December 6, 2006 @ University of Tokyo

Estimating a DSGE Model for Japan: Evaluating and Modifying a CEE/SW/LOWW Model

Tomohiro Sugo and Kozo Ueda Monetary Affairs Department, Bank of Japan

•The views expressed here are those of the authors, and should not be interpreted as reflecting the views of the Bank of Japan.

Outline

- Motivation
- Model
- Estimation results
- Effect of monetary policy shock on inflation
- Conclusion

Motivation(1)

- Estimate a DSGE model for Japan
 - Avoid the Lucas critique. Use for policy analyses.
 - Middle-scale model incorporating many elements.
 - Few estimation has been done. Aim to provide a benchmark result.

- We also want to know
 - The driving force of the Japanese business cycles
 - The effect of monetary policy shock on inflation

Related literature

<Theory>

- Christiano, Eichenbaum, and Evans (CEE) (2005, JPE)
 - Construct the DSGE model
- <Empirical papers>
- Smets and Wouters (SW) (2003, JEEA)
 - Estimate the Euro economy by Bayesian technique
- Levin, Onatski, Williams and Williams (LOWW) (2005, MA)
 - Estimate the U.S economy by Bayesian technique
- liboshi, Nishiyama, Watanabe (INW) (2006, mimeo)
 - Estimate the Japanese economy by Bayesian technique

Motivation(2): capital utilization rates

 Inferred capital utilization from CEE/SW model is very different from actual one in terms of their movements and their amplitude.

- Utilization rates and rental costs are negatively correlated, while CEE model assumes the positive correlation between capital utilization and rental costs.
- need to modify the canonical model by CEE/SW

Bottom Line

- We use actual capital utilization rate data for estimation, and modify the formalization of utilization.
- We succeed in incorporating a negative correlation between capital utilization and rental cost.
- Japanese business cycles are driven by investment adjustment cost shock in the short run and by productivity shock in the long run.
- We find a hump-shaped and persistent behavior of inflation rates in response to a monetary policy shock.

Model

Household preferences

• A household *h* maximizes the following:

$$\Xi_t(h) = E_t \sum_{j=0}^{j} \beta_{t+j}^j V_{t+j}(h),$$

where $\beta_{t+j}^j = \prod_{s=0}^{j} \beta_{t+s}$ and $\beta_{t+s} = \beta Z_t^b$

• Utility function: separable and habit formation

$$V_{t} = \frac{\left(C_{t}(h) - \theta C_{t-1}(h)\right)^{1-\sigma}}{1-\sigma} - \frac{Z_{t}^{L} \left(L_{t}(h)\right)^{1+\chi}}{1+\chi}$$

• The household *h*'s budget constraint:

 $\frac{B_{t-1}(h)}{P_t} + W_t(h)L_t(h) + R_t^k U_t(h)K_{t-1}(h) + \Pi_t(h) \ge C_t(h) + I_t(h) + b_t \frac{B_t(h)}{P_t}.$

Capital utilization and accumulation

• Capital depreciation rates depend on capital utilization rates (Greenwood, Hercowitz, and Huffman[1988]):

Different from CEE/SW

$$\delta(U_t(h)) = \delta \Psi(Z_t^U U_t(h)).$$

• A higher utilization rates leads to high depreciation:

$$\Psi(X) = 1 + \mu \frac{X^{1 + \psi^{-1}} - 1}{1 + \psi^{-1}}.$$

Capital accumulation:

$$K_{t}(h) = \left\{1 - \delta(U_{t}(h))\right\} K_{t-1}(h) + \left\{1 - \zeta^{-1} \left(\frac{Z_{t}^{I} I_{t}(h)}{I_{t-1}(h)} - 1\right)^{2}\right\} I_{t}(h).$$

Production and Prices/Wages

• Production technology:

$$Y_t(j) = A_t\left(\widetilde{K}_t(j)\right)^{\alpha} L_t(j)^{1-\alpha} - \Phi.$$

- Monopolistic competitive firms/households determine prices/wages in the Calvo manner
 - With indexation to the past inflation rates

• Market clearing condition:

$$Y_t = C_t + G_t + I_t.$$

Monetary policy rule

• Monetary policy rule:

$$r_{t} = r_{i}r_{t-1} + (1 - r_{i})\overline{\pi}_{t} + r_{\pi}(\pi_{t-1} - \overline{\pi}_{t}) + r_{y}(y_{t-1} - y_{t-1}^{*}) + r_{\Delta\pi}(\pi_{t} - \pi_{t-1}) + r_{\Delta y}((y_{t} - y_{t}^{*}) - (y_{t-1} - y_{t-1}^{*})) + \eta_{t}^{r}.$$

Log-linearized equations (1)

$$c_{t} = E_{t} \frac{1}{1 + \theta + \beta \theta^{2}} \{\theta c_{t-1} + (1 + \beta \theta^{2} + \beta \theta) c_{t+1} - \beta \theta c_{t+2} - \frac{1 - \theta}{\sigma} ((1 - \beta \theta)(r_{t} - \pi_{t+1}) - \varepsilon_{t}^{b} + (1 + \beta \theta)\varepsilon_{t+1}^{b} - \beta \theta \varepsilon_{t+2}^{b})\}$$

$$q_{t} = -(r_{t} - E_{t}\pi_{t+1}) + \frac{1}{1 - \delta + \overline{R}^{k}} \{(1 - \delta)E_{t}q_{t+1} + \overline{R}^{k}E_{t}r_{t+1}^{k}\}$$

$$i_{t} = \frac{1}{1+\beta} E_{t} (i_{t-1} + \beta i_{t+1} + \zeta q_{t} + \beta \varepsilon_{t+1}^{i} - \varepsilon_{t}^{i})$$

 $k_{t} = (1 - \delta)k_{t-1} + \delta i_{t} - \overline{R}^{k} (u_{t} + \varepsilon_{t}^{u})$ $u_{t} = \psi(r_{t}^{k} - q_{t} - \varepsilon_{t}^{u}) - \varepsilon_{t}^{u}$ $l_{t} = -w_{t} + r_{t}^{k} + u_{t} + k_{t-1}$

Log-linearized equations (2)

$$\begin{split} y_{t} &= c_{y}c_{t} + g_{y}\varepsilon_{t}^{g} + \delta k_{y}i_{t} \\ y_{t} &= \phi[\varepsilon_{t}^{a} + \alpha(u_{t} + k_{t-1}) + (1 - \alpha)l_{t}] \\ w_{t} &= \frac{1}{1 + \beta}E_{t}\{\beta w_{t+1} + w_{t-1} + \beta \pi_{t+1} - (1 + \beta \gamma_{w})\pi_{t} + \gamma_{w}\pi_{t-1} \\ &- \frac{\lambda_{w}(1 - \beta \xi_{w})(1 - \xi_{w})}{(\lambda_{w} + (1 + \lambda_{w})\chi)\xi_{w}}(w_{t} - \chi l_{t} - \varepsilon_{t}^{l} + \frac{\beta \theta}{1 - \beta \theta}(\varepsilon_{t}^{b} - \varepsilon_{t+1}^{b}) - \eta_{t}^{w} \\ &- \frac{\sigma}{(1 - \theta)(1 - \beta \theta)}((1 + \beta \theta^{2})c_{t} - \theta c_{t-1} - \beta \theta c_{t+1}))\} \\ \pi_{t} &= \frac{1}{1 + \beta \gamma_{p}}\{\beta E_{t}\pi_{t+1} + \gamma_{p}\pi_{t-1} + \frac{(1 - \beta \xi_{p})(1 - \xi_{p})}{\xi_{p}}(w_{t} + \alpha(l_{t} - u_{t} - k_{t-1}) - \varepsilon_{t}^{a} + \eta_{t}^{p})\} \end{split}$$

$$\varepsilon_t^x = \rho_x \varepsilon_{t-1}^x + v_t^x$$
 where $x = \{a, b, g, i, l, u\}$

 $\overline{\pi}_{t} = \rho_{\pi} \overline{\pi}_{t-1} + v_{t}^{\pi}$

Estimation results

Data and estimation method

- Estimation period: 1981:1Q~ 1995:4Q
- Data: real GDP, real consumption, real investment, real wage, hours worked, <u>capital</u> <u>utilization</u>, inflation, call rates
 - Detrend real variables with kinked linear trends (1991:2Q and 2001:1Q)
 - Demean the rest of variables
- Bayesian estimation

Prior distributions of parameters

		Distribution	Mean	S. D.
Structu	ral parameters			
θ	consumption habit	beta	0.7	0.15
σ	inverse of the elasticity of substitution	normal	1	0.375
χ	inverse of the elasticity of work	normal	2	0.75
$1/\zeta$	investment adjustment costs	normal	4	1.5
Ψ	inverse of the elasticity of capital utilization costs	normal	5	0.5
φ-1	a fixed-cost share	gamma	0.075	0.0125
ξp	price no-revise probability	beta	0.375	0.1
$\xi_{\rm w}$	wage no-revise probability	beta	0.375	0.1
$\gamma_{ m p}$	price indexation	beta	0.5	0.25
$\gamma_{ m w}$	wage indexation	beta	0.5	0.25
Policy p	parameters			
r _i	lagged interest rate	normal	1	0.15
r _π	inflation	normal	0.5	0.2
r _y	output	normal	0.01	0.01
r_{a}	change in inflation	normal	0.1	0.1
r∠y	change in output	normal	0.1	0.1

Estimation result: Posterior distribution

	SW	OW	LOWW	INW	This paper			
Parameters	mean	mean	mean	mean	mean 90% interval		erval	
Structural paramet	ers							
θ	0.592	0.4	0.294	0.641	0.102	0.042	-	0.164
σ	1.391	2.178	2.045	2.041	1.249	0.960	-	1.522
χ	2.503	3	1.405	2.427	2.149	1.764	-	2.532
1/ζ	6.962	6.579	1.822	8.338	6.319	4.297	-	8.266
Ψ	4.975	2.800	0.198	0.182	2.370	1.398	-	3.336
φ-1	0.417	0.8	0.082	0.581	0.084	0.061	-	0.106
ξp	0.905	0.93	0.824	0.65	0.875	0.884	-	0.914
ξ _w	0.742	0.704	0.807	0.367	0.516	0.428	-	0.599
γ_p	0.477	0.323	0.116	0.613	0.862	0.740	-	0.995
$\gamma_{\rm w}$	0.728	0	0.773	0.578	0.246	0.011	-	0.458
Policy parameters								
r _i	0.956	0.962	0.832	0.682	0.842	0.725	-	0.957
r_{π}	0.074	0.152	0.460	0.505	0.606	0.481	-	0.729
r _y	0.004	0.004	0.000	0.017	0.110	0.046	-	0.170
$r_{\angle \pi}$	0.151	0.14	0.285	-	0.250	0.133	-	0.366
r⊿y	0.158	0.159	0.481	-	0.647	0.445	-	0.864

- An average contract duration of price setting is about 8 quarters.
- Monetary policy has a very high inertia.

Capital adjustment utilization

• Explain a sizable decline in utilization rates in the early 1990's and a recovery in 1994-1995.

Variance decomposition

Output

	T=1	T=4	T=10	T=30
productivity shock	43.7	56.6	84.0	94.9
preference shock	7.0	0.3	1.7	2.9
investment adjustment cost shock	36.7	32.1	10.3	1.5
external demand shock	6.2	2.2	1.1	0.4
utilization adjustment cost shock	3.3	2.7	2.1	0.3
labor supply disutility shock	1.0	0.2	0.1	0.0
price markup shock	1.0	5.2	0.5	0.0
wage markup shock	0.0	0.1	0.1	0.0
interest rate shock	0.4	0.1	0.0	0.0
target inflation shock	0.7	0.6	0.1	0.1

Hours worked

	T=1	T=4	T=10	T=30
productivity shock	16.5	0.3	0.2	48.7
preference shock	4.7	0.1	24.6	6.2
investment adjustment cost shock	41.9	57.3	4.6	17.3
external demand shock	16.2	12.6	65.6	27.0
utilization adjustment cost shock	3.6	0.6	0.5	0.4
labor supply disutility shock	8.0	1.9	0.8	0.0
price markup shock	1.2	21.7	0.1	0.2
wage markup shock	2.4	2.0	3.2	0.1
interest rate shock	2.3	0.5	0.0	0.0
target inflation shock	3.3	3.1	0.5	0.1

- In the short run, an increase in output and hours worked is caused mainly by the investment adjustment cost shock.
- In the long run, a productivity shock is a dominant driving force.

Effect of monetary policy shock on inflation

Argument by CEE (2005)

- Capital utilization costs should be treated not as capital depreciation but as <u>additional spending</u> to explain the humpshaped inflation behavior.
- If the cost of capital utilization is treated as additional spending, then tightening monetary policy causes <u>a fall in capital utilization</u> <u>rates</u>.
 - This makes a modest fall in the rental rate of capital and a hump-shaped behavior of inflation rates.
- If the cost of capital utilization is modeled as a higher capital depreciation rate, then tightening monetary policy causes a <u>rise</u> in capital utilization rates.
 - This is because policy tightening decreases the value of capital (Q), and encourages the capital utilization.
 - Hump-shaped behavior of inflation rates cannot be explained.

Effects of tightening monetary policy shock

- True, utilization rates increase on impact, as CEE point out.
- However, this increase is only temporary, and our model can explain a hump-shaped response of inflation rates.
- If adjustment costs are small, utilization rates drop on impact and rental costs fall mildly (close to CEE).
- If adjustment costs are large, rental costs drop by large amounts. But the response of inflation rate is still hump-shaped.
- This is a response to an i.i.d. interest rate shock. To a longer-run target inflation shock, the responses of utilization as well as inflation become the same as CEE.

Conclusion

Conclusion

- We succeed in incorporating a negative correlation between capital utilization and rental costs by assuming that adjustment cost depreciates the capital.
- Japanese business cycles are driven by a investment adjustment cost shock in the short run and by a productivity shock in the long run.
- We find a hump-shaped and persistent behavior of inflation rates in response to a monetary policy shock.

Future research

- Introduce a model of effective labor (e.g. labor hoarding or overhead labor) to explain the movement of productivity growth
- Combine unemployment with the RBC or New Keynesian models (Blanchard and Gali (2006))
- Study an optimal monetary policy and social welfare in the framework of middle-scale DSGE model