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1. INTRODUCTION

When analyzing the dynamics of economic and econometric models, one
often wishes to study the marginal and stationary distributions associated
with the vector of state variables. For many models no closed form solu-
tion for these distributions exists, and numerical methods form the main
bridge to quantitative applications. This paper studies one such method,
proposed first by Glynn and Henderson (2001).

The problem can be introduced as follows. Let X ⊂ Rk, and let p : X×
X → R be a density kernel on X. That is, p is jointly measurable and

1This project has benefited from the comments of Peter Glynn, Shane Henderson, Sean
Meyn, Kazuo Nishimura, Yoshihiko Nishiyama, Roberto Raimondo, co-editor Whitney
Newey, an anonymous referee, and participants at the 12th International Conference on
Computing in Economics and Finance, Cyprus 2006.
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p(x, y) dy is a density on X for each x ∈ X. Taking X1 as given and re-
cursively drawing

Xt+1 ∼ p(Xt, y) dy (t ≥ 1)

yields a discrete time Markov process (Xt)t≥1 on X.2 It is well-known that
for such a process, the (marginal) distribution of Xt can be represented by
a density ψt on X, and, moreover, the sequence (ψt)t≥1 satisfies

(1) ψt+1(y) =
∫

p(x, y)ψt(x) dx (y ∈ X, t ≥ 1)

Further, a density ψ∞ on X is called stationary for the kernel p if

(2) ψ∞(y) =
∫

p(x, y)ψ∞(x) dx (y ∈ X)

It is an equilibrium in the sense that if X1 ∼ ψ∞, then Xt ∼ ψ∞ for all t,
and in fact one can show that (Xt)t≥1 is (strict sense) stationary.

In this paper we study how to compute numerical approximations to
ψT (for some given T ∈ N) and ψ∞ when analytical expressions are un-
available. Previously a number of techniques have been suggested, in-
cluding (i) discretization and (ii) simulation combined with histograms or
nonparametric kernel density estimates. In what follows we analyze an al-
ternative simulation-based technique which is both intuitively simple and
computationally efficient.

To compute ψT, Glynn and Henderson (2001) propose the marginal den-
sity look ahead estimator (MDLAE) defined by

(3) ψn
T(y) :=

1
n

n

∑
i=1

p(Xi
T−1, y) (y ∈ X)

where (Xi
T−1)

n
i=1 is n independent draws of the lagged state XT−1. The

intuition behind the estimator is straightforward: In view of (1) we have
E p(XT−1, y) = ψT(y). As ψn

T(y) in (3) is by definition the sample mean of
independent observations of p(XT−1, y), it follows that ψn

T(y) is unbiased

2Given X1 and p such a process (Xt)t≥1 exists on some probability space (Ω,F , P).
Conversely, given a model which defines the random process (Xt)t≥1 directly, let p(x, dy)
be the conditional distribution of Xt+1 given Xt = x. We require that p(x, dy) can be
represented by a density p(x, y) dy for all x ∈ X.
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and consistent for E p(XT−1, y) = ψT(y). Moreover, when Ep(XT−1, y)2

is finite the Central Limit Theorem (CLT) implies that ψn
T(y) is also

√
n-

consistent for ψT(y).3

The following example helps illustrate how ψn
T can be constructed in

applications. Consider a model of the form

(4) Xt+1 = µ(Xt) + Σ Ut+1, (Ut)t≥1
IID∼ N(0, Ik)

where Γ := ΣΣ> has positive determinant. The corresponding density
kernel (i.e., conditional density of Xt+1 given Xt = x) is

(5) p(x, y) :=
1

(2π)k/2|Γ|1/2 exp
{
−1

2
(y− µ(x))>Γ−1(y− µ(x))

}
An observation of ψn

T(y) for this model can be generated using the algo-
rithm below.

for i in 1 to n do
draw X from the distribution of X1 (which is given) ;
for t in 2 to T − 1 do

draw U ∼ N(0, Ik) ;
set X ← µ(X) + Σ U ;

end
set Xi

T−1 ← X ;
end
return ψn

T(y) := 1
n ∑n

i=1 p(Xi
T−1, y), where p is defined in (5)

Next let us consider approximating the stationary density ψ∞. Under
the conditions on p in Section 3, a unique stationary density exists, and the
associated Markov process (Xt)t≥1 is ergodic in the sense that

(6) lim
n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h(x)ψ∞(x) dx with probability one

for any initial X1 and any ψ∞-integrable function h.4 Ergodicity implies
3In comparison, the nonparametric kernel density estimator generated from observa-

tions of XT is biased and the error is OP((nδk
n)−1/2), where δn → 0 is the bandwidth and

k is the dimension of X (Yakowitz (1985)). The intuition behind the superior performance
of the MDLAE is that the conditional density p in (3) subsumes the role of the kernel in the
nonparametric estimator. While p always incorporates the dynamic structure contained
in the original model, the nonparametric kernel and bandwidth do not.

4That is, any measurable h : X→ R with
∫ |h(x)|ψ∞(x) dx < ∞.
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that sample moments contain information about ψ∞. Based on this in-
tuition, Glynn and Henderson (2001) propose approximating ψ∞ via the
stationary density look ahead estimator (SDLAE)

(7) ψn
∞(y) :=

1
n

n

∑
t=1

p(Xt, y) (y ∈ X)

where (Xt)n
t=1 is a time series simulated from p and arbitrary X1. Condition

(6) now implies that with probability one,

lim
n→∞

ψn
∞(y) = lim

n→∞

1
n

n

∑
t=1

p(Xt, y) =
∫

p(x, y)ψ∞(x) dx

In light of (2) this reads lim ψn
∞(y) = ψ∞(y), and hence ψn

∞(y) is consis-
tent for all y ∈ X, independent of the initial condition X1. Under some
additional mixing conditions ψn

∞(y) is also
√

n-consistent for ψ∞(y).
Returning to the model (4), with a growth restriction on µ (see below)

the model is ergodic with unique stationary density ψ∞. To approximate
ψ∞(y) using the SDLAE one can apply the following algorithm:

set X1 ← x, where x is an arbitrary point in X ;
for t in 1, . . . , n− 1 do // generate Xt+1 ∼ p(Xt, y) dy

draw U ∼ N(0, Ik) ;
set Xt+1 ← µ(Xt) + Σ U ;

end
return ψn

∞(y) := 1
n ∑n

t=1 p(Xt, y), where p is defined in (5)

We make the following contributions. Sections 2 and 3 extend Glynn
and Henderson’s analysis, emphasizing global convergence of ψn

T and ψn
∞

to ψT and ψ∞, respectively. Using a Hilbert space CLT, we prove that,
when viewed as random functions, the deviations ψn

T − ψT and ψn
∞ − ψ∞

are asymptotically normally distributed over a certain function space, and√
n-consistent in the sense that the norm deviation is OP(n−1/2).

Section 4 discusses applications. While the look ahead estimators can
be used in all fields where marginal and stationary densities of Markov
models are calculated,5 we focus on hypothesis testing, outlining how the

5As one example, Deaton and Laroque (1992) use discretization to compute the sta-
tionary distribution for prices associated with a competitive storage model. For the
model they describe the SDLAE is applicable and trivial to implement. Further, with
the theory developed below error bounds can be estimated.
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asymptotic distribution of ψn
∞ − ψ∞ can be used to construct a nonpara-

metric hypothesis test for ergodic Markov processes.

2. GLOBAL CONVERGENCE, MARGINAL DISTRIBUTION

First let us consider global convergence of ψn
T to ψT. We use some facts

concerning probability in Hilbert space. In what follows, let H be a sepa-
rable Hilbert space with inner product 〈g, h〉 and norm ‖h‖H := 〈h, h〉1/2.
If Y is a random variable taking values in H and E‖Y‖H is finite we can
define EY ∈ H by the expression 〈EY, h〉 = E〈Y, h〉, all h ∈ H. This vector
EY is called the expectation of Y, and is necessarily unique.6

The CLT extends from Rk to general H almost unchanged: If (Yn)n≥1
is IID and E‖Y1‖2

H is finite, then Ȳn := n−1 ∑n
i=1 Yi satisfies

(8)
√

n(Ȳn − EY1)
D→W (n→ ∞)

where the random variable W is centered Gaussian on H.7 A corollary of
this convergence in distribution is that ‖Ȳn − EY1‖H = OP(n−1/2).

The Hilbert space CLT can be used to study convergence of ψn
T to ψT.

Let XT−1 be a random variable distributed according to ψT−1, and let
Y := p(XT−1, · ) be the random function y 7→ p(XT−1, y) from X to R.
An immediate consequence of this definition is that if (Xi

T−1)
n
i=1 are IID

copies of XT−1 then the sample mean

(9) Ȳn :=
1
n

n

∑
i=1

Yi =
1
n

n

∑
i=1

p(Xi
T−1, · )

is precisely ψn
T. Our asymptotic normality proof applies the CLT in (8) to

Ȳn = ψn
T in (9).

To employ the CLT in (8) three steps are necessary, the details of which
are deferred to the appendix. The first step is to ensure that Y = p(XT−1, · )

6By the Cauchy-Schwartz inequality, |E〈Y, h〉| ≤ E‖Y‖H‖h‖H, and since E‖Y‖H is
finite, h 7→ E〈Y, h〉 is a bounded linear functional on H. By the Riesz Representation
Theorem, to such a functional there corresponds a vector EY ∈ H satisfying 〈EY, h〉 =
E〈Y, h〉, h ∈ H. This EY is defined to be the expectation of Y. In the present context all
standard notions of vector-valued integration coincide (cf., e.g., Bosq (2000)).

7W is called centered Gaussian on H if, for every h ∈ H, the real-valued random
variable 〈W, h〉 has Gaussian distribution N(0, σ2

h ) on R for some σ2
h ≥ 0.
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does in fact take values in a separable Hilbert space; in particular

H = L2(X) :=
{

all measurable h : X→ R s.t.
∫

h(x)2 dx < ∞
}

with inner product 〈g, h〉 =
∫

gh. This is done by placing a restriction on p
in Theorem 1 below. The second step is to show that the moment condition
E‖Y‖2 < ∞ is satisfied, where ‖ · ‖ is the norm on L2(X). The third step is
to show that the expectation EY of Y is ψT, in which case we have

(10)
√

n(Ȳn − EY) =
√

n(ψn
T − ψT)

and the CLT in (8) can be applied:

THEOREM 1: Let (Xi
T−1)

n
i=1 be IID copies of XT−1, and let ψn

T be the MD-
LAE. If there exists a ψT−1-integrable function V : X→ R such that

(11)
∫

p(x, y)2 dy ≤ V(x) (x ∈ X)

then
√

n(ψn
T−ψT) converges in distribution to a centered Gaussian random vari-

able W taking values in L2(X).8

As a consequence we obtain the rate ‖ψn
T − ψT‖ = OP(n−1/2).

3. GLOBAL CONVERGENCE, STATIONARY DISTRIBUTION

Next we consider convergence of the SDLAE ψn
∞ in (7) to ψ∞. As for

the case of local convergence (i.e., ψn
∞(y) → ψ∞(y) for fixed y), global

convergence of ψn
∞ to ψ∞ requires a form of ergodicity. We suppose that

p is V-uniformly ergodic (V-UE); viz., there exists a measurable function
V : X→ [1, ∞) and positive constants α < 1 and R < ∞ with

sup
|h|≤V

∣∣∣∣∫ h(y)pt(x, y) dy−
∫

h(y)ψ∞(y) dy
∣∣∣∣ ≤ αtRV(x)

for all x ∈ X and all t ≥ 1. Here pt refers to the t-th order kernel: pt(x, ·)
is the density of Xk+t when Xk = x.9 Thus,

∫
h(y)pt(x, y) dy is the expec-

tation of h(Xt+1) conditional on X1 = x.
8For example, if x 7→ ∫

p(x, y)2 dy is bounded on X then the conditions of the theorem
are always satisfied.

9The kernels are defined by p1 = p and pt+1(x, y) =
∫

p(x, z)pt(z, y) dz.

6



V-UE implies that
∫

h(y)pt(x, y) dy converges geometrically to the ex-
pectation of h with respect to the stationary distribution. It also implies
total variation (and hence L1) convergence of pt(x, ·) to ψ∞, as well as
uniqueness of ψ∞ and ergodicity as in (6).10

The V-UE property is closely related to geometric ergodicity, and suffi-
cient conditions are well understood. For example, the model given by (4)
and (5) is V-UE whenever µ satisfies

(12) ∃ a ∈ [0, 1) and b ∈ R+ s.t. ‖µ(x)‖ ≤ a‖x‖+ b (x ∈ X)

for some norm ‖ · ‖ on X. Kristensen (2006, Theorem 2) gives a useful set
of sufficient conditions for geometric ergodicity, which he applies to lin-
ear and nonlinear ARMA, random coefficient and GARCH models. These
conditions are in fact sufficient for the V-UE property.

With some modifications, the Hilbert space CLT in (8) can be used to
prove asymptotic normality of the SDLAE. Let

L2(X, ψ∞) :=
{

all measurable h : X→ R s.t.
∫

h(x)2ψ∞(x) dx < ∞
}

let 〈g, h〉ψ∞ =
∫

g(x)h(x)ψ∞(x) dx be the inner product on L2(X, ψ∞), and
let ‖ · ‖ψ∞ denote the norm. Adding mild restrictions to p (see below), the
densities p(x, ·), ψn

∞ and ψ∞ all take values in L2(X, ψ∞).
Now let (Xt)t≥1 be a time series generated by p, and let Yt be the

L2(X, ψ∞) valued random variable p(Xt, ·). It follows that the sample
mean Ȳn is precisely ψn

∞. As discussed in the appendix, if (Xt)t≥1 is sta-
tionary then the expectation EY1 = E p(X1, ·) is equal to ψ∞, which yields

(13)
√

n(Ȳn − EY1) =
√

n(ψn
∞ − ψ∞)

The Hilbert space CLT in (8) does not immediately apply, as (Yt)t≥1 is now
a correlated process. However, it is known that for Hilbert space valued
functions of V-UE processes the CLT continues to hold (Stachurski (2006)).
This gives the foundations of the following result:

THEOREM 2: Let (Xt)t≥1 be a Markov process on X with V-UE density
kernel p. If

(14)
∫

p(x, y)2ψ∞(y) dy ≤ V(x) (x ∈ X)

10In addition, V-UE implies aperiodicity, irreducibility and geometric mixing. Inter-
ested readers should consult Meyn and Tweedie (1993, Chapter 16).
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then
√

n(ψn
∞ − ψ∞) converges in distribution to a centered Gaussian random

variable W on L2(X, ψ∞) with covariance function

Γ(y, y′) =
∫

p(x, y)p(x, y′)ψ∞(x) dx− ψ∞(y)ψ∞(y′)

+
∞

∑
t≥1

[∫
p(x, y)pt+1(x, y′)ψ∞(x) dx− ψ∞(y)ψ∞(y′)

]
+

∞

∑
t≥1

[∫
p(x, y′)pt+1(x, y)ψ∞(x) dx− ψ∞(y)ψ∞(y′)

]
The covariance function Γ(y, y′) can be viewed as the infinite dimen-

sional analogue of a variance-covariance matrix.11

From Theorem 2 we obtain the asymptotic distribution of the error,
measured in terms of the norm distance between ψn

∞ and ψ∞.

COROLLARY 1: Under the hypotheses of Theorem 2 we have

n‖ψn
∞ − ψ∞‖2

ψ∞

D→
∞

∑
`≥1

λ`Z2
` (n→ ∞)

where (λ`)`≥1 are the eigenvalues of the covariance function Γ in Theorem 2, and
(Z`)`≥1 are independent standard normal.12

Here n‖ψn
∞ − ψ∞‖2

ψ∞
is the square of ‖√n(ψn

∞ − ψ∞)‖ψ∞ , and Corol-
lary 1 is an infinite dimensional version of the well-known fact that if
Y ∼ N(0, C) in Rk, then ‖Y‖2 has the same distribution as ∑k

`=1 λ`Z2
` ,

where ‖ · ‖ is the norm on Rk, λ` is the `-th eigenvalue of C and (Z`)k
`=1

are IID and N(0, 1). An immediate consequence of Corollary 1 is global√
n-consistency. In particular, ‖ψn

∞ − ψ∞‖ψ∞ = OP(n−1/2).
A final remark on Theorem 2 is that if p is V-UE and bounded then

the conclusion of the theorem holds without (14). For example, p in (5)
satisfies all the conditions of the theorem when (12) holds.

11Note that in fact we do not need X1 ∼ ψ∞. The result holds for X1 = x ∈ X, where x
is arbitrary. This is important for implementation. It means that when simulating (Xt)t≥1
to construct ψn

∞ one can start at any x ∈ X.
12More correctly, (λ`)`≥1 are the eigenvalues of the covariance operator C defined by

the function Γ. For h ∈ L2(X, ψ∞), Ch is given by Ch(y′) :=
∫

Γ(y, y′)h(y)ψ∞(y) dy.

8



4. APPLICATION

In this section we outline how the SDLAE can be used to construct a
nonparametric hypothesis test for Markov processes. In brief, if (Xt)n

t=1
is data, assumed to be generated from a V-UE kernel p, and if that same
data is used to build the SDLAE ψn

∞ in (7), then Theorem 2 provides the
asymptotic distribution of ψn

∞ − ψ∞. This distribution can be used to test
the hypothesis that the data is in fact generated by p.

Since we intend only to illustrate potential applications of the look
ahead technique, we focus on one particular case, namely a nonparametric
test for continuous time interest rate models. A related test was studied by
Aı̈t-Sahalia (1996), to which the reader is referred for further background.

Suppose we wish to test the null hypothesis that the short rate of inter-
est (Xt)t≥1 follows the Vasicek model

(15) dXt = κ(θ − Xt) dt + σ dBt

where Bt is a standard Brownian motion and the parameters are set to
κ = 0.85837, θ = 0.089102, and σ2 = 0.0021854.13 Using the well-known
formula for the conditional transition densities associated with this pro-
cess, the density kernel under the null hypothesis is

(16) p0(x, y) :=
1√

2πσv
exp

{−(y−m(x))2

2σ2
v

}
where σ2

v := vE(1− e−2κ∆), vE := σ2/(2κ), m(x) := θ + (x − θ)e−κ∆ and
∆ := 1/12 is the time interval for the transition density, which is set to one
month. The unique stationary density ψ0 of p0 is N(θ, vE). The kernel p0
is V-UE for V(x) = |x|+ 1.

Let (Xt)n
t=1 be n monthly observations of the short rate of interest, gen-

erated by unknown density kernel p, and let ψ∞ be the stationary density
of p. Define ϕn to be the function n−1 ∑n

t=1 p0(Xt, ·), where (Xt)n
t=1 is the

data. If the null hypothesis is true then p0 = p, ψ0 = ψ∞, ϕn is an observa-
tion of the SDLAE ψn

∞, and, by Corollary 1,

(17) n‖ϕn − ψ0‖2
ψ0

= n‖ψn
∞ − ψ∞‖2

ψ∞
:= n

∫
(ψn

∞(y)− ψ∞(y))2ψ∞(y) dy

13As estimated from US short rate data using GMM by Aı̈t Sahalia (1996).
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is asymptotically distributed as ∑`≥1 λ`Z2
` , where (λ`)`≥1 are the eigen-

values of the covariance function Γ in Theorem 2, and the (Z`)`≥1 are IID
and standard normal. A test of size α rejects the null hypothesis if the left
hand side of (17) exceeds the (1− α)× 100%-quantile of the distribution
of ∑`≥1 λ`Z2

` .
Our test is somewhat analogous to the one proposed by Aı̈t-Sahalia

(1996), the test statistic for which is similar to (17) but uses a standard
nonparametric kernel density estimator (NPKDE) in place of ψn

∞. How-
ever, note that for the NPKDE none of the results developed in this paper
apply, and Aı̈t-Sahalia constructs his asymptotic theory using very differ-
ent methods.

It has been argued (cf., e.g., Pritsker (1998)) that as the asymptotic dis-
tribution of Aı̈t-Sahalia’s test statistic depends only on the stationary den-
sity (see Aı̈t-Sahalia (1996, p. 422)), it is insensitive to the amount of corre-
lation in the underlying process, and as a result the test needs a relatively
large amount of data to attain its asymptotic distribution. In contrast, the
asymptotic distribution of (17) depends on the eigenvalues (λ`)`≥1 of the
covariance function Γ, which, in turn, is defined by the whole sequence of
higher order kernels (pt)t≥1, thereby capturing the full correlation struc-
ture of the process. Combined with the global

√
n-consistency of ψn

∞, this
suggests that the SDLAE based statistic may attain its asymptotic distri-
bution with less data.

While thorough investigation of these issues requires its own paper
and is left for future research, we briefly describe two Monte Carlo experi-
ments which illustrate the test. In the first experiment we study the size of
the test under a true null hypothesis. In the second experiment we study
the power of the test under false null hypotheses.14

To study the test under a true null hypothesis we generated 5,000 time
series from the Vasicek model (16), where each time series is 22 years, giv-
ing 22 × 12 = 264 observations. For each series, we computed the test
statistic (17) based on the true parameters. From these 5,000 samples of
the test statistic we obtained the empirical rejection frequency for the true
null when the size is α = 0.05.

In doing so it was necessary to calculate the 95% quantile of the random
14In what follows, when evaluating the test statistic on the left hand side of (17) and

computing its asymptotic distribution under the null hypothesis, we use the exact param-
eters given after (15). Hence the results of our Monte Carlo experiments do not account
for estimated parameters in the density kernel p0 and stationary density ψ0.
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Figure 1: Covariance function Γ(y, y′), Vasicek model

variable ∑`≥1 λ`Z2
` to which the statistic (17) converges. This required

computing the covariance function Γ using the expression given in The-
orem 2.15 The function is shown in Figure 1. As expected, it is symmetric
and nonnegative along the main diagonal. From Γ we computed a finite
subset of the eigenvalues (λ`)`≥1. By simulating independent standard
normals, we calculated the 95% quantile of ∑`≥1 λ`Z2

` to be ' 3,397.16

Of the 5,000 samples, some 4.257% exceeded the critical value, which
is relatively close to the true test size of 5%. To give some context we
repeated the same experiment but using the NPKDE-based test of Aı̈t-
Sahalia (1996, p. 393) instead of our test. The Aı̈t-Sahalia test rejected the
true null in over 50% of the samples with the same amount of data.17

Finally, we also considered the distribution of the statistic (17) under a
false null by generating data using the level effects interest rate model

(18) dXt = κ(θ − Xt) dt + σXγ
t dBt

where 0 ≤ γ ≤ 0.5 and the other parameters are as before. Setting γ = 0
recovers the Vasicek null in (15).

15The infinite sums were truncated at 100 for numerical calculation.
16To compute eigenvalues a Galerkin projection technique was employed, projecting

L2(X, ψ∞) into a finite dimensional space spanned by 30 Hermite polynomials. Details
of the method and computer code are available from the authors.

17The bandwidth used was the optimal bandwidth for estimating ψ0, the stationary
density of the Vasicek model. We experimented with other bandwidths but all choices
gave a rejection rate in excess of 50%. Our results are consistent with those of Pritsker
(1998), who found that Aı̈t-Sahalia’s test rejected the true null in over 50% of samples
using the same Vasicek model and 22 years of daily data.
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Figure 2: Limiting densities, false null

Suppose that γ 6= 0, so the Vasicek null hypothesis is false. Consider
the test statistic n‖ϕn−ψ0‖2

ψ0
, where ψ0 is the stationary distribution of the

Vasicek null and ϕn(y) = n−1 ∑n
t=1 p0(Xt, y) is the SDLAE formed from

the density kernel p0 of the Vasicek null hypothesis and data (Xt)n
t=1 gen-

erated from the level effects model (18). As the data generating process is
not p0 the limit of ϕn is (in general) distinct from ψ0, and the test is rejected
for sufficiently large n. Figure 2 shows ψ0 and limn→∞ ϕn when γ = 0.3.

To illustrate the ability of the test to reject the Vasicek null hypothesis
when data is generated from the level effects model (18), we computed the
power function (i.e., empirical rejection frequency) with 22 years of simu-
lated data (n = 264) as γ ranges over the interval [0, 0.5]. Figure 3 shows
the rejection frequency over 5,000 simulated time series with respect to the
critical value 3,397. As γ→ 0.5 the rejection frequency converges to one.
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Figure 3: Rejection frequency, false null

APPENDIX

Regarding Theorem 1, in order to employ the CLT in (8), we must establish
(i) that Y = p(XT−1, · ) takes values L2(X), (ii) that E‖Y‖2 < ∞, and (iii) that
EY = ψT. In fact (i) is immediate from (11), as is (ii) because

‖Y‖2 =
∫

p(XT−1, y)2 dy ≤ V(XT−1)

and EV(XT−1) is finite by assumption. To prove (iii) we must show that 〈ψT, h〉 =
E〈Y, h〉 for any h ∈ L2(X). Since ψT(y) = Ep(XT−1, y), for such an h we have

〈ψT, h〉 :=
∫

ψT(y)h(y) dy =
∫

Ep(XT−1, y)h(y) dy

On the other hand, an application of Fubini’s theorem gives

E〈Y, h〉 = E

∫
p(XT−1, y)h(y) dy =

∫
Ep(XT−1, y)h(y) dy

Hence 〈ψT, h〉 = E〈Y, h〉 for all h ∈ L2(X), and EY = ψT as claimed.
Regarding Theorem 2, the fact that EY1 = E p(X1, ·) = ψ∞ when (Xt)t≥1 is

stationary (and hence X1 ∼ ψ∞) can be proved in an almost identical manner to
the proof of (iii) above. The sufficiency of (14) and the expression for Γ follow
directly from Stachurski (2006, Theorem 3.1).
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