Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Learning about perceived inflation target and stabilisation policy

Kosuke Aoki¹ Takeshi Kimura²

¹LSE

²Bank of Japan

22th Augst 2006

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

- STRUCTURAL EQUATIONS
- EQUILIBRIUM UNDER INCREDIBLE π^*
- IMPLICATIONS FOR 'GREAT INFLATION'
- IMPLICATIONS FOR 'GREAT MODERATION'
- CONCLUSION
- APPENDIX

Objectives

- Analyse the interaction between:
 - private-sector uncertainty about inflation target
 (π*)
 - central-bank uncertainty about private-sector belief about π* (perceived inflation target)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Implications for
 - inflation persistence and volatility
 - time-varying inflation process

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Motivation 1: Uncertainty about perceived inflation target

Measures of perceived inflation target are noisy when monetary policy loses nominal anchor Example: US in late '70s-'80s

- Survey measures of LR inflation expectations as proxies
 - Blue chip survey: 8%
 - Michigan survey: 10-11%
- Model-based measures of belief about inflation target
 - Kozicki-Tinsley ('01, '05): 8 % (estimated target ~ 3.5%)
 - Bekaert et. al. ('05): 14%

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Survey measures of perceived inflation target

long run inflation expectations

・ロット (雪) (日) (日)

э

Kosuke Aoki,

Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Model-based measures of perceived inflation target

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Motivation 2: inflation and misinformation

Orphanides-Williams '02 Percent 12 11 10 9 8 7 6 5 Forecast 4 Actual 3 2 1969 1971 1972 1973 1974 1978 1979 1970 1975 1976 1977

FIGURE 1: INFLATION FORECASTS AND OUTCOMES

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Forecast errors larger in the 70s

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Motivation 2: inflation and misinformation

・ロット (雪) ・ (日) ・ (日)

э

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Motivation 2: inflation and misinformation

Orphanides-Williams '02 Percent 10 Forecast Actual 9 u* (Real-Time) u* (Ex-Post) 8 7 6 5 4 3 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

FIGURE 2: UNEMPLOYMENT FORECASTS AND OUTCOMES

Estimate of natural rate biased. What caused this?

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Related Literature: 'Great Inflation'

- Time inconsistency (Kydland-Prescott)
- Sunspot fluctuations (Clarida-Gali-Gertler, '99 QJE)
- Misspecified model (Sargent '99, Romer-Romer '02)
- Misinformation (Orphanides '01 AER, '02 AER, '03 JME)
- Imperfect credibility (Erceg-Levin, '03 JME)
- This paper is related to Orphanides and Erceg-Levin.
 - Weak nominal anchor disturbs stabilisation policy. How?
 - PS uncertainty about inflation target represents uncertainty facing Central Bank

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Questions addressed

- Unobservable (or incredible) π^*
 - how does this affect private agents?
 - how does this affect central bank?
- What are the interaction between the two?

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Issues

Feedback from private-sector (PS) uncertainty about π^* to monetary policy

- PS belief about π*
 - unobservable to CB
 - CB cannot distinguish from other shocks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Expectations formation by PS affected by CB information problem

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Negative feedback on stabilisation an example

Suppose nominal interest rate i_t increases

- Two possibilities ($i_t = r_t + E_{t|\rho} \pi_{t+1}$)
 - inflation expectations increased
 - natural rate increased
- When CB uncertain about PS belief about π*, CB cannot distinguish those two.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

MOTIVATION QUESTIONS AND ISSUES OUTLINE

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Outline of the model

A simple model of inflation determination

- Flexible prices
- Exogenous output (exogenous natural interest rate = real rate)
- Monetary policy follows a simple rule (No optimisation. Focus on filtering and equilibrium)
- ► π^* unobservable to PS. Perceived target $\pi^*_{t|p}$
- π^{*}_{t|p} unobservable to CB
 (Information structure explained in detail later)

Kosuke Aoki, Takeshi Kimura

- **INTRODUCTION**
- MOTIVATION QUESTIONS AND ISSUES OUTLINE
- STRUCTURAL EQUATIONS
- EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Results

- Inflation persistence caused by:
 - PS filtering about π^*
 - CB filtering about $\pi^*_{t|p}$ (Recursive nature of filtering)
- Inflation volatility caused by CB's failure to keep track of r_t (Feedback effects of PS uncertainty on stabilisation)
- Persistence and volatility decrease over time
- Weak nominal anchor and MP mistakes are related with each other

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Structural Equations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Fisher equation

A version of 'expectational' IS curve

$$i_t = r_t + E_{t|p} \pi_{t+1} \tag{IS}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

i_t : nominal interest rate; r_t : natural rate; π_t : inflation

- Can be derived from Euler equation under flexible-price equilibrium (Woodford '04, Ch2)
- *E*_{t|p}: expectation operator conditional on PS information

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Monetary policy rule

CB follows a simple rule:

$$i_t = \phi(\pi_t - \pi^*) + \pi^* + E_{t|c}r_t + u_t, \ \phi > 1.$$
 (MP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 π^* : inflation target; u_t : monetary policy shock

- $E_{t|c}$: expectation conditional on CB information
- CB wants to keep track of natural rate r_t

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

- EQUILIBRIUM UNDER INCREDIBLE π^*
- IMPLICATIONS FOR 'GREAT INFLATION'
- IMPLICATIONS FOR 'GREAT MODERATION'
- CONCLUSION
- APPENDIX

Equilibrium

- Endogenous variables $\{i_t, \pi_t\}_{t=0}^{\infty}$ satisfy (IS) and (MP),
- taking exogenous variables $\{r_t^n, u_t\}_{t=0}^{\infty}$ as given,
- expectations are rational conditional on information set of PS and CB

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

- STRUCTURAL EQUATIONS
- EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Benchmark: When π^* is credible

- π^* is common knowledge
- ► From (IS) and (MP),

$$\pi_t = \pi^* + E_t \sum_{s=0}^{\infty} \phi^{-(s+1)} u_{t+s}$$

• When
$$E_t u_{t+s} = 0$$
 for $s > 1$,

$$\pi_t = \pi^* + \phi^{-1} u_t.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Benchmark: When π^* is credible

Equilibrium is given by

$$\pi_t = \pi^* + \phi^{-1} u_t.$$

- CB fully offsets the effects of r_t on π_t
- Inflation expectations anchored by π^*
- By looking at *i_t*, CB can identify *r_t* even if *r_t* not directly observable.
 (*i_t* = *r_t* + *E_tπ_{t+1}* = *r_t* + π^{*})

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Equilibrium under incredible π^*

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION

EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

• π^* and u_t : unobservable. PS belief about π^* : denoted by $\pi^*_{t|p}$

• i_t, π_t, r_t, ϕ : observable

► CB belief (*E*_{t|c} π^{*}_{t|p} and *E*_{t|c}r_t): observable (see next page)

Only need to analyse up to 3rd-order belief

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Assumptions on private-sector information

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION

EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

► r_t , $E_{t|\rho}\pi_{t+1}$, $\pi^*_{t|\rho}$: unobservable

- belief about belief: $E_{t|c}\pi^*_{t|p}$
- belief about rt: Et|crt
- CB announces its belief
 What we have in mind: CB publishes its economic outlook

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• i_t, π_t, u_t, π^* : observable

Assumptions on Central-Bank information

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION

EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Normality assumption

 r_t and u_t are iid normal

$$r_t \sim N(0, \sigma_r^2), \ \gamma_r \equiv 1/\sigma_r^2 \text{ (precision)}$$

 $u_t \sim N(0, \sigma_u^2), \ \gamma_u \equiv 1/\sigma_u^2 \text{ (precision)}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Common knowledge
- Can obtain analytical results
- The main results survive if we allow shock-persistence

Kosuke Aoki, Takeshi Kimura

$$\pi_t = \phi^{-1} \left[(\phi - 1)\pi^* - u_t + (r_t - E_{t|c}r_t) + E_{t|p}\pi_{t+1} \right]$$

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

- $r_t E_{t|c}r_t$: CB estimation error
- Inflation given CB belief

Equilibrium given belief

From (IS) and (MP),

$$\pi_t = \pi^* - \phi^{-1} u_t + \phi^{-1} (E_{t|c} \pi^*_{t|p} - \pi^*).$$

Inflation given PA belief

$$\pi_t = \pi^* - \phi^{-1} u_t + \phi^{-1} (E_{t|p} \pi^* - \pi^*) + E_{t|p} \sum_{j=0}^{\infty} \phi^{-(j+1)} \left[r_{t+j}^n - E_{t+j|c} r_{t+j}^n \right]$$

(ロ) (同) (三) (三) (三) (○) (○)

2nd order belief matters

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Private-sector filtering

PS observation equation (derived from MP rule)

$$i_t-\phi\pi_t-E_{t|c}r_t=(1-\phi)\pi^*+u_t.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Observable:
$$z_t \equiv i_t - \phi \pi_t - E_{t|c} r_t$$

Sequential updating of $\pi^*_{t|p}$

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Private-sector filtering

Perceived inflation target after t observations:

$$\pi_{t|p}^{*} - \pi^{*} = b_{t}(\pi_{t-1|p}^{*} - \pi^{*}) + \frac{1 - b_{t}}{1 - \phi}u_{t}, \quad (1)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

•
$$b_t \rightarrow 1$$
 as $t \rightarrow \infty$

• Private sector eventually learn π^*

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING

INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Equilibrium and CB filtering

Simultaneity

- Equilibrium depends on CB policy
- CB policy depends on CB filtering
- CB filtering depends on statistical relation between observables and unobservables in equilibrium
- Solve by the method of undetermined coefficients (time-varying coefficients).

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF

PS FILTERING

CB FILTERING

INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

CB-filtering about $\pi^*_{t|p}$

Observation equation (Fisher equation)

$$i_t = r_t + E_{t|p} \pi_{t+1}$$

- $E_{t|p}\pi_{t+1}$ is determined simultaneously with CB filtering
- Estimated perceived inflation target

$$E_{t|c}\pi_{t|p}^* - \pi_{t|p}^* = f_t(E_{t-1|c}\pi_{t-1|p}^* - \pi_{t-1|p}^*) + g_t r_t$$
(2)

Estimated natural rate

$$E_{t|c}r_t - r_t = h_t(E_{t-1|c}r_{t-1} - r_{t-1}) + k_tr_t \quad (3)$$

• f_t, g_t, h_t, k_t : time-varying coefficients

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

INFORMATION EQUILIBRIUM GIVEN BELIEF PS FILTERING

CB FILTERING

INFLATION DYNAMICS

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Summary of Equilibrium

Equilibrium is given by

$$\pi_{t} = \underbrace{\pi^{*} - \phi^{-1} u_{t}}_{\bar{\pi}_{t}} + \underbrace{\phi^{-1}(E_{t|c}\pi^{*}_{t|p} - \pi^{*})}_{\tilde{\pi}_{t}}$$

$$\tilde{\pi}_{t} = \phi^{-1} \left\{ \underbrace{(\pi_{t|p}^{*} - \pi^{*})}_{\text{PS uncertainty}} + \underbrace{(E_{t|c}\pi_{t|p}^{*} - \pi_{t|p}^{*})}_{\text{CB uncertainty}} \right\}$$

•
$$(\pi_{t|p}^* - \pi^*)$$
 is given by (1)

•
$$(E_{t|c}\pi^*_{t|p} - \pi^*_{t|p})$$
 is given by (2)

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Implications for great inflation: persistence and volatility

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Inflation dynamics

Our model implies $\tilde{\pi}_t$ is persistence and volatile

- $(E_{t|c}\pi^*_{t|p} \pi^*_{t|p}) \propto (r_t E_{t|c}r_t)$: represents estimation error of r_t .
- persistence: recursive nature of learning.
- ► volatility: Negative feedback of uncertainty about π^* on stabilisation policy

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Great inflation

- High and persistent inflation in the late '70s-early '80s
- Orphanides ('01 AER, '02 AER, '03: JME): Mis-measurement in the output gap/natural interest rate
 - Misinformation is exogenously given.
- Erceg-Levin ('03 JME): weak nominal anchor (imperfect credibility) causes inflation persistence
 - Mainly focuses on persistence but not volatility.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Great inflation

- This paper connects Orphanides and Erceg-Levin
- Imperfect credibility creates uncertainty about perceived inflation target
- ► → identification of shocks difficult. → source of natural rate mis-measurement
- this causes policy mistakes, generating inflation volatility and persistence.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Policy implications

- Orphanides
 - Misinformation causes inflation
 - Policy recommendation: avoid responding to noisy estimates of output gap and natural rates

Our paper

- Weak nominal anchor creates misinformation
- Policy recommendation: make nominal anchor strong. If MP becomes credible, misinformation becomes smaller.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Implications for great moderation: time-varying stochastic properties of inflation

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Time-varying stochastic process of inflation

Our model implies

- $\pi_t \rightarrow \bar{\pi}_t$ as $t \rightarrow \infty$.
- Contribution of $\tilde{\pi}_t$ becomes smaller over time
 - π_t becomes less persistent over time

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• π_t becomes less volatile over time

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Great moderation

 UK inflation: less volatile and less persistent after '92 (Benati '04)

- time-varying stochastic process of π (Cogley-Sargent ('02,'04), Stock-Watson ('02), Ahmed-Levin-Wilson ('04))
- good policy or good luck?
 Existing literature: likely to be good luck.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

Bernanke's conjecture (Bernanke '04 speech)

Econometric methods confuse good policy with good luck

- don't take into account of impact of systematic component of monetary policy on inflation expectations
- fluctuations caused by de-anchored expectations get confused with genuine non-policy shocks

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Reduced-form regression of model-generated data

- Motivated by Stock-Watson (2002), Ahmed-Levin-Wilson (2004) etc
- Estimation of

$$\pi_t = c + \alpha \pi_{t-1} + \varepsilon_t$$

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Reduced-form regression

We are interested in:

- change in α
- change in $SD(\varepsilon_t)$

Literature on 'great moderation' interprets

- change in α as change in propagation
- change in $SD(\varepsilon_t)$ as change in innovation

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Numerical example

•
$$\pi^* = 2, \, \pi^*_{0|p} = 10, \, 0 \le E_{0|c} \pi^*_{0|p} - \pi^*_{0|p} \le 5$$

• $\pi^*_{0|p}$ in line with US estimates in '80-'81 • $E_{0|c}\pi^*_{0|p} - \pi^*_{0|p}$ in line with differences among

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

US estimates of perceived target in '80s.

$$\gamma_r = 0.44, \, \gamma_u = 1, \, \phi = 1.5$$

- Simulation for 40 periods, 1000 replications
- Estimate for two sub-samples (1-20, 21-40)
- Sensitivity analysis

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Simulation results

- α and $SD(\varepsilon_t)$ become smaller in the second half
- α and SD(ε_t) become larger as E_{0|c}π^{*}_{0|p} − π^{*}_{0|p}
 becomes larger

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Reduced-form regression of inflation

- Both 'innovation' and 'persistence' decline in reduced-form regression
- But, in our model, policy and structural shocks are constant over time
- In our model, change in stochastic process of π_t is generated by change in expectations (beliefs)
 —- consistent with Bernanke's conjecture

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Summary

 Analysis of uncertainty about perceived inflation target

- Mis-measurement of natural rates endogenously determined
- A unified analysis of weak nominal anchor and misinformation
- Change in stochastic process of inflation driven by changes in expectations — existing literature on Great Moderation has not fully explored yet

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

Future work

- Implication for yield curve
 - Excess sensitivity of long rates due to lack of nominal anchor

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

APPENDIX

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES SENSITIVITY ANALYSIS

How is private-sector inflation expectation affected by CB-uncertainty about perceived target?

$$E_{t|\rho}\pi_{t+1} = (1 - \phi^{-1})\pi_{t|\rho}^* + \phi^{-1}\underbrace{E_{t|\rho}E_{t+1|c}\pi_{t+1|\rho}^*}_{\text{3rd-order belief}}.$$

► In general,
$$E_{t|p}\pi_{t+1} \neq \pi^*_{t|p}$$

 PS expectation about how CB will learn about future n^{*}_{t+1|p} matters

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES SENSITIVITY ANALYSIS

CB-filtering about $\pi^*_{t|p}$

Observation equation (Fisher equation)

$$i_t = r_t + E_{t|p} \pi_{t+1}$$

 $E_{t|p}\pi_{t+1} = (1 - \phi^{-1})\pi_{t|p}^* + \phi^{-1}E_{t|p}E_{t+1|c}\pi_{t+1|p}^*$

• CB knows $\pi^*_{t|p}$ evolves by:

$$\pi_{t|p}^{*} = a_{t}\pi_{0|p}^{*} + (1 - a_{t})\pi^{*} + \frac{1 - a_{t}}{1 - \phi}\bar{u}_{t} \quad (\text{PSB})$$

 $\pi^*_{0|p}$: only uncertainty to CB

- *E*_{t|ρ}π_{t+1} is determined simultaneously with CB filtering about π^{*}_{0|ρ}
- Solve by the method of undetermined coefficients (time-varying coefficients).

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES SENSITIVITY ANALYSIS

Equilibrium and CB filtering (1)

Solve by the method of undetermined coefficients.

- Define observables by $X_t \equiv i_t - (1 - a_t)\pi^* - \frac{1 - a_t}{1 - \phi}\bar{u}_t.$
 - Guess:

$$A_t X_t = r_t + B_t \pi^*_{0|p} + C_t E_{t-1|c} \pi^*_{0|p}$$
(G)

 A_t , B_t , C_t to be determined jointly with Kalman filtering about r_t .

• B_t represents the effects of initial perceived target $(\pi^*_{0|p})$ on current equilibrium

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES SENSITIVITY ANALYSIS

Equilibrium and CB filtering (2)

Derive Kalman filter based on (G), and substitute it back to (G). Then solve for A_t , B_t , C_t . Then B_t satisfies

Once B_t is determined, A_t and C_t are determined.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Equilibrium and CB filtering (3)

Define new observation equation by

$$Y_t \equiv A_t X_t - C_t E_{t-1|c} \pi^*_{0|p} = \underbrace{r_t + B_t \pi^*_{0|p}}_{\text{unobservable}}.$$

Distribution of Y_t is

$$Y_t \sim N\left(B_t \pi^*_{0|p'} \ \sigma^2_r\right).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Equilibrium and CB filtering (4)

Posterior mean of $B_t \pi^*_{0|p}$ at time *t*:

$$B_t E_{t|c} \pi^*_{0|p} = d_t B_t E_{t-1|c} \pi^*_{0|p} + (1 - d_t) Y_t, \quad (4)$$

where

$$d_{t} \equiv \frac{\frac{B_{t-1}^{2}}{B_{t}^{2}} \tau_{t-1|c}}{\frac{B_{t-1}^{2}}{B_{t}^{2}} \tau_{t-1|c} + \gamma_{r}}$$
(5)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

and
$$\gamma_r \equiv 1/\sigma_r^2$$
.

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Equilibrium properties (1)

- Simultaneity of equilibrium and CB filtering
- ► PS expectations about future CB filtering matters to π_t
- Current CB filtering depends on PS expectations about future CB filtering
- Intuition:
 - Forward-looking nature of inflation
 - Inflation determined by expectations about future MP
 - Future MP depends on future CB filtering

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING

EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Equilibrium property (2)

Bt depends on:

- B_{t-1}: recursive nature of filtering
- B_{t+1} : forward-looking nature of inflation
 - π_t depends on PS expectations about future MP
 - future MP depends on filtering d_{t+1}
 - current filtering depends on PS expectations

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING EQUILIBRIUM PROPERTIES SENSITIVITY ANALYSIS Basic results robust against different $\pi^*_{0|p}$, ϕ , γ_u , $\tau_{0|PA}$

- High perceived target (π^{*}_{0|p}) results in high inflation persistence
- Aggressive MP (ϕ) results in smaller SD
- Smaller MP shock (larger γ_u) results in smaller SD and less persistence (because PS learning is quicker)
- More stubborn belief (larger \u03c6_{0|PA}) results in larger SD and more persistence (because PS learning is slower)

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Sensitivity analysis (1)

Benchmark ($\pi^*_{0PA} = 10$, Black line) vs. Higher perceived target ($\pi^*_{0PA} = 20$, Gray line)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Sensitivity analysis (2)

Benchmark ($\phi = 1.5$, Black line) vs. Less aggressive monetary policy ($\phi = 1.1$, Gray line)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Sensitivity analysis (3)

Benchmark ($\gamma_u = 1$, Black line) vs. Smaller monetary policy shock ($\gamma_u = 4$, Gray line)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Kosuke Aoki, Takeshi Kimura

INTRODUCTION

STRUCTURAL EQUATIONS

EQUILIBRIUM UNDER INCREDIBLE π^*

IMPLICATIONS FOR 'GREAT INFLATION'

IMPLICATIONS FOR 'GREAT MODERATION'

CONCLUSION

APPENDIX

EQUILIBRIUM AND CB FILTERING EQUILIBRIUM PROPERTIES

SENSITIVITY ANALYSIS

Sensitivity analysis (4)

Benchmark ($\tau_{\alpha_{PA}} = 1$, Black line) vs. More stubborn belief ($\tau_{\alpha_{PA}} = 10$, Gray line)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで