
Aggregate Fluctuations of Discrete Investments

Makoto Nirei

Department of Economics, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

E-mail: makoto nirei@carleton.ca

August 16, 2007

Abstract

This paper demonstrates endogenous fluctuations of aggregate investments when

firm-level investments follow an (S,s) policy and exhibit strategic complementarity.

We present a method to characterize the aggregate fluctuations that arise from the

interaction of the (S,s) policies. A closed-form distribution function of the output

growth rate is derived in general environments. We show that the growth rate has

a strictly positive variance even when the number of firms tends to infinity if the

production exhibits constant returns to scale and the real wage and interest rate are

fixed.
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1 Introduction

This paper presents a method to analyze the endogenous fluctuations of aggregate invest-

ments which arise from the interaction of the lumpy behavior of investments at the firm

level. It demonstrates that the endogenous aggregate fluctuations can have a significant

magnitude even when there are infinitely many agents if the micro-level discrete investments

exhibit strategic complementarity. This result obtains when the strategic complementarity

overwhelms the law of large numbers effect in which idiosyncratic shocks quickly cancel out

with each other.

Recent developments in empirical studies on firm-level investments motivate this paper.

Researchers have shown the importance of the discrete investment in the course of a firm’s

capital adjustment. Doms and Dunne (1998) found that the capital at the establishment level

is adjusted only occasionally but by a jump. This finding led macroeconomists to investigate

the aggregate consequence of the micro-level lumpy adjustments. For example, based on

the similar empirical findings, Cooper, Haltiwanger, and Power (1999) and Caballero and

Engel (1999) highlighted the effects of the lumpy investments in the aggregate fluctuation of

investments. This paper presents a model in which the lumpy investment plays the central

role to generate aggregate fluctuations.

The question of how to analyze the aggregate fluctuations that arise from micro-level

discreteness, or more generally, micro-level nonlinearity, has been tackled by the literature

on (S,s) economies and on interaction-based models independently. The (S,s) literature

has developed an analytical method for the aggregate fluctuations without abstracting from

the agent heterogeneity (Caplin (1985); Caplin and Leahy (1997); Danziger (1999); Fisher

and Hornstein (2000); Thomas (2002); Khan and Thomas (2003)). Early development of

the theory on (S,s) economies (Caplin and Spulber (1987); Caballero and Engel (1991))

revealed a robust tendency that the distribution of agents in the inaction band converges to
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a uniform distribution in one-sided (S,s) economies in which the micro adjustment occurs only

in one direction. At the uniform distribution, the adjustment at the extensive margin works

exactly like the adjustment at the intensive margin, and thus the aggregate behavior does

not differ from the smoothly-adjusting case (the “neutrality” result). To the contrary, the

models of interactions and nonlinear dynamics have focused on the possibility of endogenous

fluctuations arising from the micro-level nonlinearity, such as in Brock and Hommes (1997),

Glaeser and Scheinkman (2000), Brock and Durlauf (2001), and Topa (2001). This paper

develops a method to analyze the aggregate fluctuations of an (S,s) economy by using the

intuition of the interaction-based models.

We employ a standard multi-sectoral business cycles model by Long and Plosser (1983)

to approach the question. Long and Plosser showed that the sectors can co-move without

any common shocks when they are linked by input-output relations. This qualitative co-

movement, however, has been questioned in terms of its quantitative significance. Dupor

(1999) showed formally that the aggregate fluctuation in the Long-Plosser economy follows

the law of large numbers, in which the aggregate variance shrinks linearly to the number of

sectors. Horvath (2000) argued that the law of large numbers effect can be slowed down by

a sparse input-output matrix. In this paper, we propose that a nonlinear response of firms

leads to an aggregation mechanism that is different from the intuition of the law of large

numbers.

We introduce lumpy capital adjustments in the multi-sectoral framework similar to Kiy-

otaki (1988) and Gaĺı (1994). The model consists of many monopolistic firms that produce

differentiated goods. Suppose that a capital adjustment is a discrete decision. An invest-

ment by a firm increases the aggregate capital and output in the next period. Because of the

aggregate demand externality, the higher output induces the other firms to produce more in

the next period and thus to invest more in this period. Then, there is a chance of a chain
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reaction of investments in which one firm’s investment triggers another’s. We formalize this

chain reaction as a fictitious best response dynamics that converges to an equilibrium. The

size of the chain reaction depends on the configuration of firms’ positions in the inaction

band. Even when the evolution of the configuration is solely driven by physical depreciation

of capital and occasional capital adjustments, the evolution of the aggregate capital can be

quite complex. By approximating the configuration by a vector of random variables, we

obtain the analytical characterization of aggregate investments.

This paper delivers the following results. First, an asymptotic distribution function of

the aggregate capital fluctuation is derived when the number of firms tends to infinity. The

distribution has a heavier tail than the normal distribution. The fat tail indicates that the

size of aggregate investment is sensitive to the detailed configuration of firms’ positions in the

inaction band. This sensitivity to the detailed configuration causes the aggregate investment

to exhibit endogenous fluctuations in the course of evolution of the capital configuration

driven by the depreciation and lumpy investments. Secondly, we show that the variance of

the aggregate fluctuation does not vanish at the infinite limit of the number of firms when

the technology exhibits constant returns to scale and when the wage and interest rate are

fixed. Even though an economy consists of infinitely many firms, the nonlinear behavior

at the firm level does not cancel out with each other in aggregation. This result forms

a striking contrast to the sectoral models which lack a strong amplification mechanism of

idiosyncratic shocks due to the law of large numbers. Thirdly, we compute the equilibrium

path numerically. This confirms the emergence of endogenous aggregate fluctuations in a

completely deterministic environment. The sensitivity analysis shows that constant-returns-

to-scale is an important environment for the fluctuations. When the wage and interest

rate are fixed and returns to scale are constant, the equilibrium of the product markets with

monopolistic suppliers exhibits a “fragile” property. In this environment, the size of the chain
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reaction of investments depends crucially on the detailed configuration of the positions in

the inaction band. The simulation also points to the presence of replacement echo effects in

the time series.

Important contributions precede this research on endogenous macroeconomic fluctuations

due to the synchronized timing of firms’ discrete actions. Shleifer (1986) demonstrated that

the event of synchronized actions can recur deterministically and endogenously through

self-fulfilling expectations of periodic adjustments. Jovanovic (1987) highlighted the case

where idiosyncratic shocks give rise to aggregate risks. Durlauf (1991, 1993) showed further

that the aggregate size of synchronized actions depends on the detailed configuration of

agents’ states as well as can exhibit a long-run path-dependence. We extend this literature

by presenting a sharper characterization of the synchronization in a standard multisectoral

model. We obtain an analytical expression of the fluctuation magnitude with parameters

which can be estimated from firm-level data. The model also identifies a mechanism of

aggregate fluctuations which does not rely on a strong informational coordination or a strong

nonlinearity such as the increasing returns to scale. The mechanism is best understood as

a globally-coupled case of self-organized criticality (Bak, Chen, Scheinkman, and Woodford

(1993); Scheinkman and Woodford (1994)). The dynamics of the capital profile organizes

itself to a critical configuration, recurringly, at which the distribution of the number of

synchronized firms exhibits a power-law tail.

The rest of this paper is organized as follows. Section 2 presents a simplified model and

the main results of the paper. Section 3 shows that the analytical results hold in a dynamic

general equilibrium setup. Numerical simulations of deterministic equilibrium paths confirm

the analytical results. Section 4 concludes.
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2 Simple Model

2.1 Model

This section provides a simplified presentation of our model and main results on endoge-

nous investment fluctuations. Consider N firms that produce differentiated goods with a

production function:

yi = kθ
i (1)

Each firm is endowed with an initial capital ki,0 that is naturally depreciated at rate δ before

it is available for current production. Each firm chooses an “investment” xi to adjust the

production level.1

ki = (1− δ)ki,0 + xi (2)

The investment xi consists of a composite good produced by a symmetric CES function:

xi =

 N∑
j=1

z
(η−1)/η
i,j

η/(η−1)

N1/(1−η) (3)

where η > 1 is the elasticity of substitution. The constant markup of firms is thus µ ≡

η/(η− 1) > 1. Firm i’s profit is defined as πi = piyi−
∑N

j=1 pjzi,j. Households own the firms

and collect all the profits. The representative household consumes a composite consumption

good that is produced similarly as the capital good:

C =

 N∑
j=1

z
(η−1)/η
c,j /N

η/(η−1)

. (4)

1Precisely speaking, xi should be called intermediate inputs rather than investments in this static model,
since xi takes the resources produced by using (ki). We will consider in Section 3 the case in which xi is
truly the investment that takes resources produced by using the capital in the previous period. We will see
that the results obtained in this static model still hold in the dynamic model.
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We define an aggregate output index Y ≡
(∑N

i=1 y
(η−1)/η
i /N

)η/(η−1)
. A price index is defined

as P ≡
(∑N

i=1 p
1−η
i /N

)1/(1−η)
and normalized to one. An aggregate capital index is defined

as K ≡
(∑N

i=1 k
ρ
i /N

)1/ρ
where ρ ≡ θ/µ. Note that Y = Kθ by construction. By following

the procedure of Dixit and Stiglitz, we obtain the demand function for good i:

yi = p−η
i Y (5)

Finally, we assume that the firm’s capital choice is restricted by a binary set:

ki ∈ {(1− δ)ki,0, λ(1− δ)ki,0} (6)

where λ(1 − δ) > 1. The capital ki has to be either at the depreciated level (1 − δ)ki,0 or

the depreciated level multiplied by the lumpiness parameter λ. This binary constraint is

equivalent to assuming that the firm can choose the gross investment rate xi/ki,0 only either

at (λ − 1)(1 − δ) or 0, namely, a lumpy investment or an inaction. This constraint is a

shortcut for modeling the lumpy behavior which typically occurs as an optimal investment

policy under fixed costs. This discreteness assumption is the only departure from the usual

model of monopolistic product markets. Our main objective is to examine the aggregate

consequence of the nonlinear behavior of firms induced by the discreteness constraint.

An equilibrium is defined as a pair of price vector (pi) and allocation (zi,j, zc,j) such

that the household maximizes its utility U(C) subject to the budget constraint
∑

i pizc,i =∑
i πi/N , that the firms maximize their profits πi subject to the production function (1), the

capital accumulation (2), the demand function for good i (5), and the discrete investment

(6), and that satisfies the equilibrium conditions yi =
∑

j zj,i + zc,i for any good i. Note that

the levels of yi, ki, xi and their average variables are independent of N , whereas the derived

demands zc,j, zi,j are of order 1/N , due to the normalization of the CES functions (3,4) by
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N .

We assume µ > θ so that the profit function is strictly concave with respect to ki. The

optimal strategy for a firm is to adjust the capital only if (1− δ)ki,0 is sufficiently away from

the “desired” level of capital that would maximize the profit if the capital were chosen from

a continuous set. Thanks to the discreteness assumption, we can easily derive the optimal

inaction range for capital ki. Let k∗ denote the lower bound of the inaction band. The upper

bound is λk∗. The optimal bounds must satisfy an indifference condition π(k∗) = π(λk∗).

Then the bound is solved as:

k∗ = a0K
φ (7)

φ ≡ µ− 1

µ/θ − 1
(8)

where a0 is a constant a0 = ((λρ − 1)/(λ− 1))1/(1−ρ). The parameter φ represents the degree

of strategic complementarity among firms. We have the following property immediately.

Lemma 1 φ ≤ 1 if and only if θ ≤ 1 where the double signs correspond with each other.

The spillover effect on the actual capital ki is nonlinear because of the threshold policy. The

average capital level K affects the threshold, but it may or may not induce an adjustment

of ki. The individual capital is insensitive to a small perturbation in the average capital,

while it synchronizes with the average capital if the perturbation is large. The strength of

the synchronization is determined by φ.

We restrict the support of the initial capital ki,0 to an inaction band in order to capture

the stationary behavior of the model economy. In this way, only the firms whose initial

capital is near the lower bound will go below the inaction band due to the depreciation

and increase the capital by a jump. We further assume for our first propositions that the

initial capital ki,0 is randomly drawn from the uniform distribution over the inaction band.
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The randomness of the initial capital is interpreted as an idiosyncratic shock in this section,

whereas in the next section it is reinterpreted as an unconditional distribution of the capital

that evolves deterministically over time. Under the uniformity assumption, the equilibrium

aggregate capital can be derived as K̄ = (a0((λ
ρ − 1)/(ρ log λ))1/ρ)1/(1−φ) for φ < 1 when

there are a continuum of firms. The lower band of the inaction band is then k̄ = a0K̄
φ.

Thus, the uniformity assumption is expressed as follows.

Assumption 1 log ki,0 is a random variable following a uniform distribution over [log k̄, log λ+

log k̄).

The uniformity assumption is not essential to our result, as we see later in Proposition 5.

However, the assumption not only simplifies propositions greatly, but also corresponds to a

robust feature of one-sided (S,s) economies. Let si denote a firm’s position in the inaction

band normalized by the band width: si = (log ki − log k∗)/ log λ. The position si always

takes a value between 0 and 1 at equilibrium. The uniform distribution of si is shifted to

itself if si is decreased by depreciation and if the firms follow the one-sided (S,s) policy, as

is the case in Caplin and Spulber (1987). Hence, the uniform distribution is an invariant

measure of si in a typical one-sided (S,s) model. This property holds in our case if there are

a continuum of firms: the equilibrium position si follows a uniform distribution if the initial

position si,0 = (log ki,0 − log k̄)/ log λ follows the uniform distribution. Moreover, Caballero

and Engel (1991) show that the position converges to the uniform distribution if its dynamics

contain a random component whose distribution flattens over time. They also show that

the heterogeneity of lumpiness λi (as well as the depreciation δi in our model) contributes

to the convergence of a cross-section distribution of si to the uniform distribution. We will

see in the dynamic model that the heterogeneity indeed drives si,t to follow the uniform

distribution.

The equilibrium condition is summarized by the inaction band: ki ∈ [k∗, λk∗) for all
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Figure 1: Aggregate reaction function Γ. K∗ and K∗∗ respectively show the equilibrium
selected by Equilibrium Selection 1 and 2.

i. An equilibrium is a mapping from the initial capital vector (ki,0) to the capital vector

(ki) that satisfies the inaction band. The probability measure for ki,0 and the equilibrium

mapping thus yield the probability measure for the equilibrium aggregate capital K. We will

focus on the aggregate fluctuation that is represented by the distribution of the equilibrium

K. The equilibrium aggregate capital is a fixed point of the aggregate reaction function Γ

that is defined for each realization of (ki,0) as follows:

K = Γ(Ke) ≡

 ∑
{i:(1−δ)ki,0<a0(Ke)φ}

(λ(1− δ)ki,0)
ρ

N
+

∑
{i:(1−δ)ki,0≥a0(Ke)φ}

((1− δ)ki,0)
ρ

N

1/ρ

(9)

where Ke is an expected aggregate capital. Namely, Γ(Ke) represents the aggregate capital

when each firm optimally responds to the expected aggregate capital Ke. As depicted in

Figure 1, Γ is a non-decreasing step function.

We note that multiple equilibria may exist as shown by points A and B in Figure 1. We
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need an equilibrium selection mechanism to pin down a unique solution for each draw of

initial capital profile. We define two sets of the equilibrium selection mechanism. The first

mechanism depends on the aggregate reaction function Γ:

Equilibrium Selection 1 For each initial capital vector, pick the equilibrium aggregate

capital K∗ that has the minimum |K −K0| among equilibria K that satisfy sign(K −K0) =

sign(Γ(K0)−K0).

This mechanism selects the equilibrium aggregate capital that is closest to the initial ag-

gregate capital in the direction toward which the firms are induced to adjust by the initial

aggregate capital. In the case of Figure 1, this mechanism selects point A. Vives (1990)

showed that the equilibrium selected by this mechanism can be reached as a convergent

point of the best response dynamics Ku = Γ(Ku−1) starting at K0. Cooper (1994) sup-

ported the use of this selection mechanism in macroeconomics on the grounds that the best

response dynamics is a realistic tatonnement process in a situation where many agents in-

teract with each other. The only information needed for an agent to make decisions in the

tatonnement is the aggregate capital level. Because of this parsimony on public information,

this selection mechanism excludes the possibilities of big jumps that arise from a purely

informational coordination among agents.

The second equilibrium selection mechanism we use is simpler:

Equilibrium Selection 2 For each initial capital vector, pick the equilibrium aggregate

capital K∗∗ that has the minimum |K −K0| among all equilibria K.

By this mechanism, we construct the least volatile fluctuations of aggregate capital possible

in equilibrium. In Figure 1, this mechanism selects whichever K∗ or K∗∗∗ is the closer to

K0.
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2.2 Results

In this section, we derive the distribution of the aggregate capital fluctuations. We first

analyze the fluctuation of the equilibrium selected by the first selection mechanism, and

then proceed to analyze the one selected by the second mechanism.

Define q ≡ log λ/| log(1−δ)| as the natural frequency of the capital adjustment of a firm.

In a dynamic context, q is the number of periods between a firm’s two successive adjustments

of capital when the aggregate capital is stationary. The inverse of the frequency, 1/q, is the

fraction of firms that engage in the lumpy investment in a period if there are a continuum

of firms distributed uniformly.

Define m1 ≡ N(log Γ(K0)− logK0)/ log λ, which represents the initial gap in aggregate

capital measured in units of the number of firms. If m1 = 0, then K∗ = K0 constitutes

the equilibrium aggregate capital. Otherwise, K∗ 6= K0. Define the equilibrium aggregate

capital growth rate g∗ ≡ logK∗− logK0. We obtain the asymptotic probability distribution

of the capital growth rate as follows.

Proposition 1 Under Assumption 1 and Equilibrium Selection 1, Ng∗ converges in dis-

tribution to (m1 + M) log λ, where M conditional on m1 follows a symmetric probability

distribution function:

Pr(|M | = w | |m1|) = |m1|e−φ(w+|m1|)φw(w + |m1|)w−1/w! (10)

The tail of the distribution function is approximated by:

Pr(|M | = w | |m1|) ∼ (|m1|e(1−φ)|m1|/
√

2π)e−(φ−1−log φ)ww−1.5 (11)

The initial gap m1/
√
N asymptotically follows a normal distribution with mean zero and
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variance:

σ2
1 =

1− λ−2ρ/q

2ρ log λ
−
(

1− λ−ρ/q

ρ log λ

)2

(12)

The proof is deferred to Appendix C. Here we outline the proof in order to elicit the

mechanism behind the distribution. We utilize the best response dynamics of the capital

profile as a workhorse for characterizing the aggregate fluctuations. The initial state and

subsequent dynamics are defined as follows:

ki,1 =

 λ(1− δ)ki,0 if (1− δ)ki,0 < k∗0

(1− δ)ki,0 otherwise
(13)

ki,u+1 =


λki,u if ki,u < k∗u

ki,u/λ if ki,u ≥ λk∗u

ki,u otherwise

(14)

where Ku and k∗u are constructed by (ki,u) as before: Ku =
(∑

i k
ρ
i,u/N

)1/ρ
and k∗u = a0K

φ
u .

Note that the definition of Ku is consistent with the aggregate response dynamics we defined

earlier: Ku = Γ(Ku−1). The mean number of firms that adjust in the first step is N | log(1−

δ)|/ log λ. Their adjustments may or may not exactly balance with the aggregate capital

depreciation, i.e., K1 may not coincide with Γ(K0). If not, the optimal lower bound is

updated and the adjustments in the second step take place. This procedure is iterated until

there are no more firms that newly adjust.

Define mu for u = 2, 3, . . . , T as the number of firms that adjust capital upward in step

u. By convention, mu is negative if the firms adjust downward. The number of adjusting

firms are positive (negative) for all steps if m1 > 0 (m1 < 0). Define M ≡ ∑T
u=2mu as

the total number of firms that adjust capital subsequently after the initial deviation of K1
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from K0. T is the stopping time of the best response dynamics, i.e., T ≡ minu:mu=0 u. An

equilibrium capital vector is defined by the convergent point of the dynamics, ki = ki,T .

m1 +M indicates the total deviation of the investment from the stationary level in units of

the number of firms.

In the first step toward Proposition 1, we show that the capital growth rate is asymptot-

ically proportional to the number of firms that adjust.

Lemma 2 Under Assumption 1, N(logKu+1 − logKu) converges to mu+1 log λ as N →∞

almost surely for u = 1, 2, . . . , T − 1.

Proof is in Appendix A. Lemma 2 implies that N(logK − logK0) → (m1 +M) log λ. Thus,

the computation of the growth of aggregate capital reduces to counting the total number

of adjusting firms. We then show that the number of adjusting firms in the best response

dynamics asymptotically follows a Poisson branching process.

Lemma 3 Under Assumption 1, mu for u = 2, 3, . . . , T asymptotically follows a branching

process, in which each firm in mu bears firms in step u+ 1 whose number follows a Poisson

distribution with mean φ.

Proof is in Appendix B. A branching process is an integer stochastic process of a population.

Each individual (“parent”) in a generation bears a random number of “children” in the next

generation. In a Poisson branching process, the number of children borne by a parent is a

Poisson random variable. It is known that a branching process converges to 0 in a finite

time with probability 1 if the mean number of children borne by a parent is less than or

equal to 1 (see Feller (1957)). This fact confirms that the best response dynamics stops in

a finite time T with probability 1 when φ ≤ 1. Thus, the best response dynamics is a valid

algorithm of equilibrium selection even when N →∞.
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The cumulative population size of the Poisson branching process is known to follow the

Borel-Tanner distribution (Kingman (1993)). By combining the Borel-Tanner distribution

with the Poisson distribution for m2, we obtain the desired distribution (10).

We approximate the tail part of the distribution (10) by (11) by applying Stirling’s

formula. The distribution (11) shows that the normalized aggregate capital growth rate

conditional on m1 asymptotically follows a gamma-type distribution which combines a power

function w−1.5 and an exponential function e−(φ−1−log φ)w. Note that φ − 1 − log φ > 0 for

φ < 1. Since the exponential function declines faster than the power function, the tail

distribution is dominated by the exponential when φ < 1. By Lemma 1, the condition φ < 1

is equivalent to the decreasing returns to scale. As the returns-to-scale becomes constant,

φ becomes one. In that case, the exponential part disappears, and thus the distribution

converges to a pure power law.

In fact, the total population of any branching process is known to follow the gamma-type

distribution with the power exponent 0.5 as in (11). The gamma-type often appears as the

distribution for waiting time. The distribution of population in branching processes is closely

related to the distribution of the first return time of a random walk, which has the same

power-law exponent 0.5. In our case, the total number of adjusting firms is characterized by

the waiting time for the best response dynamics to converge.

The gamma-type distribution implies a heavier tail than the normal distribution and an

excess kurtosis. Thus our distribution is consistent with the finding of Caballero and Engel

(1999) that the empirical investment rates at the sectoral level have excess kurtosis. They

also found the skewness, which can be generated in our model when the initial distribution

of capital is not uniform. Khan and Thomas (2003) obtained the excess kurtosis and the

skewed response of the aggregate investment by numerically simulating a lumpy investment

model under fixed prices. Our model shares the feature that the response of the aggregate
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investment to shocks depends on the cross-section distribution of capital.

Whether the tail obeys an exponential decay or a power decay has important implications

for the moments of the distribution, since the existence of moments is determined by the tail

behavior. If the tail decays exponentially, then any ξ-th moment exists, because
∫∞
0 xξe−xdx

is a gamma function and thus finite. To the contrary, if the tail decays in power with

exponent ζ, then only the moments lower than the ζ-th exist, since
∫∞ xξx−ζ−1dx is finite

only for ξ < ζ. For our case where the exponent of the power law is 0.5, even the mean

diverges if there is no exponential truncation.

The degree of strategic complementarity, φ, determines the speed of exponential trun-

cation of the distribution. At φ = 1, the exponential term disappears and the distribution

becomes a pure power law without finite mean. This is because the mean number of chil-

dren per parent, that is equal to φ, determines the trend growth of the population in the

branching process. The population size of the n-th generation has mean φn if the population

is originated by one individual. The population diverges to infinity with a positive probabil-

ity when the process is supercritical, φ > 1, whereas the population decreases to zero with

probability 1 if subcritical, φ < 1. Thus, φ = 1 is the critical point at which the population

size decreases to zero with probability 1 and yet the mean population size diverges.

The possibility of a power-law distribution of sectoral propagation was first pointed out

by Bak et al. (1993) along the line of literature on self-organized criticality. The point of the

literature is that the critical phenomena, which are broadly associated with the power-law

distributions, can occur at the sink of a class of dynamical systems, whereas such criticality

had been believed to require a fine tuning of parameters. The “self-organization” mechanism

to arrive at a critical point can be interpreted as the convergence of si to the uniform

distribution in a dynamic version of our model. The result differs in the exponent of the

power-law distribution, which is 0.5 in our model and 1/3 in Bak et al. The difference
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arises from the topology of the network. Bak et al. assumed a two-dimensional lattice

network in which two avalanches started from neighboring sites can overlap. This leads

to the longer chain of reaction and thus the flatter power-law tail. Our model features a

standard equilibrium market model that is essentially dimensionless in the firms’ network

and thus corresponds to an infinite-dimension case of the lattice models which yields the

exponent 0.5 (Grimmett (1999)).

The distribution of M conditional on m1 converges to a pure power-law distribution as

φ approaches to 1. With the exponent 0.5, the power-law distribution does not have either

mean or variance. The conditioning variable m1, which is the initial gap in the best response

dynamics, obeys the law of large numbers and its variance decreases linearly in N . It turns

out that these two effects cancel out in the unconditional variance of (m1 + W )/N , as we

state in the following proposition.

Proposition 2 Suppose that g∗ follows the distribution in Proposition 1. Then, the standard

deviation of g∗ converges to a non-zero constant as φ→ 1 and N →∞. The limit standard

deviation is (log λ)
√

(2/π)(σ1 + 1/3)σ1.

Proof is deferred to Appendix D. The main idea is following. Proposition 1 showed that

m1/
√
N asymptotically follows a normal distribution with finite variance. This implies that

the absolute value |m1| has mean that scales as
√
N . Namely, the average initial gap of

the best response dynamics in units of the number of firms increases as
√
N . Proposition 1

also showed that Ng∗/ log λ−m1 conditional on m1 = 1 follows the power-law distribution

with exponent 0.5 if φ = 1. Then, the variance of Ng∗ conditional on m1 = 1 diverges

as N1.5, because
∫N x2x−1.5dx ∼ N1.5. Combining these two results, we obtain that Ng∗

unconditional on m1 has variance scaling as N2, since Ng∗ can be divided into
√
N sets

of sub-population each of which has variance that scales as N1.5. Hence the variance of g∗

scales as N0.
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The argument above shows that the power-law distribution is essential to obtain the

non-trivial variance of g∗. The key environment that induces the emergence of the power

law is φ = 1, or equivalently, the constant returns to scale θ = 1. It appears counterintuitive

that the aggregate variance does not converge to zero when there are only idiosyncratic

shocks to the initial capital. However, it is a natural consequence of the usual properties

of equilibrium under the constant returns to scale. At the equilibrium factor prices, firms

cannot determine the optimal size of production under the constant returns to scale, because

firms are indifferent across production levels. Thus, any level of production can happen at

the equilibrium factor price. The equilibrium is determinate in our model because of the

frictions in firms’ behavior. The indeterminacy of the constant returns to scale economy

reappears, however, in the form of the power-law distribution. The power-law distribution is

scale-free, i.e., the shape of the distribution does not depend on the measuring unit.2 Due to

the scale-free property, the economy experiences non-trivial fluctuations of the synchronized

adjustments of firms regardless of the size of the economy.

The limit standard deviation of the growth rate in Proposition 2 is determined by the

lumpiness parameter λ and the periodicity q of the capital oscillation at the firm level.

Numerical examples for the standard deviation are shown in Table 1. First, we note that

the fluctuation magnitude shows little dependence on the markup rate. In fact the standard

deviation is not significantly changed even when the markup rate goes to infinity, at which

σ2
1 is simplified to (1−1/q)/q. This implies that the lumpiness parameter log λ has an almost

proportional effect on the standard deviation when the periodicity q is held constant.

Secondly, Table 1 suggests that the empirically plausible range of lumpiness can generate

the magnitude of fluctuations observed in the business cycles frequency. There exist some

empirical estimates for the lumpiness of capital adjustments. Doms and Dunne (1998)

2Newman (2005) provides an illuminating survey of the scale-free distribution and the power law as well
as the critical phenomena and the self-organized criticality.
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markup (µ− 1) 0.02 0.2
lumpiness (log λ) 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

4 0.92 2.29 4.56 9.07 0.92 2.29 4.57 9.10
periodicity (q) 6 0.82 2.04 4.07 8.11 0.82 2.04 4.08 8.13

8 0.75 1.87 3.73 7.43 0.75 1.87 3.73 7.44

Table 1: Limit standard deviations of aggregate capital growth rate (percent)

observe that over half of the plants in their data experience an annual capital adjustment

of at least 37% of the capital. Cooper, Haltiwanger, and Power (1999) report that 20% of

plants experience the gross investment-capital ratio more than 20% each year, which account

for almost 50% of aggregate investment. Based on this observation, they choose 20% as a

suitable threshold for defining a lumpy investment. Ellison and Glaeser (1997) report that

the plant Herfindahl (the representative share of a plant’s employment in an industry) is

2.8%. The plant Herfindahl may be interpreted as the lumpiness of investments if a capital

adjustment is carried out by adjusting the number of plants. The aggregate fluctuation

shown in Table 1 is sizable even for such small lumpiness.

Proposition 2 shows that the fluctuations of growth rates do not degenerate at the infinite

limit of N if φ = 1. The criticality condition φ = 1 is equivalent to the constant returns

to scale θ = 1 by Lemma 1. We also note that the competitiveness of the market, µ, does

not affect whether φ is at the critical level. In this sense, the returns to scale determines

the “phase” of the spillover effects, whereas the markup rate only modifies the degree of

complementarity without altering the phase. The criticality condition φ = 1 is interpreted

as the case of perfect strategic complementarity across firms. By perfect complementarity

we mean that a proportional increase in capital of all the other firms induces the same

proportional increase in capital of a firm, if the increment is larger than the lumpiness. A

shock smaller than the lumpiness, however, does not cause a symmetric movement across
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firms. Thus, the firm’s investment behavior at the criticality may be summarized as the

local inertia combined with the global perfect strategic complementarity.

Proposition 2 demonstrates that, no matter how large the aggregative system is, the

nonlinearity of the individual behaviors can add up to non-degenerate aggregate fluctuations.

This is the theme pursued by Jovanovic (1987). His idea is that the multiplier effect, 1/(1−

φ) in our model, can be large enough to amplify an idiosyncratic shock to an aggregate

fluctuation if φ approaches to 1 as 1− 1/
√
N . Our model shares the basic environment that

the degree of strategic complementarity φ needs to approach to one. Our model differs in

that the firm’s response is nonlinear to the aggregate capital. The nonlinearity renders the

multiplier effect quite sensitive to the detailed configuration of capital. It turns out that

the multiplier effect follows a heavy tailed distribution, which causes the average multiplier

effect to be the size of Jovanovic’s. Thus, the idiosyncratic shocks are not simply magnified

to the aggregate risks in our model. The essential factor for the aggregate fluctuations is the

configuration of capital that determines the magnitude of the realized multiplier effect. In

this sense, our result is analogous to Durlauf (1991).

Finally, we investigate the fluctuation magnitude of g∗∗ ≡ logK∗∗− logK0, the aggregate

capital growth rate when the equilibrium is selected by Equilibrium Selection 2. We obtain

the following result.

Proposition 3 Under Assumption 1 and Equilibrium Selection 2, for a region of arbitrarily

large N , there exists φ∗ < 1 such that the convergence of the variance of g∗∗ to zero is not

faster than 1/
√
N if φ ≥ φ∗.

Proof: For any large N , there exists φ∗ close enough to 1 such that the exponential part in

(11) has a negligible impact on the probability distribution for the region below N . Now

consider the case Γ(K0) > K0 depicted in Figure 1. K∗∗∗ is defined as the fixed point of Γ

on the opposite side of K0 from K∗. There exists a point between K∗∗∗ and K0 at which Γ
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Figure 2: Dependence of the standard deviations of growth rates on the economy size

crosses the 45 degree line from below such as point C in Figure 1. By applying Proposition

1, the number of adjusting firms between B and C in Figure 1 follows the power law with

exponent 0.5 if φ = 1. Then, the tail distribution of |g∗∗∗| cannot decay faster than the

power function with exponent 0.5.

Suppose that |g∗∗∗| follows the power-law tail with exponent 0.5. Since |g∗| and |g∗∗|

are asymptotically independent conditional on m1 and since |g∗∗| = min{|g∗|, |g∗∗∗|}, we

then have that Pr(min{|g∗∗| > g | m1) = Pr(|g∗| > g | m1) Pr(|g∗∗∗| > g | m1) ∝

g−0.5g−0.5 = g−1. At the power exponent 1, the variance of g∗∗ conditional on m1 de-

creases as
∫N x2x−2dx/N2 ∼ 1/N . We know that the mean of |m1| increases as

√
N . Then,

proceeding as the proof of Proposition 2, we obtain that the variance of g∗∗ decreases as

1/
√
N . If the tail distribution of g∗∗∗ decays more slowly than the power law with exponent

0.5, the variance of g∗∗ also decreases more slowly than 1/
√
N . 2

Proposition 3 shows that, if we choose the least volatile equilibrium, the variance of

the capital growth rate decreases to zero as N increases, but at the rate slower than the
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central limit theorem predicts. This again opens up the theoretical possibility that the

lumpy investment at the micro level contributes to sizable aggregate fluctuations.

The slow decline of the variance corresponds to the empirical finding by Canning, Amaral,

Lee, Meyer, and Stanley (1998) that the log standard deviation of GDP growth rates declines

at the slope as flat as −0.15 when plotted against the log GDP across countries. Regional

data also show this pattern. Figure 2 plots the standard deviation of the growth rates of the

US states and BEA regions relative to the US growth rate. The gross state product (GSP)

statistics were compiled by the Bureau of Economic Analysis. The state-level standard

deviation has a slightly negative relation with the GSP size. If the state-specific fluctuations

are entirely driven by the idiosyncratic technological shocks as in the Long-Plosser model,

then the standard deviation should decline as a square root of the size of the economy as

shown by Dupor (1999). Thus, the linear fit to the plot should have slope −0.5. However,

the slope estimated by the linear regression is as flat as −0.24 (standard error 0.05). If we

match the empirical slope by incorporating the aggregate shocks in the Long-Plosser model,

then we need to assume that most of the state-specific fluctuations are due to the state-level

aggregate shocks. Thus, the empirical pattern of the state fluctuations is hard to reconcile

with the standard disaggregated model. The pattern is consistent with our model, however,

in which the standard deviation of g∗∗ declines at rate −0.25.

Let us finally examine the overall magnitude of the regional volatility in Figure 2. The

standard deviation of the difference between the GSP growth rates and the US GDP growth

rate is averaged as 1.19% across states. This magnitude falls in the range of the simulated

standard deviations shown in Table 2 in Section 3.2 even though the number of operating

manufacturing plants in the US amounts to be about 350000 (Cooper, Haltiwanger, and

Power (1999)). It is thus quantitatively possible that the aggregate regional fluctuations with

the magnitude of empirical business cycles endogenously arise from the complementarity of
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discrete investments.

Propositions 1 and 2 are robust in a more general setup where the initial capital is not

distributed uniformly and the lumpiness and the depreciation rate are heterogeneous across

firms. We defer these generalizations to Appendix F.

3 Dynamic Model

In this section, we construct a dynamic model in which the distribution of capital evolves over

time deterministically due to the depreciation and lumpy investments. We use the standard

business cycles model with monopolistic firms as in Gaĺı (1994). First, we reestablish our

analytical results in this framework. We observe that the wage and interest rate can dampen

the investment amplification effects by lowering the degree of strategic complementarity.

This corresponds to the general equilibrium effect identified by Thomas (2002). Second,

we consider the case when the wage and interest rate are held constant, and compute the

equilibrium path numerically. We observe that the endogenous deterministic fluctuation

emerges. We also confirm that the uniform distribution provides a good approximate for an

unconditional distribution of the firms’ positions in the inaction band.

3.1 Model and the fluctuation result

Each firm i now uses labor hi,t as well as capital to produce good i:

yi,t = Akα
i,th

γ
i,t. (15)

The returns to scale is θ = α+γ. Capital is accumulated over time as in (2). The investment

good xi,t is produced similarly as (3). The investment rate xi,t/ki,t is chosen from a discrete
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set:
xi,t

ki,t

∈
{
(1− δ)(λ

κi,t

i − 1)
}

κi,t=0,±1,±2,...
(16)

where λi(1 − δ) > 1. Note that the choice space for ki,t is independent of the path: ki,t ∈

{(1− δ)tki,0λ
κ̃t
i }κ̃t=0,±1,±2,....

The representative household has preference over the sequence of consumption and hours

worked:
∑∞

t=0 β
t(C1−σ

t /(1 − σ) − Ht). The representative household maximizes the utility

subject to the sequence of budget constraints:

N∑
i=1

pi,tzc,i,t = wtHt + Πt, ∀t (17)

where wt denotes the real wage and Πt is the average dividend from firms: Πt ≡
∑N

i=1 πi,t/N .

Aggregate indices Yt, Kt, and Pt = 1 are defined similarly as before, by redefining ρ ≡

(θ − γ)/(µ − γ). The new definition of ρ corresponds to the old one in the simple model

when γ is set at 0. Aggregate investment is Xt ≡
∑N

i=1 xi,t/N . The labor market equilibrium

condition is Ht =
∑N

i=1 hi,t/N . The usual procedure yields a demand function for good i as

(5).

The monopolist maximizes its discounted future profits as instructed by the represen-

tative household. The instructed discount rate, r−1
t , is the marginal rate of intertemporal

substitution of consumption. Then the monopolist’s problem is defined as follows:

max
{yi,t,ki,t+1,hi,t,ii,t,zI

l,i,t
}

∞∑
t=0

(r1 · · · rt)
−1πi,t =

∞∑
t=0

(r1 · · · rt)
−1

pi,tyi,t − wthi,t −
N∑

j=1

pj,tzj,i,t

 (18)

subject to the production function, the capital accumulation, the discreteness of the invest-

ment rate, and the demand function. By using the optimality condition for hi,t, the profit
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in period t reduces to a function of (ki,t, ki,t+1) as:

πi,t = a0w
−γ
1−γ

t K
ρ(µ−1)
1−γ

t kρ
i,t − ki,t+1 + (1− δ)ki,t (19)

where a0 ≡ (1 − γ/µ)(A(γ/µ)γ)1/(1−γ). The present discounted value of profits is concave

in ki,t due to ρ < 1. Thus the optimal policy is characterized by an inaction band of ki,t

with a lower bound k∗i,t and an upper bound λik
∗
i,t. Consider two sequences of ki,τ which

are identical except at τ = t. Such sequences can be constructed by assigning a positive

investment at t − 1 and zero investment at t in one sequence and zero investment at t − 1

and a positive investment at t in the other sequence. Then the lower bound is derived by

solving for k∗i,t at which the two sequences yield the same discounted profit. Namely, if ki,t

is strictly less than k∗i,t, the firm is better off by adjusting it upward rather than waiting.

Assign ki,t = k∗i,t to the sequence that has zero investment at t − 1, and ki,t = λik
∗
i,t to the

other sequence. Then the both sequences have the same amount of capital at t−1 and t+1:

ki,t−1 = (1/(1− δ))k∗i,t and λi(1− δ)k∗i,t. Solving for k∗i,t which equates the discounted profits

of the two sequences, we obtain:

k∗i,t = ai (rt − 1 + δ)
−1
1−ρ w

−γ
(1−γ)(1−ρ)

t K φ̄
t (20)

φ̄ ≡ ρ(µ− 1)

(1− ρ)(1− γ)
=
θ − γ

1− γ

µ− 1

µ− θ
(21)

where ai ≡ (a0(λ
ρ
i−1)/(λi−1))1/(1−ρ). Equation (20) expresses the strategic complementarity

between Kt and k∗i,t, whereas the degree of complementarity is represented by φ̄. Note that

φ̄ reduces to φ in the simple model when γ = 0. Lemma 1 continues to hold for φ̄, namely,

φ̄ ≤ 1 if and only if θ ≤ 1.
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The perfect foresight equilibrium path is determined by the following system of equations:

rt+1 =
wt+1

wtβ
(22)

w
1/σ
t = Yt −Xt (23)

Yt = cYw
−γ/(1−γ)
t K

(θ−γ)/(1−γ)
t (24)

Xt =
∑

{i:si,t<zi,t}
(1− δ)(λi − 1)λ

si,t

i k∗i,t/N (25)

Kt+1 =

Kρ
t +

∑
{i:si,t<zi,t}

(λρ
i − 1)λ

si,tρ
i k∗ρi,t/N

1/ρ

(1− δ) (26)

zi,t ≡ 1/qi + (log k∗i,t+1 − log k∗i,t)/ log λi (27)

where cY ≡ (A(γ/µ)γ)1/(1−γ). It is hard to compute the perfect foresight equilibrium path,

since the future prices depend on the vector of individual capital rather than the aggregate

capital. Thus we approximate the expectation formations of agents on the future prices.

First, agents are assumed to expect that si,τ for τ > t follows a uniform random variable

over the unit interval independently across i. Secondly, agents expect that wτ for τ > t

obeys a log-linearized dynamics around the steady state. Thus, when the firms decide the

investment in t (and thus the capital in t+1), they rely on the forecasted factor price sequence

that is the log-linearized equilibrium transition path to the steady state in the economy with

a continuum of firms distributed uniformly over the inaction band in each period.

When si,t follows a uniform distribution, (25) and (26) are simplified as follows:

Xt = cX(Kt+1 − (1− δ)Kt) (28)

K1−φ̄
t+1 = cKw

−γ/((1−γ)(1−ρ))
t+1 (rt+1 − 1 + δ)−1/(1−ρ) (29)

where cK ≡ E((λρ
i − 1)aρ

i /(ρ log λi))
1/ρ and cX = E((λi − 1)ai/ log λi)/cK in which the
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expected value is taken across heterogeneous λ’s. Equations (23,24,28) are summarized as:

w
1/σ
t = cYw

−γ/(1−γ)
t K

(θ−γ)/(1−γ)
t − cX(Kt+1 − (1− δ)Kt) (30)

Then Equations (22,29,30) determine the equilibrium path of aggregate capital. There exists

the steady state (K̄, w̄) of this dynamics.

We log-linearize the dynamics around the steady state. Let us define v ≡ dK̃ ′/dK̃ =

dw̃′/dw̃ where tilde denotes the log-difference of the variables to their steady state values.

Then v is determined by:

(1−φ̄)(1−ρ)
(

γ

1− γ
+
C̄/Ȳ

σ

)
= −

(
γ

1− γ
+

1− 1/v

1− β(1− δ)

)(
θ − γ

1− γ
−
(

1− C̄

Ȳ

)(
1− 1− v

δ

))
(31)

and we obtain a log-linearized equilibrium wage function with elasticity:

ηw ≡
dw̃

dK̃
=

(
θ − γ

1− γ
−
(

1− C̄

Ȳ

)(
1− 1− v

δ

))
/

(
γ

1− γ
+
C̄/Ȳ

σ

)
(32)

The speed of convergence v can be solved explicitly when θ = 1 (and thus φ̄ = 1) as

v = (1 − γ)/(1 − γβ(1 − δ)). Since this is strictly less than one, the dynamics is stable in

the neighborhood of the steady state.

Let us focus on the constant returns to scale case θ = 1. The firms expect wt+1 to be

consistent with the forecasted equilibrium path: w̃t+1 = ηwK̃t+1. Equation (32) indicates

that the real wage is procyclical in the forecasted path. Thus, an upward deviation of

Kt+1 from the steady state raises the expected wt+1. The contemporaneous wage wt is

determined by (23,24). An increased aggregate investment in t lowers the contemporaneous

consumption, which raises the marginal rate of substitution between consumption and leisure

and thus reduces the real wage. Both the increase in wt+1 and the decrease in wt induces rt+1
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to rise in response to an increased Kt+1. Due to the increased wt+1 and rt+1, the threshold

k∗i,t+1 decreases by (27) and dampens the incentive to invest. This is the general equilibrium

effect that reduces the strategic complementarity across firms’ investments. Let ηr,t+1 denote

the elasticity of equilibrium interest rate to capital in t+ 1: ηr,t+1 ≡ dr̃t+1/dK̃t+1. By using

the log-linear approximation of the expected wt+1 and rt+1, the threshold (20) is simplified

as follows:

k̃∗i,t = φ̂K̃t (33)

φ̂ ≡ φ̄− γηw + (1− γ)ηr,t+1

(1− γ)(1− ρ)
(34)

The strategic complementarity is now lowered to φ̂ due to the general equilibrium effects if

ηw, ηr,t+1 > 0.

The equilibrium of goods markets, given the expected factor prices (wt+1, rt+1), is de-

termined by a capital profile which satisfies the inaction band ki,t+1 ∈ [k∗i,t+1, λik
∗
i,t+1). The

capital configuration determines the forecasted equilibrium factor prices in turn. We re-

define the equilibrium selection algorithm, in which the capital profile starts at (ki,t)i and

converges to (ki,t+1)i, by incorporating the adjustment of (wt+1, rt+1) according to the log-

linearized pricing functions. Namely, the factor prices are updated in each step u during the

best response dynamics as w̃u
t = ηwK̃

u
t and r̃u

t = ηr,t+1K̃
u
t . The initial point of the equilib-

rium selection algorithm is set at K0
t = K̄(Kt/K̄)v which would be the aggregate capital if

there were a continuum of firms distributed uniformly at t. Then we obtain the following

proposition.

Proposition 4 Suppose that λ and δ are common across i. Also suppose that log ki,t is a

random variable which follows a uniform distribution over the inaction band [log k∗i,t, log λ+

log k∗i,t). Then, the distributions in Proposition 1 hold with modified φ̂ and σ̂1 for 0 < φ̂ < 1.
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Also, logKt+1 − logKt has a strictly positive variance when φ̂→ 1 and N →∞.

Proof proceeds similarly to that of Proposition 1.

The aggregate capital fluctuates along with the evolution of configuration of the capital

profile. To evaluate the magnitude of fluctuations analytically, we regarded the capital con-

figuration as a vector of independent random variables that takes values within the inaction

band. Then, we obtain that the parametric form of the fluctuation does not change from

the static case, and that the aggregate fluctuation does not vanish as the number of firms

tends to infinity if the key parameter φ̂ is one.

The crucial feature of the model is that the marginal product of capital is heterogeneous

across firms due to the lumpy investment. The marginal product of capital would be equal-

ized across firms if the capital adjustment were continuous. When the investment is lumpy,

the cost of capital is equalized at the extensive margin of the marginal product of capital.

The marginal product of capital for an individual firm is dependent on the level of aggregate

capital, and thus the firms’ investments exhibit strategic complementarity given the cost of

capital. The extent of the amplification effects of the strategic complementarity depends on

the distribution of firms around the extensive margin.

The complementarity parameter φ̂ is lowered from φ̄ by the general equilibrium effects

ηw and ηr,t+1. If the factor prices co-move with aggregate investments, the exponential

truncation of the distribution of aggregate fluctuations becomes faster, and thus the variance

is smaller, than in the case of fixed factor prices. The static model shows that the aggregate

fluctuations do not vanish even when there are an infinite number of firms if the returns to

scale is constant. Whether this mechanism of endogenous fluctuations holds in the dynamic

general equilibrium model depends on how elastically the wage and interest rate respond to

the investments. Note that ηr,t+1 = ηw−ηw,t where ηw,t ≡ d log w̃t/d log K̃t+1. If we calibrate

these elasticities by using the benchmark value σ = 3, the general equilibrium effect turns
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out to overwhelm the strategic complementarity effect φ̄. In this case, φ̂ becomes negative,

and our equilibrium selection algorithm does not necessarily converge to the equilibrium. We

can interpret this result as the case where the reluctance of households to substitute their

consumption intertemporally dominates the firm’s gain from synchronized investments. A

small change in factor prices quickly dampens the firms’ incentive to follow other firms’

investments. On the contrary, if we calibrate ηw and ηw,t by empirical correlations between

Ỹt+1 and w̃t+1 or w̃t which tend to be low, then φ̂ becomes positive.

The dampening force of the general equilibrium effect is sensitive to how the agents

form their expectations. Let us consider the following illustrative case. When θ = 1, the

forecasted relation of factor prices (29) reduces to a familiar condition:

wγ
t+1(rt+1 − 1 + δ)1−γ = c

(1−ρ)(1−γ)
K (35)

that must hold between the wage and the interest rate in any model with competitive factor

markets with constant returns to scale. This relation holds regardless of the capital level.

Note that the left hand side of this relation summarizes the effect of factor prices on the lower

bound k∗i,t+1 in (20). Thus, as long as the factor prices are constrained by this relation, their

movement does not affect the incentive for a firm to invest. The firms expect this relation

to hold only in τ > t + 1 in the previous approximation of the future price path. Suppose

now that the firms expect this relation to hold in t+ 1 as well. Then, the firms’ investment

exhibits the perfect complementarity φ̂ = φ̄ = 1, which is the condition for our aggregate

fluctuations in the limit of N → ∞ to obtain. This alternative expectation formation has

a particular relevance when the interest rate is exogenously determined as in a small open

economy.

The perfect complementarity also emerges if θ = 1 and if there are real rigidities in the

wage and interest rate. In an economy where the factor employment contract is predeter-
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mined, for example, then φ̂ = 1 holds for the frequency higher than the length of contract

terms. Thus, the endogenous fluctuations of aggregate investments due to the strategic

complementarity of lumpy investments may occur in a general equilibrium in the limit of

N →∞ if there are real rigidities in expected factor prices.

3.2 Granular dynamics in regional economies with locally differ-

entiated goods

We have so far assumed the randomness of the capital configuration in order to obtain the

analytical solution for the distribution of aggregate fluctuations. We assumed a uniform

distribution for Propositions 1, 2, and 4 and we generalized the proposition for an arbitrary

distribution in Propositions 5 and 6. We showed that the aggregate investment is sensitive

to the detailed configuration of capital in that environment.

In this section, we drop the assumption of randomized capital and show that the fluc-

tuation results still hold in the equilibrium path where the capital evolves deterministically.

We do so by numerically computing the equilibrium path when the wage and interest rate

are fixed at the time-average level. We interpret the fixed wage and interest as a situation

of regional economies in which the prices of locally differentiated products adjust flexibly

while the wage and interest are exogenously determined by the national economy due to

the perfect mobility of labor and capital across regions. We show that the aggregate output

exhibits fluctuations along with the evolution of the capital configuration which is driven

by the depreciation of capital and lumpy investments. Since the aggregate fluctuation is

driven by discrete actions of finite firms, we may call the fluctuation as granular dynamics.

Gabaix (2005) finds a granular effect in aggregate output fluctuations as the influence of big

firms. In this paper, the aggregate fluctuation rather arises from interaction of small, but

not atomless, granular firms.
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Figure 3: Left: Simulated path of output Y when N = 10000 and θ = 0.999. Right:
Cross-section distribution of simulated si,t

Parameter values are specified as follows. The labor’s share of income γ/µ is equal to 0.58.

The markup rate µ−1 is set at 0.2. The inverse of the elasticity of intertemporal substitution

is set at σ = 3. The quarterly discount factor is set at β = 0.99. The returns-to-scale θ takes

various values close to one. The quarterly depreciation rate of capital δi is drawn from a

normal distribution with mean 0.02 and standard deviation 0.01, where the parameter values

are obtained from the table of estimated depreciation rates of SIC 2-digit level industries

shown in Horvath (2000). The distribution of lumpiness λi is similarly obtained by fitting

an exponential distribution to the estimated investment-capital ratios shown in Cooper,

Haltiwanger, and Power (1999). The mean λi is set at 0.2 and the distribution is truncated

below at 0.1 so that the condition λi(1 − δi) > 1 is satisfied. The equilibrium is computed

sequentially for 500 quarters, and the first 100 quarters are discarded in order to focus on

the stationary fluctuations. The left panel of Figure 3 plots a sample equilibrium path for

the case N = 10000 and θ = 0.999. We observe a considerable fluctuation of the output

despite the large number of firms.
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Standard deviation of Y (%) Autocorrelation of Y (%)
θ 0.9 0.99 0.999 0.9 0.99 0.999

1,000 0.19 1.05 2.24 55.43 76.72 93.69
(0.01) (0.07) (0.29) (4.16) (3.92) (1.71)

N 10,000 0.06 0.42 1.68 55.05 72.81 88.35
(0.00) (0.02) (0.15) (3.62) (3.78) (2.38)

100,000 0.02 0.15 0.99 54.23 69.67 83.03
(0.00) (0.05) (0.19) (3.96) (4.00) (2.93)

Table 2: Standard deviation and autocorrelation of output

We compute the standard deviation and the autocorrelation of Y for each path, and

repeat the procedure for 100 times for each parameter set. Table 2 reports the average

and standard error of the computed standard deviations and autocorrelations of output for

various number of firms N and returns to scale θ. The standard errors of the estimates are

reported in parentheses. Table 2 confirms our analytical result that the amplitude of the

fluctuation increases as the returns-to-scale approaches to one. The amplitude decreases as

the number of firms increases, but even for the case of 100,000 firms the model can generate

sizable fluctuations. As we discussed along with Figure 2, the magnitudes of fluctuations in

the US regions are consistent with the simulated statistics above.

We check whether the uniform distribution approximates the cross-section of si,t well.

The right panel of Figure 3 plots the cumulative distributions of si,t for various periods t.

The simulated distribution deviates little from the uniform distribution. This provides a

ground for the uniformity assumption in our analysis in previous sections.

Even though the gap variable si,t has a strong tendency to converge toward the uniform

distribution, a slight deviation always occurs in a finite economy and the detailed change

in the configuration of si,t affects the aggregate investment significantly. Moreover, the fact

that si,t is serially correlated by construction leads to an interesting dynamic property of the
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aggregates. We observe in Table 2 that the model generates considerable autocorrelation

in output. Since there is no autocorrelation built in the environment, we interpret this as

the replacement echo effects, following Benhabib and Rustichini (1991) and Boucekkine,

Germain, and Licandro (1997), in which the past clustering of capital adjustments brings

out repercussions when the cluster comes back to the adjustment threshold. The simple

principle of “phase-dynamics” in the weakly-coupled nonlinear systems might be useful to

interpret this periodicity. The aggregate fluctuation occurs only if there is a certain degree of

comovement across agents. Therefore, the frequency of aggregate fluctuations should center

around the average frequency of the natural rate of adjustment of a firm, which in our model

is determined by the lumpiness size divided by the depreciation rate: qi = log λi/| log(1−δi)|.

In sum, the synchronization of oscillating capital alone can generate significant amplitude

and autocorrelation of the aggregate output fluctuations, while the significant heterogeneity

in lumpiness and depreciation rates across firms prevents the capital from being completely

synchronized.

4 Conclusion

This paper characterizes the aggregate fluctuations arising from spillover effects of discrete

investments at the firm level. We evaluate the deterministic fluctuation of aggregate in-

vestment along the evolution of heterogeneous capital as if it is a stochastic fluctuation

whose randomness arises from the stochastic configuration of capital. For each configura-

tion, the equilibrium aggregate investment is determined as a convergent point of a fictitious

best response dynamics of firms’ investment decisions. The best response dynamics can be

embedded in a branching process with the probability measure defined by the stochastic con-

figuration. This enables us to derive the distribution function of the aggregate fluctuation
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in a closed form.

The fluctuation of the number of investing firms is shown to follow a power-law distri-

bution with an exponential truncation at the tail. The truncation speed is determined by

the degree of strategic complementarity among firms, which is ultimately determined by the

returns to scale of production technology. Under the constant returns to scale, the distribu-

tion becomes a pure power law, and the standard deviation of the growth rate is shown to

be strictly positive even when there are an infinite number of firms. The limiting standard

deviation is shown to be almost proportional to the lumpiness of the firm-level investment.

The equilibrium path of the model is numerically computed without making the ran-

domness assumption of the capital configuration. The simulation confirms the validity of

the analysis above that utilizes the assumptions of randomness and uniformity of the capi-

tal configuration. The simulated output paths show strong persistence and mild periodicity.

This expresses the echo effect in which a clustering of investments in a period reappears after

several periods. The frequency of the echo effect is determined by the natural frequency of a

firm’s capital adjustment, which is equal to the lumpiness divided by the depreciation rate.

Appendix

A Proof of Lemma 2

Let Hu, u = 2, 3, . . . , T , denote the set of firms that adjust capital in step u. Assume that

Hu is finite with probability one when N →∞, which we verify later. We consider the case

m1 > 0 for the proofs of Lemma 2, 3, and Proposition 1 without loss of generality. Thus,

log ki,u = log ki,u−1 + log λ for i ∈ Hu.

We expandN(logKu+1−logKu) around (log ku)i∈Hu+1 . The first derivative is ∂N logKu/∂ log ki,u =

(ki,u/Ku)
ρ. Thus ∂Ku/∂ki,u is of order 1/N . The second and higher derivatives with respect
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to the own log ki,u are ∂n(ki,u/Ku)
ρ/∂ log kn

i,u = ρn(ki,u/Ku)
ρ+O(∂Ku/∂ki,u) for n = 1, 2, . . ..

The second cross derivatives, ∂2 logKu/(∂ log ki,u∂ log kj,u), are of order ∂Ku/∂kj,u and thus

O(1/N). Similarly, the cross derivative terms with respect to the capital of h distinct firms in

Hu+1 are of order 1/Nh−1. Since Hu+1 is finite, the n-th derivative of N logKu has the finite

number of the cross derivative terms for any finite n. Hence, the Taylor series expansion of

N(logKu+1 − logKu) yields:

∞∑
n=1

∑
i∈Hu+1

(
ki,u

Ku

)ρ
ρn−1(log λ)n

n!
+O(1/N) =

λρ − 1

ρ

∑
i∈Hu+1

(
ki,u

Ku

)ρ

+O(1/N) (36)

where we used λρ = λ0 +
∑∞

n=1(d
nλρ/dρn)|ρ=0(ρ

n/n!). Utilizing ki,u = k∗uλ
si,u , we obtain

that
∑

i∈Hu+1
(ki,u/Ku)

ρ = (
∑

i∈Hu+1
λsi,uρ)/(

∑N
i=1 λ

si,uρ/N). The denominator converges to

E[λsi,uρ] as N → ∞ almost surely by the law of large numbers, and we have E[λsi,uρ] =∫ 1
0 λ

si,uρdsi,u = (λρ−1)/(ρ log λ). The numerator,
∑

i∈Hu+1
λsi,uρ, converges to mu+1 for every

event when Hu+1 is finite, because si,u is smaller than φ(logKu − logKu−1)/ log λ for any

i ∈ Hu+1 and thus of order 1/N . Hence we obtain the lemma.

B Proof of Lemma 3

The conditional probability for firm i to invest in u = 2, 3, . . . , T is:

Pr(i ∈ Hu | i /∈ ∪v=2,3,...,u−1Hv) =
φ(logKu − logKu−1)/ log λ

1− φ(logKu−1 − logK0)/ log λ
. (37)

Thus mu follows a binomial distribution with population N −∑u−1
v=2 mv and probability (37).

The mean of mu converges to φmu−1 as N → ∞, by using Lemma 2. Then, the binomial

distribution of mu converges to a Poisson distribution with mean φmu−1 for u = 2, 3, . . . , T .

Since a Poisson distribution is infinitely divisible, the Poisson variable with mean φmu−1 is
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equivalent to a mu−1-times convolution of a Poisson variable with mean φ. Thus the process

mu for u = 2, 3, . . . , T is a branching process with a Poisson random variable with mean φ,

where m2 follows a Poisson distribution with mean φm1. Note that m1 is not included in

the branching process because it is not necessarily an integer.

C Proof of Proposition 1

We first derive the asymptotic distribution of M conditional on m1. It is known that the

accumulated sum M =
∑T

u=2mu of the Poisson branching process conditional on m2 follows

an infinitely divisible distribution called Borel-Tanner distribution (see Kingman (1993)):

Pr(M = w | m2) = (m2/w)e−φw(φw)w−m2/(w −m2)! (38)

for w = m2,m2 + 1, . . .. Using that m2 follows the Poisson distribution with mean φm1, we

obtain (10) as follows:

Pr(M = w | m1) =
w∑

m2=0

((m2/w)e−φw(φw)w−m2/(w −m2)!)e
−φm1(φm1)

m2/m2!

= m1e
−φ(w+m1)(φw/w)

w∑
m2=1

ww−m2mm2−1
1 /((w −m2)!(m2 − 1)!)

= m1e
−φ(w+m1)(φw/w)(w +m1)

w−1/(w − 1)!

= m1e
−φ(w+m1)φw(w +m1)

w−1/w! (39)

where the third line utilized the binomial theorem. The approximation in (11) is obtained

by applying the Stirling’s formula w! ∼
√

2πe−www+0.5:

m1e
−φ(w+m1)φw(w +m1)

w−1/w! ∼ (m1e
−φm1/

√
2π)(e1−φφ)ww−1.5(1 +m1/w)w−1 (40)
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and using (1 +m1/w)w−1 → em1 as w →∞.

Next we derive the asymptotic normal distribution of m1/
√
N . We split m1/

√
N into two

terms asm1/
√
N = (

√
N/ log λ)(logK1−log(

∑N
i=1((1−δ)ki,0)

ρ/N)1/ρ)+(
√
N/ log λ)(log(

∑N
i=1((1−

δ)ki,0)
ρ/N)1/ρ − logK0). The second term represents the depreciation and is equal to

(
√
N/ log λ) log(1 − δ) = −

√
N/q. The first term represents the first-step adjustments

induced directly by the depreciation. Define H1 as the set of firms that adjust in the first

step. Using ki,0 = k̄λsi,0 , we obtain K1 = (1− δ)k̄((λρ− 1)
∑

i∈H1
λsi,0ρ/N +

∑N
i=1 λ

si,0ρ/N)1/ρ

and (
∑N

i=1((1− δ)ki,0)
ρ/N)1/ρ = (1− δ)k̄(

∑N
i=1 λ

si,0ρ/N)1/ρ. Thus the first term becomes:

√
N

log λ

(
logK1 −

1

ρ
log

(
N∑

i=1

((1− δ)ki,0)
ρ

))
=

√
N

ρ log λ
log

(
(λρ − 1)

∑
i∈H1

λsi,0ρ/N∑N
i=1 λ

si,0ρ/N
+ 1

)
(41)

By Assumption 1, si,0 is distributed uniformly. Thus the denominator
∑N

i=1 λ
si,0ρ/N in

(41) converges to
∫ 1
0 λ

si,0ρdsi,0 = (λρ − 1)/ρ log λ with probability one by the law of large

numbers. Let x denote that numerator: x ≡ ∑
i∈H1

λsi,0ρ/N . Note that i ∈ H1 is equivalent to

0 ≤ si,0 < 1/q. Then the asymptotic mean of x is x0 =
∫ 1/q
0 λsi,0ρdsi,0 = (λρ/q − 1)/(ρ log λ)

and, by the central limit theorem,
√
N(x − x0) converges in distribution to the normal

distribution with mean zero and variance:

∫ 1/q

0
(λsi,0ρ)2 dsi,0 −

(
λρ/q − 1

ρ log λ

)2

=
λ2ρ/q − 1

2ρ log λ
−
(
λρ/q − 1

ρ log λ

)2

(42)

We regard the right hand side of (41) as a function F of x. By the delta method, we obtain

that F (x) asymptotically follows the normal distribution with mean F (x0) and variance

F ′(x0)
2Avar(x). F (x0) is calculated as:

√
N

ρ log λ
log

(
(λρ − 1)(λρ/q − 1)/(ρ log λ)

(λρ − 1)/(ρ log λ)
+ 1

)
=

√
N

q
(43)
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This cancels out with the second term of the split m1/
√
N . F ′(x0)

2Avar(x) is calculated as

σ2
1 in (12). Then, m1/

√
N asymptotically follows the normal distribution with mean zero

and the variance σ2
1. This completes the proof.

D Proof of Proposition 2

We focus on (m1 + M)/N , since Lemma 2 implies (logK − logK0)/ log λ ∼ (m1 + M)/N .

Its unconditional variance is decomposed as follows:

Var
(
m1 +M

N

)
= E

(
Var

(
M

N
| m1

))
+ Var

(
m1

N
+ E

(
M

N
| m1

))
= E

[
E
(
Var

(
M

N
| m1,m2

)
| m1

)
+ Var

(
E
(
M

N
| m1,m2

)
| m1

)]
+ Var

(
m1

N
+ E

(
E
(
M

N
| m1,m2

)
| m1

))
. (44)

mu asymptotically follows a martingale branching process when φ → 1 and N → ∞. By

the nature of the branching process, |M | conditional on |m2| is equivalent to the |m2|-times

convolution of M conditional on m2 = 1. Using these facts, we obtain that:

Var(M/N | m1,m2) ∼ |m2|Var(M/N | m2 = 1) (45)

E(E(M/N | m1,m2) | m1) ∼ E(m2 | m1)E(M/N | m2 = 1) ∼ m1E(M/N | m2 = 1)(46)

Also, |m2| conditional on m1 asymptotically follows a Poisson distribution with mean |m1|

and the unconditional distribution of m2 is symmetric. Since m1/
√
N asymptotically follows

N(0, σ2
1) by Proposition 1, we can use the formula E(|m1|/

√
N) → σ1

√
2/π. Applying these,
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we obtain:

Var
(
m1 +M

N

)
∼ E

[
E (|m2| | m1) Var

(
M

N
| m2 = 1

)
+ Var(m2 | m1)

(
E
(
M

N
| m2 = 1

))2
]

+ Var
(
m1

N
+ E

(
M

N
| m2 = 1

)
E(m2 | m1)

)

∼ (σ1

√
2/π)E

(
M2

N1.5
| m2 = 1

)
+ σ2

1

(
1√
N

+ E

(
M√
N
| m2 = 1

))2

(47)

Next we calculate limN→∞ E(M/
√
N | m2 = 1), provided that the best response dynamics

reaches an equilibrium before all the N firms adjust. Namely, we take the expectation

conditional on M ≤ N for a fixed N by using the asymptotic probability function (38) when

φ→ 1:

Pr(M = w | m2 = 1,M ≤ N) Pr(M ≤ N) = e−www−1/w!. (48)

By the property of a branching process with mean less than or equal to one, the probability

of the event M ≤ N converges to one as N → ∞. By using the following inequality (see

Feller (1957)),

√
2πww+0.5e−w+1/(12w+1) < w! <

√
2πww+0.5e−w+1/(12w) (49)

we can compute the upper and lower bounds of the asymptotic mean of M/
√
N as follows.

N∑
w=1

e−www/(w!
√
N) <

∫ N

0
w−0.5dw/

√
2πN →

√
2/π (50)

N∑
w=1

e−www/(w!
√
N) >

∫ N+1

1
e−1/(12w)w−0.5dw/

√
2πN →

√
2/π (51)
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Hence, E(M/
√
N | m2 = 1,W ≤ N) →

√
2/π. Similarly we obtain:

E(M2/N1.5 | m2 = 1) → 1/(1.5
√

2π) (52)

Collecting the results, we obtain Var((m+M)/N) → (2/π)(σ1 + 1/3)σ1. Hence, the capital

growth rate has an asymptotic variance (log λ)2(2/π)(σ1 + 1/3)σ1.

E Derivation of Equations (50,51,52) in Appendix D

We use the inequality (51).

E(M/
√
N | m2 = 1,M ≤ N) Pr(M ≤ N) =

N∑
w=1

e−www/(w!
√
N)

<
N∑

w=1

e−www/(
√

2πww+0.5e−w+1/(12w+1)
√
N)

=
N∑

w=1

e−1/(12w+1)w−0.5/
√

2πN

<
∫ N

0
w−0.5dw/

√
2πN

→N→∞

√
2/π (53)

The second to the last line holds because e−1/(12w+1) is bounded by one.

Similarly, the lower bound turns out to converge to the same value. Let us note that the

function e−1/(12w)w−0.5 is decreasing for w > 1/6. Then we obtain:

N∑
w=1

e−www/(w!
√
N) >

N∑
w=1

e−www/(
√

2πww+0.5e−w+1/(12w)
√
N)

=
N∑

w=1

e−1/(12w)w−0.5/
√

2πN
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>
∫ N+1

1
e−1/(12w)w−0.5dw/

√
2πN

=

(
e−1/(12(N+1))

√
N + 1− e−1/12 +

∫ N+1

1
w−1.5e−1/(12w)/12dw

)
/(0.5

√
2πN)

→N→∞

√
2/π (54)

Hence, E(M/
√
N | m2 = 1,M ≤ N) →

√
2/π.

Similarly, E(M2/N1.5 | m2 = 1) is calculated as follows.

E(M2/N1.5 | m2 = 1,M ≤ N) =
N∑

w=1

e−www+1/(w!N1.5)

>
N∑

w=1

e−www+1/(
√

2πww+0.5e−w+1/(12w)N1.5)

=
N∑

w=1

e−1/(12w)
√
w/(

√
2πN1.5)

>

(∫ N

1
e−1/(12w)

√
wdw

)
/(
√

2πN1.5)

=

(
(e−1/(12N)N1.5 − e−1/12)/1.5 +

∫ N

1
(w1.5/1.5)e−1/(12w)(1/(12w2))dw

)
/(
√

2πN1.5)

= (e−1/(12N) − e−1/12/N1.5)/(1.5
√

2π) +
∫ N

1
w−0.5e−1/(12w)dw/(18

√
2πN1.5)

→ 1/(1.5
√

2π) (55)

where the inequality in the fourth line holds since the function e−1/(12w)
√
w is increasing in

w. Similarly, the upper bound is obtained as follows.

N∑
w=1

e−www+1/(w!N1.5) <
N∑

w=1

e−www+1/(
√

2πww+0.5e−w+1/(12w+1)N1.5)

=
N∑

w=1

e−1/(12w+1)
√
w/(

√
2πN1.5)
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<
∫ N+1

1
e−1/(12w+1)

√
wdw/(

√
2πN1.5)

=

(
e−1/(12N+13)(N + 1)1.5 − e−1/13 +

∫ N+1

1
w−0.5e−1/(12w+1)(12/(12 + 1/w)2)dw

)
/(1.5

√
2πN1.5)

→ 1/(1.5
√

2π) (56)

Hence, we obtain that E(M2/N1.5 | m2 = 1) → 1/(1.5
√

2π).

F Generalization

In this section, we extend our fluctuation results to the case where the distribution of initial

capital is not uniform or where the lumpiness and depreciation rate are heterogeneous across

firms.

First, we show the case of non-uniform distribution. Namely, we drop Assumption 1 and

let the initial gap si,0 to follow any continuous density function f0(si,0) defined over interval

[0, 1). A few notations are to be developed. K̄ denoted the initial aggregate capital when

there are a continuum of firms. The inaction band is [k̄, λk̄) where k̄ = a0K̄
φ. K̄ is now

redefined under the new density function f0 as: K̄ = (a0Ef [λ
si,0ρ]1/ρ)1/(1−φ). We construct

an equilibrium aggregate capital K̂ when there are a continuum of firms. On the one hand,

K̂ satisfies K̂ = (a0Eg[λ
siρ]1/ρ)1/(1−φ). On the other hand, si,0 is mapped as:

si = bsi,0 − 1/q + φ(log K̄ − log K̂)/ log λc (57)

where b·c takes the difference to the nearest integer that is less than the argument. This

mapping and the density function f0 determine the density function f1 of si with K̂ as a

parameter. Then K̂ and f1 are determined simultaneously. Note that K̂ might differ from

K̄, because the gap density f1 may differ from f0 if f0 is not uniform.
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Define ψ as the density evaluated at si = 0 at the equilibrium in the case of a con-

tinuum of firms. Namely, ψ = f0(1/q − φ(log K̄ − log K̂)/ log λ). Also define log λ̃ ≡

(λρ − 1)/(ρEf1 [λ
si,1ρ]). We now obtain the following proposition.

Proposition 5 Suppose that ki,0 follows any continuous density function that has support

[log k̄, log λ + log k̄). Then, Proposition 1 holds with modified constants φ̃ ≡ φψ log λ̃/ log λ

and σ̃1. Moreover, the limit variance of the capital growth rate is strictly positive when φ̃→ 1

and N →∞.

Proof: See Appendix G

Proposition 5 states that the deviation from the uniform distribution of si,0 does not

change the parametric form of the distribution function of the aggregate growth rate. The

key parameter that determines the speed of exponential truncation is a product of the degree

of strategic complementarity φ and other two factors: ψ and log λ̃/ log λ. The first factor

represents the density at the threshold and the second factor indicates the aggregation effect

of the non-uniformity. The both factors are 1 if si,0 follows the uniform distribution.

The first factor ψ has a particularly important implication. As the capital configuration

evolves over time, the density at the threshold may fluctuate below or above 1. Thus, the

fluctuation distribution may attain the critical level φ̃ = 1 due to the fluctuations of ψ over

time, even if φ is less than 1 due to the decreasing aggregate returns to scale or the flexible

wage and interest rate as we see in the dynamic version of the model. The time-varying

ψ has another implication on the volatility of the aggregate growth rates over time. The

aggregate growth rate exhibits higher volatility when ψ is high. This implies that the (S,s)

economies can exhibit the echo effect not only in the level of production but also in the

volatility.

Next generalization is to allow heterogeneity in the lumpiness and depreciation rate across

firms. Suppose that there are finite L types of firms with parameter values δi = δ(l) and
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λi = λ(l) for l = 1, 2, . . . , L. Each type of a firm is drawn with probability σ(l), where∑L
l=1 σ(l) = 1. The lower bound of the inaction band becomes heterogeneous as k∗i = aiK

φ

where ai ≡ ((λ
θ/µ
i −1)/(λi−1))µ/(µ−θ). Other variables such as K̄, K̂, k̄i are defined similarly

as before.

Let ψ̌ denote the density at si = 0 at the equilibrium when there are a continuum of

firms. Also define log λ̌i ≡ aρ
i (λ

ρ
i − 1)/(ρE[aρ

iλ
si,1ρ
i ]). Then we obtain the proposition.

Proposition 6 Suppose that ki,0 follows any continuous density function that has support

[log k̄i, log λi + log k̄i). Moreover, λi and δi vary across firms, and they are randomly drawn

from a finite set. Then, M conditional on m1 = 1 follows the same tail distribution as (11):

Pr(|M | = w | m1 = 1) = C0(e
φ̌−1/φ̌)−ww−1.5 (58)

for a large integer w, where φ̌ ≡ φψ̌E[log λ̌i/ log λi] and C0 are constant. The asymptotic

variance of the fraction of firms that adjust, (m1 + M)/N , is strictly positive when φ̌ → 1

and N →∞.

Proof: See Appendix H.

Proposition 6 shows that our fluctuation result is robust to the heterogeneity of firms. The

tail distribution is derived explicitly and shown to coincide with our previous result. However,

the exact distribution is obtained only implicitly as a form of the functional equation of the

moment generating function of M (see Nirei (2003)).

Empirical studies attest enormous degree of heterogeneity of firms, which tends to render

the collective dynamics of firms intractably complex. Nonetheless, the parametric form we

derived for the distribution of the number of investing firms still stands. We also note

that the heterogeneity accelerates the convergence of the firms’ positions in the inaction

band to the simple uniform distribution in one-sided (S,s) economies as Caballero and Engel
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(1991) observed. The uniform distribution of firms’ positions provides an important reference

point in our model, even though we can derive the aggregate capital fluctuations for general

distributions as shown by Proposition 5.

G Proof of Proposition 5

Randomly draw si,0 from density f0 for N firms and construct the initial capital λsi,0a0K̂
φ

in the inaction band. Set the initial aggregate capital K0 at the aggregate of the ki,0. The

difference between K0 and K̂ can occur only due to the finiteness of the firms, and thus

logK0 − log K̂ vanishes according to the law of large numbers.

The subsequent best response dynamics is defined similarly as before. The rest of the

proof proceeds similarly with some modifications as follows. Define fu as the density of

si,u. Then
∑N

i=1 λ
si,uρ/N → Efu [λsi,uρ] as N →∞. Since log k∗u − log k∗0 is of order 1/N , the

density fu converges to f0 as N →∞. Then Lemma 2 is modified as N(logKu+1−logKu) →

mu+1 log λ̃. Note that log λ̃ is equal to log λ if f1 is a uniform distribution.

Let us note that the conditional probability for firm i to invest in step u is the right hand

side of Equation (37) times fu(0), because the density at the threshold fu(0) is not necessarily

equal to one without Assumption 1. Since log k∗u− log k∗0 is of order 1/N , fu(0) → f0(0) = ψ

as N → ∞. By combining this with the modified Lemma 2 as in the previous paragraph,

Lemma 3 holds by modifying the Poisson mean φ to φ̃. Then the proof of Proposition 1

holds by replacing φ with φ̃.

The σ1 is also modified to σ̃1 so that the effect of ψ is taken into account. For i to be in H1

is equivalent to si,0 < 1/q−φ(log K̄− log K̂)/ log λ. Thus, the number of firms in H1 follows

the binomial distribution with population N and probability 1/q̃ ≡ F0(1/q − φ(log K̄ −

log K̂)/ log λ) where F0 denotes the cumulative distribution of si,0. Then the modified σ̃1 is
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obtained by following the computation of σ1 with applying q̃ and log λ̃.

H Proof of Proposition 6

Let N(l) denote the total number of firms of type l and mu(l) denote the number of firms

of type l that adjust capital in step u.

First, we show the counterpart of Lemma 2 as follows.

N(logKu+1 − logKu) =
∞∑

n=1

∑
i∈Hu+1

(
ki,u

Ku

)ρ
ρn−1(log λi)

n

n!
+O(1/N)

=

∑
i∈Hu+1

aρ
iλ

si,uρ
i

∑∞
n=1 ρ

n−1(log λi)
n/n!∑

i a
ρ
iλ

si,uρ
i /N

+O(1/N)

→
∑

i∈Hu+1
aρ

i (λ
ρ
i − 1)/ρ

E(aρ
iλ

si,uρ
i )

(59)

Define Zu+1 as the right hand side of (59). It has mean mu+1E[log λ̌i].

We then show that (mu)u follows a branching process. Let F1 denote the cumulative

distribution function of si,1.

Pr(i ∈ Hu, bi = b(l)|i /∈ ∪v=2,3,...,u−1Hv) (60)

= σ(l)
F1(φ(logKu − logK0)/ log λ(l))− F1(φ(logKu−1 − logK0)/ log λ(l))

1− F1(φ(logKu−1 − logK0)/ log λ(l))
(61)

Thus mu(l) follows a binomial distribution with probability above and population N(l) −∑u−1
v=2 mv(l). Considering thatmv, v = 2, 3, . . . , u−1 are finite with probability one, we obtain

the asymptotic mean of the binomial as σ(l)φψZu/ log λ(l). Thus, mu(l) asymptotically

follows a Poisson distribution with this mean. Hence, mu =
∑L

l=1mu(l) asymptotically

follows a Poisson distribution with mean φψE[log λ̌i/ log λi]mu−1 = φ̌mu−1.

The vector of Poisson random variables (mu(l))l conditional on its sum mu follows a
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multinomial distribution with probability vector ((σ(l)/ log λ(l))/E[1/ log λi])l and popula-

tion mu (Kingman, 1993, page 7). Zu is a sum of the multinomial vector with weights

a(l)ρ(λ(l)ρ − 1)/(ρE(aρ
iλ

si,uρ
i )). Thus, Zu conditional on mu is equivalent to a mu-times

convolution of a random variable. Then, mu+1 conditional on mu asymptotically follows a

compound Poisson distribution. Since a compound Poisson distribution is infinitely divisi-

ble, (mu)u follows a branching process in which each firm in step u bears children in step

u + 1 whose number follows the compound Poisson distribution that has mean φ̌. By the

theorem by Otter (see Harris (1989)), a cumulative sum of a branching process follows the

distribution as in Proposition. Finally, the process (mu) is finite with probability 1 if φ̌ ≤ 1.

This completes the proof.
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