard Brownian motion is denoted by W throughout the paper.

2. Main Results for the Simple Unit Root Test

We consider the simple AR(1) model

yt = αyt−1 + εt (1)

and the test of the unit root hypothesis

α = 1 (2)

We assume that (εt) are white noise with zero mean and unit (known) second moment.
The assumptions are far from being necessary. They are introduced here simply to avoid
unnecessary complications and focus on the main issue of the paper. The unknown second
moment can easily be estimated consistently from the fitted residuals. Moreover, we may
consider more general models, i.e., the models driven by linear processes or weakly depen-
dent innovations, without any difficulty. For such general models, the unit root test may
be based on the regression augmented with the lagged differences as for the tests by Dickey
and Fuller (1979, 1981), or can be done using the statistic modified nonparametrically as in
the tests by Phillips (1987). They all have the same large sample distributions as the test
we consider explicitly in the paper, and therefore, for them our subsequent discussions are
also applicable. See, e.g., Stock (1994) for the test of a unit root in general models.

Let y1, . . . , yn be the random sample of size n. The unit root hypothesis is routinely
tested by the t-ratio on the autoregressive coefficient α, which is given by

Tn =
α̂n − 1

s(α̂n)
(3)

where α̂n = (
∑n

t=1 y2
t−1)

−1
∑n

t=1 yt−1yt is the least squares estimator of α with the standard

error s(α̂n) = (
∑n

t=1 y2
t−1)

−1/2. It is well known that under the null hypothesis of unit root

Tn →d

(
∫ 1

0
W (r)2dr

)−1/2∫ 1

0
W (r) dW (r) (4)

as n → ∞. The limiting distribution appeared in (4), often called the Dickey-Fuller dis-
tribution, is nonnormal and skewed to the left. The unit root hypothesis is rejected if Tn

takes a large negative value.
We now introduce a new asymptotics. For any given x > 0, let m ≥ 1 be such that

m = inf
k≥1

{

k
∑

t=1

y2
t−1 ≥ x

}

(5)

and consider the t-ratio Tm for the sample of size m. Here the sample size m is determined
by the squared sum of (yt) achieving a certain level. Note that m is a function of (yt) as
well as x.
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Theorem 2.1 Assume (1) and (2). If we let mn be defined as in (5) with x = n2c for
each n ≥ 1 and some fixed constant c > 0, then

Tmn →d N(0, 1) (6)

as n → ∞.

Unlike the conventional result in (4), our approach here yields the normal asymptotics given
in (6). A few remarks are now in order.

Remark 2.2 (a) For the choice of

c =
1

n2

n
∑

t=1

y2
t−1 (7)

we have mn = n and Tmn = Tn. The statistics Tn and Tmn would then have identical
values, and may thus be regarded as the same statistic. The large sample distributions in
(4) and (6) are derived just by taking two different contours in evaluating the likelihood of
a realized value for the statistic. The distribution in (4) is obtained by the conventional
approach holding the sample size constant. On the other hand, our new approach yields the
distribution in (6) assuming the sum of squares to be constant. The likelihood of a realized
value for the statistic is evaluated against other possible realizations from the samples of
the same size (with varying sums of squares) and of the same sum of squares (with varying
sample sizes), respectively in (4) and (6).

(b) The samples from stationary time series would produce the same sampling dis-
tributions for the two different contours considered above. For the stationary samples,
∑n

t=1 y2
t−1/n converges to a fixed constant as the sample size grows, due to the law of large

numbers, making the two contours identical in large samples. However, the two contours
can be very different for the samples from the unit root process. Most of all, the first
contour is fixed and nonrandom, whereas the second contour is path-dependent. As is well
known,

1

n2

n
∑

t=1

y2
t−1 →d

∫ 1

0
W (r)2 dr

for the unit root process. The sum of squares, if normalized properly, would thus remain
to be random and depend upon a realized value of the underlying process.

(c) Depending upon which contour we choose to evaluate the likelihood of a realized
value for the statistic, the relevant null distribution and thus the critical value of the test
would be different. If the realized value of the statistic is to be compared with all of its
possible values obtained from the samples of the same size, the critical value from the
Dickey-Fuller distribution should be used. If, on the other hand, the realized value of the
statistic is to be compared with all possible values given by the samples of the same sum
of squares, the standard normal critical value should be used.

(d) The choice of the contour would ultimately be a subjective matter. However, we
may say that it would be more appropriate to choose the contour representing the same
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Figure 3: Densities of t-ratios from Equi-Sample-Size and Equi-Squared-Sum Contours

amount of information on the hypothesis to be tested. In this regard, the contour of the
equi-squared-sum is especially appealing for the test of a unit root. The most important
distinguishing charactersitic of the sample path from the unit root process (in comparison
with that from the stationary process) is the presence of stochastic trend, and its magnitude
can be effectively measured by the sum of squares. Choosing the contour of the equi-squared-
sum for the unit root test thus implies that we assess the likelihood of a realized test value
against other possible realizations having the stochastic trends of the same magnitudes.
This seems quite reasonable.

(e) Our asymptotics also help to analyze the nonnormality of the Dickey-Fuller distribu-
tion. We may clearly see that, for a stopping time τ such that

∫ τ
0 W (r)2dr is constant, the

distribution of
∫ τ
0 W (r) dW (r)/(

∫ τ
0 W (r)2dr)1/2 is standard normal. The nonnormality of

the Dickey-Fuller distribution is due to the evaluation of the integrals over the fixed interval
[0, 1], rather than the random interval [0, τ ], in the limiting t-ratio.

In Figure 3, the densities for the distributions of Tn and Tmn are given and compared
with the standard normal distribution. The densities of Tn are obtained for each of the fixed
sample sizes n = 10, 25, 50 and 100, while the densities of Tmn are computed for the fixed
sum of squares given by n2c with n = 10, 25, 50, 100 and c = 0.23. From simulations, we
find that the asymptotic expected value of the stopping time τ defined by

∫ τ
0 W (r)2dr = c

is approximately unity with this choice of c. The densities, in all cases, are quite insensitive
to the choice of value of c. Along the contour of the fixed sum of squares, the finite
sample distribution of Tmn appears to converge rather rapidly. Our normal asymptotics
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thus provide very good approximations for the finite sample distributions of Tmn . Even for
moderate size samples, the finite sample distributions are indeed quite close to standard
normal. In contrast, the distributions of Tn are quite distinct from standard normal at all
sample sizes.

3. Extensions to More General Models

3.1 Distributions under Local Alternatives

We now consider the local alternative

α = 1 − δ

n
(8)

for some δ > 0. It is well known that

Tn →d −
(
∫ 1

0
Wδ(r)

2dr

)1/2

δ +

∫ 1

0
Wδ(r) dW (r)

(
∫ 1

0
Wδ(r)

2dr

)1/2
(9)

as n → ∞, where Wδ is the Ornstein-Uhlenbeck process given by Wδ(r) =
∫ r
0 exp[−(r −

s)δ]dW (s).
In contrast to the conventional asymptotics in (9), our asymptotics yield

Corollary 3.1 Assume (8). If we let mn be defined as in (5) with x = n2c for each n ≥ 1
and some fixed constant c > 0, then

Tmn →d −c1/2δ + N(0, 1) (10)

as n → ∞.

If we take the contour of the fixed sum of squares, we would thus get the standard normal
limiting distribution theory under both the null and alternative hypotheses. The unit root
t-ratio is distributed as standard normal under the null in large samples. Moreover, it is
also normal in large samples under the local alternative, with mean shifted by a constant
multiple of the locality parameter. Note that the constant c in (10) is given by (7) for the
sample of size n. Against the local alternatives, the unit root test is expected to have more
powers for the samples with large sums of squares. As is evidently seen from (10) and (7),
the large sum of squares has a magnifying effect on the locality parameter.

3.2 Models with Intercept and Time Trend

Our normal asymptotics on the contour of the equi-squared-sum extend well to the models
with intercept and linear time trend, if it is removed effectively by using only the past
information. In this case, the unit root along the new contour can be based on the regression

4ȳt = (α − 1)ȳt−1 + εt (11)
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where (4ȳt) and (ȳt−1) are demeaned or detrended (4yt) and (yt−1) that are defined more
precisely below. More dynamics can be introduced and AR(p), instead of AR(1) in (11),
can be used as we explain later.

First, we look at the model with intercept. To test for the unit root in (yt) generated as

yt = µ + y◦t

where (y◦t ) follows the autoregressive process given in (1), we use (yµ
t ) given by

yµ
t = yt − y0 (12)

or

yµ
t = yt −

1

t − 1

t−1
∑

k=1

yk (13)

which is defined recursively for each t = 1, . . . , n. This recursive demeaning was first
proposed by So and Shin (1999a) to demean positively correlated stationary AR processes,3

and later used in Chang (2002) and Phillips, Park and Chang (2004) for the test of the unit
root using the nonlinear instrumental variable methodology.

The test for the unit root in (y◦
t ) can be based on the regression (11) with ȳt−1 = yµ

t−1

and 4ȳt = 4yt. The conventional limit distribution of the t-ration T µ
n for the unit root

hypothesis in (11) is dependent upon the actual demeaning procedure that we introduce in
(12) and (13). If (yµ

t ) given in (12) is used, then the limit distribution of T µ
n is precisely the

same as Tn without intercept given in (4). On the other hand, if (yµ
t ) in (13) is used, then

the conventional asymptotics would yield

T µ
n →d

(
∫ 1

0
W µ(r)2dr

)−1/2∫ 1

0
W µ(r) dW (r)

where

W µ(r) = W (r) − 1

r

∫ r

0
W (s)ds

as n → ∞.4

Now we consider the model with linear time trend, which we write

yt = µ + νt + y◦t

3They found that the recursive demeaning reduces the biases of the parameter estimators.
4It follows from the well known Brownian law of iterated logarithm [see, for example, Revuz and Yor

(1994, p.53)] that
1

r

∫ r

0

W (s)ds = O(r3/2(log log(1/r))1/2) a.s.

and therefore
1

r

∫ r

0

W (s)ds → 0 as r → 0

The process W µ(r) then becomes a continuous stochastic processes defined on [0,∞), if we let W µ(0) = 0.
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The recursive detrending of (yt) can be done to obtain

yτ
t = yt − y0 −

t
∑

k=1

1

k
(yk − y0) (14)

or

yτ
t = yt +

2

t

t
∑

k=1

yk − 6

t(t + 1)

t
∑

k=1

kyk (15)

There can be many other alternatives. The regression (11) may now be fitted with ȳt−1 =
yτ

t−1 and 4ȳt = 4yt − (yn − y0)/n.
If we denote by T τ

n the t-ratio for the unit root hypothesis in regression (11), then we
have under the conventional asymptotics

T τ
n →d

(
∫ 1

0
W τ (r)2dr

)−1/2∫ 1

0
W τ (r) dW (r)

as n → ∞, where W τ is given by

W τ (r) = W (r) −
∫ r

0

1

s
W (s)ds

or

W τ (r) = W (r) +
2

r

∫ r

0
W (s) ds − 6

r2

∫ r

0
sW (s) ds

respectively for (yτ
t ) given in (14) or (15).5

We now define a new contour

m = inf
k≥1

{

k
∑

t=1

ȳ2
t−1 ≥ x

}

(16)

similarly as in (5), where ȳt−1 = yµ
t−1 or yτ

t−1 respectively for the models with intercept and
linear time trend. Then we have

Corollary 3.2 Assume (1) and (2). If we let mn be defined as in (16) with x = n2c for
each n ≥ 1 and some fixed constant c > 0, then

T µ
mn

, T τ
mn

→d N(0, 1)

as n → ∞.

Our previous results therefore also apply for the models with intercept and linear time
trend. To obtain the normal asymptotics for the models with fitted mean, however, it is
important to use only the past information. The normal asymptotics on the contour of the
equi-squared-sum do not follow if the usual demeaning or detrending is used.

5Exactly as in the previous footnote, the processes introduced here are well defined to be continuous
processes if we set them zero at the origin.
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3.3 Tests Using Nonlinear IV Estimators

The unit root hypothesis may also be tested using an IV estimator. Recently, Phillips, Park
and Chang (2004) consider the IV estimator α̂IV

n = (
∑n

t=1 yt−1F (yt−1))
−1∑n

t=1 F (yt−1)yt of
α, which uses F (yt−1) as an instrument for some instrument generating function F : R → R.

If we denote by s(αIV
n ) = (

∑n
t=1 yt−1F (yt−1))

−1 (∑n
t=1 F (yt−1)

2
)1/2

the standard error of the
IV estimator, the IV t-ratio T IV

n is given by

T IV
n =

α̂IV
n − 1

s(α̂IV
n )

,

which reduces to
(

n
∑

t=1

F (yt−1)
2

)−1/2 n
∑

t=1

F (yt−1)εt

under the null hypothesis of a unit root.
As shown earlier by Phillips, Park and Chang (2004), the asymptotic behavior of the

IV t-ratio T IV
n depends crucially on the type of the instrument generating function F , in

particular whether it is integrable or asymptotically homogeneous. The IV t-ratio T IV
n with

integrable F is thoroughly explored in Chang (2002) for the test of unit roots in panels under
cross-sectional dependency. Therefore, here we only consider T IV

n with an asymptotically
homogeneous function F . An asymptotically homogeneous function F may be written as

F (λx) = ν(λ)H(x) + o(ν(λ))

for large λ uniformly in x ∈ R over any compact interval, where we call ν the asymptotic
order and H the limit homogeneous function of F .6 It is shown in Phillips, Park and Chang
(2004) that

T IV
n →d

(
∫ 1

0
H(W (r))2dr

)−1/2∫ 1

0
H(W (r)) dW (r)

along the conventional contour. The limit distribution of T IV
n with an asymptotically ho-

mogeneous instrument generating function F is generally nonnormal.
Of course, the OLS estimator α̂n belongs to the class of the IV estimators considered

here. It is easy to see that the OLS estimator is an IV estimator with the instrument
generating function F (x) = x, i.e., the identity function. Phillips, Park and Chang (2004)
show that the OLS estimator is indeed the most efficient IV estimator. Naturally, the usual
t-ratio Tn based on the OLS estimator is therefore expected to be most powerful. However,
under the local alternatives introduced in (8), we have for any IV t-ratio with asymptotically
homogeneous F

T IV
n →d −

∫ 1

0
Wδ(r)H(Wδ(r)) dr

(
∫ 1

0
H(Wδ(r))

2dr

)1/2
δ +

∫ 1

0
H(Wδ(r)) dW (r)

(
∫ 1

0
H(Wδ(r))

2dr

)1/2

6The reader is referred to Park and Phillips (2004) for the details.
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Therefore, as long as xH(x) ≥ 0 for all x ∈ R and xH(x) > 0 for all x in a neighborhood
of the origin, T IV

n would have nontrivial powers under the local alternatives shrinking to
unity at the rate of n−1.7 Note that

∫ 1

0
Wδ(r)H(Wδ(r)) dr =

∫ ∞

−∞

xH(x)Lδ(1, x) dx

where Lδ(r, x) is the local time of Wδ at time r and spatial point x. This follows directly
from the application of occupation times formula.

If we redefine

m = inf
k≥1

{

k
∑

t=1

F (yt−1)
2 ≥ x

}

(17)

analogously as in (5), then we have

Corollary 3.3 Assume (1) and (2). If we let mn be defined as in (17) with x = nν(
√

n)2c
for each n ≥ 1 and some fixed constant c > 0, then

T IV
mn

→d N(0, 1)

as n → ∞.

Our previous results for the normal asymptotics therefore continue to hold for the unit root
nonlinear IV t-ratio. The only modification required here is to redefine m and mn so that
we may effectively explore the contour given by the sum of squares of F (yt−1), in place of
yt−1. Of course, the usual t-ratio can be regarded as a special case of the more general
nonlinear IV t-ratio. Therefore, our earlier result in Theorem 2.1 follows from Corollary 3.3
as a special case.

A special case of particular interest arises if we set

F (x) = sgn (x) (18)

The resulting IV estimator, called the Cauchy estimator, was investigated earlier by So and
Shin (1999b). This is an interesting example, for which the two contours coincide. Obvi-
ously, we have F (yt−1)

2 ≡ 1 and ν(λ) = 1 for F given in (18). With the only conformable
value c = 1, we thus have in this case that mn = n. The contours of the equi-sample-size
and the equi-squared-sum therefore become identical for any realization of the samples.
Consequently, both the conventional approach and our new approach here yield the same
normal asymptotics for the Cauchy estimator. Needless to say, we would have the same
results for any IV estimator with asymptotically homogeneous F having the sign function
as the limit homogeneous function. Note that for all this class of IV estimators we have
xsgn(x) = |x|, and therefore, they have nontrivial powers against the local alternatives
shrinking towards unity at the rate n−1.

7The IV t-ratio with integrable F has nontrivial powers only against the local alternative which shrink
at the rate n−1/2.
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3.4 Tests in General Unit Root Models

All our previous results may be easily and naturally extended to more general unit root
models. For the test of a unit root in the AR(p) model, we may consider the regression

yt = αyt−1 +

p−1
∑

k=1

αk4yt−k + εt (19)

and test whether α = 1 using the t-ratio defined similarly as in (3). This is well known. In
this case, we let

xt = (4yt−1, . . . ,4yt−p+1)
′

and define

yp,t = yt −
(

n
∑

t=1

ytx
′
t

)(

n
∑

t=1

xtx
′
t

)−1

xt

Then the new contour for the t-ratio defined similarly as in (3) for the regression (19) is
given by

m = inf
k≥1

{

k
∑

t=1

y2
p,t−1 ≥ x

}

(20)

in place of (5). If we denote by T p
mn the t-ratio based on regression (19) using the sample of

size m given in (20), then it can be readily shown that our earlier result continues to apply.

Corollary 3.4 Assume (19) and (2). If we let mn be defined as in (20) with x = n2c for
each n ≥ 1 and some fixed constant c > 0, then

T p
mn

→d N(0, 1)

as n → ∞.

We may show that the statistic T p
mn has the same distribution as given in Corollary 3.1 of

Section 3.1 under the local alternative (8). Moreover, the fitted mean can be allowed and
treated exactly as in Section 3.2, and the result in Corollary 3.2 holds also for the statistic
T p

mn . The nonlinear IV approach introduced in Section 3.3 can also be exploited in this
case.

As is well known, the unit root test based on the AR(p) model (19) is valid for more
general underlying processes if we let the order p of the AR model increase as the sample
size gets large. This was first noted by Said and Dickey (1984), who show that the test
based on the standard t-ratio is valid for general invertible ARMA processes of unknown
order if we set p = c nκ with some constant c > 0 and 0 < κ ≤ 1/3. More recently, Chang
and Park (2003) show that the procedure is indeed valid for more general linear processes
with minimum summability condition on their coefficients and under much weaker condition
p = o(n1/2) on the rate of increase for the fitted AR orders. It can be shown that the result
by Chang and Park (2003) continue to hold if we take the new contour. Therefore, the
proposed procedure exploiting the new contour is applicable for a broad range of time series
models under very mild conditions.
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4. Panel Unit Root Tests

We now consider a panel unit root model given by

yit = αiyi,t−1 + εit, i = 1, . . . , N ; t = 1, . . . , T . (21)

with
αi = 1 (22)

As usual, the index i denotes individual cross-sectional units, such as individuals, house-
holds, industries or countries, and the index t denotes time periods. The cross-sectional
dimension N is not restricted and allowed to take large or small values. For the moment,
we assume that the error terms εit are white noise with zero mean. Moreover, we let (εit)
be uncorrelated across cross-sectional units. We make these simplifying assumptions tem-
porarily to concentrate on more important aspects of our new methodology. They are not
crucial and can be relaxed. This will be discussed later in more detail with other issues in
panel unit root tests.

Panel unit root tests have been one of the most active research area for the past several
years. This is largely due to the availability of panel data with long time span, and the
growing use of cross-country and cross-region data over time to test for many important
economic inter-relationships, especially those involving convergence/divergence of various
economic variables. The notable contributers in theoretical research on the subject include
Levin, Lin and Chu (2002), Im, Pesaran and Shin (2003), Maddala and Wu (1999), Choi
(2001a, 2001b), Chang (1999, 2002), Phillips and Sul (2001), Moon and Perron (2001), and
Bai and Ng (2002). There have been numerous related empirical researches as well. Ex-
amples include MacDonald (1996), Frankel and Rose (1996), Oh (1996) and Papell (1997),
just to name a few. The papers by Banerjee (1999), Phillips and Moon (1999) and Baltagi
and Kao (2000) provide extensive surveys on the recent developments on the testing for
unit roots in panels.

To introduce the approach relying on the new contour, we let, as in (5), mi ≥ 1 be such
that

mi = inf
k≥1

{

k
∑

t=1

y2
i,t−1 ≥ x

}

(23)

for any given x > 0 and for each i = 1, . . . , N , and consider the t-ratio Tmi for the sample
of size mi. Here the sample size mi is determined by the squared sum of (yit) achieving
a certain level. Note that mi is also given as a function of T , but its dependency on T is
suppressed for expositional brevity. From the results established in earlier sections, we may
easily deduce that

Theorem 4.1 Assume (21) and (22). If we let mi be defined as in (23) with x = T 2c for
each T ≥ 1 and some fixed constant c > 0, then

Tmi →d N(0, 1) (24)

as T → ∞ for all i = 1, . . . , N , and become independent across i = 1, . . . , N .
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The asymptotics for each individual t-ratio Tmi derived by taking the contour of equi-
squared-sum follow exactly in the same manner as for the univariate case established in
Theorem 2.1, under the same set of conditions modified for our panel setting here. The
standard normal limit theory of the univariate t-ratio given in Theorem 2.1 therefore con-
tinues to apply for each individual t-ratio Tmi for i = 1, . . . , N . Moreover, the t-ratios from
different cross-sections are asymptotically independent.

Now suppose we are interested in testing whether the series (yit) generated as in (21)
has a unit root in all cross-sections i = 1, . . . , N , against the alternative that (yit) are
stationary in all cross-section i. The null hypothesis is therefore formulated as H0 : αi = 1
for all i, and tested against the stationarity alternative H1 : |αi| < 1 for all i. The test
statistic we first consider for testing the panel unit root hypothesis is a simple average of
the individual t-ratio statistics for testing the unity of the AR coefficient computed from
each cross-sectional unit. The test is defined as

S =
1√
N

N
∑

i=1

Tmi (25)

The limit theory for S follows immediately from Theorem 4.1 as

Theorem 4.2 Under the assumptions of Theorem 4.1, we have

S →d N(0, 1)

as T → ∞ for each N ≥ 1.

Our limit theory here is derived using T -asymptotics only, and the factor N−1/2 in the
definition of the test statistic S in (25) is used just as a normalization factor, since S is
based on the sum of N asymptotically independent random variables. This implies that the
dimension of the cross-sectional units N may take any value, small as well as large.

Our methodology has some important advantages over the existing tests. In our ap-
proach, the individual t-ratios are normal and independent across individual units as long
as T tends to infinity. This gives us the flexibility to fully investigate the presence of the
unit root test in panels. For instance, we may use the order statistics, such as the minimum
and maximum of Tmi across i, to test the null hypothesis H0 : αi = 1 for all i against
H1 : |αi| < 1 for some i, or the null hypothesis H0 : αi = 1 for some i against H1 : |αi| < 1
for all i. The limit theory for these order statistics can easily be obtained, since Tmi are in
the limit nothing but independent standard normal random variates. Moreover, our nor-
mal asymptotics make it much easier to deal with the cross-sectional dependencies, which
are known to be extremely difficult to control using conventional approaches relying on
nonnormal T -asymptotics.

The normal limit theory is also obtained for the existing panel unit root tests, such as
the pooled OLS test by Levin, Lin and Chu (2002) and the group mean t-bar statistic by Im,
Pesaran and Shin (2003); however, their tests involve the mean and variance adjustments
for the individual tests, and is applicable only for large N . Furthermore, their theories
require cross-sectional independence. More recently, several authors have made serious
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attempt to allow for cross-sectional dependencies. Chang (1999) allows for dependencies of
unrestricted form, but her bootstrap procedure requires the dimension of time series T to be
substantially larger than that of the cross-section N , which is restrictive for many practical
applications. On the other hand, the procedures by Choi (2001b), Phillips and Sul (2001),
Moon and Perron (2001) and Bai and Ng (2002) allow for cross-sectional dependencies, but
for those in some specific forms. Finally, Chang (2002) and Chang and Song (2002) uses the
nonlinear IV approach to invent the tests for panel unit roots that are valid in the presence
of arbitrary cross-sectional correlations. Their limit theories are also normal.

Our framework is flexible enough to accommodate virtually all ingredients of previous
researches. As we demonstrate in Section 3.4, the nonlinear IV approach is possible for
our new methodology. The nonlinear IV methods developed in Chang can therefore be
implemented here to deal with cross-sectional correlations in arbitrary forms. Moreover,
the factor models for the cross-sectional dependencies employed in Choi (2001b), Phillips
and Sul (2001), Moon and Perron (2001), and Bai and Ng (2002) can also be used together
with our novel approach here. Our tests yield normal asymptotics and do not need the mean
and variance adjustment for the individual tests. Finally, it is obvious that our results also
extend to the panels with heterogeneous deterministic components such as individual fixed
effects. Moreover, we may consider more general AR(pi) models

yit = αiyi,t−1 +

pi
∑

k=1

αik4yi,t−k + εit, i = 1, . . . , N ; t = 1, . . . , T

for each individual unit i. The required extension is trivial given our results in Section 3.4.

5. Simulations

We evaluate the performance of the panel unit root test S defined in (25), which is the
average t-ratio test along the new contour. We specify the simulation model as

yit = µi + y◦it

and let the stochastic component y◦
it be generated as

y◦it = αiy
◦
i,t−1 + uit (26)

where

uit = ρiui,t−1 + vit

vit = πiwt + εit

and |ρi| < 1, (wt) and (εit) are independent and identically distributed random sequences.
Under our specification, the stochastic component (y◦

it) of (yit) has a unit root when αi = 1.
Our simulation model is simple, yet it is general enough to consider various important

aspects of panel models that would affect the finite sample performance of the unit root tests.
Our model allows for the individual fixed effects parametrized as (µi), the heterogeneous
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serial correlation structures given by the autoregressive coefficients (ρi), and the presence of
common factors (wt) generating cross-sectional dependency with the heterogeneous factor
loading coefficients (πi). The factor structure has been routinely used to generate cross-
sectional dependency, see Bai and Ng (2002), Moon and Perron (2001) and Phillips and Sul
(2001). We consider three cases, which are specified below.

Cases Specifications

(a) Prototype Case ρi = πi = 0
(b) Independent Case πi = 0
(c) Dependent Case

For the prototype case, we consider the simplest model. This model is used only to demon-
strate that our methodology really works as the theory predicts, i.e., that along the new
contour the individual tests can be regarded as independent standard normals and our test
based on S is distributed as standard normal approximately. The independent case looks
at the independent panels with no common factors, and the dependent case explores the
most general case.

The simulation results are reported in Tables 1–4. All the reported simulation results
are based on 10,000 iterations. Panels with dimensions N = 10, 50, 100, 200 and T =
(25), 50, 100, 200 are considered in Tables (1),3 and 4, while in Table 2 N = 1, 2, 3 and
T = 1000 are looked at. In all cases, (εit) and (wt) are generated as independent standard
normals. For the prototype case, we fix the contour at the sum of squares given by cT 2

with c = 0.23, and the t-ratios based on the least squares estimators are computed for each
individual units along the contour. The data are generated for each cross-section until its
data reach the contour of the given sum of squares. For the independent and dependent
cases, the autoregresive coefficients (ρi) are randomly drawn from the uniform distribution
with support [0.2, 0.4]. The factor loading coefficients (π i) on the common factor are also
randomly drawn for the depedent case from the uniform distribution with support [1, 4],
providing ample heterogeneity among the individual responsiveness to the common factor.

For the unit root null hypothesis, we set the coefficients αi = 1 for all i = 1, . . . , N , and
investigate the finite sample sizes relative to the nominal 1%, 5% and 10% test sizes. To
examine the rejection probabilities and the size-adjusted powers, we consider the station-
ary alternative with (αi) generated randomly from the uniform distribution with support
[0.95,1]. For the independent models, we consider the t-ratios based on the OLS and the
Cauchy estimators along the new contour, which we call respectively the CP and Cauchy
tests. For comparison purpose, we also consider the usual average t-ratio test along the
conventional contour with the mean and variance corrections as done by Im, Pesaran and
Shin (2003), which we denote by IPS. To implement the OLS based t-ratios, we use the new
contour given by the minimum sum of squares across the cross-sections. On the other hand,
for the dependent panels, we first defactor the data8 and then consider the averaged OLS
and Cauchy t-tests along the new contour. They are then compared with the Fisher-type

8We used the defactoring procedure suggested by Phillips and Sul (2001).



18

test suggested by Phillips and Sul (2001) along the conventional contour, which we denote
by the PS test. Table 1 presents the simulation results for the prototype case. There it is
clearly seen that the average t-test based on OLS perform well for all T and N . In par-
ticular, the normal approximation theory seems to be quite precise even for the cases with
small T and N .

Table 2 compares the average t-tests based on the OLS and Cauchy estimators. To
compare their discriminatory powers when T is large, we consider the local alternatives
with the choices of local parameters δ = 1, 5, 10.9 Since the OLS is more efficient than
the Cauchy estimator, one may well expect that the OLS based test be more powerful for
N = 1. However, the comparsion may not hold as N increases, since imposing the new
contour implies loosing some observations if the data set has the fixed sample size as in
our simulations. This is indeed what we observe from our simulations. The average t-test
based on the OLS estimator has more discriminatory powers for N = 1 and many cases for
N = 2. The superiority of the OLS based t-test, however, quickly disappears as N becomes
3 or larger. It appears that the relative efficiency of the OLS estimator over the Cauchy
estimator is not large enough to pay off the cost of adjusting the OLS estimator to the new
contour even for N as small as 3. The average t-test based on the Cauchy estimator has
largely the correct sizes, as is well predicted since it has standard normal limit distribution
for large T and any N . In contrast, the test based on the OLS estimator is not expected to
behave like standard normal when N is very small.

Figure 3 presents the performance of the averaged t-ratios based on OLS and Cauchy
estimators along the contour given by the minimum sum of squares, and the average t-
test along the conventional contour with the mean and varaince modifications given in Im,
Pesaran and Shin (2003). We may summarize our findings here as follows. First, the OLS
based t-ratio along the new contour does well for all T = 50, 100, 200. Second, the Cauchy
based t-ratio along new contour does well for all T and N and more powerful than the OLS
based test for the sample sizes considered. The reason the OLS based test turned out to
be less powerful is that we are losing too many data to be able to take the new contour
given by the minimum sum of squares. Indeed, it is clearly demonstrated that the average
t-ratio based on the OLS estimator performs poorly relative to that based on the Cauchy
estimator especially when N is large and T is small. This is the case where losing data to
fit the new contour can be truly detrimental on the performance of the test.

Figure 4 presents the simulation results for the dependent case. In general, our observa-
tions on the average t-ratios based on the OLS and Cauchy estimators for the independent
case continue to apply for this case. We note, however, that the OLS based t-ratio along
the new contour does well for larger T = 100, 200, but has serious size distortions when T
small. The average t-ratio based on the Cauchy estimator has good sizes and power for all
T and N .

9Note that the local alternatives are formulated with the normalizing factor T
√

N . This is because the
average t-test uses the normalizing factor

√
N .
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6. Conclusion

In this paper, we develop a novel view on the interpretation of the unit root distributions.
More explicitly, we show that if we take the new contour given by the equi-squared-sum
instead of the usual equi-sample-size, then the limit distributions of the common unit root
tests may be viewed as being normal. Subsequently, we demonstrate that this finding may
be exploited to invent tools and methodologies for the effective inferences in nonstationary
panels. In the panel context, our theory implies that the individual tests behave asymptoti-
cally as normal when they are computed simply along the equi-squared-sum contour across
the individual units. Consequently, we may use various functionals of those individual tests
to do inference in nonstationary panels. Here we only concentrate on the panel unit root
models. This is just for expositional simplicity, which was intended to deliver the main con-
tents of the proposed methodology more clearly. Quite obviously, we may use essentially
the same approach to develop the corresponding methods of inference that are applicable
for cointegrated panels.

Appendix: Proofs of Theorems

Proof of Theorem 2.1 Assume (2). Define Wn(r) = n−1/2y[nr], where [x] denotes
the largest integer not exceeding x ≥ 0. It is well known that Wn →d W in the space
D(R) of cadlag functions endowed with the supremum norm. Moreover, by extending the
underlying probability space if necessary, we may assume that Wn and W are defined in
the same probability space and that Wn →a.s W uniformly. Such a construction is possible
for instance by the Skorohod embedding. See Hall and Heyde (1980) for details.

Recall that mn is defined so as to satisfy

∫ mn/n

0
Wn(r)2dr = c

for some fixed c > 0. Therefore, if we define τ(c) to be such that

∫ τ(c)

0
W (r)2dr = c

for the given c > 0, we have
mn

n
→a.s. τ(c)

as n → ∞ since Wn →a.s. W uniformly.
Under the null hypothesis of unit root, we have

Tmn =

(

mn
∑

t=1

y2
t−1

)−1/2 mn
∑

t=1

yt−1εt

=

(

∫ mn/n

0
Wn(r)2dr

)−1/2
∫ mn/n

0
Wn(r) dWn(r)
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=

(

∫ τ(c)

0
W (r)2dr

)−1/2
∫ τ(c)

0
W (r) dW (r) + o(1) a.s. (27)

as n → ∞, since Wn →a.s. W uniformly and mn/n →a.s. τ(c) as n → ∞. However, the
process V defined by

V (s) =

∫ τ(s)

0
W (r) dW (r)

is the DDS Brownian motion of the martingale M

M(s) =

∫ s

0
W (r) dW (r)

and therefore,

c−1/2V (c) =

(

∫ τ(c)

0
W (r)2dr

)−1/2
∫ τ(c)

0
W (r) dW (r) ∼ N(0, 1) (28)

for any given c > 0. The reader is referred to, e.g., Revuz and Yor (1994) for the DDS
Brownian motion. The stated result now follows readily from (27) and (28), and the proof
is complete.

Proof of Corollary 3.1 We use the same notation as in the proof of Theorem 2.1.
Assume (8) and let Wnδ(r) = n−1/2y[nr]. It follows that Wnδ →d Wδ uniformly in D(R).
This is well known. If we define τ δ(c) by

∫ τδ(c)

0
Wδ(r)

2dr = c (29)

for a given fixed c > 0, then mn/n →a.s. τ δ(c) exactly as in the proof of Theorem 2.1.
Under the alternative of local-to-unity, we have

Tmn = −
(

mn
∑

t=1

y2
t−1

)1/2
δ

n
+

(

mn
∑

t=1

y2
t−1

)−1/2 mn
∑

t=1

yt−1εt

= −
(

∫ mn/n

0
Wnδ(r)

2dr

)1/2

δ +

(

∫ mn/n

0
Wnδ(r)

2dr

)−1/2
∫ mn/n

0
Wnδ(r) dWn(r)

= −
(

∫ τδ(c)

0
Wδ(r)

2dr

)1/2

δ +

(

∫ τδ(c)

0
Wδ(r)

2dr

)−1/2
∫ τδ(c)

0
Wδ(r) dW (r) + o(1) a.s.(30)

as n → ∞. We now consider the DDS Brownian motion

Vδ(s) =

∫ τδ(s)

0
Wδ(r) dW (r)

of the martingale

Mδ(s) =

∫ s

0
Wδ(r) dW (r)

from which the stated result follows immediately, due to (29) and (30).
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Proof of Corollary 3.2 The proof is straightforward given our earlier results, and there-
fore, omitted.

Proof of Corollary 3.3 The proof follows immediately from Park and Phillips (1999)
and our earlier results. Therefore, it is omitted.

Proof of Corollary 3.4 The proof is obvious, and the details are omitted.

Proof of Theorem 4.1 Obvious from our earlier results.

Proof of Theorem 4.2 The stated result follows immediately from Theorem 4.1.
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Table 1: Average t-Test Along the New Contour: Prototype Case

Sizes Rejection Probabilities Size-Adjusted Powers

T N 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 0.013 0.059 0.112 0.083 0.225 0.340 0.066 0.202 0.314
50 0.013 0.054 0.101 0.331 0.580 0.700 0.299 0.561 0.698
100 0.011 0.046 0.088 0.580 0.798 0.878 0.565 0.808 0.893
200 0.008 0.040 0.077 0.933 0.982 0.992 0.944 0.985 0.994

50 10 0.012 0.055 0.106 0.279 0.531 0.663 0.254 0.510 0.651
50 0.010 0.049 0.099 0.908 0.975 0.989 0.906 0.975 0.989
100 0.011 0.054 0.104 0.994 0.999 1.000 0.993 0.999 1.000
200 0.009 0.048 0.093 1.000 1.000 1.000 1.000 1.000 1.000

100 10 0.011 0.051 0.104 0.973 0.996 0.998 0.970 0.996 0.998
50 0.011 0.051 0.100 1.000 1.000 1.000 1.000 1.000 1.000
100 0.011 0.050 0.094 1.000 1.000 1.000 1.000 1.000 1.000
200 0.011 0.048 0.094 1.000 1.000 1.000 1.000 1.000 1.000

200 10 0.010 0.049 0.100 1.000 1.000 1.000 1.000 1.000 1.000
50 0.010 0.049 0.100 1.000 1.000 1.000 1.000 1.000 1.000
100 0.010 0.052 0.103 1.000 1.000 1.000 1.000 1.000 1.000
200 0.010 0.048 0.098 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2: Average t-Tests Based on OLS and Cauchy Estimators Along the New Contour:
Independent Case with T = 100

(α = 1− δ/T ) Sizes Rejection Probabilities Size-Adjusted Powers

N δ Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 0 CP 0.012 0.055 0.107
Cauchy 0.010 0.052 0.105

5 CP 0.073 0.263 0.410 0.058 0.239 0.392
Cauchy 0.065 0.242 0.407 0.065 0.235 0.391

10 CP 0.218 0.567 0.738 0.182 0.533 0.720
Cauchy 0.175 0.470 0.653 0.176 0.460 0.640

15 CP 0.363 0.729 0.864 0.313 0.699 0.850
Cauchy 0.321 0.640 0.795 0.324 0.632 0.784

2 0 CP 0.012 0.054 0.109
Cauchy 0.011 0.053 0.106

5 CP 0.174 0.419 0.577 0.153 0.404 0.553
Cauchy 0.169 0.475 0.659 0.163 0.456 0.642

10 CP 0.583 0.856 0.931 0.545 0.845 0.924
Cauchy 0.466 0.798 0.909 0.455 0.785 0.900

15 CP 0.808 0.965 0.989 0.783 0.961 0.986
Cauchy 0.694 0.918 0.967 0.685 0.911 0.964

4 0 CP 0.011 0.056 0.108
Cauchy 0.009 0.053 0.103

5 CP 0.384 0.661 0.783 0.370 0.636 0.769
Cauchy 0.470 0.807 0.912 0.482 0.798 0.907

10 CP 0.923 0.989 0.997 0.917 0.987 0.996
Cauchy 0.885 0.983 0.995 0.889 0.982 0.995

15 CP 0.994 1.000 1.000 0.994 1.000 1.000
Cauchy 0.977 0.998 0.999 0.978 0.997 0.999
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Table 3: Average t-Tests Along the Conventional and New Contours: Independent Case

Sizes Rejection Probabilities Size-Adjusted Powers

T N Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 IPS 0.015 0.066 0.132 0.032 0.122 0.216 0.021 0.096 0.170
CP 0.013 0.058 0.108 0.060 0.204 0.327 0.047 0.178 0.304

Cauchy 0.012 0.059 0.115 0.081 0.245 0.381 0.066 0.216 0.350

50 IPS 0.019 0.086 0.152 0.104 0.277 0.415 0.064 0.188 0.309
CP 0.014 0.058 0.113 0.218 0.462 0.607 0.174 0.428 0.579

Cauchy 0.016 0.069 0.124 0.323 0.601 0.737 0.259 0.538 0.691

100 IPS 0.030 0.106 0.186 0.202 0.448 0.597 0.096 0.284 0.437
CP 0.014 0.059 0.113 0.453 0.723 0.831 0.396 0.687 0.814

Cauchy 0.018 0.073 0.134 0.655 0.872 0.936 0.579 0.822 0.911

200 IPS 0.040 0.135 0.224 0.438 0.707 0.823 0.232 0.483 0.646
CP 0.013 0.059 0.111 0.791 0.936 0.970 0.748 0.922 0.966

Cauchy 0.017 0.075 0.140 0.939 0.989 0.996 0.909 0.979 0.993

50 10 IPS 0.012 0.054 0.107 0.032 0.128 0.225 0.025 0.120 0.214
CP 0.011 0.054 0.104 0.095 0.281 0.423 0.091 0.267 0.413

Cauchy 0.012 0.054 0.107 0.111 0.324 0.480 0.098 0.307 0.463

50 IPS 0.013 0.059 0.116 0.142 0.366 0.526 0.113 0.339 0.482
CP 0.014 0.055 0.102 0.512 0.774 0.875 0.439 0.753 0.870

Cauchy 0.014 0.058 0.111 0.671 0.890 0.951 0.617 0.871 0.942

100 IPS 0.014 0.070 0.135 0.380 0.671 0.800 0.312 0.605 0.739
CP 0.011 0.056 0.106 0.923 0.983 0.996 0.917 0.980 0.995

Cauchy 0.014 0.059 0.112 0.983 0.998 1.000 0.976 0.998 0.999

200 IPS 0.018 0.079 0.145 0.751 0.922 0.967 0.657 0.875 0.942
CP 0.012 0.056 0.110 1.000 1.000 1.000 0.999 1.000 1.000

Cauchy 0.015 0.065 0.122 1.000 1.000 1.000 1.000 1.000 1.000

100 10 IPS 0.011 0.054 0.102 0.117 0.345 0.507 0.107 0.328 0.498
CP 0.011 0.057 0.105 0.473 0.754 0.854 0.456 0.735 0.848

Cauchy 0.010 0.052 0.102 0.516 0.802 0.905 0.509 0.797 0.903

50 IPS 0.011 0.053 0.110 0.578 0.841 0.921 0.549 0.829 0.912
CP 0.011 0.056 0.102 0.985 0.998 1.000 0.984 0.998 1.000

Cauchy 0.012 0.053 0.106 1.000 1.000 1.000 1.000 1.000 1.000

100 IPS 0.013 0.060 0.118 0.947 0.992 0.998 0.931 0.989 0.997
CP 0.010 0.050 0.099 1.000 1.000 1.000 1.000 1.000 1.000

Cauchy 0.011 0.054 0.106 1.000 1.000 1.000 1.000 1.000 1.000

200 IPS 0.014 0.060 0.122 1.000 1.000 1.000 1.000 1.000 1.000
CP 0.010 0.050 0.100 1.000 1.000 1.000 1.000 1.000 1.000

Cauchy 0.013 0.059 0.112 1.000 1.000 1.000 1.000 1.000 1.000



27

Table 4: Panel Unit Root Tests: Dependent Case

Sizes Rejection Probabilities Size-Adjusted Powers

T N Tests 1% 5% 10% 1% 5% 10% 1% 5% 10%

25 10 PS 0.013 0.063 0.122 0.006 0.039 0.082 0.005 0.031 0.066
CP 0.011 0.050 0.099 0.032 0.129 0.233 0.030 0.129 0.235

Cauchy 0.009 0.047 0.099 0.038 0.153 0.266 0.041 0.163 0.268

50 PS 0.023 0.103 0.183 0.031 0.098 0.169 0.015 0.054 0.094
CP 0.015 0.060 0.112 0.094 0.254 0.370 0.076 0.226 0.343

Cauchy 0.017 0.069 0.125 0.129 0.320 0.446 0.089 0.270 0.392

100 PS 0.038 0.132 0.225 0.058 0.146 0.225 0.028 0.070 0.116
CP 0.018 0.065 0.119 0.193 0.395 0.507 0.141 0.343 0.470

Cauchy 0.020 0.079 0.138 0.296 0.507 0.612 0.223 0.425 0.552

200 PS 0.064 0.197 0.306 0.066 0.149 0.222 0.021 0.057 0.092
CP 0.025 0.081 0.136 0.425 0.637 0.726 0.285 0.554 0.674

Cauchy 0.032 0.095 0.158 0.574 0.744 0.809 0.397 0.641 0.752

50 10 PS 0.012 0.058 0.116 0.026 0.089 0.157 0.022 0.079 0.139
CP 0.009 0.046 0.093 0.023 0.100 0.179 0.025 0.108 0.188

Cauchy 0.008 0.044 0.092 0.034 0.115 0.205 0.038 0.130 0.218

50 PS 0.018 0.080 0.144 0.035 0.098 0.160 0.026 0.070 0.121
CP 0.012 0.055 0.107 0.184 0.381 0.497 0.163 0.363 0.487

Cauchy 0.012 0.055 0.111 0.268 0.483 0.599 0.254 0.470 0.585

100 PS 0.022 0.086 0.159 0.114 0.200 0.263 0.083 0.160 0.212
CP 0.011 0.051 0.105 0.358 0.523 0.600 0.349 0.521 0.595

Cauchy 0.012 0.059 0.113 0.493 0.628 0.685 0.470 0.615 0.673

200 PS 0.027 0.114 0.207 0.122 0.195 0.245 0.092 0.144 0.184
CP 0.012 0.058 0.109 0.638 0.730 0.767 0.624 0.718 0.761

Cauchy 0.015 0.066 0.122 0.723 0.781 0.806 0.700 0.770 0.798

100 10 PS 0.012 0.056 0.109 0.079 0.164 0.234 0.071 0.156 0.224
CP 0.009 0.049 0.100 0.043 0.126 0.198 0.045 0.128 0.198

Cauchy 0.007 0.042 0.089 0.057 0.172 0.259 0.065 0.194 0.275

50 PS 0.014 0.065 0.126 0.035 0.080 0.118 0.029 0.069 0.104
CP 0.010 0.053 0.101 0.506 0.677 0.749 0.505 0.669 0.748

Cauchy 0.011 0.053 0.103 0.675 0.782 0.825 0.665 0.775 0.823

100 PS 0.017 0.070 0.130 0.131 0.201 0.249 0.116 0.181 0.228
CP 0.011 0.053 0.098 0.571 0.668 0.714 0.565 0.663 0.715

Cauchy 0.010 0.053 0.105 0.677 0.738 0.767 0.678 0.736 0.765

200 PS 0.019 0.084 0.152 0.099 0.148 0.178 0.088 0.126 0.156
CP 0.011 0.048 0.099 0.808 0.849 0.869 0.806 0.850 0.869

Cauchy 0.012 0.060 0.113 0.854 0.881 0.896 0.851 0.878 0.893


