Mittag-Leffler Distributions and Long-run Behavior of Macroeconomic models

By Masanao Aoki May 2006

Basic Setup

- As time progresses, a stream of innovations hits a model composed of sectors or clusters.
- An innovation either hits sector i of size n_i with rate $(n_i - \alpha)/(n + \theta)$, $0 < \alpha < 1$, $\theta > 0$,or create a new sector of size 1 with rate
- $1-\sum (n_i -\alpha)/(n+\theta) = (\theta + k\alpha)/(n+\theta)$, where
- $n=\sum n_i$, and k is the number of sectors existing at that time.

Basic Facts of M-L function

- Definition: $E_{\alpha}(x) = \sum_{n} \infty x^{n} / \Gamma (1+n \alpha), \alpha > 0.(H.Pollard)$
- $E_{\alpha}(-x) = \int_{0}^{\infty} e^{-xt} dG_{\alpha}(t)$, with distribution function G_{α} . From the moment generating function we see:
- Moment condition:
- $\int_{0}^{\infty} x^{p} g_{\alpha}(x) dx = \Gamma(p+1) / \Gamma(\alpha p+1), p=1, 2, ...$
- where
- Moment generating function
- $\int_{0}^{\infty} e^{xt} g_{\alpha}(t) dt = E_{\alpha}(t)$, and
- Laplace transform: $\int_{0}^{\infty} e^{-xt} g_{\alpha}(t) dt = \sum_{n} (-x)^{n} / \Gamma(1+n \alpha)$.

Remarks

- Mittag-Leffler function is a generalization of the exponential function, E_1 (t)=e^{-t}.
- It is uniquely determined by the moments.
- (it satisfies Careleman's condition:
- $\sum_{n} m_{n}^{-1/n} = \infty$.) (Feller vol.2, p. 224).
- Its extension: $E_{\alpha, \beta} = \Gamma (\beta) \sum_{n} (-t)^n / \Gamma (\alpha n + \beta)$.

Some questions and answers

Question:

How are the M-L functions useful in long-run analysis of macromodels?

Answers:

- They are generic ... they generically characterize long-run behavior; tail of M-L distributions are power laws.
- Examples of long-run clusters of heterogeneous collections of agents:
 such as Pitman's chinese restaurant processes, grow patterns of sectors of economies (Markov branching processes, such as
 Feng-Hoppe analysis of branching model), and
 Extension of the one parameter Poisson-Dirichlet (Ewens) model to two-parameter version by J. Pitman
 Long-run behavior of both classes of models have M-L distributions

Some Facts and Applications

- Mittag-Leffler distributions are uniquely determined by their moments.... Method of moments applies:
- g_{α} has $\Gamma(p+1)/\Gamma(\alpha p + 1)$ as its p-th moment, $0 < \alpha < 1$
- Fractional master equations … mean-first passage times, waiting distributions in finance, and possibly others.

Two-parameter Extensions

- $g_{\alpha, \theta}(x) = B x^{\theta/\alpha} g_{\alpha}(x)$
- where
- $\mathsf{B}{=}\Gamma(\theta + 1)/\Gamma(\theta/\alpha + 1)$
- It is known that as $n \to \infty$
- $\mathsf{E}(\mathsf{K}_{\mathsf{n}}/\mathsf{n}^{\alpha}) \to \theta \ \Gamma(\theta)/ \left[\alpha \ \Gamma \ (\theta + \alpha)\right].$
- This is the same as the mean of $Bx^{\theta/\alpha}g_{\alpha}(x)$.

Two-parameter Poisson-Dirichlet distribution (extension of the Ewens distribution)

- Let K_n denote the number of clusters formed by n agents.
- Suppose
- $P(K_{n+1}=k|K_n=k)=(n-k\alpha)/(n+\theta)$
- $P(K_{n+1}=k+1|K_n=k)=(\theta +k\alpha)/(n+\theta)$
- Then
- K_n/n^{α} converges a.s. to M-L distrbiution

Feng-Hoppe Model

- A simple branching process due to Karlin and McGregor: Let I(t) be a stream of new types of agents (resources) arriving stochastically.
- Arrival rate = θ +k α , where k=|I(t)|, θ = β - α
- Each new arrival (innovation) starts its own group that grow stochastically.
- Let N(t) be the total size of the economy
- Its growth rate = α (k-1) + β + $\sum_{j=1}^{k} (n_j \alpha) = n + \theta$ where the ith arrival (innovation) grows at rate $n_i - \alpha$.
- I(t)/N(t) converges to a ratio of two dependent Gamma random variables, which is M-L distributed

Analysis of Long-run Behavior: Simple Cases

- Let F(s) be the Laplace transforms of some f(t).
- In control or system theory, the final value theorem says
- $\text{Lim}_{s \to 0} sF(s) = \lim_{t \to \infty} f(t)$.
- Tauberian theorm of Karamata slowly varying function

Darling-Kac Theorem

 Under a set of conditions, Mittag-Leffler distributions are the only possible limit laws. (Regular Variations, Bingham, Goldie, Teugels, CUP 1998, pp.388)

Some Asymptotic Differences in one- and two-parameter Ewens models

 K_n / n^α in the two-parameter Ewens model is not self-averaging.

Question

- Does simulations of models with non-self averaging properties yield estimate of α and θ ?
- Moments of M-L distributions given earlier can be used for that purpose?