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| Abstract e
This paper describes a simple model of stochastic industry dynamics with

- two types of firms. The first type is composed of technically advanced firms

with positive probability rate of generating innovations , and the other type
composed of technically less advanced firms which are not capable of in-
novations. Firms of the latter type may succeed in joining the first type
by successfully imitating firms of former type in interaction with the for-
mer. Conversely, technically advanced firms have positive probability rate
of dropping out from the first sector to belong to the latter. All these
changes in types are stochastic in nature, being specified as transition rates
a continuous-time Markov chain by modeling industry dynamics as such.
The paper solves the backward Chapman-Kolmogorov (also known as
master) equation of this Markov chain to examine disequilibrium dynamics
of two types of firms evolve over time in interacting with each other. We
show that long-run equilibria exist for the model in which equilibrium sizes
of the clusters of both types have finite positive means and finite variances.

Introductiori

Importance of innovation has received much attentioxi in the context of
Schumpeterian dynamics. See Aghion and Howitt (1992, 1997), Iwai (1997,

- 2001), and Aoki and Yoshikawa (2002) to cite a few recent contributions.

To quote Iwai, for example,

The industry does not approach a neoclassical equilibrium of
uniform technology in the long run, but at best a statistical equi-
librium of technological disequilibria which maintain a relative
dispersion of efficiencies in a statistical balanced form.

In this paper we explicitly solve disequilibrium stochastic dynamics of a
model with two types of firms, one type with innovations and the other with
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imitation but no innovations. We focus on the long-run behavior to show
that the model reaches stochastic equilibria to demonstrate clearly the role
of innovation in the expected sizes and associated variances of two sectors.

We solve a disequilibrium backward Chapman-Kolmogorov equation by
the method of cumulant generating function to derive the long-run stochastic
equilibria. As pointed out by Iwai, this type of results refute the neoclassical
notion of long-run equilibria.

The Model

Our model has two sectors; one technically advanced sector and the other
less so. By a suitable choice of units we denote the sizes of the two sectors
by a vector (n1,n2). We may think of them as the number of firms in some
suitably chosen standard units. Firms in sector one succeed in creating
innovative firms at rate f which is, for simplicity, exogenously fixed in this
model.}

Firms' stochastic behavior is described by a continuous time Markov
chain which is uniquely determined by a set of transition rates. We write the
transition rate from state a to b by w(a,b). This means that the probability
that the system moves from state a to b in some small time interval is given
by the time interval times the transition rates up to o(time interval size).
They are specified as follows: The first two describe entry (growth) rates

w{(nh h2)’ (n1+1, n2)} =an + £,

w{(ng, n2), (n1, n2 + 1)} = coniz.

‘Here c; is the rate of growth of type i firm size, i = 1,2.
The next two specify exit rates from the model i

w{(n1,n2), (n1 — 1, na)} = damy,

w{(nl; 7"2)’ (n1’n2 - 1)} = dana.

Here d; is the exit (death) rate of type i firms from the economy, ¢ = 1, 2.
The last set of two transition rates describes how firms change their types

w{(n1,m2), (n1 + 1,n2 — 1)} = pgina(n1 + h),
with g2 = c3/dp, and h = f/c;, and

w{(n1,n2), (n1 — 1,n2 + 1)} = pganing,

with ¢; = ¢;/d;, i = 1,2, and pu = Ad)ds. This parameter X is the coefficient
in the transition rates of type changes by firms in the two sectors. The first
of the two shows the rate at which one of type 1 firm becomes technologically
obsolete and join the cluster made up of type 2 firms. The second equation
specifies how firms of type 2 successfully imitate firms of type 1 and join
their cluster. for example. ,

The stochastic dynamic equation is easy to state. It is a backward
Chapman-Kolmogorov equation, also known as the master equation. (We

't will be interesting to endogenize this rate in a way that is not equivalent to increasing
the birth rate ¢; in the model of this paper.




use the latter name as it is short, and implies that everything you need to
know about stochastic behavior is implicit in the master equation.)

OP(ny,na; t)
ot
where the first term collects all inflows of probability flux into state (n1, n2),

and the second term collects all outflows of probability fluxes out of this
state. There are six distinct flows. In detail we have

= I(ny, ng; t) — O(ny, na; 1), (1)

| I(nl,ng; t) = P(m + 1, no; t)dl(nl + 1) + P(nl, ne + lét)dg(nz + 1)

+P(n; — 1, ny; they(nyi —14 k) + P(nl, nz —1)ea(ng — 1)

+P(ny+1, ng—1; )uga(my +1)(np—1)+P(n1—1, ng+1; gy (ma —1-+h) (ma+1).

The second term in (1) is given by

O(nl, na;t) = P(ny, ng; ){c1+n1+f+cona+ding +dang+ugina(ni+h)+uganing)}.

To solve the master equatxon, we first convert it into the probablhty
generating function

G(z1, 22;t) = z P(nl, ng; t)z71 25

ny,n2

We obtain a partial diﬁ'erentia.l equation for G(zl, 29;t). It is given in
Appendix. This partial differential equation is rather intractable, and for
that reason we convert it into the cumulant generating function and solve
for the expected values of first and second moments.2

Cumulant generating functions are related to the probability generating
functions by .
K(61,62;t) = InG(e™®,e7%),
where we change variables from zj, and 22 into §; and 2.

It is known that the cumulant generating function has a Taylor series
expansion of the form

1
K(61,02;t) = k16 + k262 + 5(91,92)9(91, 62)’ +

where k; = E(n), and k2 = E(ng), that is, they are the expected sizes of
the two types, and where © is a covariance matrix made up of the variances
and covariances of the two sizes,

k11 k12
0= e P
( k2 ko
See Aoki (2002, Chapt. 7) for further information on these generating
functlons, and some simple examples.
From the cumulant generating functions we derive a set of five ordxnary

differential equations for ky, k2, k1,1, k1,2, and ka 2.
Appendix gives the explicit expressions.

In some cases the resulting ordinary differential equations for the moments turn out
to be an infinite set of coupled ordinary differential equation. Fortunately, the differential
equations for the first and second cumulants are self-contained in this model.
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Stationary Means and Variances

The equations for the two means are:

dky

- = di(1 - g1)kr + Afdszks + 20 4o, 2

and dken ‘
-Et% = —dp(1 — g2 + Af)ka — 2a)Aq, )
where A = p/d1d2, where g; = ¢;/d;, Ao = k12 + k1k2, and 2a = d1d2(g1 —
g2)- Note that 49 =< nyng >> 0. '

Since Ao depends on k; 2 we need solve for it as well.

Stationary means are described by settmg the left-hand sides of (2) and

(3) to zero:

 f—di(1 — g1)k1 + Afdaka + 20040 = 0, 4)
—d2(1 —g2+ Af)kg - ZaMo =0. (5)

By adding (4) and (5) to express an important relation between f, k1 and
ko
f=di(1— g1)kr + d2(1 — go)ka. ' (6)

This equation clearly shows that a fraction of innovation flow accounts
for the new firms in sector 1, and the rest accounts for the net exit flow of
firms from sector 2. We later show that the expected value of the stationary
values of the size of sector 1 scales with 41 := Xdj, and that of sector 2 scales
with 72 1= Ady,

Recalling the definition d;(1 — ¢;) = d;i — i, we see that the rate of
innovation f equals the sum of the expected exit rates of firms of both
sectors, since (d; — c;)k; is the net exit rate of firms of sector ¢,i =1,2.

In this model it is necessary that both g; and g2 are not greater than
one. There are two cases: g; > g2 and go > ¢1. In the former @ > 0 and
a < 0 in the latter. Egs. (4) and (6) exclude the case g; > g2. In the other
cases, we could have g > 1> g1 0r 1> g2 > g1. '

To reflect these consideration we introduce two parameters m and n3 by

a1 =1-ny,
and
g2 = 1- my,
where v = Af. The constants are bounded by
l>n>0,
Y
and
n>m>-1

The inequality m > —1 is derived from (5).
Solving (4) and (5), we obtain the means of the sizes of the two sectors

ki = — - (7

3not to be confused with n; or na



with

. m(n—m) 2
8= ———-——-—1 m dldQA Ao,
and -
)
kg = ———. : 8
2 my2 E ( )

The stationary variances kj 1 and ka2 are derived in Appendix; the re-
sults are

| 1 2 2 )
k = — e e——
T (et 2R {n'r T ymn2(n —m) [rntm? )
. 2(2+n) 2(n—m)
— 2 - 2
m (7171 1+m)-m(1+ n))] 6+ P 6° + oy’ 93} »

and

1
272 (1 + m — 222(1 - 0))
{2(1—m7)(1+n)9+2(1+n)92+2(n—m)93}.

m(n — m)y mny; m2nys

kag

The covariance k; 2 is expressed in terms of 6 thrbugh the definition ky o =
Ag — kiks as :

1 1
22 =
Y172 nm(n — m)

k1 8[(1 +n)m + (n —m)d].

What remains is to determine . The self-consistent equation for 8 is
~ derived in Appendix. Although the equation is a fifth order equation of 0
because of the five unknown quantities, the highest term vanishes so that

0F(6) =0 9

where :
F(O) =rg+nmb+ 1'292 + 1‘393. (10)

The forms of r; are given in Appendix.

The root & = 0 is of interest because this value of 8 yields a stationary
state in which sector 2 vanishes, ko =0, ko2 =0, and k12 =0.

From F(f) = 0 we obtain three values of 8 The roots must be such that
0 is real and the obtained values of ki, ko, k1,1 and ko g are positive; k1,2 is
not necessarily positive. Although the analytic solutions may be obtained
for special set of parameters, such solutions are not possible in general.

Mathematica, however, enables us to numerically solve F(8) = 0. In
order that those solutions exist in reality, the solutions must be the stable
fixed points.

As an example we describe in detail the case where m = .01; n = 2,
4 = 71, and 72 = 71 + ¢, with a small positive ¢. In this case there is only
one root for which the dynamics are locally stable. It is given by 8 = 0.472.

The stability of the stationary states is examined in the following way.
The starting equations are (2), (3) and (11), (12) and (13) in Appendix.
By setting the left hand sides of those equations we have the stationary
values, which are confirmed to numerically coincide with the solutions from



to

§F(8) = 0. Then the linearized equations for deviations 0k;, 8ko, dk1y, 8kag
and 6k;» from the stationary values are derived. The eigenvalues of those
equations are numerically calculated with a help of Mathematica. If real
parts of all five eigenvalues associated with a stationary point are negative,
the stationary point is stable.

The value of = .472 corresponds to a locally stable solution. This leads

.264 47.2
ky=—, kg=—.
M T2

From (5) we obtain

_ 8 1+m  23.956
1172 m(n — m) ny2

From this we derive
11.495

kia= Ao — krky = :
M2

From (9) through (11) we can obtain approximate order of magnitude values
for the second moments k; ; and kg2 as follows.

kl,l = '_é_’
1
with .
Ciam —(1+ #%) ~ 31,

which is close to .309 obtained in the numerical example below, and

| c
k2.2 = _25_2a
72
with . 1
o m 162 + 2EF g _ 9300,
m n

We also have an approximate expression for k12 as Cy2/71y2 with

92
Clg =—0r 11.15,
mn

which is in good agreement with the value obtained above as 11.495.

Numerical Examples

We focus on a stationary solutions. Since there are five parameters, we have
many solutions. '

To keep the sizes of the two sectors at reasonable values, we examine
cases with the death rates close to the birth rates. Namely, we choose g; to
be close to unity. Previously we have indicated that g2 can be either larger
than one or smaller than one, while g; is always less than one. First, we
consider the case that the death rate d; is slightly larger than the birth rate
ci, so that ny, my < 1. Although the death rate of sector 2 is considered
to be larger than that of sector 1, we assume that both are almost the
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same. We focus on the following parameters; v =41 = v2 = 0.0},n =
2.0,m = 0.01. Then we have three types of solutions; (1) k1 = 50,k1; =
2500,kg = ko2 = k12 = 0, (2) k1 = 49.97, k2 = 4.77, k11 = 2501, ko2 =
46505, ki = 3.71 and (3) k; = 26.4, kg = 4719, kyy = 3093, kg2 = 2.37 x
107, k12 = 114918. The stable solution is only the first type; only sector
1 survives. The second and third types are not stable. If we increase 72
slightly to 42 = 0.011, a remarkable change occurs in the type 3 solution.
The numbers for (1) are the same as the previous case. On the other hand,
(2) k1 = 49.977, k2 = 4.122,k;1 = 2501, k22 = 40232,k; 2 = 3.2 and (3)
ky = 23.94,ky = 4738, k1 1 = 3216.7, kg 2 = 2.378 x 107,k 2 = 127042. The
second solution is not stable, but the third solution turns out to be stable
in this case. ‘ '

We vary a value of y; with other parameters fixed. We found that the
stable fixed point exists in a narrow range such that 0.0227220.0102.

What parameters are chosen to increase the number of companies? For
that purpose we should decrease 7v,71,72. When n = 2.0 and m = 0.01
are fixed, we employ ¥ = 71 = 0.001,72 = 0.0011. Then we have the
stable third solution k; = 264, k2 = 47193 with the correlation coefficient
k12/+/Fi1Fz2 = 0.42. In other sets of parameters with n and m fixed at
the above values, ¥ = 71 and 72 being slightly larger than «, we have the
following scaling relation :

0.264 47.2 . 0.309 2374 11.5
ky=— ka=——, kii=—- ke2=—5-, ki2=—-
T1 T2 v v b

The correlation coefficient is 0.42.

The coefficient of variations are 2.11 and 1.03 for the two sectors respec-
tively. We also note that with 2 nearly the same as 4, only 0.6 percent of
the total sizes of the capital resides in sector 1.

Next we examine negative values of m. Take m = —0.01 while keeping
the values of the other parameters the same as before. The numerical calcu-
lation gives a negative value of k. Although we have not done an extensive
study, a negative value of m, i.e., g2 is larger than one, may not yield stable
stationary situations.

Concluding Remarks

To the best knowledge of the authors, this is the first example of Schumper-
terian dynamics with innovations and imitation for which the first two mo-
ments of a stable solution of the Chapman-Kolmogorov equation have been
analytically derived, and then numerically evaluated. Our model allows one
to examine parametrically the relative importance of net death rates and
innovation rate and to draw important conclusions on qualitative behavior
of interacting two sectors of industry. We have shown that the means of
stationary locally stable equilibria scale with parameters of the innovation
rate, and death rates, among other things.
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Appendix

The probability generating function

With only a scalar random variable X, its probability generating function is
defined by G(z,t) = E(zX) = 3 z"P(k t). Its partial differential equation
is obtained by noting that that

Z 2FP(k -1, (t) = 2G(z, t),
k

i(k +1)Z*P(k + 1,t) = 8G(z, 1)/ 9z,
k=1

o0
3" k2kP(k, t) = 28G(z, ) 8z,
k=1
and
Z(k 1)2*P(k —1,t) = z2aG/az
=1
With two state variables n; and no, smnlar relations. The result is

oG

vy = [dl(l —z)+az(zn— 1) + pga(z2 — Zl)]—

oG
+[d2(1 — 22) + c222(22 — 1) + pg1h(z1 ~ 22)]5;;
2

8“G
+{pg1z1(21 — 22) + pgaza(z2 — 21)16—216—‘12‘ + f(z1 - 1)G.

The cumulant generating function

Noting that
oc _ oK
ot~  at’
G 9, 0K
| a = —Ge ao‘ y
i=1,2,and
321322 G H
with
0K 0K %K

= 50, 56, T 56,00,




we convert the partial differential equation for G into that for K

0K
5= -Z;[d (P = 1) +aile™ ~Ngg +e 1)
+/l[91(8(02_81 ~-1)+ 92(6(91—92) - 1)]H

. We then extract coefficients of 8; and equate them to dk;/dt, i = 1,2, and
those of 82, 62 with the derivatives dk; ;/dt and dk; 2/ dt, and the coefficient
of 616, thh the derivative dk; o/dt.

In this way we generate a set of five differential equatlons for ky, ko, k1,1, k2,2,
and kj ».

Calculations of the variances and covariance

The equations for the variance and covariance are derived as follows:

kg = f-2di(1-gi)ku+di(1+g1)k
+Ad2f(2k1 2 + k2) + dar(k1ky2 + kak11) + 28040,  (11)

k22 = —2d3(1—ga+Af)koa+ da(l + g2 + Af)k2
—4aA(kika 2 + kak12) + 28A Ao, (12)
kg = —[di(1-g1) +do(1 = g2+ Af)|k12 + Adaf (ka2 — k2)
—20A(kky2 + kaky1 — kakog — kakio) — 267Ao,  (13)

where 8 = dyda(g1 + g2)/2. Stationary.values of variances ki1 and kgg are
obtained by setting the left hand sides of (11) and (12) equal to zero:

k = ____..__1 {1-;--————2 [ n(m2+n)
BT 2y (n+ 22m0) ny - ynmn*(n—m) n
2(2+n) 2(n —m)
— 2 — a2
ym (‘nn 1+m)-m(1+ n))] 0+ o + popn) 93} (14)
and
1
ka2

272 (1+m— === (1 — 6))
(i) A Ao )

m(n —m)y mny; m2nvy,

Self consistent values of 8
Substituting (14) for k1,1, (15) for k22 and

1 1+m [ n-m ]
—_f - ——(1-6

nmm—m) | aarm

into the equation which is derived by setting the left hand side of (13) equal

to zero yields the fifth order equation for 8. Luckily, however, the highest
term vanishes, so that the equation becomes quartic;

k12 = Ao — krky = —

8F(6) =0 (16)

where
' F(8) =ro+ 110+ 20 +r36°. (17)
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Here

ro = ZS;":L)) {nm[-m+2n@+n)]+1[ne?t+n)
+12( = mn2(1+n) +ml+ 20+ (L-m)n?) ]}, (18)
r= _;1;{7172 [ — 4mn(1 4 n) + m*(2+n)] +ym[ - (1 + 5n + 4n%)
+r(nn?@+n) - mia+8n+@-nm?)]} (19)
ry= —"7;;" {rm(n—m)? - ymfsym(1 +n) + mn@+50)]}, (20)
rg = 2("":2’")2 {ram +yin}. @1)
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