Business Cycle Implications of Consumption Habit Formation

Takashi Kano¹ James M. Nason²

¹Graduate School of Economics, University of Tokyo
²Research Department, Federal Reserve Bank of Atlanta

Prepared for
Macroeconomics Workshop
©University of Tokyo, Tokyo, Japan
November 15, 2007

Preliminary and Comments Welcome
Outline

Introduction

DSGE Models

Bayesian Monte Carlo Strategy

Results

Conclusion
Consumption Habits Solve Many Puzzles

- Habits smooth marginal utility (or consumption).
 Explain asset price anomalies.

- Important propagation mechanism in DSGE models.
 - Hump-shaped output response to monetary shocks (Christiano, Eichenbaum, and Evans 2005, JPE)
 - Negative response of hours worked to TFP shocks (Francis and Ramey 2005, JME)
Quandary is that Habits Create ...

- Excess smoothness in consumption to technology shocks (Lettau and Uhlig 2000, RED)
- Excess volatility in the current account (Kano 2007, CIRJE-WP)
- True resolution of asset-price anomalies? (Otrok, Ravikumar, and Whiteman 2002, JME)

Habits solve asset-price anomalies depending on high-frequency fluctuations in consumption, which are insignificant part of actual US data.

Questions remain ...
What does this paper try to do?

- Evaluating the role of habits in business cycle models in a better way.
- Moments relevant and stringent for business cycle analysis.
 - Impulse response functions identified with multivariate vector processes.
 - Identified shocks create fluctuations in output and consumption growth at all frequency range. \(\Rightarrow \) Information from IRFs is contaminated by noise not interesting for business cycle analysis.
 - We want to extract only low and business-cycle frequency fluctuations generated by identified shocks.
- **Idea:** spectral representation of IRFs of output and consumption growth to identified permanent and transitory shocks.
What does this paper try to do?

- Why frequency domain?

1. Can extract fluctuations generated by identified shocks at particular frequency range.

2. Spectral representation theorem implies that IRFs can be decomposed into orthogonal components frequency-by-frequency.

⇒ Plotting spectra of IRFs conveys correct shape of likelihood of IRF (cf. Sims and Zha 1999, Econometrica)

3. Can create a nice statistic for joint test of spectral IRFs at different frequencies: quasi Kolgomorov-Smirnov goodness-of-fit statistic (cf. Cogley and Nason 1995, JEDC)

⇒ Shape of IRFs really matters for evaluating business cycle models (Vigfusson, last week’s presentation)
What does this paper try to do?

- Simulate DSGE models with and without habits.
 - Real business cycle model with capital adjustment costs
 - New Keyensian monetary business cycle (NKMBC) model with Taylor rule

- Bayesian Calibration to measure fit of DSGE models (DeJong, Ingram, and Whiteman 2000 JBES, Geweke 2007)
 - Take into account model uncertainty, i.e., uncertainty in structural parameters, formally with prior distributions
 - Compare theoretical distributions of moments with empirical counterparts estimated by Bayesian posterior simulator
 ⇒ Bayesian posterior odd ratio foundation (Geweke 2007)
 \[
 \frac{P(A|Y^0)}{P(B|Y^0)}
 \]
Tentative Findings

- No significant role of habits in output growth response at low and business cycle frequencies
 - to a permanent shock in RBC
 - to a monetary shock in NKMBC

- Excess smoothness of consumption to a permanent shock in RBC
Tentative Findings

- **Significant interaction between habits and sticky wages in NKMBC**
 - Good fit of habit-NKMBC to output and consumption growth response to transitory (monetary) shock crucially depends on sticky wages.
 - Without sticky wages, habits lead to the excess smoothness of consumption.

Without sticky wages, no role of habits in monetary business cycles?
DSGE models

- RBC: Christiano and Eichenbaum (1992, AER) and Cogley and Nason (1995, AER)
 - Permanent technology shock and transitory government spending shock
 - Linear disutility of labor
 - Extended with internal habits

- New Keynesian-MBC: Christiano, Eichenbaum, and Evans (2005, JPE)
 - Nominal rigidities: sticky prices and wages
 - Real rigidities: investment adjustment costs, habit formation, capacity utilization
 - Taylor-type monetary policy rule
 - Permanent technology
RBC: consumption habits

- Period utility is
 \[U(c_t, c_{t-1}, n_t) = \ln(c_t - hc_{t-1}) + v(1 - n_t), \quad h \in (0, 1) \]

- Household garners utility given internal habits.
- \[MU(c_t) = (c_t - h c_{t-1})^{-1} - \beta h E_t (c_{t+1} - h c_t)^{-1}. \]
- Household discount factor \(\beta \in (0, 1). \)
RBC: technology

- Cobb-Douglas technology \(Y_t = K_t^\psi (N_t A_t)^{1-\psi} \).
- TFP is random walk (with drift)

\[
\ln(A_t/A_{t-1}) = \alpha + \epsilon_t, \quad \alpha > 0, \quad \epsilon_t \sim N(0, \sigma_\epsilon^2)
\]

- Investment adjustment costs

\[
K_{t+1} = (1 - \delta)K_t + \left[1 - S(\frac{X_t}{\alpha X_{t-1}}) \right] X_t, \quad (1)
\]

where \(S(1) = S'(1) = 0 \), and \(S''(1) = \omega > 0 \).
RBC: leisure, government, and market structure

- Rogerson (1988) indivisible labor supply \Rightarrow linear labor disutility
 \[v(1 - n_t) = -\zeta n_t \]

- Transitory AR(1) government spending shock, g_t
- Government budget balance period by period.
- Complete and perfectly competitive markets
NKMBC: preference and technology

- From RBC model, keep internal consumption habits, investment adjustment costs, drop g_t shock.

- Alter labor disutility to $-n_t^{1+\frac{1}{\gamma}}/(1 + \frac{1}{\gamma})$

- Money in utility: $\ln M_t/P_t$

- Add capacity utilization, u_t, to create capital service, $K_t = u_tK_t$, at cost $a(u_t)K_t$ to household, where $a(1) = 0$ and $a''(1)/a'(1) = 0.01$ without uncertainty.
NKMBC: Calvo staggered price and wage mechanisms

- Monopolistic competition in goods and labor markets.
- Firms (households) unable to update their price (wage) index to lagged aggregate price (wage) inflation \Rightarrow full indexation.
- Firm updates price at prob $\mu_p \in (0, 1)$, faces price elasticity $\chi > 0$
- Household updates wage at prob $\mu_w \in (0, 1)$, faces wage elasticity $\theta > 1$.
NKMBC: monetary policy

- Interest rate-smoothing Taylor rule

\[R_t = \rho_R R_{t-1} + (1 - \rho_R) (R^* + a_\pi E_t \pi_{t+1} + a_y y_t) + \nu_t, \quad \nu_t \sim N(0, \sigma^2_v) \]
Empirical s-IRFs of $\Delta \ln Y$ and $\Delta \ln C$

- On 1954Q1-2002Q4 sample, estimate
 1. VARs for RBC: $[\Delta \ln Z_t, \ln N_t]$, $Z = \{Y, C\}$
 2. VARs for NKMBC: $[\Delta \ln Z_t, \Delta \ln P_t]$, $Z = \{Y, C\}$
 3. Identify IRFs with long-run restrictions $\Rightarrow Y$ (or C) responds only to TFP shock in the long run

- SMAs with permanent and transitory shocks $\epsilon_{p,t}$ and $\epsilon_{s,t}$ with unit variances

$$\Delta \ln Z_t = \sum_{k=0}^{\infty} \Gamma^p_k \epsilon_{p,t} + \sum_{k=0}^{\infty} \Gamma^s_k \epsilon_{s,t}$$
Empirical s-IRFs of $\Delta \ln Y$ and $\Delta \ln C$

- Spectral representation of IRF(q) at frequency $\lambda \in [0, \pi]$

$$S_{\Delta Z}(\lambda) = (2\pi)^{-1} \sum_{k=0}^{q} \sum_{l=0}^{q} \Gamma^p_k \Gamma^p_l \exp(-ik\lambda) \exp(il\lambda)$$

$$+ (2\pi)^{-1} \sum_{k=0}^{q} \sum_{l=0}^{q} \Gamma^s_k \Gamma^s_l \exp(-ik\lambda) \exp(il\lambda)$$

- Setting $q = 20$ in this presentation.
- Alternative interpretation: frequency decomposition of FEVDs
- $S_{\Delta Z}(0)$ goes back to standard FEVDs of $\ln Z_t$ at 20 period forecast horizon.
Empirical s-IRFs of $\Delta \ln Y$ and $\Delta \ln C$

- Priors for Markov-chain Monte Carlo (MCMC) are VAR estimates
- Generate J posterior draws.
- VAR posteriors generate empirical, E, s-IRF distributions of $\Delta \ln Z_t$ w.r.t. permanent and transitory shocks.
- How close is each posterior draw of s-IRFs to the sample estimate counterpart? quasi Kolmogorov-Smirnov statistic (QKS) (Cogley and Nason 1995, Dzhaparidze 1986)
- Calculate QKSs for posterior draws of empirical s-IRFs and construct empirical (posterior) distribution of QKS
DSGE model solution

- Construct optimality and equilibrium conditions
- Stochastically detrend and linearize.
- Solve linearized RBC and NKMBC models with Sims’ (2002) algorithm.
DSGE model parameters

- Calibrate RBC and NKMBC models.
 1. with and without consumption habits
 2. RBC models driven by TFP and g shocks
 3. NKMBC models driven by TFP and v shocks
 \Rightarrow theoretical long-run restrictions.
 4. NKMBC models with and without stick price and wage.

- Sources of priors previous DSGE model studies and other aggregate data.

- Draw vectors of length $J = 5000$ for parameters.
Theoretical s-IRFs distributions

- Create J synthetic samples of length $T = 196$ from linearized solution of DSGE models given priors of parameters.
- Estimate VARs on the synthetic samples.
- VARs provide T s-IRF distributions.
- Construct T distributions of QKS using synthetic s-IRFs and the sample estimate counterpart.
Measuring fit of DSGE models to the data

- Gauge fit of \mathcal{E} and \mathcal{T} s-IRF distributions
- Present median s-IRFs across ensemble of \mathcal{E} and \mathcal{T}.
- Non-parametric density plot of s-IRFs for low and business-cycle frequencies
- Measure overlap of \mathcal{E} and \mathcal{T} distributions of QKS
- Non-parametric density plot of QKS for low and business-cycle frequencies
- Credible interval criteria (CICs) (DeJong, Ingram, and Whiteman, 1992): $CIC > 0.3$ means good fit
Figure 1: s-IRF of $\Delta \ln Y$ to P-Shock: RBC

- Benchmark
- QKS for business cycle frequencies (up to 2 years per cycle)
- Median spectral density
- Frequency decomposition: distributions of spectral densities

Non-Habit: $CIC = 0.99$
Habit: $CIC = 1.00$
Figure 2: s-IRF of $\Delta \ln C$ to P-Shock: RBC
Figure 3: s-IRF of $\Delta \ln Y$ to T-Shock: NKMBCs
Figure 4: s-IRF of $\Delta \ln C$ to T-Shock: NKMBCs
Conclusion

- New and better statistics for evaluating DSGE models w.r.t. IRFs in frequency domain
- Habits seem to matter little in RBC model as a business cycle DGP
- Excess smoothness of consumption
- Without sticky wages, no role of habits in monetary business cycles.
- Habits likely to interact with nominal rigidities in labor market for generating good fit to business cycle moments.