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Abstract

This paper discusses long-run behavior of economic models with many in-
teracting heterogeneous agents, and point out the connection with the class
of Mittag-Leffler distributions.

In the process, the paper summarizes some known asymptotic properties
of a class of one- and two-parameter Poisson-Dirichlet distribution models,
and those of the model discussed by Feng and Hoppe. These models have
also known long-run behavior after some suitably normalized numbers of
partitions and the components of partition vectors, such as non-vanishing
variances of cluster sizes as the number of agents becomes large. Some dif-
ferences in the long-run behavior between the class of one-parameter models
and that with two-parameters are pointed out. Convergence behavior is ex-
pressed in terms of generalized Mittag-Leffler distributions in the statistics
literature. We exhibit power laws when they exist as well.

Second, a numerical example of a model which is outside the framework
of one- and two-parameter Poisson Dirichlet models mentioned above. This
model has more than two parameters but is a simple model composed of
two types of agents, innovators and immitators. This model has non-self
averaging variaces and the covariance of the sizes of the two sectors, that
is the variances and the covariance do not vanish as the number of agents
approach infinity.

Key Words:Two-parameterPoisson-Dirichlet distributions; Mittag-Leffler
distributions; nom-self averaging phenomena, Power laws.
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Introduction

In old industrial organization literature, several tests and measures of degree
of industrial concentration have been used to to decide if a given industry
is monopolistic or not. See for example Scherer (1980) for various case
studies. One such test is called Herfindahl, or Herfindahl-Hirschman index
of concentration. It is defined as the sum of squares of fractions of shares,
i.e.,

H =
∑

i

x2
i ,

where xi is the fraction of ”share” of markets or sales by sector i or firm
i. By definition xi is positive, and sum to one,

∑
i xi = 1. As we discuss

shortly, this literasture used a rudimentary version of the size-biased sam-
pling scheme as a test for oligopoly. This meassure of concentration is used
in both domestic and foregin trade context. It is sometimes (mistakenly)
called Gini-index.1

The question of concentration is that of distribution of fractions of the
numbers of clusters, and the numbers of agents by types. A simple ap-
plication of shares of market by two types of agents, using one-parameter
Poisson-Dirichlet distribution (also called Ewens distribution, Ewens (1972,
1979, 1990)) has been made by Aoki (2000a, 2000b).

This paper develops further the original ideas in these papers by applying
some of the results from two-parameter Poisson-Dirichlet distributions in
the recent combinatorial stochastic process literature, by Kingman (1993),
Carlton (1999), Holst (2001), Pitman (1999, 2002), and his associates.

In physics literature, Mekjian and Chase (1997) have used two-parameter
models. They refer to the work by Pitman (1996). There are other works in
the physics literature, in particular the papers by Derrida-Flyvbjerg men-
tioned in footnote 1, and Derrida (1994a, 1997).2 There are other papers
in the physics literature that deal with random partitions. Higgs (1995)
have noted the similarities of some physical distributions and power laws,
and mention population genetics papers by Ewens in particular. Frontera,
Goicoechea, Rafols, and Vivies (1995), and Krapivsky, Grosse, and Ben
Nadin (2002) discuss partitions and fragmentations, that is, stick-breading
version of the residual allocation processes explicitly. They have not touch
on connections with the two-parameter Poisson-Dirichlet distributions.

In macroeconomic and finance modelings, agents of different character-
istics or strategies are of different types and form separate clusters and
affect aggregate behavior. In this paper, we therfore explore more broadly
economic implications of long-run relations that may exist among non-self
averaging economic or financial variables.

1Sometimes it is called Gini-Simpson index of divesity. See Hirschman (1960) about
the origin and mis-attribution of this notion to Herfindahl. In the population genetics
literature H is called homozygosity. See Ewens (1972). Interestingly, the same measure has
been used by Derrida-Flyvbjerk (1989) in discussing relative sizes of basins of attractions of
Kaufman random maps and ramdom dynamics in statistics and physics. These, however,
involve a sigle parameter θ in their statistical description. See also Aldous (1985).

2Derrida (1994b) has added some material on residual allocation models.
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In the first part of this paper we introduce the reader to some basic
notions on random partitions from the literature of combinatorial stochastic
processes, in particular the works by statisticians, J. Pitman (1996, 2002)
and Yamato and Sibuya (2000). Size-biased permutation, residual allocation
models, notions of frequency spectrum and structure distribution, Mittag-
Leffler probability density and power-laws are introduced in the process of
describint long-run behavior of models.

We show, among other things, that components of partition vectors in
PD(α, θ) with positive α have non-vanishing variances (non-self averaging
in the physics terminology), while in PD(θ) they do not.

Invariance under Size-biased Permutation

We introduce the notion of invariance under size-biazed sampling or permu-
tation in the statistics literature as a proper concepts of distribution of sizes
of types in statisstical equilibrium.

Heuristically this notion may arise in the following way: Suppose that
fractions of ”shares” are arranged in decreasing order, x1 > x2 > · · ·. We
may be interested in the question of how large is the share of the second
type, excluding the presence of the first, that is the largest type. This is
the fraction x2/(1 − x1). Analogously, we may be interested in the i-th
largest type excluding or correcting for the effects of the first through the
(i − 1)th shares, given by xi/(1 − x1 − · · ·xi−1). Actually, this is one of
the ways industrial organizaation economists measured the concentration of
industries, even though they did not know of the notion of the size-biased
sampling or permutation. This is precisely what is involved in size-biased
sampling.

More formally, we consider the set of all possible fractions (p1, p2, . . .)
where pi, the fraction of type i agents, is posistive, and the fractions sum to
1,
∑

i pi = 1. Suppose that one agent is sampled. The probability that the
first sampled agent is of type j is

Pr(p̂1 = pj |p1, p2, . . . , pn) = pj , : j = 1, 2, . . .n.

This first pick is called the size-biased pick, because types of agents with
larger fraction are most likely to be sampled. This equation says that the
sample is taken in proportion to the sizes of various types. More generally,
having picked p̂1, . . . , p̂k, the next sampled agent is of type n with probability
given by

Pr(p̂k+1 = pn|p̂i, i = 1, 2, . . . , k; p1, p2, . . .) =
pn

1 − p̂1 − p̂2 − · · · − p̂k
,

provided that pn 6= p̂i, i = 1, 2, . . . , k. The collection, {p̂j}, is called size-
biased sampling or permutation abbreviated as SBP.

Since distributions of agents by types are more useful when they are in
statistical equilibrium, we define the set of fractions is invariant under size
biased permutation (abbreviated as ISBP) when

{p̂n} =d {pn},
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where =d means equality in distribution.
Pitman (1996) considered {pn}, pn > 0, a.s., for all n,

∑
n pn = 1, such

that {pn} are distributed as RAM (residual allocation model) for indepen-
dent random variables Wi, i = 1, 2, . . ., that is ps are generated by the
following formula

p1 = W1, p2 = W2(1−W1), · · · , pn = Wn(1 −W1)(1−W2) · · ·(1 −Wn−1).

Note that p1 = W1, p2/(1− p1) = W2, · · · , pn/(1− p1 −· · ·− pn−1) = Wn

are independent.
Let α and θ be such that 0 ≤ α < 1, and θ > −α > 0. Let Wi be Beta

distriuted random variable, Be(1−α, θ+ iα), where random variable X has
density Be(a, b) when the density is given by

fX(x) =
1

B(a, b)
xa−1(1− x)b−1,

for 0 < x < 1, where B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
Then {pn} is said to have a GEM(α, θ) distribution.3 With α = 0, the

above reduces to the one-parameter Poisson-Dirichlet distribution, due to
Kingman (1978). See Perman, Pitman, and Yor (1992), and Pitman and
Yor (1997) on earlier works.

Then he showed that {pn} is invariant under size-biased permutation,
abbreviated as ISBP, if and only if {pn} is distributed as GEM(α, θ).

Next, arrange samples by order statistics, i.e., we reorder p̂i, i = 1, 2, . . .
as

p(1) > p(2) > · · · .

When {pn} is distributed as GEM(α, θ), then the ranked sequence {p(n)}
is said to have the two-parameter Poisson Dirichlet distribution, PD(α, θ).

To summarize, if fractions of agents of type n is given by {pn}, pn > 0,
a.s., and

∑
n pn = 1, the size-biased permutation of PD(α, θ) is aGEM(α, θ),

and the ranked sequence of a GEM(α, θ) is a PD(α, θ). Furthermore,
GEM(α, θ) is ISBP. See Carlton (1999), for example.

With α = 0, PD(α, θ) reduces to the Ewens distribution, denoted from
now on by PD(θ).

Structural Distribution and Frequency Spectrum

The structural distribution, F , of {pn}, is defined by Engen to be the dis-
tribution on (0, 1] of the first size-biased pick, that is the first term of a
size-biased permutation of the distribution of agents by type, {pn}, that is
p̂1. The importance of this first pick is demonstrated by the lemma below
of Pitman and Yor (1997).

When {pn} is distriubted as a two parameter Poisson-Dirichlet distribu-
tion PD(α, θ), let W1 be distributed as Be(1−α, θ+α) (Beta distribution).
We drop subscript 1 from W1 from now on. The first size-biased pick is

3The name GEM was given by Ewens to honor the pioneers, Griffiths, Engen, and
McCloskey.
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p̂1 = W as we have shown above. The structural distribution is important
because it shows that p̂1 summarizes the distribution of {pn} as shown next.

Lemma: For any positive measureable function g(t) ∼ O(t) as t goes to
zero,

E[g(W )/W ] = E[g(p̂1/p̂1]

= E{E
∑

i

g(pn)
pn

Pr(p̂1 = pn|p1, p2, . . .)}

= E(
∑ g(pn)

pn
pn) = E[

∑
g(pn)].

Pitman (1996) pointed out that v−1F (dv) is the frequency spectrum. By
the above lemma, the expected value of any positive measurable function g
is expressible in terms of the structural distribution as

E(
∑

n

g(pn)) =
∫ 1

0

g(v)
v
F (dv).

If one takes g to be I(a < v < b), this expression gives the average number of
n such that a < pn < b, hence v−1F (dv) is the same as the frequency spec-
trum in population genetics literature. In that literature, there is a measure
of cluster size distribution called frequency spectrum. See Ewens (1979).
Aoki (2002, p.173, 2002a) has some elementary economic applications of
this notion. In words, the frequency spectrum is the expected number of
types with fraction in the interval (x, x+ dx).

Given order statistics of cluster sizes governed by PD(θ), x1 > x2 > · · ·,
the largest size x1 has the density

f(x1) = θx−1
1 (1 − x1)θ−1,

for x1 in the range 1/2 < x1 < 1, that is when the largest cluster is more
than 1/2 of the whole.4 This density behaves like x−1

1 for small x1. This
indicates that there are many types with small fractions and f(x) is not
normalizable. However, g(x) = xf(x) = θ(1 − x)θ−1 is normalizable. This
function is interpreted as the probability that a randomly selected sample
is of the type with fraction in (x, x+ dx).

The two largest fractions, x1 and x2 have the joint density

f(x1, x2) = θ2(x1x2)−1(1− x1 − x2)θ−1,

when the two sizes are such that 0 < x1 + x2 < 1, and more importantly
when

x2

1 − x1
>

1
2
.

Note that similar inequalities arise in size-biased permutation. See Aoki
(2002, Sec. 10.6) for heuristic derivations based on Watterson and Guess
(1977). 5

4The expression is more complicated when x1 is less than 1/2. See Watterson and
Guess (1977).

5Karlin (1967) focussed on the situation with many types of small probabilities such
that β(x) = x−γL(x), with 0 < γ < 1, and where β(x) =

∑∞
i

I(pn ≥ x), and where L(.)
is some slowly varying function.
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In economic applications we are more interested in a few types with large
shares, such as the ones discussed in Aoki (2000a).

For the one-parameter Poisson-Dirichlet process, the expected sizes of
the three largest clusters are shown in the next table (see Griffiths (2005))

θ largest second third

0.1 0.935 .059 .005

0.5 .758 .171 .049

1.0 .624 .210 .088

For example, with θ = 0.1, the expected size of the largest and the second
largest clusters sum to 99 per cent of the whole agents. With θ = 1/2, the
sum is about 93 per cent.

Number of Clusters in two-parameter Poisson-Dirichlet

Distributions

The probabilities of new types entering models in PD(θ), and the num-
ber of clusters have been applied for example in Aoki (2002, p.176, App.
A.5). In the two-parameter Poisson-Dirichlet distribution the conditional
probabilities for the number of clusters in a sample of size n, Kn is given by

Pr(Kn+1 = k + 1|K1, . . . , Kn = k) =
kα+ θ

n + θ
, (1)

and
Pr(Kn+1 = k|K1, . . . , Kn = k) =

n− kα

n+ θ
. (2)

In other words, the random variable Kn is the number of different types
of agents present in a sample of size n. Eq.(1) means that the (n + 1)th
entrant is a new type. Eq.(2) means that it is one of the previously existing
types. Hence the number of clusters does not change.

From (1) and (2) the probability for Kn = k, q(n, k), can be recursively
computed using the conditional probability equation above

q(n+ 1, k) =
(n− kα)
(n+ θ)

q(n, k) +
θ + (k − 1)α

n+ θ
q(n, k − 1), (3)

for 1 ≤ k ≤ n, given the boundary formula

q(n, 1) =
(1 − α)(2 − α) · · ·(n− α)
(θ + 1)(θ + 2) · · ·(θ + n)

,

and
q(n, n) =

(θ + α)(θ + 2α) · · ·(θ + nα)
(θ + 1)(θ + 1 + α) · · ·(θ + 1 + α(n − 1))

.
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These expressions generalize the recurrence relation for the one-parameter
PD(θ). In the one-parameter case, θ/(θ+n) is a probability that the (n+1)th
agent that enter the model is a new type, and n/(θ + n) is the probability
that the next agent is one of the types already in the model.

In the one-parameter case, qn,k := P (Kn = k) is governed by the recur-
rence relation

qn+1,k =
n

n+ θ
qn,k +

θ

θ + n
qn,k−1.

The solution of this recurrence equation is expressible as

qn,k =
c(n, k)θk

θ[n]
,

where θ[n] := θ(θ + 1) · · ·(θ + n − 1) = Γ(θ+n)
Γ(θ) , and c(n, i) is the unsigned

(signless) Stirling number of the first kind. It satisfies the recursion

c(n+ 1, k) = nc(n, k) + c(n, k− 1).

Since qn,k sums to one with respect to k we have

θ[n] =
n∑

k=1

c(n, k)θk. (4)

See Aoki (2002, p.208) for example on the Stirling numbers, and their
combinatorial interpretations. In the two-parameter PD(α, θ) case, the
probability of the number of clusters is given by

Pα,θ(Kn = k) =
θ[k,α]

αkθ[n]
c(n, k;α), (5)

where
θ[k,α] := θ(θ + α)(θ + 2α) · · ·(θ + (k − 1)α),

and the expression c(n, k;α) generalizes the signless Stirling number of the
first kind of one-parameter situation.

Let Sα(n, k) := 1
αk c(n, k;α). It satisfies the recursion

Sα(n+ 1, k) = (n− kα)Sα(n, k) + Sα(n, k − 1).

This is called generalized Stirling number of the first kind. See Char-
alambides (2002). Instead of (4) we have

θ[n] =
n∑

k=1

Sα(n, k)θ[k,θ]. (6)

Pitman (1999) obtained its asymptotic expression as

Sα ∼ Γ(n)
Γ(k)

n−αα1−kgα(x),

where k ∼ xnα. Here, gα is the Mittag-Leffler function. This function is
discussed in the next section.
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Asymptotic Behavior of Cluster Sizes

We collect here some known facts about cluster sizes as n→ ∞.

The number of clusters Kn

Yamato and Sibuya (2000) obained

EKn =
θ

α
[
(θ + α)[n]

θ[n]
− 1],

where we note that

(θ + α)[n]

θ[n]
=

Γ(θ)
Γ(θ + α)

Γ(θ + α+ n)
Γ(θ + n)

.

Applying the asymptotic expression for the Gamma function for large n

Γ(n + a)
Γ(n)

∼ na,

to the above expression, we have an asymptotic expression,

E(
Kn

nα
) ∼ Γ(θ + 1)

αΓ(θ + α)
. (7)

They also calculate the asymptotic value of the variance of Kn/n
α,

var(Kn/n
α) ∼ Γ(θ + 1)

α2
γα,θ ≥ 0, (8)

where
γα,θ :=

θ + α

Γ(θ + 2α)
− Γ(θ + 1)

[Γ(θ + α)]2
. (9)

Note that
Fact: γ0,θ = 0.
This fact is important in the long-run behavior of components of the

partition vectors, to be discussed in the next subsection.
Actually they calculate more generally

limE(
Kn

nα
)r = µ′r ,

where µ′r is the r− th moment of the generalized Mittag-Leffler distribution
with density

gα,θ :=
Γ(θ + 1)

Γ(θ/α + 1)
x

θ
α gα(x),

where θ/α > −1, and where gα(x) is the Mittag-Leffler (α) density func-
tion. It is known that this function is uniquely determined by the moment
conditions ∫ ∞

0
xpgα(x)dx =

Γ(p+ 1)
Γ(pα+ 1)

,

for all p > −1. Note that the integral of gα,θ over the interval from zero to
infinity is 1, as it should be.

See also Blumenfeld and Mandelbrot (1997) who credit Feller (1949) as
the original source.
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Mittag-Leffler distributions

As we discuss more fully later, Pitman (2002, Sec. 3) has stronger result:

Kn/n
α → L, a.s.,

where the expression L has the density

d

ds
Pα,θ(L ∈ ds) = gα,θ

where letting η = θ
α we define

gα,θ(s) :=
Γ(θ + 1)
Γ(η + 1)

sγgα(s),

where s > 0, and where gα = gα,0 is the Mittag-Leffler density

gα(s) =
1
π

∞∑

k=1

[
Γ(kα)
Γ(k)

sin(kπα)(−s)k−1].

We note that

µ′1 = Eα,θ(L) = Γ(θ + 1)/αΓ(θ + α),

and
µ′2 = Eα,θ(L2) = Γ(θ + 1)(θ + α)/α2Γ(θ + 2α).

Hence variance of L is given as µ′2 − (µ′1)
2.

For the record we have

varα,θ{
Kn

nα
} = varα,θL.

The partition vector a

Denote the partition vector by a = (a1, a2, . . .), where we recall that ai is
the number of distinct clusters of size i, hence

∑
i ai = Kn, and

∑
i iai = n.

Yamato and Sibuya obtain the limit of the first component, a1

limE[
a1

nα
] =

Γ(θ + 1)
Γ(θ + α)

,

and
lim var(

a1

nα
) = Γ(θ + 1)γα,θ ≥ 0.

In fact aj/n
α are all non-self averaging, as well as jaj/n

α, where jaj is
the total number of agents in the clusters of size j. Note that their variances
are all zero with α = 0, that is the asymptotic variance of aj/n

α are all zero
in PD(θ) models.

Fact
The expression ai/n

α, i ≥ 1 are all non-self averaging.
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Sibuya (2005) used Formula 6.1.41 in Abramovitz and Stegun (1965) to
obtain asymptotic expression

E(
aj

nα
) ≈ (1− α)[j−1]

j!
Γ(θ + 1
Γ(θ + α)

+O(n−1).

We state this as
Proposition: As in (9)

lim varα,θ(Kn/n
α) = varα,θ(L),

and
lim varα,θ(aj/n

α) = α2varα,θ(L).

They also show that covariances of components of the partition vectors
are non-self averaging with positive α values:

limCov(
ai

nα
,
aj

nα
) = Γ(θ + 1)γα,θ ×

(1 − α)[i−1]

i!
(1− α)[j−1]

j!
> 0, : α > 0.

It is also known that

j!Γ(1− α)
αΓ(j − α)

→d L. (10)

We have

E(
aj

nα
|kn = k) ∼ (1 − α)[j−1]

j!
(1 − j/n)−(1+α) × ξ,

where ξ depends on g(α,θ).
The number of clusters, Kn is spread among the components of the

partition vector, ai, i = 1, 2, . . . , n at the proportion α(1 − α)[j−1]/j!, 0 <
α < 1. Devroye (1993) calls this Sibuya distribution.

We also note that

Lim
E(ai)
E(Kn

=
α2

Γ(θ + α)γα,θ
.

We note that aj/Kn is self-averaging for all j = 1, . . . , n. Yamato and
Sibuya also examined the clusters of size k or less

K[1, k] := a1 + a2 + · · ·+ ak,

and the number of agents in K[1, k], denoted by N [1, k] and obtained their
limiting expressions as

K[1, k]
nα

→d {1− (1− α)[k]

k!
}L,

and

N [1, k]
nα

→d α
(2 − α)[k−1]

(k − 1)!
L,
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Sibuya also notes that

{ a1

nα
,
2a2

nα
· · · .kak

nα
}

converges in distribution to a sequence of random variables depending on L
as

{1, (1 − α)
1!

, · · · , (1− α)[k−1]

(k − 1)!
}.

In PD(α) it is known that

Kn − θlnn√
θlnn

→ N(0, 1).

Hence (Kn/lnn) is self-averaging.

Almost sure convergence

Denote by aj(n) the number of clusters of size j when there are n agents in
the model. We noted earlier that

∑n
j=1 jaj(n) = n, and Kn :=

∑n
j aj(n) is

the total number of clusters formed by the total of n agents.
By Rouault (1976, 1978)

aj(n)
Kn

→ αΓ(j − α)
Γ(1 − α)j!

, a.s.

Recallint that Kn/n
α → L,a.s., we have

aj(n)/nα → αΓ(j − α)
Γ(1 − α)j!

L, a.s.

wbere
aj(n)
Kn

→ α

j!
Pα,j ,

where
Pαj =

Γ(j − α)
Γ(1 − α)

,

for every j = 1, 2, . . . a.s. as n goes to infinity, and that aj(n) ∼ Pα,jLnα

in a two-parameter Poisson-Dirichlet case.

Local Limit Theorem

Suppose N independent positive random variables Xi, i = 1, 2, . . .N are
normalized by their sum SN = X1 + · · ·+XN

xi = Xi/SN , i = 1, . . .N,

so that
Y1 :=

∑

i

xi = 1.
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Suppose that the probability density ofXi is such that it has a power-law
tail,

ρ(x) ∼ Ax−1−µ,

with 0 < µ < 1. Then, SN/N
1/µ has a stable distribution (called Lévy

distribution).
Pitman’s formula for the probability of Kn = k, with k ∼ snα indicates

that the power law nα which is 2α < 2 or 2α = 1 + µ with 0 < µ < 1, the
case in Derrida.

With the 2-parameter PD distribution satisfying the power law condi-
tion, Derrida’s conclusion that the Hs are non-self averaging applies to this
case as well.

Estimating the Parameters

Carlton (1999) and Sibuya (2005)are the only systematic source on estimat-
ing the parameters of two-parameter Poisson-Dirichlet distributions.

With α = 0, Ewens had shown that Kn is the sufficient statistics for θ.
Carlton discusses the case where α is known and θ unknown. He derives
the asymptotic distribution of the maximum likelihood estimate of θ, given
n samples.

Lemma
Given α in (0,1), the maximum-likelihood estimate of θ, θ̂n is given by

ψ(1 + θ̂n/α) − αψ(1 + θ̂n) → logS, as.

Here ψ is the digamma function.
With θ known, and α unknown, Carlton proves
Lemma
Let {A1, . . . , An} is distributed according to the two-parameter Ewens

distribution of size n. (His Eq. (4.2) on page 55.) Then,

α̂n =
logKn

logn
→ α a.s.

Sibuya uses the conditional probability distribution of the partition vec-
tor components, given that

∑
i ai = k, and expresses the distribution

P (a|
∑

aj = k) =
1

Sα(n, k)
n!∏
aj !

∏

j

{(1− α)[j−1]

j!
}aj

which is proportional to

exp{−
∑ j

2(j − 2)!
aj}α+ O(α2)

and test the hypothesis α = 0, against the alternative hypothesis α < 0.
He proposes the rejection region

∑ j

2(j − 2)!
− aj > const.k.

When both parameters are unknown, the estimation problem is appar-
ently unsolved.
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Some Potential Applications

In physics literature, Derrida (1994 a, b)sketched a derivation that the ex-
pected values of Yk =

∑
i x

k
i , k = 2, 3, . . . can be calculated for mean field

spin glass models using the Parisi replica approach, and remarkably the
formula is the same as the GEM model described above.

In the rest of this section we focus on economic examples.
Example 1 Scaling of GDP growth rates was considered by Canning,

Amaral, Lee, Meyer, and Stanley (1998). They showed that the standard
deviation of the GDP growth rate may sclae as Y −β , with β about 0.15.
Here, we heuristically explain how their finding may be explained using a
random partition framework.

We modify the model of Huang and Solomon (2001) and apply the same
procedures to estimate the growth rate of real GDP.6 View the real economy
as composed of K sectors of various sizes. Stochastically one or more of the
sectors experience what we call elementary events, the aggregate of which
yields the real growth of the economy, leading to its random growth rates. To
be simple one may assume that the individual elementary growth of sectors
is random λ = 1+g, where g = ±γ randomly with some positive γ. Further,
we adopt the mechanism of Huang and Solomon that a random number τ
of this type of elementary events are experienced in a unit of calendar time.
The random growth rate is the composite effects of these random elementary
events.

We refer the detail of the mechanism to their paper, and mention only
that the growth rate will be exponential only if the number of changes τ is
less than some critical value τc, and change in GDP has a power law density
with index −(1 + α).

The value of α is defined to be the ratio of minimum and average real
consumption in the model q = cmin/caverage, and is tied to α by

α ≈ 1/(1− q),

when K is sufficiently larger that e1/q, due to inherent normalization condi-
tions of densities involved.

For example, setting q = 0.25 leads to α = 1.33, and K must be such
that K >> e4 > 55. The value of τc is defined by (N/2q)α. With τ less than
τc, the growth rate r can be shown to have the density

p(r) = Cexp(−a|r − rm|),

for r > rm, with a different constant for the case r < rm.
The deviation of r is then related to variability ofK and τ , among others.

From this one can deduce that the average deviation in the growth rates is
basically determined by percentage changes of the size of the largest cluster
which can be related to the GDP when the productivity is assumed not to
vary too much, and the conclusion follows that the standard deviation of

6Their focus is on financial sector, not real sector. See Aoki and Yoshikawa (2006 a,
b).
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the growth rate is Y −µ with µ less than 1. See Aoki and Yoshikawa (2006a,
b) for detail.

Example 2: Long-run effects of innovation and imitation
This example is based on a two-sector model discussed in Aoki (2002,

Sec. 7.4), Aoki, Nakano, Yoshida (2004), and Aoki, Nakano, and Ono (2006).
There are two types of firms, innovators and imitators.

Our model has two sectors; one technically advanced sector and the other
less so. By a suitable choice of units we denote the sizes of the two sectors
by a vector (n1, n2). We may think of them as the number of firms in some
suitably chosen standard units. Firms in sector one succeed in creating
innovative firms at rate f which is, for simplicity, exogenously fixed in this
model.7

Firms’ stochastic behavior is described by a continuous time Markov
chain which is uniquely determined by a set of transition rates. We write the
transition rate from state a to b by w(a, b). This means that the probability
that the system moves from state a to b in some small time interval is given
by the time interval times the transition rates up to o(time interval size).
They are specified as follows: The first two describe entry (growth) rates

w{(n1, n2), (n1 + 1, n2)} = c1n1 + f,

w{(n1, n2), (n1, n2 + 1)} = c2n2.

Here ci is the rate of growth of type i firm size, i = 1, 2.
The next two specify exit rates from the model

w{(n1, n2), (n1 − 1, n2)} = d1n1,

w{(n1, n2), (n1, n2 − 1)} = d2n2.

Here di is the exit (death) rate of type i firms from the economy, i = 1, 2.
The last set of two transition rates describes how firms change their types

w{(n1, n2), (n1 + 1, n2 − 1)} = µg1n2(n1 + h),

with g2 = c2/d2, and h = f/c1, and

w{(n1, n2), (n1 − 1, n2 + 1)} = µg2n1n2,

with gi = ci/di, i = 1, 2, and µ = λd1d2. This parameter λ is the coefficient
in the transition rates of type changes by firms in the two sectors. The first
of the two shows the rate at which one of type 1 firm becomes technologically
obsolete and join the cluster made up of type 2 firms. The second equation
specifies how firms of type 2 successfully imitate firms of type 1 and join
their cluster. for example.

With these transition rates, we write the master equation. We compute
the probability generating function, and then convert it into the cumulant
generating function, since we are interested in calculating only the first and
second order moments, k1, k2, k1,1, k1,2, and k2,2, and verify that the 2× 2

7It will be interesting to endogenize this rate in a way that is not equivalent to increasing
the birth rate c1 in the model of this section.
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covariance matrix is positive definite in steady state. Fortunately, this model
is specified in such a way that the equations for the moment are closed at the
second moments, that is no higher order moments appear in the equations
for the first and second moments. We derive a coupled ordinary differential
equations for these moments. With the help of Mathematica we calculate
the stationary state values of these moments for varioous parameter values,
and verify the positive definiteness of the second moment matrix.

To the knowledge of the author this is the first example of Schumpert-
erian dynamics with innovations and immitation effects for which the first
two moments have been analytically derived and numerically evaluated. The
model allows us to examine parametrically the relative importance of net
death rate and innovation rate, and draw conclusions about qualitative be-
havior of interacting two sectors. The model shows that both sectors co-exist
in the long-run. We show also that the means of stationary locally stable
equilibria scale with parameters of the innovation rate, and death rate.

The stochastic dynamic equation is easy to state. It is a backward
Chapman-Kolmogorov equation, also known as the master equation. (We
use the latter name as it is short, and implies that everything you need to
know about stochastic behavior is implicit in the master equation.)

∂P (n1, n2; t)
∂t

= I(n1, n2; t) −O(n1, n2; t), (11)

where the first term collects all inflows of probability flux into state (n1, n2),
and the second term collects all outflows of probability fluxes out of this
state. There are six distinct flows. In detail we have

I(n1, n2; t) = P (n1 + 1, n2; t)d1(n1 + 1) + P (n1, n2 + 1; t)d2(n2 + 1)

+P (n1 − 1, n2; t)c1(n1 − 1 + h) + P (n1, n2 − 1)c2(n2 − 1)

+P (n1+1, n2−1; t)µg2(n1+1)(n2−1)+P (n1−1, n2+1; t)µg1(n1−1+h)(n2+1).

The second term in (1) is given by

O(n1, n2; t) = P (n1, n2; t){c1+n1+f+c2n2+d1n1+d2n2+µg1n2(n1+h)+µg2n1n2)}.

To solve the master equation, we first convert it into the probability
generating function

G(z1, z2; t) =
∑

n1 ,n2

P (n1, n2; t)z
n1
1 zn2

2 .

We obtain a partial differential equation for G(z1, z2; t). It is given in
Appendix. This partial differential equation is rather intractable, and for
that reason we convert it into the cumulant generating function and solve
for the expected values of first and second moments.8

Cumulant generating functions are related to the probability generating
functions by

K(θ1, θ2; t) = lnG(e−θ1 , e−θ2),
8In some cases the resulting ordinary differential equations for the moments turn out

to be an infinite set of coupled ordinary differential equation. Fortunately, the differential
equations for the first and second cumulants are self-contained in this model.
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where we change variables from z1, and z2 into θ1 and θ2.
It is known that the cumulant generating function has a Taylor series

expansion of the form

K(θ1, θ2; t) = k1θ1 + k2θ2 +
1
2
(θ1, θ2)Θ(θ1, θ2)′ + · · · ,

where k1 = E(n1), and k2 = E(n2), that is, they are the expected sizes of
the two types, and where Θ is a covariance matrix made up of the variances
and covariances of the two sizes,

Θ =

(
k1,1 k1,2

k1,2 k2,2

)
.

See Aoki (2002, Chapt. 7) for further information on these generating
functions, and some simple examples.

From the cumulant generating functions we derive a set of five ordinary
differential equations for k1, k2, k1,1, k1,2, and k2,2.

Appendix gives the explicit expressions.

Stationary means and variances

The equations for the two means are:

dk1

dt
= f − d1(1− g1)k1 + λfd2k2 + 2µλA0, (12)

and
dk2

dt
= −d2(1 − g2 + λf)k2 − 2µλA0, (13)

where λ = µ/d1d2, where gi = ci/di,A0 = k1,2+k1k2, and 2µ = d1d2(g1−g2).
Note that A0 =< n1n2 >≥ 0.

Since A0 depends on k1,2 we need solve for it as well.
Stationary means are described by setting the left-hand sides of (2) and

(3) to zero:

f − d1(1− g1)k1 + λfd2k2 + 2µλA0 = 0, (14)
−d2(1− g2 + λf)k2 − 2µλA0 = 0. (15)

By adding (14) and (15) to express an important relation between f , k1 and
k2

f = d1(1− g1)k1 + d2(1 − g2)k2. (16)

This equation clearly shows that a fraction of innovation flow accounts
for the new firms in sector 1, and the rest accounts for the net exit flow of
firms from sector 2. We later show that the expected value of the stationary
values of the size of sector 1 scales with γ1 := λd1, and that of sector 2 scales
with γ2 := λd2,

Recalling the definition di(1 − gi) = di − ci, we see that the rate of
innovation f equals the sum of the expected exit rates of firms of both
sectors, since (di − ci)ki is the net exit rate of firms of sector i, i = 1, 2.
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In this model it is necessary that both g1 and g2 are not greater than
one. There are two cases: g1 > g2 and g2 > g1. In the former µ > 0 and
µ < 0 in the latter. Eqs. (14) and (16) exclude the case g1 > g2. In the
other cases, we could have g2 > 1 > g1 or 1 > g2 > g1.

To reflect these consideration we introduce two parameters m and n9 by

g1 = 1 − nγ,

and
g2 = 1 −mγ,

where γ = λf . The constants are bounded by

1
γ
> n > 0,

and
n > m > −1.

The inequality m > −1 is derived from (15).
Solving (4) and (5), we obtain the means of the sizes of the two sectors

k1 =
1 − v

nγ1,
(17)

with
v :=

m(n−m)
1 +m

d1d2λ
2A0,

and
k2 =

v

mγ2
. (18)

The stationary variances k1,1 and k2,2 are derived in Appendix; the re-
sults are

k1,1 =
1

2γ1

(
n + n−m

m v
)
{

2
nγ

+
2

γγ1mn2(n −m)

[
γ1n(m2 + n)

−γm
(
γ1n

2(1 +m) −m(1 + n)
)]
v +

2(2 + n)
γ1n2

v2 +
2(n−m)
γ1mn2

v3
}
,

and

k2,2 =
1

2γ2

(
1 +m− n−m

n (1 − v)
)

×
{

2(1−mγ)(1 + n)
m(n−m)γ

v +
2(1 + n)
mnγ2

v2 +
2(n−m)
m2nγ2

v3
}
.

The covariance k1,2 is expressed in terms of θ through the definition k1,2 =
A0 − k1k2 as

k1,2 =
1

γ1γ2

1
nm(n−m)

v [(1 + n)m+ (n−m)v] .

9not to be confused with n1 or n2
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What remains is to determine v. The self-consistent equation for v is
derived in Appendix. Although the equation is a fifth order equation of v
because of the five unknown quantities, the highest term vanishes so that

vF (v) = 0 (19)

where
F (θ) = r0 + r1v + r2v

2 + r3v
3. (20)

The forms of ri are given in Appendix.
The root θ = 0 is of interest because this value of θ yields a stationary

state in which sector 2 vanishes, k2 = 0, k2,2 = 0, and k12 = 0.
Hence we have the solutions for (19); solutions of F (v) = 0 in addition

to v = 0. For v = 0 one has

k1 =
1
nγ1

, k11 =
1

n2γγ1
, k2 = k22 = k12 = 0,

which corresponds to the situation that only sector 1 survives. From F (v) =
0 we obtain three values of v The roots must be such that v is real and the
obtained values of k1, k2, k1,1 and k2,2 are positive; k1,2 is not necessarily
positive. Although the analytic solutions may be obtained for special set of
parameters, such solutions are not possible in general.

Mathematica, however, enables us to numerically solve F (v) = 0. In
order that those solutions exist in reality, the solutions must be the stable
fixed points.

As an example we describe in detail the case where m = .01; n = 2,
γ = γ1, and γ2 = γ1 + ε, with a small positive ε. In this case there is only
one root for which the dynamics are locally stable. It is given by v = 0.472.

The stability of the stationary states is examined in the following way.
The starting equations are (12), (13) and (21), (22) and (23) in Appendix.
By setting the left hand sides of those equations we have the stationary
values, which are confirmed to numerically coincide with the solutions from
vF (v) = 0. Then the linearized equations for deviations δk1, δk2, δk11, δk22

and δk12 from the stationary values are derived. The eigenvalues of those
equations are numerically calculated with a help of Mathematica. If real
parts of all five eigenvalues associated with a stationary point are negative,
the stationary point is stable.

The value of v = .472 corresponds to a locally stable solution. This leads
to

k1 =
.264
γ1

, k2 =
47.2
γ2

.

From (5) we obtain

A0 =
v

γ1γ2

1 +m

m(n−m)
=

23.956
γ1γ2

.

From this we derive

k1,2 = A0 − k1k2 =
11.495
γ1γ2

.
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From (9) through (11) we can obtain approximate order of magnitude values
for the second moments k1,1 and k2,2 as follows.

k1,1 =
C1,1

γ2
1

,

with
C1,1 ≈ 1

n2
(1 + v2) ≈ .31,

which is close to .309 obtained in the numerical example below, and

k2,2 =
C2,2

γ2
2

,

with
C2,2 ≈ 1

m2
[v2 +

m(1 + n)
n

v] = 2300.

We also have an approximate expression for k12 as C12/γ1γ2 with

C12 =
θ2

mn
≈ 11.15,

which is in good agreement with the value obtained above as 11.495.

Numerical Examples

We focus on a stationary solutions. Since there are five parameters, we have
many solutions.

To keep the sizes of the two sectors at reasonable values, we examine
cases with the death rates close to the birth rates. Namely, we choose gi to
be close to unity. Previously we have indicated that g2 can be either larger
than one or smaller than one, while g1 is always less than one. First, we
consider the case that the death rate di is slightly larger than the birth rate
ci, so that nγ, mγ � 1. Although the death rate of sector 2 is considered
to be larger than that of sector 1, we assume that both are almost the
same. We focus on the following parameters; γ = γ1 = γ2 = 0.01, n =
2.0, m = 0.01. Then we have three types of solutions; (1) k1 = 50, k11 =
2500, k2 = k22 = k12 = 0, (2) k1 = 49.97, k2 = 4.77, k11 = 2501, k22 =
46505, k12 = 3.71 and (3) k1 = 26.4, k2 = 4719, k11 = 3093, k22 = 2.37 ×
107, k12 = 114918. The stable solution is only the first type; only sector
1 survives. The second and third types are not stable. If we increase γ2

slightly to γ2 = 0.011, a remarkable change occurs in the type 3 solution.
The numbers for (1) are the same as the previous case. On the other hand,
(2) k1 = 49.977, k2 = 4.122, k1,1 = 2501, k2,2 = 40232, k1,2 = 3.2 and (3)
k1 = 23.94, k2 = 4738, k1,1 = 3216.7, k2,2 = 2.378 × 107, k1,2 = 127042. The
second solution is not stable, but the third solution turns out to be stable
in this case.

We vary a value of γ2 with other parameters fixed. We found that the
stable fixed point exists in a narrow range such that 0.02>∼γ2>∼0.0102.

What parameters are chosen to increase the number of companies? For
that purpose we should decrease γ, γ1, γ2. When n = 2.0 and m = 0.01
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are fixed, we employ γ = γ1 = 0.001, γ2 = 0.0011. Then we have the
stable third solution k1 = 264, k2 = 47193 with the correlation coefficient
k1,2/

√
k1,1k2,2 = 0.42. In other sets of parameters with n and m fixed at

the above values, γ = γ1 and γ2 being slightly larger than γ, we have the
following scaling relation

k1 =
0.264
γ1

, k2 =
47.2
γ2

, k1,1 =
0.309
γ2

, k2,2 =
2374
γ2

, k1,2 =
11.5
γ2

.

The correlation coefficient is 0.42.
The coefficient of variations are 2.11 and 1.03 for the two sectors respec-

tively. We also note that with γ2 nearly the same as γ1 only 0.6 percent of
the total sizes of the capital resides in sector 1.

Next we examine negative values of m. Take m = −0.01 while keeping
the values of the other parameters the same as before. The numerical calcu-
lation gives a negative value of k2. Although we have not done an extensive
study, a negative value of m, i.e., g2 is larger than one, may not yield stable
stationary situations.

Aoki, Nakano, and Ono (2006) has more extensive simulations and verify
non-self averaging property for the stationary sizes of the two sectors.

Example3: Disequilibrium theory of long run profits. Iwai’s
model has more than two sectors with different productivity coefficients.
His paper is too long and involved to give a thumb-nail sketch here. Instead
we offer three quotes from his paper to explain what he does.

...while both the differential growth rates among different efficiency
firms and the diffusion of better technologies through imitations push
the state of technology towards uniformity, the punctuated appearance
of technological innovations disrupts this equilibrating tendency.

... over a long passsage of time these conflicting microscopic forces
will balance each other in a statistical sense and give rise to a long-run
distribution of relative efficiencies across firms. This long-run distribu-
tion will in turn allow us to deduce an upward-sloping long-run supply
curves...

This paper has challenged this long-held tradition in economics. It
has introduced a simple evolutionary model which is capable of analyz-
ing the development of the industry’s state of technology as a dynamic
interplay among many a firm’s growth, imitation and innovation activ-
ities. And it has demonstrated that what the industry will approach
over a long passage of time is not a classical or neoclassical equilib-
rium of uniform technology but a statistical equilibrium of technolog-
ical disequilibria which maintains a relative dispersion of efficiencies
in a statistically balanced form. Positive profits willl never disappear
from the economy nomatter how long it is run. ’Disequilibrium’ theory
of ’long-run profits’ is by no means a condtradition in terms.

We see that our random partiton framework along the line of Aoki,
Nakano, and Yoshida (2004) can be applied to at least three types of firms,
and their tail distribution may satisfy power laws to substantiate Iwai’s
claim by using long-run in time rather than the thermodynamic limits.
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Concluding Remarks

In physics non-self-averaging phenomena abound. In traditional microe-
conomic foundations of economics, one deals almost exclusively with well-
posed optimization problems for the representative agents with well defined
peaks and valleys of the cost functions. It is also taken for granted that
as the number of agents goes to infinity, any unpleasant fluctuations vanish
and well defined deterministic macroeconomic relations prevail. In other
words, non-self-averaging phenomena are not in the mental pictures of av-
erage macro- or microeconomists.

However, we know that as we go to problems which require agents to
solve some combinatorial optimization problems, this nice picture may dis-
appear. In the limit of the number of agents going to infinity some results
are sample-dependent and deterministic results will not follow. Some of this
type of phenomena have been reported in Aoki (1996, Sec. 7.1.7) and also in
Aoki (1996, p. 225) where Derrida’s random energy model was introduced to
the economic audience. Unfortunately it did not catch the attention of the
economic audiences. See Mertens (2000) for a simple example, or Krpisvsky
et al (2000). This paper is another attempt at exposing non-self-averaging
phenomena in economics, in particular in problems involving combinatorial
optimization. We also have mentioned a possibility of extending the phrase
to cover existence of non-degenerate distributions with time going to infinity.
What are the implications if some economic models have non-self averaging
property? For one thing, it means that we cannot blindly try for larger size
samples in the hope that we obtain better estimates.

The example above is just an indication of the potential of this approach
of using exchangeable random partition methods. It is the opinion of this
author that subjects such as in the papers by Fabritiis, Pammolli, and Ric-
caboni (2003), or by Amaral et al (1998) could be re-examined from the
random combinatorial partition approach with profit. Another example is
Sutton (2002). He modeled independent business in which the business sizes
vary by partitions of integers to discuss the dependence of variances of firm
growth rates. He assumed each partition is equally likely, however. Use
of random partitions discussed in this paper may provide more realistic or
flexible framework for the question he examined. It would be an interest-
ing application of the random partition theory and see if non-self-averaging
phenomena exist in the sense of physics literture in this area.
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Appendices

Markov Chains

We can construct Markov chains using the transition probabilities of (1)
and (2). Some special cases of these equations for the case α = 0 have been
simulated by Aoki (2002, Sec. 8.6). We give some details later in this paper
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as Example 2. More extensive examples are to be found in the forthcoming
book by Aoki and Yoshikawa (2006).

The probability generating function

With only one state variable n, the probability generating function is defined
by G(z, t) =

∑
k z

nP (n, t). Its partial differential equation is obtained by
noting that that ∑

k

zkPk−1(t) = zG(z, t),

∑

k

= 1∞(k + 1)zkPk+1(t) = ∂G(z, t)/∂z,

∞∑

k=1

kzkPk(t) = z∂G(z, t)/∂z,

and
∞∑

k=1

(k − 1)zkPk−1(t) = z2∂G/∂z.

With two state variables n1 and n2, similar relations. The result is

∂G

∂t
= [d1(1− z1) + c1z1(z1 − 1) + µg2(z2 − z1)]

∂G

∂z1

+[d2(1 − z2) + c2z2(z2 − 1) + µg1h(z1 − z2)]
∂G

∂z2

+[µg1z1(z1 − z2) + µg2z2(z2 − z1)]
∂2G

∂z1∂z2
+ f(z1 − 1)G.

The cumulant generating function

Noting that
∂G

∂t
= G

∂K

∂t
,

∂G

∂zi
= −Geθi

∂K

∂θi
,

i = 1, 2, and
∂2G

∂z1∂z2
= Geθ1+θ2H

with

H =
∂K

∂θ1

∂K

∂θ2
+

∂2K

∂θ1∂θ2
,

we convert the partial differential equation for G into that for K

∂K

∂t
=

1
G

∂G

∂t
= −

2∑

i=1

[di(eθi − 1) + ci(e−θi − 1)
∂K

∂θi
+ f(e−θ1 − 1)

+µ[g1(e(θ2−θ1 − 1) + g2(e(θ1−θ2) − 1)]H.
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Extract coefficients of θi and equate them to dki/dt, i = 1, 2, and those
of θ21, θ

2
2 with the derivatives dk1,1/dt and dk2,2/dt, and the coefficient of

θ1θ2 with the derivative dk1,2/dt.
In this way we generate a set of five differential equations for k1, k2, k1,1, k2,2,

and k1,2.

Calculations of the variances and covariance

The equations for the variance and covariance are derived as follows:

k̇11 = f − 2d1(1 − g1)k11 + d1(1 + g1)k1

+λd2f(2k12 + k2) + 4αλ(k1k12 + k2k11) + 2βλA0, (21)
k̇22 = −2d2(1− g2 + λf)k22 + d2(1 + g2 + λf)k2

−4αλ(k1k22 + k2k12) + 2βλA0, (22)
k̇12 = −[d1(1− g1) + d2(1− g2 + λf)]k12 + λd2f(k22 − k2)

−2αλ(k1k12 + k2k11 − k1k22 − k2k12) − 2βλA0, (23)

where β = d1d2(g1 + g2)/2. Stationary values of variances k11 and k22 are
obtained by setting the left hand sides of (21) and (22) equal to zero:

k11 =
1

2γ1

(
n+ n−m

m θ
)
{

2
nγ

+
2

γγ1mn2(n−m)

[
γ1n(m2 + n)

−γm
(
γ1n

2(1 +m)−m(1 + n)
)]
θ +

2(2 + n)
γ1n2

θ2 +
2(n−m)
γ1mn2

θ3
}
,(24)

and

k22 =
1

2γ2
(
1 +m− n−m

n (1− θ)
)

×
{

2(1−mγ)(1 + n)
m(n−m)γ

θ +
2(1 + n)
mnγ2

θ2 +
2(n−m)
m2nγ2

θ3
}
.(25)

Self consistent values of v

Substituting (24) for k11, (25) for k22 and

k12 = A0 − k1k2 =
1

γ1γ2

1 +m

m(n−m)
θ

[
1 − n −m

n(1 +m)
(1 − θ)

]

into the equation which is derived by setting the left hand side of (23) equal
to zero yields the fifth order equation for θ. Luckily, however, the highest
term vanishes, so that the equation becomes quartic;

θF (θ) = 0 (26)

where
F (θ) = r0 + r1θ + r2θ

2 + r3θ
3. (27)
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Here

r0 =
m(1 + n)
γ(n−m)

{
γ1γ2

[
−m+ 2n(1 + n)

]
+ γ

[
γ1n

2(1 + n)

+γ2

(
− γ1n

2(1 + n) +m[1 + 2n+ (1− γ1)n2]
)]}

, (28)

r1 = − 1
γm

{
γ1γ2

[
n3 − 4mn(1 + n) +m2(2 + n)

]
+ γm

[
− γ1n(1 + 5n+ 4n2)

+γ2

(
γ1n

2(2 + n) −m[4 + 8n+ (4− γ1)n2]
)]}

(29)

r2 = −n −m

γm2

{
γ1γ2(n−m)2 − γm

[
5γ2m(1 + n) + γ1n(3 + 5n)

]}
, (30)

r3 =
2(n−m)2

m2

{
γ2m+ γ1n

}
.(31)
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