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1 Introduction

In this paper I develop an asset-pricing model in which financial assets are valued not only as

claims to streams of consumption goods but also for their liquidity. By liquidity I mean the

degree to which an asset is valued as a medium of exchange at the margin. Specifically, I study

a class of exchange economies in which agents sometimes trade goods and financial assets as in

Walrasian theory (in well-organized markets, at market-clearing prices), and sometimes as in

search theory (in a decentralized manner, with the terms of trade determined by bargaining).

Decentralized trade combined with an exchange motive generates the need for a medium of

exchange. The equilibrium price and rate of return of a financial asset are partly determined

by the asset’s usefulness to facilitate exchange. When an asset is held partly for its exchange

value, the demand for the asset and its price tend to be higher than if the asset were not held for

exchange. Its intrinsic rate of return–which takes into account only the stream of consumption

goods that the asset represents–will be lower.

In Sections 2—4 I consider an economy with two assets: an equity share and a one-period

government-issued risk-free real bill. In the basic setup, assets differ only in their payoffs, and

agents are free to choose which assets to use as means of payment in decentralized trades. In

this case, the theory unambiguously predicts that someone testing an agent’s Euler equation

for the risk-free bill using its intrinsic rate of return would find that, at the margin, this agent

can gain from transferring consumption from the future to the present. That is, there would

appear to be a risk-free rate puzzle.

In Section 5 I analyze versions of the economy in which legal or institutional restrictions

give bonds an advantage over equity as a medium of exchange. In this case, it is possible to

show that there are degrees of these restrictions for which someone testing an agent’s Euler

Equation for the intrinsic excess returns would find that, at the margin, the agent can gain

from disinvesting in bills and investing in equity: There would appear to be an equity-premium

puzzle. For this class of economies, the risk-free rate would still seem too low to an outside
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observer. In fact, the risk-free rate will be even lower than it would be in the absence of the

legal or institutional restrictions. Without these restrictions, the theory may still be consistent

with an equity-premium puzzle, depending on parameter values. These results are discussed in

Section 6.

In Section 7 I calibrate the model economies and study the extent to which they are able

to generate average equity returns and risk-free rates that are in line with U.S. data. (For the

empirical implementation, the model must be extended so that it is stationary in the growth

rate of the aggregate endowment. This extension is worked out in the Appendix.) Since the

class of model economies I consider nests the one studied by Mehra and Prescott (1985), I

can quantify the degree to which the liquidity mechanism considered here can help explain the

anomalies they identified. Mehra and Prescott’s test of their theory essentially consisted of

experimenting with different values of the curvature of the agent’s utility function (call it σ) to

find out for which values the average risk-free rate and equity premium in the model matched

those in the U.S. economy. I carry out a similar exercise.

First, I consider the economy with no legal or institutional differences between equity shares

and bills, and assess the ability of the model to produce risk-free rates and equity premia that

match the data, for values of σ ranging from 1 to 10. I find that for values of σ up to 7, the

liquidity mechanism is inactive, and the equilibrium looks just like the one in Mehra—Prescott.

For values of σ equal to or greater than 8, equity shares and bills are valuable in decentralized

exchange at the margin, which lowers the return on equity and the risk-free rate from what

they would be in the Mehra—Prescott economy and brings them closer to the data. However,

relative to the data, for this range of σ the equity return is a bit too low and the risk-free rate

a bit too high, so the average equity premium is still too low.

I then go on to consider the specification with legal or institutional restrictions, in which

equity shares are not accepted as a means of payment in a fraction θ of decentralized exchanges.

For this specification, the question I pose is, for a given value of σ, how large does θ (the relative

assumed “illiquidity” of equity) have to be for the model to generate an average risk-free rate of
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1% and an average equity premium that matches the long-term average for the U.S. economy?

The answer is, quite small. Section 7.3 offers a way to assess the absolute size of θ by relating

it to relative trade volumes of equity and bonds.

In Section 8 I discuss how the liquidity mechanism operates in this model, and what it adds

to Mehra—Prescott, by contrasting how the mean and standard deviation of their respective

stochastic discount factors fare against the bounds of Hansen and Jagannathan (1991). In this

section, I also use the model to decompose the equity premium into two components: a pure risk

premium for bearing nondiversifiable aggregate consumption risk, and an illiquidity premium

related to bonds being easier to trade away if a decentralized trade opportunity arises.

By now a vast literature seeks to solve the puzzle identified by Mehra and Prescott (1985).

As they framed it, the puzzle is the observation that the restrictions that a particular class of

general equilibrium models place upon average returns of equity and Treasury bills are violated

by U.S. data. This particular class of models has: (i) agents who maximize the expected

discounted value of a stream of utilities generated by a power utility function; (ii) “frictionless”

trading (e.g., no brokerage fees or other trading or transaction costs); and (iii) complete asset

markets (agents can write insurance contracts against any contingency).

The literature spurred by Mehra and Prescott can be classified depending on which of

these ingredients it alters.1 From this angle, this paper relaxes (ii) and (iii). There are

trading frictions in the sense that agents sometimes trade bilaterally instead of in a Walrasian

marketplace. Markets are incomplete in that agents cannot make binding commitments, and

trading histories are private in a way that precludes any borrowing and lending between people.

Therefore, all trade–in both the centralized and decentralized markets–must be quid pro quo.

In terms of this broad taxonomy, this paper is related to Aiyagari and Gertler (1991). They

consider an economy with equity and government bonds in which agents face idiosyncratic

shocks, and markets are incomplete in a way that individual agents must self-insure. In their

model, agents hold assets not only for the stream of dividends they yield but also as a vehicle of

1 I will not attempt to list all the relevant work in the area. See Mehra and Prescott (2003) for references.

4



self-insurance. This alone can help to lower the risk-free rate. The basic logic of this mechanism

is similar to the one I am emphasizing, except that here, the additional motive for holding assets

is their role in transactions rather than self-insurance considerations.2 At a conceptual level,

the paper also shares the basic premise of Bansal and Coleman (1996) and Kiyotaki and Moore

(2005), namely that an asset’s role in facilitating some form of exchange will manifest itself in

the equity premium and as a risk-free rate puzzle.

This paper is also closely related to the literature that provides micro foundations for mon-

etary economics based on search theory, as pioneered by Kiyotaki and Wright (1989). This

approach has proven useful for understanding the nature of monetary exchange by making

explicit the frictions–e.g., the configuration of meetings, specialization patterns, information

structure, and so on–that make monetary exchange an equilibrium. Put differently, this ap-

proach has proven useful in pricing the most elusive among financial assets: fiat money, an asset

that is a formal claim to nothing yet sells at a positive price. Somehow, this literature and the

mainstream asset-pricing literature have managed to stay disconnected.3 Recently, Duffie, Gâr-

leanu, and Pedersen (2005a,b), Vayanos and Wang (2005), Vayanos and Weill (2005), and Weill

(2005a,b) have begun to build some interesting connections between both fields. They model

asset trading as a decentralized exchange process that resembles the original vintages of the

equilibrium search models of Diamond (1982) and Kiyotaki and Wright (1989). This paper also

bridges these fields, in the precise sense that the model can be viewed as a blend of Lagos and

Wright (2005)–a recent vintage of the search-based model of exchange–and Lucas (1978).4

2To widen the spread between the risk-free rate and the return on equity, Aiyagari and Gertler (1991) introduce
differential (proportional) trading costs across equity and bonds. If transaction costs on bonds are lower than
on equity, then in equilibrium equity must pay a premium, which they refer to as a “transactions/liquidity
premium.” They also emphasize the model implications for the volumes of trade for bonds and equity as a way of
assessing the plausibility of the magnitudes of the trading costs that they feed into the model. Heaton and Lucas
(1996) analyze an economy similar to the one in Aiyagari and Gertler, but they allow for aggregate uncertainty.
Other papers that consider various combinations of transaction costs and short-sale constraints include He and
Modest (1995), Lucas (1994), Luttmer (1996), and Telmer (1993). See Heaton and Lucas (1995) for a survey.

3Mehra and Prescott (1985) were the first to point out the similarities between the equity premium puzzle
and the “rate-of-return-dominance puzzle” that pervades the pure theory of money. Kocherlakota (1996) picked
up on this in his concluding section. I will return to this issue in mine.

4Contemporaneously, Ravikumar and Shao (2005) are working on a related model that instead combines
features of Lagos and Wright (2005) and Shi (1997) with Lucas (1978). Our papers clearly share much ground:
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2 The Environment

There is a [0, 1] continuum of agents, time is discrete and the horizon infinite. Each period is

divided into two subperiods where different activities take place. There are three nonstorable

and perfectly divisible consumption goods at each date: fruit, general goods, and special goods.

(“Nonstorable” here means that the goods cannot be carried from one subperiod to the next.)

The only durable commodity in the economy is a set of “Lucas trees.” The number of trees is

fixed and equal to the number of agents. Trees yield (the same amount of) fruit in the second

subperiod of every period. Production of fruit is entirely exogenous: no resources are utilized

and it is not possible to affect the output at any time.

In each subperiod every agent is endowed with n̄ units of time that can be employed as

labor services. In the second subperiod, each agent has access to a production technology that

allows him to transform labor services into general goods one-for-one. In the first subperiod,

each agent has access to another production technology that transforms his own labor input,

n, into q units of a particular variety of the special good that he himself does not consume,

according to q = l (n), with l (0) = 0 and l0 > 0.

Each agent produces a subset and consumes a different subset of the special goods. Spe-

cialization is modeled as follows. Given two agents i and j drawn at random, there are three

possible events. The probability that i consumes something j produces but not vice-versa (a

single coincidence) is denoted α. Symmetrically, the probability that j consumes something i

produces but not vice-versa is also α. In a single-coincidence meeting I call buyer the agent who

wishes to consume and seller the agent who produces. The probability neither wants anything

the other can produce is 1− 2α, which means α ≤ 1/2. In contrast to special goods, fruit and

general goods are consumed by all agents.

In the first subperiod, agents participate in a decentralized market where trade is bilateral

both investigate how the role that an asset plays in the exchange process affects its equilibrium price. As for
differences–aside from several in terms of modeling–their agents trade a single asset (equity), as the model
is designed to address the excess volatility puzzle, rather than the equity premium puzzle and the risk-free rate
puzzle. So all in all, our work is decidedly complementary.
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(each meeting is a random draw from the set of pairwise meetings), and the terms of trade

are determined by bargaining. The specialization of agents over consumption and production

of the special good combined with bilateral trade, give rise to a double-coincidence-of-wants

problem in the first subperiod. In the second subperiod, agents trade in a centralized market.

Agents cannot make binding commitments, and trading histories are private in a way that

precludes any borrowing and lending between people, so all trade–both in the centralized and

decentralized markets–must be quid pro quo.

Each tree has outstanding one durable and perfectly divisible equity share that represents

the bearer’s ownership of a tree and confers him the right to collect the fruit dividends. Later

I will introduce a second perfectly divisible asset, a one-period risk-free government-issued real

bill. All assets are perfectly recognizable, cannot be forged, and can be traded among agents

in the centralized and decentralized markets. At t = 0 each agent is endowed with as0 equity

shares, and possibly also with ab0 units of the bond.

Let u (q) be the utility of consuming quantity q of special goods, and ê (x) be the disutility

from working x hours in the first subperiod. Since producing quantity q of special goods requires

x = l−1 (q) hours, the disutility from producing q is ê
£
l−1 (q)

¤
≡ e (q). Let U (c) be the utility

from consuming quantity c of fruit, v (y) be the utility from consuming quantity y of general

goods, and A > 0 be the marginal disutility from working in the second subperiod. Each agent

wishes to maximize

E

( ∞X
t=0

βt [u(qt)− e (q̃t) + v (yt) + U (ct)−Aht]

)
,

where β ∈ (0, 1), qt and q̃t are the quantities of special goods consumed and produced in the

decentralized market, yt denotes consumption of general goods, ct consumption of fruit, ht the

number of hours worked in the second subperiod, and E is an expectations operator. Assume

u (0) = e (0) = 0, u0 > 0, e0 > 0, v0 > 0, U 0 > 0, u00 < 0, e00 ≥ 0, v00 ≤ 0, and U 00 < 0. Also,

suppose there exists q∗ ∈ (0,∞) defined by u0 (q∗) = e0 (q∗), with l−1 (q∗) ≤ n̄; and y∗ ∈ (0,∞),
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defined by v0 (y∗) = A, with v (y∗) > Ay∗.5

3 Equity

I begin by considering the case where the equity share is the only asset. Let dt be the quantity of

fruit, or “dividends,” produced by each tree in period t, and let at be an individual agent’s share

holdings. LetW (at, dt) denote the value function of an agent who enters the centralized market

holding at shares in a period when dividends are dt, and let V (at, dt) denote the corresponding

value when he enters the decentralized market. These value functions satisfy the following

Bellman equation:

W (at, dt) = max
ct,yt,nt,ht,at+1

{U (ct) + v (yt)−Aht + βEV (at+1, dt+1)}

s.t. ct + wtnt + φtat+1 = (φt + dt) at + wtht

0 ≤ ct, yt = nt, 0 ≤ nt, 0 ≤ ht ≤ n̄, 0 ≤ at+1.

The agent chooses consumption of fruit (ct), of general goods (yt), how many hours of work

to demand (nt) and supply (ht), and an end-of-period portfolio (at+1). Dividends {dt} follow

a Markov process with Pr (dt+1 ≤ x0|dt = x) = F (x0, x). The conditional expectation E will

be defined with respect to this transition probability. Let Ξ denote the support of F . The

realization of dt ∈ Ξ is known when agents enter the decentralized market at the beginning

of period t. Dividends are paid to the bearer of the (equity) share after decentralized trade,

but before the time-t centralized trading session. Fruit is used as numeraire: wt is the real

wage, and φt is the price of a share (ex-dividend).
6 Substituting the constraints that hold with

5This formulation with three consumption goods is in some sense the most parsimonious integration of the
asset pricing model of Lucas (1978) with the model of exchange in Lagos and Wright (2005). I have considered
other formulations, for example, one where general and special goods are the only consumption goods, while
fruit–together with labor–is a necessary input in the production of the general consumption good. (See the
Appendix to Lagos (2005) for details.)

6The agent also has perceived pricing functions that map the current state dt (or more generally the whole
sequence of realizations {dj}tj=0) into current prices φt and ωt. More on this below.
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equality,

W (at, dt) = max
ct,nt,at+1

½
U (ct) + v (nt)− (ct + wtnt + φtat+1)

A

wt
+ λtat + βEV (at+1, dt+1)

¾
,

where λt ≡ A
wt
(φt + dt).

Given the buyer and the seller have share holdings a and ã respectively, the terms at which

they trade in the decentralized market are [q (a, ã) , p (a, ã)], where q (a, ã) ∈ R+ is the quantity

of special good traded, and p (a, ã) ∈ R+ represents the transfer of assets from the buyer to the

seller. The value of an agent who enters the decentralized market with share holdings a in a

period when the dividend realization is d, satisfies

V (a, d) = α

Z
{u [q (a, ã)] +W [a− p (a, ã) , d]} dG (ã) +

α

Z
{−e [q (ã, a)] +W [a+ p (ã, a) , d]} dG (ã) + (1− 2α)W (a, d) ,

where G denotes the distribution of share holdings.

Consider a meeting in the decentralized market between a buyer holding at and a seller

holding ãt. The terms of trade (qt, pt) are determined by Nash bargaining where the buyer has

all the bargaining power:

max
qt,pt≤at

[u (qt) +W (at − pt, dt)−W (at, dt)] s.t. − e (qt) +W (ãt + pt, dt) ≥W (ãt, dt) .

The constraint pt ≤ at indicates that the buyer cannot spend more assets than he owns. Note

that W (at + pt, dt)−W (at, dt) = λtpt, so the bargaining problem reduces to:

max
qt,pt≤at

[u (qt)− λtpt] s.t. − e (qt) + λtpt ≥ 0.

If λtat ≥ e (q∗) then the buyer exchanges pt = e (q∗) /λt ≤ at of his shares for the first-best

quantity q∗. Else, he gives the seller all his shares, pt = at, in exchange for the qt that solves

e (qt) = λtat. Note that the outcome depends only on λtat, and in particular, it is independent

of the seller’s asset holdings. Hence, the solution to the bargaining problem is

q (λtat) =

½
q∗ if λtat ≥ e (q∗)
e−1 (λtat) if λtat < e (q∗) .

(1)
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Using this bargaining solution and the linearity of W (a, d), the value of search can be written

more compactly as

V (a, d) = S (λa) +W (a, d) , (2)

where S (λa) = α {u [q (λa)]− e [q (λa)]}. Observe that S is twice differentiable everywhere,

with S 0 ≥ 0 and S 00 ≤ 0 (both inequalities are strict for λa < e (q∗)). Having characterized the

terms of trade in decentralized exchange, I turn to the agent’s individual optimization problem

in the centralized market.

The agent’s problem in the second subperiod is summarized by

W (at, dt) = λtat+max
ct,nt

∙
U (ct) + v (nt)− (ct + wtnt)

A

wt

¸
+max

at+1

∙
βEV (at+1, dt+1)−

A

wt
φtat+1

¸
.

Given that U and v are strictly concave, the unique solution (ct, nt) satisfies

U 0 (ct) =
A

wt
(3)

v0 (nt) = A. (4)

The first-order condition for the choice of at+1 is

A

wt
φt = βEtV1 (at+1, dt+1) .

From (2), V1 (at+1, dt+1) =
h
1 + α

³
u0[q(λt+1at+1)]
e0[q(λt+1at+1)]

− 1
´i

λt+1, and V11 (at+1, dt+1) ≤ 0 (< 0

for λt+1at+1 < e (q∗)). Note that none of the agent’s choices depend on his individual asset

holdings.7 I will consider an equilibrium in which all prices are time-invariant functions of the

aggregate state: wt = w (dt), φt = φ (dt), and therefore, λt = λ (dt) ≡ A
w(dt)

[φ (dt) + dt].

7Also, if at+1 < e (q∗) /λt+1 for some realizations of the dividend process at date t + 1, the portfolio choice
problem at date t has a unique solution, implying that the distribution of assets is degenerate at the beginning
of each decentralized round of trade. Regarding the constraints, the agent’s maximization is subject to 0 ≤ nt,
and 0 ≤ ct, but these will not bind if, for example, U 0 (0) = v0 (0) = +∞. Similarly, in equilibrium shares will
be valued and somebody has to hold them, so 0 ≤ at+1 will not bind either. On the other hand, the constraints
0 ≤ ht ≤ n̄, or equivalently,

0 ≤ 1

wt
[ct + ωtnt + φtat+1 − (φt + dt) at] ≤ n̄,

may bind. This is relevant because the result that the distribution of assets is degenerate at the beginning of
each decentralized round of trade relies on these constraints being slack. I proceed under the assumption that
they are slack, and in the Appendix derive parametric conditions such that this is indeed the case along the
equilibrium path.
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A recursive equilibrium is a collection of individual decision rules ct = c (dt), nt = n (dt),

at+1 = a (dt), pricing functions wt = w (dt) and φt = φ (dt), and bilateral terms of trade

qt = q (dt) and pt = p (dt) such that: (a) the decision rules c (·), n (·), and a (·), solve the agent’s

problem in the decentralized market, given prices; (b) the terms of trade are determined by

Nash bargaining, i.e., q [λ (dt) at] is given by (1)) and p (dt) = min
h
at,

e(q∗)
λ(dt)

i
; and (c) prices are

such that the centralized market clears, i.e., c (dt) = dt, and a (dt) = 1.

Condition (4) immediately implies n (x) = y∗ for all realizations x of the aggregate dividend

process, and according to (3), the equilibrium wage function is w (x) = A
U 0(x) . (This implies

λ (x) = U 0 (x) [φ (x) + x].) The Euler equation for share holdings implies the pricing function

for shares satisfies

U 0 (x)φ (x) = β

Z
L
£
φ
¡
x0
¢¤
U 0
¡
x0
¢ £
φ
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
, (5)

where

L
£
φ
¡
x0
¢¤
≡ 1 + α

µ
u0 {q [U 0 (x0) (φ (x0) + x0)]}
e0 {q [U 0 (x0) (φ (x0) + x0)]} − 1

¶
.

This can be rewritten as

U 0 (x)φ (x) = β

Z
Ω
L
£
φ
¡
x0
¢¤
U 0
¡
x0
¢ £
φ
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
+

β

Z
Ωc

U 0
¡
x0
¢ £
φ
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
, (6)

where Ω = {x0 ∈ Ξ : U 0 (x0) [φ (x0) + x0] < e (q∗)}, and Ωc denotes its complement. The set Ω

contains the realizations of the aggregate dividend process for which–at the margin–the asset

has value to the agent for its role as a medium of exchange, in addition to its “intrinsic” value,

i.e., that which stems from the right it confers to collect future dividends. So there is a precise

sense in which L in (6) can be thought of as a stochastic liquidity premium. Notice that equation

(6) reduces to equation (6) in Lucas (1978) if either Ω = ∅ (there is no liquidity premium in

any state of the world, i.e., L [φ (x)] = 1 for all x), or α = 0 (agents have no liquidity needs).

In what follows, it will often prove convenient to express (5) as a functional equation in λ:

λ (x)− xU 0 (x) = β

Z ∙
1 + α

µ
u0 {q [λ (x0)]}
e0 {q [λ (x0)]} − 1

¶¸
λ
¡
x0
¢
dF
¡
x0, x

¢
. (7)
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In applications, one will typically have to solve (7) numerically, and I will do this in Section

7. But some useful insights, in particular regarding the properties of φ (x) and the structure of

the set Ω, can be gained by first considering some special cases that can be solved by paper-

and-pencil methods.

3.1 Examples

Suppose {dt} is a sequence of independent random variables: F (dt+1, dt) = F (dt+1). In this

case (7) implies λ (x)− xU 0 (x) = β∆, where ∆ satisfies

∆ =

Z ∙
1 + α

µ
u0 {q [β∆+ zU 0 (z)]}
e0 {q [β∆+ zU 0 (z)]} − 1

¶¸ £
β∆+ zU 0 (z)

¤
dF (z) . (8)

(Lemma 1 in the Appendix shows that (8) has a unique solution.) Therefore,

φ (x) =
β∆

U 0 (x)
. (9)

The set of realizations of the dividend process for which there is a liquidity premium is:

Ω = {x ∈ Ξ : xU 0 (x) < e (q∗)− β∆}. (10)

In general, the intrinsic gross return to equity between states xi and xj is defined as

R̂s (xi, xj) =
φ (xj) + xj

φ (xi)
.

And for this i.i.d. case,

R̂s (xi, xj) =

∙
1 +

xjU
0 (xj)

β∆

¸
U 0 (xi)

U 0 (xj)
. (11)

One can think of q∗ as indexing the economy’s liquidity needs. If e (q∗) ≤ β
1−β

R
zU 0 (z),

then Ω = ∅, and ∆ = 1
1−β

R
zU 0 (z). That is, if q∗ is relatively low, then asset prices reduce to

those in the i.i.d. example in Lucas (1978). Clearly, the same happens if one simply specifies

that the asset is completely illiquid, say by setting α = 0. Lemma 1 in the Appendix shows

that ∆ is increasing in α, so the price of equity will be higher, and its (state-by-state) return

lower in every state of the world, the higher the probability the asset can be used in exchange.

Examples 1 and 2 study two further specializations of this i.i.d. case.

12



Example 1 Suppose U (c) = log c. Then either Ω = ∅ or Ωc = ∅ for all realizations of the

dividend process, dt. In fact, if e (q∗) ≤ 1
1−β , then Ω = ∅ (there is no liquidity premium in

any state), (8) implies ∆ = 1
1−β , and (9) implies φ (x) =

β
1−βx. State-by-state equity returns

are R̂s (xi, xj) = β−1 xjxi . Conversely, if
1
1−β < e (q∗), then Ωc = ∅, and φ (x) = β∆x, where ∆

solves
u0 [q (1 + β∆)]

e0 [q (1 + β∆)]
= 1 +

(1− β)∆− 1
α (1 + β∆)

. (12)

One can show that 1
1−β < ∆ < e(q∗)−1

β . The first inequality means that asset prices are higher

in every state in the economy where agents have relatively large liquidity needs (the economy

with high q∗). The liquidity premium is constant in all states: L = 1+α
n
u0[q(1+β∆)]
e0[q(1+β∆)] − 1

o
, and

L > 1 since ∆ < e(q∗)−1
β . The intrinsic return on equity between any two states, R̂s (xi, xj) =³

1 + 1
β∆

´
xj
xi
, is lower in the economy where the asset bears a liquidity premium. An increase

in the probability the asset can be used in exchange, α, increases ∆ and hence increases the

price of the asset and reduces its state-by-state rate of return. It is also possible to show that

the liquidity premium L is increasing in α.

Example 2 Suppose U (c) = c1−σ−1
1−σ , with σ > 0 and σ 6= 1. (Example 1 corresponds to the

special case of σ = 1.) Note that (10) becomes Ω =
©
x ∈ Ξ : x1−σ < e (q∗)− β∆

ª
, where ∆

solves (8). If e (q∗) ≤ β
1−β

R
z1−σdF (z), then Ω = ∅ and there is never a liquidity premium:

L = 1 in all states. Asset prices and state-by-state returns are

φ (x) = β∆xσ (13)

R̂s (xi, xj) =

Ã
1 +

x1−σj

β∆

!
xσj
xσi

, (14)

with ∆ = ∆0 ≡ 1
1−β

R
z1−σdF (z). If e (q∗) > β

1−β
R
z1−σdF (z) (and the support Ξ is wide

enough), then Ω 6= ∅ and Ωc 6= ∅, i.e., there will be a liquidity premium in some but not all

states. Asset prices and returns are still as in (13) and (14), except that ∆ = ∆1, where ∆1

solves

∆ =

Z "
1 + α

Ã
u0
£
q
¡
β∆+ z1−σ

¢¤
e0 [q (β∆+ z1−σ)]

− 1
!#¡

β∆+ z1−σ
¢
dF (z) .
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Note that ∆0 < ∆1, so asset prices are higher, and state-by-state returns lower in this economy

than in the one with e (q∗) ≤ β
1−β

R
z1−σdF (z). The set Ω takes a simple form: Let x∗ =

[e (q∗)− β∆1]
1

1−σ ; then, Ω = {x ∈ Ξ : x > x∗} if σ > 1, and Ω = {x ∈ Ξ : x < x∗} if σ < 1. So

if the Arrow-Pratt coefficient of relative risk aversion is larger (smaller) than one, there is a

liquidity premium for large (small) realizations of the dividend process.

Next, generalize the dividend process by allowing it to be serially correlated over time, but

specialize preferences over special goods by assuming u (q) = log q, and e (q) = q.8 In this case

q∗ = 1, so u0{q[λ(x)]}
e0{q[λ(x)]} = max

h
1, λ (x)−1

i
and (7) becomes

λ (x) = β

Z ©
(1− α)λ

¡
x0
¢
+ αmax

£
λ
¡
x0
¢
, 1
¤ª

dF
¡
x0, x

¢
+ xU 0 (x) . (15)

Lemma 2 in the Appendix shows that there exists a unique continuous and bounded function

λ that solves (15). In general, the liquidity constraint λ (x) ≤ 1 may bind in some states and

not in others, but to illustrate, consider two special cases. First, if the constraint never binds,

i.e., λ (x) ≥ 1 for all x ∈ Ξ, then (15) reduces to

λ (x) = β

Z
λ
¡
x0
¢
dF
¡
x0, x

¢
+ xU 0 (x) , (16)

which is identical to equation (6) in Lucas (1978), after substituting λ (x) = U 0 (x) [φ (x) + x].

Alternatively, if the constraint binds in every state of the world, i.e., λ (x) < 1 for all x ∈ Ξ,

then (15) becomes

λ (x) = β (1− α)

Z
λ
¡
x0
¢
dF
¡
x0, x

¢
+ βα+ xU 0 (x) . (17)

Let x = xt, x0 = xt+1, φ (x) = φt, revert to a sequential formulation and iterate on (17), to

arrive at

φt =
αβ

1− β (1− α)

1

U 0 (xt)
+Et

∞X
j=1

[β (1− α)]j U 0 (xt+j)

U 0 (xt)
xt+j . (18)

8Strictly speaking, standard CRRA preferences do not satisfy the maintained assumption u (0) = 0. But

consider instead u (q) = (q+b)1−γ−b1−γ
1−γ with γ > 0 and b > 0. Note that − qu00(q)

u0(q) = γ
1+b/q . As γ → 1,

u (q)→ ln (q + b)− ln (b), and − qu00(q)
u0(q) →

1
1+b/q

. If b ≈ 0, then this is essentially the utility function in the text.
(See also footnote 39.)
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If one shuts down the decentralized market, say by setting α = 0, then (18) reduces to a standard

textbook asset pricing equation (e.g., equation (3.11) in Sargent (1987), p.96). Note that (18)

was derived assuming that λ (xt) < 1 for all xt, or equivalently, that U 0 (xt) (φt + xt) < 1 for all

xt. And this is indeed the case in equilibrium if the following parametric restriction is satisfied

for all xt:
αβ

1− β (1− α)
+Et

∞X
j=1

[β (1− α)]j U 0 (xt+j)xt+j + U 0 (xt)xt < 1. (19)

So far I have not parametrized preferences over fruit, but consider the following example.

Example 3 Suppose U (c) = ε log c (in addition to u (q) = log q, and e (q) = q), then (18)

becomes

φ (x) =
β [α+ (1− α) ε]

ε [1− β (1− α)]
x, (20)

and condition (19) reduces to ε < 1 − β. In this case, R̂s (xi, xj) =
αβ+ε

β[α+(1−α)ε]
xj
xi
. Notice that

∂φ(x)
∂α = β(1−β−ε)

ε[1−β(1−α)]2x > 0, and ∂R̂s(xi,xj)
∂α = −ε(1−β−ε)

β[α+(1−α)ε]2
xj
xi

< 0. So again, prices are increasing,

and all state-by-state returns are decreasing in the probability the asset can help the agent satisfy

his liquidity needs.

4 Bonds

In this section I introduce a government-issued one-period risk-free real bill, which I will refer to

as a “bond.” Let Bt denote the stock of bonds that are outstanding in period t, to be redeemed

before the centralized trading session of period t. (The government sells Bt+1 in the centralized

market at the end of period t.) What I call the “government,” is essentially summarized by the

budget constraint,

Bt = φbtBt+1 + τ t, (21)

where φbt is the price of a bond, and τ t a lump-sum tax levied on all agents during the centralized

trading session, both expressed in terms of fruit. The focus here is not on how the government

should select the path {Bt, τ t}, but rather on characterizing the equilibrium, and in particular
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asset prices and returns, given such a path. Let at ∈ R2+ denote an agent’s portfolio. Since

they can now hold two assets, at =
¡
ast , a

b
t

¢
, where ast and abt denote the holdings of shares and

bonds, respectively. Let φst be the price of a share in terms of fruit, and φt =
¡
φst , φ

b
t

¢
. The

value function of an agent who enters the centralized market with portfolio at in a period when

dividends are dt now satisfies:

W (at, dt) = max
ct,nt,ht,at+1

{U (ct) + v (nt)−Aht + βEV (at+1, dt+1)} (22)

s.t. ct + wtnt + φtat+1 = (φ
s
t + dt) a

s
t + abt + wtht − τ t

0 ≤ ct, 0 ≤ nt, 0 ≤ ht ≤ n̄, 0 ≤ at+1.

In the decentralized market, the terms at which a buyer with portfolio a trades with a

seller with portfolio ã are [q (a, ã) ,p (a, ã)], where q (a, ã) ∈ R+ is the quantity of special good

traded, and p (a, ã) ∈ R2+ represents the transfer of assets from the buyer to the seller. The

value of an agent who enters the decentralized market holding portfolio a in a period when the

dividend realization is x, satisfies

V (a, x) = α

Z
{u [q (a, ã)] +W [a− p (a, ã) , x]} dG (ã) +

α

Z
{−e [q (ã,a)] +W [a+ p (ã,a) , x]} dG (ã) + (1− 2α)W (a, x) ,

where G denotes the distribution of portfolios. The terms of trade [q (a, ã) ,p (a, ã)] are still

determined by Nash bargaining where the buyer has all the bargaining power:

max
qt,pt≤at

[u (qt) +W (at − pt, dt)−W (at, dt)] s.t. − e (qt) +W (ãt + pt, dt) ≥W (ãt, dt) .

Let λbt =
A
wt
, λst =

A
wt
(φst + dt), and note that W (at + pt, dt) − W (at, dt) = λtpt, where

λt =
¡
λst , λ

b
t

¢
. These observations imply that the bargaining problem reduces to

max
qt,pt≤at

[u (qt)− λtpt] s.t. − e (qt) + λtpt ≥ 0.

The solution is q (λtat), where the function q (·) is still given by (1). Using this bargaining

solution and the linearity of W (a, d), the value of search can be written as:

V (a, d) = S (λa) +W (a, d) . (23)
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In the centralized market, the agent’s choices of ct and nt are still characterized by (3) and

(4), respectively. The first-order conditions for asset holdings, at+1, are:

A

wt
φit = βEt

∂V (at+1, dt+1)

∂ait+1
, for i = s, b, (24)

where ∂V (at+1,dt+1)
∂ast+1

=
h
1 + α

³
u0[q(λt+1at+1)]
e0[q(λt+1at+1)]

− 1
´i

λst+1, and
∂V (at+1,dt+1)

∂abt+1
= ∂V (at+1,dt+1)

∂ast+1

λbt+1
λst+1

,

are obtained from (23). Again, the agent’s choices do not depend on his individual asset

holdings, and the distribution of assets will be degenerate in equilibrium.9

Given the dividend process {dt}∞t=0 and a path {Bt, τ t}∞t=0, an equilibrium is an allocation

{ct, nt,at+1}∞t=0, together with a set of prices {wt,φt}∞t=0 and bilateral terms of trade {qt}
∞
t=0,

such that: (a) the individual choices {ct, nt,at+1}∞t=0 solve the agent’s problem in the decen-

tralized market, given prices; (b) the terms of trade are determined by Nash bargaining, i.e.,

qt = min
n
q∗, e−1

h
A
wt
(φst + dt) a

s
t +

A
wt
abt

io
; and (c) prices are such that the centralized market

clears, i.e., ct = dt, ast+1 = 1, and abt+1 = Bt+1.

In a recursive equilibrium, allocations and prices are time-invariant functions of the aggregate

state, x, the current realization of the dividend process. Specifically, φst = φs (xt), φbt = φb (xt),

and using (3), wt = w (xt) ≡ A
U 0(xt)

. Also, λst = λs (xt) ≡ U 0 (xt) [φ
s (xt) + xt], and λbt = U 0 (xt).

In addition, suppose that the government follows a stationary policy Bt+1 = B (xt), and that

the aggregate state follows a Markov process with Pr (xt+1 ≤ x0|xt = x) = F (x0, x). Then, the

first-order conditions imply that asset prices satisfy:

λs (x)− U 0 (x)x = β

Z n
1 + α

³
u0[λs(x0)+U 0(x0)B0]
e0[λs(x0)+U 0(x0)B0] − 1

´o
λs
¡
x0
¢
dF
¡
x0, x

¢
(25)

U 0 (x)φb (x) = β

Z n
1 + α

³
u0[λs(x0)+U 0(x0)B0]
e0[λs(x0)+U 0(x0)B0] − 1

´o
U 0
¡
x0
¢
dF
¡
x0, x

¢
, (26)

where B0 = B (x).

If we set α = 0 (a world with no liquidity needs), then (25) and (26) reduce to the usual

functional equations describing the prices of shares and bonds that one would get from Lucas
9Note that the objective function is strictly concave in asset holdings if λtat < e (q∗) with positive probability

(weakly concave otherwise). The degeneracy of the distribution of asset holds is subject to the same caveats
mentioned earlier, and discussed in the appendix, i.e., that the equilibrium path for ht stays off corners.
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(1978) or Mehra and Prescott (1985). For that special case, note that the price function for the

share in an economy with bonds is the same as it would be in an economy without the bond:

The supply of bonds would be irrelevant in an economy with no liquidity needs. Conversely,

if agents are short of liquidity in some states (i.e. if α > 0 and λs (x0) + U 0 (x0)B0 < q∗

with positive probability), then changes in the stock of outstanding bonds affect both, the

price of shares and the price of bonds. Note that since shares and bonds can be used freely

in decentralized exchange, they both provide the same liquidity return in every state, i.e.,

1 + α
³
u0[λs(x0)+U 0(x0)B0]
e0[λs(x0)+U 0(x0)B0] − 1

´
. As in the simpler model with a single asset, in applications one

will typically have to solve (25) and (26) numerically. (One would first solve (25) for λs (x), and

given this function, then simply read φb (x) from (26).) But it is instructive to first consider

some tractable special cases.

4.1 Examples

Suppose that Bt = B for all t, and that {dt} is a sequence of independent random variables,

i.e., F (xt+1, xt) = F (xt+1). Condition (25) implies λs (x) = β∆s + xU 0 (x), where ∆s solves

∆ =

Z ∙
1 + α

µ
u0 {q [β∆+ (z +B)U 0 (z)]}
e0 {q [β∆+ (z +B)U 0 (z)]} − 1

¶¸ £
β∆+ zU 0 (z)

¤
dF (z) . (27)

(The same arguments used in Lemma 1 in the Appendix can be used to establish that a unique

∆s satisfying this condition exists, and that it is increasing in α.) Given ∆s, asset prices are

given by φs (x) = β∆s

U 0(x) , and φb (x) = β∆b

U 0(x) , where

∆b =

Z ½
1 + α

µ
u0 {q [β∆s + (z +B)U 0 (z)]}
e0 {q [β∆s + (z +B)U 0 (z)]} − 1

¶¾
U 0 (z) dF (z) .

The set of realizations of the dividend process for which there is a liquidity premium is:

Ω =
©
x ∈ Ξ : β∆s + (x+B)U 0 (x) < e (q∗)

ª
. (28)

With regards to the interaction between the stock of bonds and asset prices, in this simple

example it is possible to show that ∂∆s

∂B ≤ 0, with strict inequality if Ω 6= ∅. That is, in
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an economy with liquidity needs, equity prices are lower (in every state) the larger is the

outstanding stock of bonds. Having bonds in circulation also affects the structure of the set Ω,

as the following two examples illustrate.

Example 4 Suppose Bt = B for all t, F (xt+1, xt) = F (xt+1), and U (c) = log c. Then, (28)

specializes to Ω =
©
x ∈ Ξ : 1 + B

x < e (q∗)− β∆s
ª
, where ∆s solves (27). If e (q∗) ≤ 1

1−β , then

Ω = ∅. Alternatively, if e (q∗) > 1
1−β , then Ω = {x ∈ Ξ : x > x∗}, with x∗ = B

e(q∗)−β∆s−1 . So

there can be a liquidity premium only in economies where q∗ is large enough, and given this is

the case, only for relatively high realizations of the dividend process. Note that as B → 0, in

the parametrization with e (q∗) > 1
1−β things converge to a situation where there is a liquidity

premium in every state. Having bonds circulating can qualitatively affect the structure of the

equilibrium.

Example 5 Suppose Bt = B for all t, F (xt+1, xt) = F (xt+1), and U (c) = c1−σ

1−σ , with σ > 1.

Then, (28) specializes to Ω =
©
x ∈ Ξ : x1−σ + B

xσ < e (q∗)− β∆s
ª
. If e (q∗) ≤ β

1−β
R
z1−σdF (z),

then Ω = ∅. In this case, φs (x) = β∆s
0x

σ, and φb (x) = β∆b
0x

σ, where ∆s
0 =

1
1−β

R
z1−σdF (z),

and ∆b
0 =

R
z−σdF (z). Conversely, if e (q∗) > β

1−β
R
z1−σdF (z), then Ω = {x ∈ Ξ : x > x∗},

where x∗ is defined implicitly by x1−σ + B
xσ − e (q∗) + β∆s

1 = 0, and ∆
s
1 solves

∆ =

Z "
1 + α

Ã
u0
£
q
¡
β∆+ z1−σ + B

zσ

¢¤
e0
£
q
¡
β∆+ z1−σ + B

zσ

¢¤ − 1!#¡β∆+ z1−σ
¢
dF (z) .

In this case asset prices are: φs (x) = β∆s
1x

σ, and φb (x) = β∆b
1x

σ, where

∆b
1 =

Z Ã
1 + α

(
u0
£
q
¡
β∆s

1 + z1−σ + B
zσ

¢¤
e0
£
q
¡
β∆s

1 + z1−σ + B
zσ

¢¤ − 1)! z−σdF (z) .

Note that ∆i
1 > ∆i

0 for i = b, s, so asset prices are uniformly higher in the economy with

liquidity needs. (The asset prices corresponding to Example 4 are obtained by setting σ = 1 in

these expressions.)
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State-by-state intrinsic returns in the economy of Example 5 are:

R̂s
k (xi, xj) =

Ã
1 +

x1−σj

β∆s
k

!
xσj
xσi

R̂b
k (xi) =

1

β∆b
kx

σ
i

,

where the subscript k = 0 indicates the parametrization with e (q∗) ≤ β
1−β

R
z1−σdF (z), and

k = 1 the one with e (q∗) > β
1−β

R
z1−σdF (z). One can think of R̂s

k (xi, xj) − R̂b
k (xi) as a

state-by-state equity premium. Looking ahead, it is instructive to see how the liquidity of the

assets affect this basic notion of equity premium. In this particular example,

R̂s
1 (xi, xj)− R̂b

1 (xi)−
h
R̂s
0 (xi, xj)− R̂b

0 (xi)
i
=

∙µ
1

∆s
1

− 1

∆s
0

¶
xj +

µ
1

∆b
0

− 1

∆b
1

¶¸
x−σi
β

. (29)

Since ∆i
1 > ∆

i
0 for i = s, b, we have 1

∆s
1
− 1

∆s
0
< 0 and 1

∆b
0
− 1

∆b
1
> 0. The state-by-state returns

of both, shares and bonds are lower in the economy with liquidity needs, so the sign of (29)

is ambiguous in general.10 The key observation is that an asset’s intrinsic return, R̂i, is lower

when the asset provides agents with liquidity services. So if bonds are more readily accepted in

decentralized exchange, then their intrinsic return, R̂b, would be lower relative to the intrinsic

return on equity, R̂s.

5 Differential Liquidity

In this section I extend the model of the previous one to situations in which bonds and shares

have different (exogenous) liquidity properties. Specifically, suppose an agent can find himself

in two types of meetings in the decentralized market: With probability θ2, he is in a meeting

where he can use any of the two assets for payment, while with probability θ1 = 1− θ2, he can

only use bonds.11 Thus, θ1 ∈ [0, 1] indexes the degree of “illiquidity” of equity shares. (The
10Quantitatively, in Section 7 I will find that for the baseline calibration, the net effect of this sort of mechanism

on the average equity premium is positive, but modest: about one tenth of one percent. (This calculation is
based on a comparison of the last three rows of Tables 2 and 3.)
11To interpret the specific modelling choice, one can follow Aiyagari and Wallace (1997), and relate θ1 to a

government transaction policy carried out by a small mass of government agents. This has become the standard
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subscript refers to the number of assets that can be used for payment in that particular type

of meeting.)

The value function of an agent who enters the centralized market with portfolio at in a

period when dividends are dt still satisfies (22). As before, the terms of trade in each meeting

will be determined by bargaining. Since there are now two types of meetings, there will be two

bargaining solutions. For simplicity, I will refer to a meeting where i assets can be used for

payment as a “meeting of type i.” The terms of trade in a meeting of type i between a buyer who

holds portfolio at =
¡
ast , a

b
t

¢
and a seller with portfolio ãt = (ãst , ã

b
t), are

£
qi (at, ãt) ,p

i (at, ãt)
¤
,

where qi (at, ãt) ∈ R+, and pi (at, ãt) ∈ R2+. In particular, p2 (at, ãt) =
£
ps (at, ãt) , p

b (at, ãt)
¤
,

where ps (at, ãt) denotes the quantity of shares, and pb (at, ãt) the quantity of bonds that the

buyer hands over to the seller. The trading restrictions imply that p1 (at, ãt) =
£
0, pb (at, ãt)

¤
.

The value of an agent who enters the decentralized market holding portfolio a in a period when

the dividend realization is s, satisfies

V (a, s) = α
X
i=1,2

θi

Z ©
u
£
qi (a, ã)

¤
+W

£
a− pi (a, ã) , s

¤ª
dG (ã) +

α
X
i=1,2

θi

Z ©
−e
£
qi (ã,a)

¤
+W

£
a+ pi (ã,a) , s

¤ª
dG (ã) + (1− 2α)W (a, s) ,

where G denotes the distribution of portfolios.

The terms of trade [qi (a, ã) ,pi (a, ã)] for i = 1, 2, are still determined by Nash bargaining

way of introducing legal or other institutional restrictions into environments with decentralized exchange. See,
for example, Aiyagari, Wallace, and Wright (1997), or Li and Wright (1998). Also more recently, Shi (2005) has
used a similar formulation in a model with fiat money and nominal bonds to study the effects of open market
operations. He finds that even an arbitrarily small probability that matured nominal bonds will not be accepted
in decentralized exchange is enough for fiat money to drive them out of circulation. Regarding my use of this
device, I would like to emphasize that the spirit of this whole exercise is positive. That is, here, I want to explore
the implications of (small) liquidity differences for the behavior of asset prices in general, and for the equity
premium in particular. In fact, given the nature of the findings, below I will argue that understanding the deeper
reasons for these differences in the liquidity of these assets–by which I mean the likelihood they will be accepted
as means of payment in decentralized exchange–is a necessary next step. In terms of relating these theoretical
institutional or legal restrictions to actual features of “real world” trades, consider the following readily-verifiable
fact. An investor who places an order to sell shares of an S&P 500 firm on a given day T will typically have to
wait until T + 2 for settlement, while the settlement for the sale of 90—day U.S. Treasury Bills will usually take
place at T + 1. These types of considerations seem to suggest that bonds are a more readily available source of
funds for agents who must act quickly on some purchase opportunity, which is at least broadly in line with the
tradeoffs at work in the theoretical formulation laid out here.
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where the buyer has all the bargaining power. Now let λ1t =
¡
0, λbt

¢
, where λbt =

A
wt
, and λ2t =

λt =
¡
λst , λ

b
t

¢
, where λst =

A
wt
(φst + dt). Then, the bargaining solution is qi (at, ãt) = q(λitat),

where the function q (·) is still given by (1). Using the bargaining solution and the fact that

W
£
a+ pi (a, ã) , d

¤
−W (a, d) = λtp

i (a, ã), the value of search can be written as:

V (a, d) =
X
i=1,2

θiS
¡
λia

¢
+W (a, d) . (30)

In the centralized market, the agent’s choices of ct and nt are still characterized by (3) and

(4), respectively. The first-order conditions for asset holdings, at+1, are still those in (24), but

now

∂V (at+1, dt+1)

∂abt+1
=

⎡⎣1 + α
X
i=1,2

θi

Ã
u0
£
q
¡
λit+1at+1

¢¤
e0
£
q
¡
λit+1at+1

¢¤ − 1!
⎤⎦λbt+1,

∂V (at+1, dt+1)

∂ast+1
=

"
1 + αθ2

Ã
u0
£
q
¡
λ2t+1at+1

¢¤
e0
£
q
¡
λ2t+1at+1

¢¤ − 1!#λst+1,
are obtained from (30). As usual, the agent’s choices do not depend on his individual asset

holdings, and the distribution of assets will be degenerate in equilibrium.

Given the dividend process {dt}∞t=0 and a path {Bt, τ t}∞t=0, an equilibrium is an allocation

{ct, nt,at+1}∞t=0, together with a set of prices {wt,φt}∞t=0 and bilateral terms of trade {qt}
∞
t=0,

such that: (a) the individual choices {ct, nt,at+1}∞t=0 solve the agent’s problem in the decen-

tralized market, given prices; (b) the terms of trade are determined by Nash bargaining, i.e.,

q1t = min
n
q∗, e−1

³
A
wt
abt

´o
and q2t = min

n
q∗, e−1

h
A
wt
(φst + dt) a

s
t +

A
wt
abt

io
; and (c) prices are

such that the centralized market clears, i.e., ct = dt, ast+1 = 1, and abt+1 = Bt+1.

In a recursive equilibrium, allocations and prices are time-invariant functions of the aggregate

state, x, the current dividend realization. Specifically, φst = φs (xt), φbt = φb (xt), and using

(3), wt = w (xt) ≡ A
U 0(xt)

. In addition, λst = λs (xt) ≡ U 0 (xt) [φ
s (xt) + xt], and λbt = U 0 (xt).

Also, suppose that the government follows the stationary policy Bt+1 = B (xt), and that the

aggregate state follows a Markov process with Pr (xt+1 ≤ x0|xt = x) = F (x0, x). Then, asset
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prices satisfy:

λs (x)− U 0 (x)x = β

Z
Ls
¡
x0
¢
λs
¡
x0
¢
dF
¡
x0, x

¢
(31)

U 0 (x)φb (x) = β

Z
Lb
¡
x0
¢
U 0
¡
x0
¢
dF
¡
x0, x

¢
, (32)

where

Ls
¡
x0
¢
= 1 + α (1− θ)

µ
u0 {q [λs (x0) + U 0 (x0)B0]}
e0 {q [λs (x0) + U 0 (x0)B0]} − 1

¶
, (33)

B0 = B (x), and

Lb
¡
x0
¢
= Ls

¡
x0
¢
+ αθ

µ
u0 {q [U 0 (x0)B0]}
e0 {q [U 0 (x0)B0]} − 1

¶
. (34)

I have set θ1 = θ in (33) and (34) to simplify notation. Note that if θ = 0, then (31) and (32)

reduce to (25) and (26), respectively.

In this formulation, for different realizations of the aggregate uncertainty, agents may find

themselves short of liquidity in all meetings, or perhaps just in those meetings where they can

only use bonds, or possibly in no meeting. Formally, Ω = {x0∈Ξ:λs (x0) + U 0 (x0)B0 < e (q∗)}

is the set of realizations for which agents are short of liquidity in all meetings, while Ωθ =

{x0∈Ξ:U 0 (x0)B0 < e (q∗)} is the set of realizations for which they lack liquidity only in meetings

where shares cannot be used as means of payment. For example, if Ωθ = ∅, then Ω = ∅, and

agents are never short of liquidity; i.e., Ls (x) = Lb (x) = 1 for all x. Alternatively, if Ω 6= ∅,

then Ωθ 6= ∅, and there are realizations for which agents are short of liquidity in all meetings;

i.e., Lb (x) > Ls (x) > 1 with positive probability. Another possibility, is Ω = ∅, but Ωθ 6= ∅,

so that agents are short of liquidity for some realizations of the dividend process, but only

in trades where just bonds can be used as means of payment; i.e., Ls (x) = 1 for all x, and

Lb (x) > 1 with positive probability.
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6 The Equity Premium and Risk-Free Rate Puzzles

Use the intrinsic returns R̂b (x) and R̂s (x,x0), to define the full returns Rb (x, x0) = Lb (x0) R̂b (x),

and Rs (x,x0) = Ls (x0) R̂s (x,x0), and write (31) and (32), asZ
β
U 0 (x0)

U 0 (x)
Ri
¡
x,x0

¢
dF
¡
x0, x

¢
= 1,

for i = s, b, and all x. Let F̄ be the invariant distribution for the transition function F ; then

the Euler equations lead to:Z Z
β
U 0 (x0)

U 0 (x)

h
Rs
¡
x, x0

¢
−Rb

¡
x, x0

¢i
dF
¡
x0, x

¢
dF̄ (x) = 0, (35)Z Z

β
U 0 (x0)

U 0 (x)
Rb
¡
x, x0

¢
dF
¡
x0, x

¢
dF̄ (x)− 1 = 0, (36)

a pair of statistical restrictions on equilibrium asset returns, Ri (x, x0), and the marginal rate

of substitution, β U 0(x0)
U 0(x) .

For the special case of an economy with no liquidity needs (i.e., either α = 0, or α > 0,

but Ωθ = Ω = ∅ in equilibrium), the intrinsic returns equal the full returns, i.e., R̂s (x, x0) =

Rs (x, x0) and R̂b (x) = Rb (x, x0), so (35) and (36) are equivalent to (2a’) and (2b’) in Kocher-

lakota (1996).12 In this case, one can estimate the expectations on the left hand sides of (35)

and (36) using the sample means

ω̂e =
1

T

TX
t=1

β
U 0 (ct+1)

U 0 (ct)
(R̂s

t+1 − R̂b
t), (37)

ω̂b =
1

T

TX
t=1

β
U 0 (ct+1)

U 0 (ct)
R̂b
t − 1. (38)

A vast body of work has been devoted to trying to rationalize the finding that for standard

parametrizations of preferences, the statistical restrictions ω̂e = ω̂b = 0 are violated by U.S.

data. For instance, suppose that R̂s
t+1 =

φst+1+dt+1
φst

is constructed using the Standard and Poor’s

stock index for φst , and the real dividends for the Standard and Poor’s series for dt, and that R̂
b
t

12The expressions in Kocherlakota (1996) assume U (c) = c1−σ

1−σ . Also, Kocherlakota’s (2a’) has been divided
through by β, and has a typo (the marginal rate of substitution contains (Ct+1Ct)

−σ instead of (Ct+1/Ct)
−σ).

24



is taken to be the real return on 90—day Treasury bills. Then, if β = 0.99, and U (c) = c1−σ

1−σ , one

finds ω̂e > 0, and ω̂b < 0 for “reasonable” values of σ. (E.g., Tables 2 and 3 in Kocherlakota

(1996) report ω̂e > 0 for σ ≤ 8.5, and ω̂b < 0 for σ ≥ 0.5.) The finding that ω̂e > 0 constitutes

the equity premium puzzle, while ω̂b < 0 is referred to as the risk-free rate puzzle.

The statistics ω̂e and ω̂b that define these puzzles are constructed using only the intrinsic

returns , R̂s
t+1 and R̂b

t . But according to the model developed in the previous sections, agents

price assets using the full returns Rs
t+1, and Rb

t+1, that is, the intrinsic returns augmented by

their respective liquidity factors. To the extent that the agents experience liquidity needs in

some states, the theory does not imply that ω̂e = ω̂b = 0. To derive the restrictions that the

theory imposes on ω̂e and ω̂b, one can rewrite conditions (35) and (36) as:Z Z
β
U 0 (x0)

U 0 (x)

h
R̂s
¡
x, x0

¢
− R̂b (x)

i
dF
¡
x0, x

¢
dF̄ (x) = ωe (39)Z Z ∙

β
U 0 (x0)

U 0 (x)
R̂b (x)− 1

¸
dF
¡
x0, x

¢
dF̄ (x) = ωb, (40)

where

ωe =

Z Z
β
U 0 (x0)

U 0 (x)

nh
Lb
¡
x0
¢
− 1
i
R̂b (x)−

£
Ls
¡
x0
¢
− 1
¤
R̂s
¡
x, x0

¢o
dF
¡
x0, x

¢
dF̄ (x)

ωb = −
Z Z

β
U 0 (x0)

U 0 (x)

h
Lb
¡
x0
¢
− 1
i
R̂b (x) dF

¡
x0, x

¢
dF̄ (x) .

Note that ωe and ωb are the theoretical counterparts to ω̂e and ω̂b, respectively. The left hand

side of condition (39) is a weighted average of the excess intrinsic return of equity over bonds,

which in equilibrium must equal ωe. The wedge ωe will be larger, the larger Lb−1
Ls−1−

R̂s

R̂b
is on aver-

age, i.e., the larger is the excess liquidity return of bonds over equity relative to the excess intrin-

sic return of equity over bonds. The sign of ωe is ambiguous in general. But to the extent that

bonds are more liquid than equity (in the sense of larger θ), the latter will tend to pay an “illiq-

uidity premium,” implying ωe > 0.13 This is easy to see in the special case θ = 1, which implies

13Quantitatively, in Section 7 I will find ωe > 0 for the baseline calibration, whenever there are liquidity needs
in the equilibrium, even if θ = 0; i.e, even without assuming any exogenous liquidity differences between equity
and bonds. (See the last three rows of Table 3.)
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Ls (x0) = 1 for all x0, since in this case ωe =
R R

βU 0(x0)
U 0(x)

£
Lb (x0)− 1

¤
R̂b (x) dF (x0, x) dF̄ (x) ≥ 0,

with strict inequality if Ωθ 6= ∅. Note that even without assuming any exogenous liquidity dif-

ferences between equity and bonds, we have ωb < 0, to the extent that there are liquidity

needs at least for some realizations of the dividend process. Thus, qualitatively, the model

with liquidity needs is always consistent with the risk-free rate puzzle. And in addition, if the

liquidity return on bonds is large enough relative to that on equity, then the model may also

help rationalize the equity premium puzzle.

6.1 Examples

First consider the special case with θ = 1 (equity is never accepted in decentralized exchange),

which implies ωe = −ωb. In this case asset prices satisfy

U 0 (x)φs (x) = β

Z
U 0
¡
x0
¢ £
φs
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
U 0 (x)φb (x) = β

Z ∙
1 + α

µ
u0 {q [U 0 (x0)B0]}
e0 {q [U 0 (x0)B0]} − 1

¶¸
U 0
¡
x0
¢
dF
¡
x0, x

¢
,

and ωe =
R
ωe (x) dF̄ (x), where

ωe (x) = 1−
R
U 0 (x0) dF (x0, x)R h

1 + α
³
u0{q[U 0(x0)B0]}
e0{q[U 0(x0)B0]} − 1

´i
U 0 (x0) dF (x0, x)

.

Example 6 Suppose θ = 1, U (c) = c1−σ

1−σ , u (q) =
q1−ρ

1−ρ , and e (q) = q, with σ > 0 and ρ > 0.

Then,

ωe (xt) = 1−
1

1 + α
R
max(xσρt+1B

−ρ
t+1−1,0)x

−σ
t+1dF (xt+1,xt)R

x−σt+1dF (xt+1,xt)

. (41)

Note that ωe (x) ≥ 0 for all x, and thus ωe ≥ 0 (with strict inequality if Ωθ 6= ∅). In addition,

ωe (x) < 1 for all x so ωe < 1. Suppose that Bt+1 = Bxγt , with 0 ≤ γ ≤ σ. So, for example,

the outstanding stock of bonds is constant over time if γ = 0, and it is a constant proportion of

output if γ = 1. Then (41) specializes to:

ωe (xt) = 1−
1

1 + α

R
max

∙µ
xσt+1

Bx
γ
t

¶ρ
−1,0

¸
x−σt+1dF (xt+1,xt)R

x−σt+1dF (xt+1,xt)

.
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Clearly, this wedge (the “equity premium puzzle”) will be larger for large α, small B, and large

ρ; it is also increasing in σ, under mild conditions (e.g., ρ ≥ 1, and inf Ξ ≥ 1).

Next, consider the model with θ ∈ [0, 1], dF (x0, x) = dF (x0), and B0 = B (x) = B for all x.

For this case, asset prices are φi (x) = β∆i

U 0(x) , for i = s, b, where ∆s solves

∆s =

Z h
1 + α (1− θ)

³
u0{q[β∆s+(x+B)U 0(x)]}
e0{q[β∆s+(x+B)U 0(x)]} − 1

´i £
β∆s + xU 0 (x)

¤
dF (x) . (42)

(The same arguments used in Lemma 1 in the Appendix can be used to establish that a unique

∆s satisfying this condition exists, and that it is decreasing in θ.) And given ∆s,

∆b =

Z h
1 + α (1− θ)

³
u0{q[β∆s+(x+B)U 0(x)]}
e0{q[β∆s+(x+B)U 0(x)]} − 1

´
+ αθ

³
u0{q[BU 0(x)]}
e0{q[BU 0(x)]} − 1

´i
U 0 (x) dF (x) .

Also, Ωθ = {x∈Ξ:BU 0 (x) < e (q∗)}, and Ω = {x∈Ξ:β∆s + (x+B)U 0 (x) < e (q∗)}. In this

i.i.d. case, ωb (x) is independent of x:

ωb = −
µ
1−

R
U 0 (x) dF (x)

∆b

¶
.

Note that ∆b ≥
R
U 0 (x) dF (x), so −1 < ωb ≤ 0 (< 0 only if Ωθ = ∅). Similarly,

ωe = −ωb + β −
µ
1−

R
xU 0 (x) dF (x)

∆s

¶
.

Note that θ = 1 implies∆s =
R
xU 0(x)dF (x)

1−β , and therefore, that ωe = −ωb. Since∆s is decreasing

in θ, this is an upper bound on how severe the “equity premium puzzle” can be in this simple

economy. The following examples illustrate the structure of the sets Ω and Ωθ.

Example 7 Suppose U (c) = log c, with B (x) = B for all x. In this case, Ωθ = {x∈Ξ:x > x∗θ},

where x∗θ = B/e (q∗). The structure of the set Ω depends on the parametrization: Ω = ∅ if

e (q∗) ≤ 1
1−β , and if e (q

∗) > 1
1−β , Ω = {x∈Ξ:x > x∗}, where x∗ = B

e(q∗)−β∆s−1 , and ∆
s solves

(42). In summary, if e (q∗) ≤ 1
1−β , then agents are never liquidity constrained in matches where

they can use both shares and bonds as a medium of exchange (Ω = ∅), while agents in matches

where only bonds can be used, are constrained for high realizations of the dividend process (i.e.,
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realizations above x∗θ). Alternatively, if e (q
∗) > 1

1−β , then: (a) for realizations x ≤ x∗θ, agents

are unconstrained in all matches, (b) for realizations x∗θ < x ≤ x∗, the only agents who are

liquidity constrained are those in matches where just bonds can be used for payment, and (c) all

agents are liquidity constrained for realizations x∗ < x.

Example 8 Suppose U (c) = c1−σ

1−σ , with σ > 1, and B (x) = B for all x. Then Ωθ =

{x∈Ξ:x > x∗θ}, with x∗θ =
h

B
e(q∗)

i 1
σ
. To characterize the set Ω, we need to consider two cases: If

e (q∗) ≤ β
1−β

R
z1−σdF (z), then Ω = ∅. If e (q∗) > β

1−β
R
z1−σdF (z), then Ω = {x∈Ξ:x > x∗},

where x∗ solves (x+B)x−σ = e (q∗) − β∆s, and ∆s satisfies (42). In summary, if e (q∗) ≤
β
1−β

R
z1−σdF (z), then agents are never liquidity constrained in matches where they can use

both shares and bonds as a medium of exchange (Ω = ∅), while agents in matches where only

bonds can be used are constrained for high realizations of the dividend process (i.e., realizations

above x∗θ). Alternatively, if e (q
∗) > β

1−β
R
z1−σdF (z), then: (a) for realizations x ≤ x∗θ, agents

are unconstrained in all matches, (b) for realizations x∗θ < x ≤ x∗, the only agents who are

liquidity constrained are those in matches where just bonds can be used for payment, and (c) all

agents are liquidity constrained for realizations x∗ < x.

7 Quantitative Analysis

Since the level of per-capita consumption is non-stationary in U.S. data, I will follow Mehra

and Prescott (1985) and carry out the quantitative exercise in a version of the model where

the growth rate of the aggregate endowment follows a Markov process. (In contrast to Lucas’

(1978) formulation, where the endowment level follows a Markov process.) To this end, let the

utilities of a buyer and a seller who trade q in a period when the aggregate dividend is d, be

given by u [(1− �)κd+ q], and u [(1 + �)κd− q]−u [(1 + �)κd], respectively, with � ∈ [0, 1], and

κ > 0. This formulation has the natural feature that as d grows over time, so do the quantities

traded in the decentralized market. (In the Appendix I show that with this preference structure,

the economy is isomorphic to one where a homogeneous good–instead of the special good–
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is traded bilaterally in the decentralized market, and where the double-coincidence-of-wants

problem stems from the fact that some agents receive a high, and others a low endowment of

the homogeneous good.)

Let γt+1 denote the growth rate of the aggregate dividend, i.e., dt+1 = xt+1dt, where

xt+1 ∈ {γ1, ..., γn}, and Pr
¡
xt+1 = γj |xt = γi

¢
= µij . The conditional expectation, E, now is

defined with respect to this transition probability. (As before, the realization of xt is known

when agents enter the decentralized market at the beginning of period t.) In equilibrium, asset

prices satisfy:

U 0 (dt)φ
s
t = βEtU

0 (dt+1)L
s
t+1

£
φst+1 + dt+1

¤
(43)

U 0 (dt)φ
b
t = βEtU

0 (dt+1)L
b
t+1, (44)

where

Ls
t+1 = 1 + α (1− θ)

½
u0[(1−�)κdt+1+q(U 0(dt+1)(φst+1+dt+1+Bt+1);κdt+1)]
u0[(1+�)κdt+1−q(U 0(dt+1)(φst+1+dt+1+Bt+1);κdt+1)]

− 1
¾

(45)

Lb
t+1 = Ls

t+1 + αθ
n
u0[(1−�)κdt+1+q(U 0(dt+1)Bt+1;κdt+1)]
u0[(1+�)κdt+1−q(U 0(dt+1)Bt+1;κdt+1)]

− 1
o
. (46)

(As in Section 5, at this point I have let θ = θ1 to simplify notation.)

Now suppose U (c) = u (c) = c1−σ

1−σ , with 0 < σ <∞. For this parametrization, q (z;κdt+1),

namely the quantity of goods traded in a meeting where the buyer can pay from a portfolio of

end-of-subperiod real value14 z, when the aggregate dividend is dt+1, is given by

q (z;κdt+1) =

⎧⎨⎩ �κdt+1 if z ≥ g (κdt+1)

(1 + �)κdt+1 −
n
[(1 + �)κdt+1]

1−σ − (1− σ) z
o 1
1−σ

if z < g (κdt+1) ,

where g (κdt+1) =
h
(1 + �)1−σ − 1

i
(κdt+1)

1−σ

1−σ . (If σ = 1, then q (z;κdt+1) = �κdt+1 if z ≥

ln (1 + ε), and q (z;κdt+1) = (1− e−z) (1 + �)κdt+1 otherwise.)

Hereafter, I specify that the government chooses the stock of bonds according to a policy

rule Bt+1 = f (dt, xt). At any date, the variables (dt, xt) are sufficient for predicting the
14By “real value” here I mean real value in terms of marginal utility of fruit. For example, in a period when the

aggregate dividend is dt, the “real value” of a portfolio at = (ast , a
b
t) is λtat = λsta

s
t + λbta

b
t , where λ

b
t = U 0 (dt),

and λst = U 0 (dt) (φ
s
t + dt).
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subsequent evolution of the economy. So in a recursive equilibrium (one where all equilibrium

values are invariant functions of the state), one can think of the state of the economy as being

the pair (d, i), if dt = d and xt = γi. With this convention, asset prices can be written as

φs (d, i), and φb (d, i). To guarantee that the ratio of government debt to GDP is stationary,

let f (dt, xt) = B̂E [dt+1| (dt, i)] if xt = γi, where B̂ ≥ 0. Restricting attention to equilibria

that are stationary in growth rates, amounts to focusing on equilibria where share prices are

homogeneous of degree one in d, and can therefore be written as φs (d, j) = φsjd, where φ
s
j is a

constant. In turn, this implies that φb (d, i) is independent of d, so one can write φbi = φb (d, i).

Now (43)—(46) reduce to:

φsi = β
X
j

µijγ
1−σ
j Ls

ij(φ
s
j)(1 + φsj) (47)

φbi = β
X
j

µijγ
−σ
j Lb

ij(φ
s
j), (48)

for i = 1, ..., n, with

Ls
ij(φ

s
j) = 1 + α (1− θ)max

⎧⎪⎨⎪⎩
⎡⎢⎣ 2∙

(1+�)1−σ+ (σ−1)
κ1−σ

µ
1+φsj+

Bi
γj

¶¸ 1
1−σ
− 1

⎤⎥⎦
−σ

− 1, 0

⎫⎪⎬⎪⎭ (49)

Lb
ij(φ

s
j) = Ls

ij(φ
s
j) + αθmax

⎧⎪⎨⎪⎩
⎡⎢⎣ 2∙

(1+�)1−σ+ (σ−1)
κ1−σ

Bi
γj

¸ 1
1−σ
− 1

⎤⎥⎦
−σ

− 1, 0

⎫⎪⎬⎪⎭ , (50)

and where Bi = B̂
Pn

j=1 µijγj .

The expressions analogous to (39) and (40) are:

X
i

X
j

µ̄iµijβγ
−σ
j (R̂s

ij − R̂b
i ) = ωe

X
i

X
j

µ̄iµij(βγ
−σ
j R̂b

i − 1) = ωb,
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where R̂s
ij =

(1+φsj)γj
φsi

, R̂b
i = 1/φ

b
i , and where

ωe =
X
i

X
j

µ̄iµijβγ
−σ
j

nh
Lb
ij(φ

s
j)− 1

i
R̂b
i −

£
Ls
ij(φ

s
j)− 1

¤
R̂s
ij

o
, (51)

ωb = −
X
i

X
j

µ̄iµijβγ
−σ
j

h
Lb
ij(φ

s
j)− 1

i
R̂b
i . (52)

Here, (µ̄i)
n
i=1 denotes the vector of stationary probabilities on i, i.e., it solves µ̄ = µ0µ̄, withP

i µ̄i = 1, and µ0 =
£
µji
¤
. The average intrinsic returns on equity and the bond are, respec-

tively,

R̂s =
X
i

X
j

µ̄iµijR̂
s
ij and R̂b =

X
i

µ̄iR̂
b
i .

The average equity premium is π = R̂s − R̂b.

Note that given that last period’s growth rate was γi, the sets of next-period states in which

the liquidity constraints bind are

Ωθ =

½
j ∈ {1, . . . , n} : Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
, and

Ω =

½
j ∈ {1, . . . , n} : 1 + φsj +

Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
.

Thus, as usual, Ω ⊆ Ωθ.15 If Ωθ = ∅ for all i, then Ls
ij

¡
φsj
¢
= Lb

ij

¡
φsj
¢
= 1 for all i and j,

ωe = ωb = 0, and the model reduces to Mehra and Prescott (1985). The following example can

help build some intuition.

Example 9 Suppose µij = µj for all i, let ∆ ≡ β
P

j µjγ
1−σ
j < 1, γ = maxi γi, and γ =

mini γi. Also let B =
n
κ1−σ

σ−1

h
1− (1 + �)1−σ

i
− 1

1−∆

o
γ. Then, φsi = φs, φbi = φb, and Bi = B,

15For σ = 1, Ω =
n
j ∈ {1, . . . , n} : 1 + φsj +

Bi
γj

< ln (1 + �)
o
, Ωc

θ =
n
j ∈ {1, . . . , n} : Biγj < ln (1 + �)

o
, and

(49) and (50) become:

Lsij
¡
φsj
¢

= 1+ α (1− θ)max

(Ã
2e1+φ

s
j+Bi/γj

1 + �
− 1

!−1
− 1, 0

)

Lbij
¡
φsj
¢

= Lsij
¡
φsj
¢
+ αθmax

(µ
2eBi/γj

1 + �
− 1

¶−1
− 1, 0

)
.
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for all i, and: (a) For B ≥ B, we have φs = ∆
1−∆ , φ

b = β
P

j µjγ
−σ
j , and Ωθ = Ω = ∅; i.e.,

Ls
j (φ

s) = Lb
j (φ

s) = 1 for all j. (b) For B < B, φs = φ∗, where φ∗ is the unique solution

to φ
1+φ = β

P
j µjγ

1−σ
j Ls

j (φ), and given φ∗, φb = β
P

j µjγ
−σ
j Lb

j (φ
∗). In this case, Ωθ 6= ∅,

and Ω 6= ∅, so Lb
j (φ

∗) > Ls
j (φ

∗) for (at least) some j, and Ls
i (φ

∗) > 1 for (at least) some

i. To provide a full characterization, let Bθ =
κ1−σ

σ−1

h
1− (1 + �)1−σ

i
γ, Bθ =

¡
γ/γ

¢
Bθ, and

B =
n
κ1−σ

σ−1

h
1− (1 + �)1−σ

i
− (1 + φ∗)

o
γ. (It is easy to see that in general, Bθ < Bθ, B < B,

B < Bθ, and B < Bθ.) Then it can be shown, that (i) Ω
c
θ = ∅ iff B < Bθ, and Ωθ = ∅ iff

Bθ ≤ B; and (ii) that Ωc = ∅ iff B < B, and Ω = ∅ iff B ≤ B.

7.1 Calibration

There are three basic types of parameters: those that define preferences (β and σ), those that

define technology (α, �, κ, and the elements of [µij ] and [γi]), and B̂, which defines government

policy. In the formulations that assume differential liquidity, there is also θ, the probability

that a randomly drawn trading partner will not accept shares as a means of payment in a

decentralized exchange.16 I follow Mehra and Prescott (1985) and assume that the growth rate

of the endowment follows a two-state Markov chain with γ1 = γ̄+ δ, γ2 = γ̄− δ, µ11 = µ22 = µ,

and µ12 = µ21 = 1− µ, and set γ̄ = 1.018, δ = 0.036, and µ = 0.43.17

The strategy for calibrating κ consists on selecting the value for which the fraction of GDP

that corresponds to production units (“trees”) that have outstanding tradeable equity shares, in

the model matches the sample value for the U.S. economy.18 Since this number is not readily

16There are two additional parameters in the detailed formulation laid out in the appendix: the preference
parameter A, and the technology parameter Z. Since the values of these parameters are irrelevant for asset
prices within the class of equilibria studied, I set A = Z = 1.
17Mehra and Prescott selected these parameter values so that the average growth rate of per capita consump-

tion, the standard deviation of the growth rate of per capita consumption, and the first-order serial correlation
of this growth rate (all with respect to the model’s invariant distribution) matched the sample values for the
U.S. economy between 1889—1978.
18At this point, it may be useful to think about the model in the following way. There is a measure 2 of trees.

Half of them only give fruit in the second subperiod and have outstanding shares. The other half gives fruit in
the first subperiod: each of these trees is sitting in its single owner’s backyard, and they have no equity shares
outstanding (these trees themselves are not traded, but their fruit may be traded in the decentralized market).
Each tree, each period, gives out a dividend (1 + �) with probability 1/2, or (1− �) with probabilty 1/2. Agents
choose to each hold the same portfolio of the traded trees, e.g., they buy the “index,” namely each holds an equal
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available, I have instead guided the choice of κ by using the gross value added of the nonfinancial

corporate business sector as share of GDP. In the U.S. National Income and Product Accounts

(NIPA), this number is slightly above 0.5 for the fifty-seven-year period 1947—2004.19 But

clearly not all businesses have outstanding tradeable equity, so this is just an upper bound.

With this in mind, I target 0.4 in the benchmark, which results in κ = 0.5.20 Below I will

report results for different targets, both larger and smaller.

The policy parameter B̂ determines the size of the stock of government-issued assets that can

be used as a medium of exchange, and hence the extent to which agents may experience liquidity

needs in decentralized trades. Government bonds are the only such asset in the model, but in

the U.S., there are other government-issued assets (and claims to these assets) that agents may

use to satisfy their liquidity needs. With this in mind, I constructed a new empirical monetary

aggregate, M1∗, which augments and adjusts the standard M1 measure. The measure M1∗

differs from M1 in two ways. First, it includes Treasury bills in circulation. And second, it

makes an adjustment for the amounts of M1 and Treasury bills outstanding that are held outside

the United States.21 The ratio of M1∗ to annual GDP was about 0.3 in 1959, declined through

share of each of the individual trees. Therefore, each gets dividend dt for sure each period. On the other hand,
since the there are no shares (or claims to the dividends) for the trees sitting in the individual agent’s backyard,
the only way they can hope to smooth their consumption of fruit in the first subperiod is by trading fruit itself,
and this requires a medium of exchange. So–from the point of view of the theory–the key distinction between
the two types of trees is whether agents can trade and hold claims to their dividend flow. With this in mind,
one would like to set κ in order to match the fraction of GDP that corresponds to production units (i.e., “trees,”
or “corporations”) that have outstanding tradeable equity shares.
19The data for Gross Value Added of Domestic Corporate Business and GDP are from NIPA, Table 1.1.4 and

Table 1.15, respectively.
20 In the model, the fraction of GDP produced by trees that have outstanding, tradeable equity shares is 1

2+κ
.

To see this, recall that there are three commodities in this formulation: fruit, general goods, and labor. In period
t, there is an endowment κdt of fruit in the first subperiod, and an endowment dt in the second, so the total
endowment of fruit in period t is (1 + κ) dt. The output of general goods in the second subperiod is Zn∗dt, where
n∗ =

¡
AZσ−1¢−1/σ. Multiplying this quantity by the relative price of general goods in terms of fruit, A

Z , yields
the value of production of general good expressed in terms of fruit, An∗dt. So real GDP (in terms of fruit) is
(1 + κ+An∗) dt, or just (2 + κ) dt, given A = Z = 1.
21Data for M1 is from the Board of Governors of the Federal Reserve System (Money Stock Measures, Release

H.6 ). The amount of Treasury Bills outstanding for 1959—2004 was obtained from Bureau of the Public Debt
(Monthly Statement of the Public Debt, Table I: Summary of Treasury Securities Outstanding). The Flow of
Funds Accounts of the United States compiled by the Board of Governors of the Federal Reserve System provides
estimates of the portion of checkable deposits and currency and of Treasury securities that is held by the rest
of the world (Table L.204, line 20, and Table L209, line 11, respectively). The series for M1 was adjusted by
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1979, hovered around 0.2 until 1995, and has been about 0.15 since then. So summing up, this

ratio has been in the interval [0.15, 0.3] over the last 40 years. I use 0.3 as a benchmark target–a

conservative choice, since large values of this ratio mitigate the relevance of the liquidity channel

I am exploring. This choice, together with the benchmark value for κ, implies B̂ = 0.75. Below,

I will also report results for different B̂.

The parameters α and � index the agent’s ability and desire to engage in bilateral exchange,

respectively. If α = 0, then the economy is just a sequence of Walrasian markets, and assets

are only valued for their intrinsic payoffs, but not for their role as media of exchange: In this

case, the economy reduces to the one studied by Mehra and Prescott. If � = 0, then each agent

has the same endowment in every first subperiod, so there are no benefits from trade in any

bilateral meeting, and therefore, again, no role for a medium of exchange. In this case asset

prices and returns will again be just as in the economy studied by Mehra and Prescott.

The choice of � has implications for consumption inequality. In the benchmark calibration,

I set � = 0.8, which implies the variance of the log of total (i.e., including general goods and

fruit in both subperiods) per capita consumption is 0.013.22 Below, I will also explore the

implications of higher and lower values for �. Note that α = α̂/4, where α̂ is the probability

that the agent finds an opportunity to trade in the decentralized market (see the Appendix for

details.) In the benchmark, I set α̂ = 1, which basically says that every agent encounters one

trading opportunity in the decentralized market over the course of the year. However, only the

product αθ matters for asset prices and returns, and I will be experimenting extensively with

assuming that the proportion that is held domestically is the same as the proportion of currency and checkable
deposits that is held domestically. Similarly, the stock of outstanding Treasury Bills held domestically was
estimated by assuming that the fraction of Treasury Bills held by the rest of the world is the same as the fraction
of Treasury Securities held by the rest of the world. The series for M1∗ was constructed by adding the estimated
domestic holdings of Treasury Bills to the estimated stock of M1 that is held domestically.
22This number is rather low relative to the values of about 0.15 that Krueger and Perri (2005) report for the

within-group (i.e., conditioning on education, age, sex, experience, occupation, region of residence) variance of
the log of per capita consumption in the U.S. The cross-sectional variance of the log of total consumption is low
even for values of � close to 1. This is so because in the model, there is only inequality in consumption of fruit
in the first subperiod, and this is only a fraction of total consumption (in addition, all agents also consume the
same amounts of fruit and general goods in the second subperiod). For the various parametrizations, I have also
computed the variance of the log of per capita consumption in the first subperiod only–and found it to be in
line with the estimates of Krueger and Perri (2005).
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θ. In the Appendix, I verify the robustness of the benchmark results to changes in the values

of the parameters B̂, κ, and ε, the key parameters that were not in Mehra and Prescott (1985).

The nature of Mehra and Prescott’s “test” of the theory was to experiment with different

values of β and σ to find out for which combinations the model’s average risk-free rate and

equity premium matched those observed for the U.S. economy. (Table 1, taken from Mehra and

Prescott (2003), reports these average returns based on various datasets.) Here, I carry out a

similar exercise, except that I will not experiment with β, and instead set β = 0.99 throughout.

I first consider the economy with no exogenous liquidity differences between equity shares and

bonds, and assess the model’s ability to produce bond returns and equity premia that resemble

those observed for the U.S. economy. I then go on to consider the specification with exogenous

liquidity differences, where shares are not accepted as a means of payment in a fraction θ of

decentralized exchanges. For this specification, the question I pose is: how large does θ (the

relative illiquidity of equity) need to be for the model to generate an average risk-free rate of

1% and an average equity premium that matches the one observed in the U.S. economy?

Insert Table 1 here

7.2 Results

Table 2 reports the average percentage return on equity, the average percentage return on the

bond, their difference (the equity premium), the percentage standard deviation of equity returns,

and the ratio of the equity premium to the standard deviation of returns (the Sharpe Ratio)

in the Mehra—Prescott economy, for values of σ ranging from 1 to 10. For these “reasonable”

values of σ, the risk-free rate is too high and the equity premium too low. Table 3 corresponds

to the benchmark calibration of the basic model, augmented to allow for a liquidity motive,

as outlined in the previous sections. (This table assumes θ = 0, i.e., it assumes no exogenous

liquidity differences between equity and bonds.) The last column reports the pair of wedges¡
ωe, ωb

¢
to the agent’s Euler Equations (see (51) and (52)). Recall that these wedges are zero

if agents have enough liquidity to conduct decentralized transactions in all states of the world,
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or if the liquidity channel is shut off, as in the Mehra—Prescott economy.

Insert Tables 2 and 3 here

The first thing to note, is that the first seven rows in Table 3 are identical to the corre-

sponding rows in Table 2: The economy behaves exactly as the Mehra—Prescott economy up

to σ = 7. By the time σ reaches 8, equilibrium asset prices and returns begin to differ across

both economies. For example, in Table 2, when the curvature parameter goes from 7 to 8, the

return on equity rises from 12.24% to 13.52%, and the bond return rises from 10.67% to 11.6%.

In contrast, in the economy of Table 3, the equity and bond returns fall from 12.24% to 8.8%,

and from 10.67% to 6.76%, respectively. The reason why the two economies behave differently

for higher values of σ is that agents face binding liquidity constraints in bilateral trades for high

but not for low values of σ. To see why this is the case, let Ω (Bi) denote the set of states for

which the liquidity constraints bind in the economy with θ = 0, when the outstanding stock of

bonds is Bi
γj
d. Then, from the analysis in the previous sections, we know that:

Ω (Bi) =

½
j ∈ {1, 2} : 1 + φsj +

Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
. (53)

Recall that (1+φsj +
Bi
γj
)d is the real (value in terms of fruit of the) equilibrium portfolio at the

beginning of the first subperiod when the state is (d, j) and the outstanding stock of bonds is

Bi
γj
d, and hence (1 + φsj +

Bi
γj
)d1−σ is the “price” of this portfolio in terms of marginal utility of

fruit. The definition of the set Ω (Bi) states that the buyer’s liquidity constraint binds if this

value of her portfolio falls short of u [(1 + �)κd]− u (κd) = κ1−σ

σ−1

h
1− (1 + �)1−σ

i
d1−σ, namely,

the amount of utility she has to transfer to the seller for him to be willing to consume κd

instead of (1 + �)κd in the first subperiod. In the benchmark parametrization, it can be shown

that κ1−σ

σ−1

h
1− (1 + �)1−σ

i
is strictly increasing in σ. This means that, keeping φsj constant,

the set Ω nondecreasing in σ. Of course, in the general equilibrium σ also affects equity prices

φsj , but the direct effect that tends to tighten the liquidity constraint, quantitatively dominates

the indirect effect through the price of equity (which in general tends to loosen the liquidity
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constraint, since equity prices typically rise with σ when the liquidity constraints are not always

slack). To be more precise, in the benchmark, for all i ∈ {1, 2}, we have Ω (Bi) = ∅ for σ ≤ 7,

and Ω (Bi) = {1, 2} for σ ≥ 8. That is, for σ ≥ 8 buyers in the decentralized market face

binding liquidity constraints for all realizations of the aggregate endowment process and every

outstanding stock of bonds implied by the government’s policy rule.

When liquidity constraints bind, assets help relax those constraints, and this additional

“liquidity service” they provide is reflected in asset prices and in their intrinsic returns–the

asset returns as they are conventionally measured. When the liquidity constraints bind, asset

prices rise, and their measured, intrinsic returns fall as we increase σ. The reason is that the

liquidity constraint becomes progressively tighter with larger values of σ, so agents have an

additional incentive to hold assets: they help relax liquidity constraints. This means that–

relative to a world with no liquidity–they no longer require such large expected intrinsic returns

to be willing to hold those assets. (Conversely, in the Mehra—Prescott economy of Table 2, asset

prices are strictly decreasing and returns strictly increasing in σ, at least for reasonable values,

e.g., σ ≤ 20.)

Comparing the third columns of Tables 2 and 3, it is clear that, for σ ≥ 8, the equity

premium is only slightly higher in the model with liquidity and θ = 0, relative to the model

in Mehra—Prescott. Take the row with σ = 10, for instance: the standard model generates a

premium of 2.69% and the model with liquidity a premium of 2.85%. The big difference is in

the actual returns. In the standard model the 2.69% is the difference between an equity return

of 15.79% and a risk-free rate of 13.10%–both too high. While the 2.85% premium in the

model with liquidity is the difference between an equity return of 4.35% and a risk-free rate

of 1.5%. The former is rather low, but the latter is within the range of estimates reported in

Table 1.

The last column of Table 3 reports the “wedges” to the Euler Equations defined in (51) and

(52). This column can be used as an indicator of when the liquidity constraints bind and when

they do not. When these constraints are slack in all states, both wedges equal zero, and the
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equilibrium asset prices and returns coincide with those in the Mehra—Prescott economy. As

discussed earlier, for σ = 8 and higher, the liquidity constraints bind, so these wedges become

nonzero. Since Table 3 assumes θ = 0, we have Lb
ij(φ

s
j) = Ls

ij(φ
s
j), and therefore (see (51)), the

wedge −ωe, is a weighted average of (R̂s
ij − R̂b

i ), the state-by-state equity premium. Since the

average equity premium is modest, and the “weight” βγ−σj Lij is large in the low state, when

(R̂s
ij − R̂b

i ) < 0 and small in the high state, when (R̂
s
ij − R̂b

i ) > 0, the model delivers ω
e > 0.23

The wedge −ωb is a weighted average of the risk free rate, R̂b
i , so we have ω

b < 0 (see (52)).

As mentioned in Section 6, a large body of empirical work in asset pricing specifies and tests

the sample counterpart to the moment restriction implied by the Euler Equation of candidate

structural models (e.g., Hansen and Singleton (1982)). The wedges ωe and ωb in the last column

of Table 3 can be though of as the theoretical counterparts of the sample means reported in

Kocherlakota (1996) (Tables 2 and 3, p. 50—51.) Interestingly, even with θ = 0, the model is able

to replicate the signs of these wedges. Quantitatively, ωe is too small relative to Kocherlakota’s

sample means in his Table 224 The value of ωb for σ ranging from 7 to 10, is roughly in line

with magnitudes of the sample means that Kocherlakota reports in his Table 3–an indication

that, even with θ = 0, the model is able to rationalize the risk-free rate puzzle.

The risk-free rate remains low for high risk aversion because assets, and in particular bonds,

also yield a liquidity return which agents take into account when choosing their portfolios, but

financial analysts don’t include in their calculations of actual, “intrinsic” returns. In the usual

23For σ = 10, for example, R̂b
1 = R̂b

1 = 0.96, R̂b
2 = R̂b

2 = 1.07, R̂s
11 = 1.076, R̂s

21 = 1.169, R̂s
12 = 0.92, and

R̂s
22 = 1. Note that R̂s

i1 − R̂b
i > 0, and R̂s

i2 − R̂b
i < 0 for i = 1, 2. The liquidity factors are L11 = 1.0726,

L21 = 1.0725, L12 = 1.1355, and L22 = 1.1353.
24For σ ranging from 7 to 10, the magnitude of the ωe wedge generated by the model is relatively close to

some of the mean values one obtains from other data sets than the one used by Kocherlakota (1996). See Table
3 in İmrohoroğlu (2003), for example. There, he compares estimates of the wedges for two measures of the “risk-
free” rate, the usual one based on 90—day Treasury Bills, and another based on high-grade long-term corporate
bonds; and for two measures of equity returns, the standard one based on S&P 500, and another based on
S&P 500 but subject to the adjustments suggested by McGrattan and Prescott (2001, 2003). Their adjustments
are intended to account for taxes, regulatory constraints, and diversification costs. McGrattan and Prescott’s
emphasis on defining the equity premium relative to long-term bonds–as opposed to relative to 90—day Treasury
Bills–seems to be an attempt to control for possible liquidity premia: “One problem [with Mehra and Prescott’s
analysis] is interpreting the return on a 90—day T-bill as the rate at which households intertemporally substitute
consumption. We do not interpret it as such. Treasury bills provide considerable liquidity services and are a
negligible part of individual’s long-term debt holdings.” (McGrattan and Prescott (2003), p. 393.)
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Mehra—Prescott economy the risk-free rate puzzle arises because at relatively high levels of σ,

the equilibrium must offer agents in a growing economy a high return on bonds for them to be

willing to hold them. From the optic of the model with liquidity needs, at higher levels of σ the

equilibrium compensates agents for holding bonds (and since θ = 0, equity) with a high overall

return, composed of a relatively high liquidity return, and a relatively low “intrinsic” return,

of about 1.5%.

Insert Table 4 here

Now consider the more general formulation with θ ∈ [0, 1]. Table 4 was generated with the

benchmark parametrization used to generate Table 3, but the difference is that in Table 4, for

each value of σ, the parameter θ was chosen so that the risk free rate is equal to 1%, whenever

possible. The resulting value of θ is reported in the seventh column. The key difference between

an economy with θ > 0 relative to one with θ = 0 is that in the former there are two types

of decentralized trades: some where agents can pay using bonds and equity, and a fraction θ

where they can only use bonds. This means that in any given state of the world, agents may

face binding liquidity constraints in all decentralized trades, just in those where only bonds can

be used as a medium of exchange, or in none of the decentralized trades. Formally, in addition

to the set Ω (·) defined in (53), there is now another set,

Ωθ (Bi) =

½
j ∈ {1, 2} : Bi

γj
<

κ1−σ

σ − 1
h
1− (1 + �)1−σ

i¾
, (54)

that contains the set of states for which the liquidity constraints are binding in meetings where

only bonds can be used in exchange, when the outstanding stock of bonds is Bi
γj
d.

The first row of Table 4, is identical to the first row of Table 3 (and of Table 2). That is,

if σ = 1, the agents’ liquidity needs are so modest that the value of their equilibrium bond

holdings is large enough to allow them to buy the first-best quantity �κdt in every round of

decentralized trade, for all realizations of the dividend process. Formally, Ωθ (Bi) = ∅ for all i,

and Ω (Bi) = ∅, since Ω (Bi) ⊆ Ωθ (Bi). Thus, the equilibrium is independent of the value of

θ. For σ = 2 agent’s liquidity needs are already strong enough so that the liquidity constraint
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is no longer slack in all decentralized meetings. (The nonzero wedges indicate the agent is

sometimes short of liquidity.) In fact, for the benchmark parametrization, the equilibrium has

Ωθ (Bi) = {1, 2} for all i. That is, for all realizations of the aggregate endowment process

and every outstanding stock of bonds implied by the government’s policy rule, the liquidity

constraint binds in decentralized trades where the buyer can only use bonds. With σ = 2

liquidity constraints do not bind in decentralized trades where both equity shares and bonds can

be used as means of payment, i.e., Ω (Bi) = ∅ for all i. The equilibrium remains qualitatively

the same (in the sense that Ω (Bi) = ∅ and Ωθ (Bi) = {1, 2} for all i) up to σ = 7. For σ ≥ 8 the

liquidity motive becomes so strong that the equilibrium has Ωθ (Bi) = Ω (Bi) = {1, 2} for all

i, that is, liquidity constraints bind at all dates, in all decentralized trades–even when agents

can pay with bond and equity shares.25

Comparing the equity returns across Tables 2, 3, and 4, we see that they are identical up

to σ = 7. The reason is that, although equity shares can in principle provide liquidity in the

economies of Tables 3 and 4, they don’t for relatively low levels of σ: For σ ≤ 7, equity prices

and returns in the economy with liquidity needs (for any θ) are just as in the Mehra—Prescott

economy that abstracts from liquidity considerations. Accordingly, for this range of σ, equity

returns are increasing in σ.26 And in particular, the equilibrium equity returns and the equity

premium implied by σ = 3, σ = 4, and σ = 5, are within the range of estimates reported in

Table 1.27 The corresponding values of θ that imply a risk-free rate of 1% are 0.0742, 0.0222,

and 0.0062, respectively. So, for example, if σ = 4, this says that in 2 out of 100 decentralized

trading opportunities, agents find themselves in a situation in which they cannot trade away

25Again, notice that the column that reports the Euler Equation “wedges” ωe and ωb, can be used as and
indicator of the binding patterns of the liquidity constraints. To see this, refer back to (51) and (52), and note
that: (i) ωe = ωb = 0 if Ωθ (Bi) = Ω (Bi) = ∅, (ii) ωb < 0 iff Ωθ (Bi) 6= ∅, and (iii) ωe =

¯̄
ωb
¯̄
iff Ω (Bi) = ∅.

26 Just as in Table 3, equity returns start falling for σ ≥ 8, once equity shares can be used to relax liquidity
constraints at the margin, i.e., once liquidity constraints start binding in decentralized trades where agents can
pay with any combination of shares and bonds.
27Note that although the equity return (and consequently also the equity premium) is too high for σ = 6 and

7, the equity return and the equity premium are also in line with the data for σ = 8. The reason is that liquidity
constraints start binding in all trades for σ = 8, so equity starts yielding a liquidity return, and this depresses
the measured intrinsic return back to a level consistent with some of the estimates in Table 1.
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the shares in their portfolios. At face value, this seems rather small, especially given that the

actual institutional arrangements for trading away equity and bonds are rather different in

actual economies.28 But this view may leave room for dissent, so in the following section, I

propose a more systematic way to gauge the absolute size of the difference in the relative ability

of shares and bonds to serve as a medium of exchange which are needed for the liquidity motive

to be able to rationalize the full observed equity premium.29

The standard deviation of equity returns in the model with liquidity (for any value of θ)

do not differ much from the Mehra—Prescott model. (They are identical up to σ = 7, and vary

only slightly for higher values of σ.) Even though this standard deviation is rather low (it is

roughly 16% in the data), the Mehra—Prescott model still generates a Sharpe Ratio which is

too low, relative to the standard estimates (about 0.5). Interestingly, the Sharpe Ratio is too

high in the model with liquidity for the parametrizations that generate the right premium. Of

course, this is just another way of saying that the liquidity mechanism as modeled here, does

not induce additional volatility in equity returns.

To conclude, note that the signs and magnitudes of the Euler Equation wedges in Table 4 are

in line with those estimated by Kocherlakota (1996) using Mehra and Prescott’s data. For ex-

ample, if σ = 5, (ωe, ωb) = (.0687,−.0687), compared to (.0433,−.0675) in Kochelakota’s Tables

2 and 3. For σ = 4, the model implies (ωe, ωb) = (.0576,−.0576), and Kocherlakota’s estimates

are (.0464,−.0569), and for σ = 3, (ωe, ωb) = (.0453,−.0453), compared to (.0496,−.0448).30

28Here I have in mind the fact that from an investor’s standpoint, executing and settling a sale of shares
routinely takes longer than executing and settling a sale of bonds (see footnote 11). These differences may imply
that once in a while, the proceeds of a sale of equity shares may not be available in time to take advantage of a
fleeting trade opportunity.
29Lest there be any confusion, I want to stress that these exercises are not meant to suggest that only liquidity

considerations are behind the observed equity premium. The spirit is rather to put this liquidity mechanism to
an extreme test by asking whether it could conceivably account for the whole premium. To the extent that these
sort of liquidity considerations are only one of several ingredients of a broader theory of the equity premium, the
implied values of θ will be even smaller.
30For σ = 8, the other parametrization that can generate reasonable average equity return and premium, the

model has (ωe, ωb) = (.0526,−.0950), and Kocherlakota reports (.0341,−.0910).
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7.3 Bond—Equity Trade-Volume Bounds

A natural way to assess whether the values of θ that are needed for the model to rationalize

the equity premium as a liquidity premium are “reasonable,” follows from the realization that

θ determines the frequency with which bonds get traded vis-a-vis shares. For example, in

the extreme case with θ = 1, equity shares never change hands in this economy: Each agent

holds a single equity share at the end of the period, and since these shares are never used in

decentralized trades, each agent also enters every second subperiod with the same share, so no

shares are traded along the equilibrium. Conversely, in this case the volume of bonds traded

will be positive along the equilibrium path, since at least some bonds will be exchanged in the

first subperiod, and again in the second subperiod. The idea is then to construct the ratio of

the value of bonds traded in a given period (as a proportion of the total value of outstanding

stock of bonds), relative to the value of shares traded (as a proportion of the total value of

outstanding equity).

Let vbij and vsij denote the quantities or volumes of bonds and equity shares that are traded

in a period when the aggregate state is (d, j) and the outstanding stock of bonds is Bi
γj
d. Then

vbij and φsjdv
s
ij are respectively the value of bonds and shares that change hands during the

period, expressed in terms of fruit, the numeraire. The total value of outstanding bonds and

shares in the same period are Bi
γj
d and φsjd. The proportion of the outstanding value of the

stock of bonds traded during the period–the bond turnover ratio–is vbijγj/(Bid). Similarly,

the proportion of the outstanding value of equity that was traded during the period–the equity

turnover ratio–is vsij . Therefore,

υij =
vbijγj

vsijBid

can be used as a measure of the turnover of bonds relative to the turnover of equity.

The total volumes traded are vbij =
α̂
2 [θp

b
ij + (1− θ) p̂bij ], and vsij = α̂ (1− θ) p̂sij , where p

b
ij

is the quantity of bonds traded in a match where shares cannot be used, and (p̂sij , p̂
b
ij) is the

portfolio that changes hands in a match where both shares and bonds can be used for payment,
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in a period when the aggregate state is (d, j) and the outstanding stock of bonds is Bi
γj
d. (Clearly,

as mentioned earlier, vsij → 0 as θ → 1, so values of θ close to 1 are unreasonable in that they

would imply an unrealistically large volume of trade for bonds relative to shares.)

To get a sense for how the quantities pbij , p̂
s
ij , and p̂bij , of assets traded in the decentralized

market are determined, it is convenient to consider the four possible types of double-coincidence

trades a buyer may find himself in when θ ∈ (0, 1). The buyer may be in a meeting where he

can use shares as means of payment, or where he cannot, and in each case, the relevant liquidity

constraint may be binding or slack. In the two cases where the relevant constraint is binding,

the agent simply spends all his portfolio if in a meeting where both can be used in exchange,

or just all his bond holdings, if in a meeting where shares cannot be traded. If the liquidity

constraint is slack in a meeting where only bonds can be used in exchange (for example as is

the case when σ = 1), he will spend just enough bonds to afford �κd. However, if the liquidity

constraint is slack in trades where either asset can be used as a medium of exchange, then only

the real value of the portfolio that changes hands is pinned down by the equilibrium–the precise

composition of the portfolio that the buyer gives the seller in exchange for the �κd quantity of

fruit is indeterminate. (See the discussion around (64) in the appendix for more details.)

This means that in those cases where the liquidity constraint is slack in trades where either

asset can be used in exchange (as is the case for σ = 2 through 7 in the benchmark parame-

trization of the model with θ ∈ (0, 1)), the precise trading volumes of bonds and shares are

indeterminate in the equilibrium. Nonetheless, for each value of θ, it is possible to derive implied

upper, and lower bounds for υij , denoted υij and υij , respectively. From these, I derive the

average (with respect to the model’s invariant distribution) upper and lower bounds, υ and υ

for the ratio of the value of traded bonds (as a proportion of the value of the outstanding stock

of bonds) to the value of traded shares (as a proportion of the value of outstanding equity).

(See the appendix for details.) Values of θ that imply bounds υ and υ such that the ratio of

bond to equity trade volumes computed from actual data is smaller than υ would be deemed

too large. Similarly, values of θ for which the value of the ratio observed in the data is larger
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than the implied υ would be too low.

From Table 4, the values of σ for which the model is able to generate a risk-free rate of 1%

and an equity premium that is in line with the data are σ = 3, 4, and 5. For σ = 5, θ = 0.0062,

and this value of θ implies [υ, υ] = [.01, 2.55]. This means that the model is consistent with the

value of traded bonds (relative to the value of outstanding bonds) being at most 2 and a half

times and at least 1% of the value of traded equity (relative to the value of outstanding equity).

Similarly, the volume bounds implied by θ = 0.0222 (the value corresponding to σ = 4) are

[.09, 6.29], and those implied by θ = 0.0742 (the value corresponding to σ = 3) are [0.7, 20]. The

bound for the pair (σ, θ) = (6, .0015) is [.0015, 1.17]. Naturally, υ is increasing in θ (decreasing

in σ).

8 Discussion

The bounds of Hansen and Jagannathan (1991) provide a way of assessing the magnitude of

asset-pricing puzzles, and are often used as diagnostics tests for asset pricing models. I begin

by asking how the Mehra—Prescott economy and the benchmark economy with liquidity fair

against these bounds for different values of σ. This is a useful way to understand how the

two models differ at the core; i.e., in terms of the first and second moments of their respective

stochastic discount factors.

Let m denote a stochastic discount factor that satisfies, E (mR) = 1, the unconditional

version of the agent’s Euler Equations, where R = [R1, R2]0, and 1 is a vector of ones. Let Σm

denote the standard deviation ofm. The cup-shaped line in Figure 1 is the Hansen—Jagannathan

bound for returns; i.e., Σm ≥ [b0cov (R,R) b]1/2, with b = [cov (R,R)]−1 [1−E (m)E (R)]. The

straight line is the Hansen—Jagannathan bound on excess returns; i.e., Σm ≥ [b0cov (z, z) b]1/2,

with b = − [cov (z, z)]−1E (m)E (z), and z = R1 − R2.31 The lines are drawn for the orig-

inal Mehra—Prescott data: R0 = [1.07, 1.01], var(R1) = 0.0274, var(R2) = 0.00308, and

31See Ljungqvist and Sargent (2000) for a textbook treatment. The bounds in Figure 1 are identical to those
in Ljungqvist and Sargent’s Figure 10.4, p. 287. McGrattan and Prescott (2003) suggest some adjustments to
the basic data that result in a different–lower–pair of bounds. See İmrohoroğlu (2003) for details.
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cov(R1, R2) = 0.00104. According to these data, the minimum standard deviation an admissi-

ble stochastic discount factor must have is about 0.3509 (the minimum height of the cup-shaped

curve). This value of Σm corresponds to an E (m) of about 0.9855. Since the sides of the cup

are rather steep, a model that satisfies this bound must have a stochastic discount factor with

a mean that is close to 0.9855, unless one is willing to accept dramatically higher standard

deviation for the stochastic discount factor. (If agents have access to a risk-free return, then

this value of E (m) implies a risk-free rate close to 1.0147.)

Consider the basic model with no exogenous liquidity differences between assets. The Euler

Equations (47) and (48) imply:
P

j µijmijR̂
s
ij =

P
j µijmijR̂

b
i = 1, where Lij = Ls

ij (as given in

(49), with θ = 0), and mij = βγ−σj Lij is the stochastic discount factor between states i and j.

The circles in Figure 1 give the mean—standard deviation pairs of this discount factor implied by

the benchmark calibration of Table 3, for values of σ ranging from 1 to 10. The crosses are the

analogous mean—standard deviation pairs obtained by setting Lij = 1 for all i and j. In this case

the stochastic discount factor for state j is just mj = βγ−σj : this is the basic Mehra—Prescott

economy of Table 2. For example, if σ = 1, the mean—standard deviation pair is (0.9737, 0.0346)

for both models. This is the lowest point in the figure; higher points correspond to higher

values of σ. In fact, for σ = 1 through 7, the liquidity constraints are slack (recall that the

Euler Equation wedges are zero in Table 3), so both models share the same stochastic discount

factor and hence they generate the same mean—standard deviation pair for each σ. (These seven

points appear marked with a circle and a cross in Figure 1.) The stochastic discount factors

of the two models diverge for σ = 8 and higher, i.e., once the liquidity constraints start to

bind. The liquidity mechanism increases the standard deviation, but especially the mean of the

stochastic discount factor. For instance, at σ = 10, the model with liquidity has a stochastic

discount factor with mean and standard deviation (0.9878, 0.3602), just inside the admissible

cup-shaped area.32

32For σ = 10, the Mehra—Prescott economy implies (0.8861, 0.3010), which does not even satisfy the bound for
excess returns. It takes a value of σ of about 20 in the Mehra—Prescott model to bring the mean and standard
deviation of their stochastic discount factor within the bounds implied by their data.
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I would like to stress that this discussion is not intended to suggest that the model developed

here solves the equity premium puzzle “because the point corresponding to σ = 10 lies inside the

cup-shaped area.” Instead, the spirit is that, by understanding how the new ingredients I have

added to the standard Lucas-type asset pricing model (e.g., decentralized exchange, anonymity,

and the resulting need for a medium of exchange) affect the moments of the stochastic discount

factor that prices returns, one can get a better sense for why it is that these ingredients can

enhance the ability of the model to explain asset returns.

Next, consider the more general formulation with θ ∈ [0, 1]. The (unconditional versions of

the) corresponding Euler Equations (43) and (44) imply the following expression for the average

risk-premium:

E(R̂s − R̂b) =
−cov(Rs,MRS)

E (MRS)
+

cov(Rb,MRS)

E (MRS)
− cov(R̂s, Ls) + cov(R̂b, Lb)

+[E(Lb)− 1]E(R̂b)− [E(Ls)− 1]E(R̂s). (55)

where MRSt+1 denotes the marginal rate of substitution, βU 0 (ct+1) /U 0 (ct). (Recall that

R̂i
t+1 is the intrinsic return of asset i, and Ri

t+1 = Li
t+1R̂

i
t+1 is the full return, as perceived

by the agents in the model.) The first two terms are standard: excess returns are partly

due to the fact that the full return on equity covaries with the growth rate of consumption

more than does the average bond return. The third term is an adjustment for the degree

to which equity returns covary with the liquidity constraints; i.e., it reflects the extent to

which equity shares are a good hedge against binding liquidity constraints. For example, if

the liquidity constraints that can be relaxed with shares are looser in periods when the equity

return is relatively high, then cov(Ls, R̂s) < 0, and the second term tends to magnify the

measured equity premium. The fourth term is an analogous adjustment for bonds. The last

two terms reflect the liquidity return differential between the assets: their sum will be positive

if lnE(Lb)− lnE(Ls) > lnE(R̂s)− lnE(R̂b), namely if the average (geometric) excess liquidity

return of bonds over shares is larger than the average (geometric) excess intrinsic return of

shares over bonds. When this is the case, the combination of the last two terms adds on to the
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equity premium as it is typically measured.33

Insert Tables 13 and 14 here

To get some intuition about the signs and relative magnitudes of the various components of

the equity premium, Tables 13 and 14 report the first and second moments of the asset returns,

liquidity premia, and marginal rate of substitution implied by the model. Table 13 corresponds

to the baseline economy, but with θ = 0, and σ = 10 (the tenth line of Table 3). In this case

we know that there is no liquidity differential, i.e., Lb = Ls = L always, so the premium can be

written as

E(R̂s − R̂b)| {z }
.028477

=
−cov(Rs,MRS)

E (MRS)E (L)| {z }
.018904

+
cov(Rb,MRS)

E (MRS)E (L)| {z }
.00735

−cov(R̂
s, L)

E (L)| {z }
.002433

+
cov(R̂b, L)

E (L)| {z }
−.000210

The numbers below each term are for the decomposition implied by the model. The first two

terms account for about 92% of the premium, and the third for 8.5%. In this case, since

cov(L,MRS) > 0, the liquidity mechanism is causing the total return on equity, Rs, to covary

more with the MRS than the intrinsic return R̂s, and this tends to bring the equity premium

down from what it would have been in an economy with L = 1.34 However, the fact that

cov(L,MRS) > 0 turns cov
¡
Rb,MRS

¢
positive even though cov(R̂b,MRS) < 0 (see Table

13). Intuitively, the intrinsic asset returns R̂s and R̂b tend to be high in times when the growth

rate of consumption is high (the MRS low), but these are also times when the value of the

average portfolio is high, which means that each agent will face looser liquidity constraints, or

equivalently, that L will tend to be low in those periods.

33 If Lst = Lbt = 1 with probability 1 at all t, as is the case for the benchmark parametrization with θ = 0 for
σ = 7 or lower, and for any parametrization of the Mehra—Prescott model, then

E (Rs)−Rb =
−cov (Rs,MRS) + cov

¡
Rb,MRS

¢
E (MRS)

,

and the model relies only on the first two terms disussed above to account for the whole equity premium.
34For Mehra—Prescott, in this parametrization the premium is 0.02689, and it is accounted for fully by the

negative covariance of equity returns with the MRS.
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Table 14 corresponds to the baseline economy, with σ = 4, and θ = 0.0222 (this is the fourth

row of Table 4). In this case Ls = 1 always, so the third and fifth terms of (55) are identically

zero, and the premium can be decomposed as:

E(R̂s − R̂b)| {z }
.068871

≈ [−cov (Rs,MRS) + cov(Rb,MRS)]E (MRS)−1| {z }
.0063

+ [E(Lb)− 1]E(R̂b)| {z }
.062571

.

The liquidity differential between bonds and equity accounts for about 90% of the equity pre-

mium.35 Yet another way to try to assess which fraction of the equity premium is due to risk

and which to liquidity considerations, I have set δ (the standard deviation of the growth rate

of the endowment) to zero in the baseline. For example, with σ = 4 and θ = 0.0222 (Tables 4

and 14). The equity premium goes down from 6.8871% to 6.3146%. So in this case about 90%

of the equity premium is due to the fact that equity pays an illiquidity premium.

9 Conclusion

I have presented an asset-pricing model in which financial assets are valued for their liquidity–

the degree to which they are valued as a medium of exchange–as well as for being claims

to streams of consumption. The key implications of the model for average asset returns, the

equity-premium and risk-free rate puzzles, were explored analytically and quantitatively.

Explicitly modeling the exchange process, and allowing for the possibility that the value of

equity shares and bonds may partly depend on the role that each plays in exchange, rationalizes

the two most commonly addressed asset-pricing anomalies. Quantitatively, the model performs

better than the Mehra—Prescott frictionless benchmark, even if shares are just as useful as

bonds for exchange purposes. But with standard constant relative risk aversion preferences, it

still takes a coefficient of relative risk aversion of about 10 for the model to be consistent with

asset return data.

If, in addition, one allows for the fact that bonds may be (slightly) better suited than equity

shares to play the medium-of-exchange role, then the model is able to match the historical

35The fourth term in (55), cov(R̂b, Lb), is negative, but zero to the fifth decimal, as a percentage.
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average return to equity and the risk-free rate for the U.S. with values of the risk aversion

coefficient between 3 and 5. These results indicate that prying deeper into the microeconomics

of the decentralized exchange process may add to our understanding of how asset prices are

determined in actual economies.

Kocherlakota (1996) ended his survey on the equity premium puzzle by drawing a parallel

between the pure theory of money–much of which seeks to understand issues such as the

coexistence of interest-bearing risk-free nominal bonds and fiat money–and the branch of

financial economics that deals with the equity-premium puzzle. He argued that “we must seek

to identify what fundamental features of goods and asset markets lead to large risk-adjusted

price differences between stocks and bonds.” And he concluded with, “While I have no idea

what these ‘fundamental features’ are, it is my belief that any true resolution to the equity

premium puzzle lies in finding them.”

In this paper I have tried to pursue this line of reasoning a step further. I have advanced

some candidate “fundamental features.” These features are those that go into making an asset

a medium of exchange, which–aside from the intrinsic properties of the asset–are bound to be

related to the frequency of trade, the determination of the terms of trade, and the nature of the

information structure. I have also asked whether these features stand a chance quantitatively.

They do.

Having identified these features, at a deeper level the key issue becomes, why is asset X

more generally accepted or better suited than asset Y to function as a medium of exchange? In

terms of the equity premium, the next step is to explain precisely how these particular features

can lead to differences in acceptability or, more generally, in the readiness for exchange between

equity and bonds. In this regard, Kocherlakota (2003) and Zhu and Wallace (2005) may provide

some valuable hints.
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A Appendix

Lemma 1 There exists a unique ∆ that solves

∆ =

Z ∙
1 + α

µ
u0 {q [β∆+ zU 0 (z)]}
e0 {q [β∆+ zU 0 (z)]} − 1

¶¸ £
β∆+ zU 0 (z)

¤
dF (z) ,

and it is strictly increasing in α.

Proof. Define Υ (∆) ≡
R h
1 + α

³
u0{q[β∆+zU 0(z)]}
e0{q[β∆+zU 0(z)]} − 1

´i
[β∆+ zU 0 (z)] dF (z) −∆. Note that

Υ (0) > 0. Also, Υ (∆) =
R
zU 0 (z) dF (z)− (1− β)∆ for all ∆ ≥ e (q∗) /β, so lim∆→∞Υ (∆) =

−∞ and since Υ is continuous, there exists a ∆ that satisfies Υ (∆) = 0. Differentiating,

Υ0 (∆) = − [1− β (1− α)] + αβ

Z
Ω

u00e0−e00u0
e03 λ (z) dF (z) + αβ

∙Z
Ω

u0

e0 dF (z) +

Z
Ωc

dF (z)

¸
,

where λ (z) = β∆+ zU 0 (z), Ω = {z ∈ Ξ : λ (z) < e (q∗)}, and u00, e00, u0 and e0 are functions of

{q [λ (z)]}. Note that Υ (∆) = 0 implies

αβ

∙Z
Ω

u0

e0 dF (z) +

Z
Ωc

dF (z)

¸
= 1− β (1− α)− ς,

where ς ≡ 1
∆

hR
zU 0 (z) dF (z) + α

R
Ω

³
u0

e0 − 1
´
zU 0 (z) dF (z)

i
> 0. Therefore

Υ0 (∆)
¯̄
Υ(∆)=0

= αβ

Z
Ω

u00e0−e00u0
e03 λ (z) dF (z)− ς < 0,

so Υ (∆) = 0 has a unique solution. Finally,

∂Υ (∆)

∂α
=

Z
Ω

µ
u0 {q [β∆+ zU 0 (z)]}
e0 {q [β∆+ zU 0 (z)]} − 1

¶£
β∆+ zU 0 (z)

¤
dF (z) ≥ 0, “ > ” if Ω 6= ∅,

so
d∆

dα

¯̄̄̄
Υ(∆)=0

=
∂Υ (∆) /∂α

− Υ0 (∆)|Υ(∆)=0
≥ 0, “ > ” if Ω 6= ∅.

This concludes the proof.

Lemma 2 Suppose xU 0 (x) is continuous and bounded, and that for any continuous function

g,
R
g (x0) dF (x0, x) is a continuous function of x. There is a unique continuous and bounded

function λ that solves (15).
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Proof. Let C denote the space of continuous and bounded real-valued functions. Let T be the

mapping defined by the right-hand side of (15), namely

(Tg) (x) = β

Z ©
(1− α) g

¡
x0
¢
+ αmax

£
g
¡
x0
¢
, 1
¤ª

dF
¡
x0, x

¢
+ xU 0 (x) .

The conditions in the statement of the lemma imply that T : C → C. In addition, T satisfies

Blackwell’s sufficient conditions, so it is a contraction on C.

A.1 Sufficient conditions for interior solutions in the centralized market

Throughout, I have focused on equilibria with an interior solution to the agent’s problem in the

centralized market. In particular, the constraints 0 ≤ ht ≤ n̄ have so far simply presumed to

have been slack. Here I show how to derive sufficient conditions so that this will indeed be the

case along the equilibrium path.36 In the economy with only equity shares, for instance,

ht =
1

wt

£
ct + wtnt + φta

s
t+1 − (φt + xt) a

s
t

¤
,

where xt denotes the dividend realized in period t. In the equilibrium I constructed, ct = xt,

wt = w (xt), nt = y∗, φt = φ (xt), and ast+1 = 1, so 0 ≤ ht ≤ n̄ for t ≥ 1 is equivalent to

0 ≤ N (ast , xt) ≤ n̄ (56)

where N (ast , xt) ≡ y∗+ λ(xt)
A (1− ast ). Notice that N1 (a

s, x) < 0. Also, in equilibrium, 0 ≤ ast ≤

2 for all t ≥ 1. Thus N (2, xt) ≤ N (ast , xt) ≤ N (0, xt) holds for all xt along the equilibrium

path. Therefore the conditions

λ (x) ≤ Ay∗ and λ (x) ≤ A (n̄− y∗) for all x (57)

imply (56). These sufficient conditions are still rather “implicit” because λ is the solution to a

functional equation (i.e. (7)). But since in the equilibrium λ (x) is bounded, say by λ̄, then

λ̄ ≤ An (x) ≤ An̄− λ̄ for all x, (58)
36 In general one also has to specify restrictions on the initial distribution of assets so that the constraints

0 ≤ h0 ≤ n̄ are slack. These conditions essentially amount to requiring the initial distribution not to be too
disperse.
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is a simple parametric restriction on λ̄, A, n̄, and v (·) that implies (57). For instance, consider

the model in Example 3. There, λ (x) = αβ+ε
1−β(1−α) for all x, so (57) reduces to

αβ+ε
[1−β(1−α)]A ≤

y∗ ≤ n̄− αβ+ε
[1−β(1−α)]A .

A.2 Alternative Formulation

In the first part of the paper, the double-coincidence problem that generates the role for a

medium of exchange arises from bilateral trade in the first subperiod, combined with the fact

that each agent has the ability to produce a subset, but wishes to consume a different subset of

the special goods traded in that subperiod. Since the work of Kiyotaki and Wright (1989), this

has become the standard formalization of the double-coincidence-of-wants problem in monetary

theory. For the theoretical derivations in the preliminary sections, this standard formulation

was useful because it underscored the connections between the cannonical asset pricing model,

and the pure theory of money based on search theory that emphasizes the role of assets as media

of exchange. However, since the level of per-capita consumption is non-stationary in U.S. data,

for the empirical implementation in Section 7, I will want to follow Mehra and Prescott (1985)

in formulating an economy where the growth rate of the aggregate endowment follows a Markov

process. Here, I show how to reformulate the model developed in the first part of the paper so

that it is stationary in growth rates.

Consider the following alternative formulation. There are now only two nonstorable and

perfectly divisible consumption goods at each date: fruit, and general goods. (There are no

special goods in this formulation.) As before, there is a set of trees that yield quantity of fruit

dt–the “dividend”–in the second subperiod of every period. Let γt+1 denote the growth rate

of this dividend, i.e., dt+1 = xt+1dt, where xt+1 ∈ {γ1, ..., γn}, and Pr
¡
xt+1 = γj |xt = γi

¢
= µij .

The conditional expectation, E, used below, is defined with respect to this transition probability.

The realization of xt is known when agents enter the decentralized market at the beginning of

period t. I will assume the Markov chain is ergodic. In the second subperiod every agent is

also endowed with n̄ units of time that can be employed as labor services, and each agent has
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access to a production technology that allows him to transform a unit of labor services into

Z (dt) general goods. (Think of dt as indexing the economy-wide “state of technology.”) In

the first subperiod, half of the agents are endowed with (1 + �) q̄t units of the general good,

and the remaining half are endowed with (1− �) q̄t units, with � ∈ [0, 1]. In what follows, I

will assume that the aggregate endowment of the general good in the first subperiod (q̄t), is

proportional to the aggregate endowment of fruit (dt); in particular, q̄t = κdt, with κ > 0.37

The agents who receive the high endowment are selected at the beginning of each period at

random from the population, so from the perspective of an individual agent, the endowment

process is independent across periods.38

Let u (Q) now be the utility of consuming quantity Q of general goods in the first subperiod.

As before, U (c) is the utility from consuming quantity c of fruit, and v (y) is the utility from

consuming quantity y of general goods in the second superiod. Each agent now wishes to

maximize

E

( ∞X
t=0

βt
£
u(Qi

t) + U(cit) + v(yit)−Ath
i
t

¤)
,

where β ∈ (0, 1), Qi
t is agent i’s consumption of general goods in the decentralized market, y

i
t

his consumption of general goods in the centralized market, cit his consumption of fruit, and hit

his labor supply in the second subperiod. The marginal disutility from working is At > 0. (The

“t” subscript is meant to allow for specifications where A depends on the state of technology,

dt. The usefulness of such specifications has to do with balanced growth considerations, as

discussed below.) I still assume that u0 > 0, v0 > 0, U 0 > 0, u00 < 0, v00 ≤ 0, U 00 < 0. It is also

convenient to have u0 (0) = v0 (0) = U 0 (0) = +∞.39

Let α̂ denote the probability of a meeting in the decentralized market. Bilateral trade, and

37One can also interpret the endowment in the first subperiod as being an endowment of fruit, e.g., stemming
from a set of trees for which there are no equity shares that represent ownership.
38 It would not be difficult to allow the individual endowment process to be correlated over time. Reed and

Waller (2005) use a similar formulation in their study of monetary policy and risk sharing.
39Note that I no longer need to assume u (0) = 0, which is useful, because–in contrast to the formulation in

Lagos and Wright (2005)–I can now use standard CRRA preferences over the good traded in the decentralized
market.
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the fact that some agents receive a high endowment while others receive a low one, give rise to

a double-coincidence-of-wants problem in the first subperiod. There are two relevant types of

meetings: α̂
2 of them involve an agent with a high endowment and an agent with a low endow-

ment (naturally, in these “single-coincidence meetings,” the agent with the low endowment will

be the “buyer” and the other one the “seller”); and α̂
2 of them are “no-coincidence meetings”

that involve either two agents with high, or two agents with low endowment.

Next, I turn to the Bellman equations that summarize the agents’ optimization problem,

in the context of the model with differential liquidity laid out in Section 5. Let Vl (at+1, st+1)

be the value of search for an agent who enters the decentralized market holding portfolio at+1

and receives the low endowment of general good, in a period where the aggregate state of the

economy is st+1 = (dt+1, xt+1, Bt+1), i.e., in a period when the realization of the endowment

process is dt+1 = xt+1dt, and there are Bt+1 bonds in circulation. Then,

Vl (a, s) =
α̂

2

X
i=1,2

θi

Z ©
u
£
(1− �)κd+ qi (a, ã)

¤
+W

£
a− pi (a, ã) , s

¤ª
dG (ã)

+(1− α̂

2
) {u [(1− �)κd] +W (a, s)} .

The analogous value function for an agent who gets the high endowment is

Vh (a, s) =
α̂

2

X
i=1,2

θi

Z ©
u
£
(1 + �)κd− qi (ã,a)

¤
+W

£
a+ pi (ã,a) , s

¤ª
dG (ã)

+(1− α̂

2
) {u [(1 + �)κd] +W (a, s)} .

The value to an agent of entering the decentralized market before knowing his endowment of

the general good in the first subperiod, is V (a, s) = 1
2 [Vl (a, s) + Vh (a, s)]. Explicitly,

V (a, s) = α
X
i=1,2

θi

Z ©
u
£
(1− �)κd+ qi (a, ã)

¤
+W

£
a− pi (a, ã) , s

¤ª
dG (ã)

+α
X
i=1,2

θi

Z ©
u
£
(1 + �)κd− qi (ã,a)

¤
+W

£
a+ pi (ã,a) , s

¤ª
dG (ã)

+ (1− 2α) [ū (d) +W (a, s)] ,
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where α ≡ α̂/4, and ū (d) ≡ 1
2 {u [(1 + �)κd] + u [(1− �)κd]}. (Note that this expression for

the value of search is essentially the same as the one in Section 5, except that now, the util-

ity of a buyer is u
£
(1− �)κd+ qi (a, ã)

¤
instead of u

£
qi (a, ã)

¤
, the utility cost of a seller is

u [(1 + �)κd]− u
£
(1 + �)κd− qi (ã,a)

¤
instead of e

£
qi (ã,a)

¤
, and agents without trade oppor-

tunity consume (1 + �)κd or (1− �)κd, each with probability a half, instead of 0 with certainty.)

The value function of an agent who enters the centralized market with portfolio at in a

period when the state is st, namely W (at, st), satisfies:

W (at, st) = max
ct,yt,nt,ht,at+1

{U (ct) + v (yt)−Atht + βEV (at+1, st+1)}

s.t. ct + wtnt + φtat+1 = (φ
s
t + dt) a

s
t + abt + wtht − τ t

0 ≤ ct, 0 ≤ nt, 0 ≤ ht ≤ n̄, 0 ≤ at+1, yt = Z (dt)nt.

The agent chooses consumption of fruit (ct) and of the general good (yt), how many hours of

work to demand (nt) and supply (ht), and an end-of-period portfolio (at+1). Let λbt =
At
wt
,

λst = (φ
s
t + dt)λ

b
t , and λt =

¡
λst , λ

b
t

¢
. Then this problem can be rewritten as

W (at, st) = λtat − λbtτ t + max
ct,nt

½
U (ct) + v [Z (dt)nt]−

At

wt
(ct +wtnt)

¾
+ max

at+1

½
−At

wt
φtat+1 + βEV (at+1, st+1)

¾
,

with yt = Z (dt)nt,

ht =
1

wt

h
ct + wtnt + φtat+1 − (φst + dt) a

s
t − abt + τ t

i
, (59)

and subject to 0 ≤ ct, 0 ≤ nt, 0 ≤ at+1, and 0 ≤ ht ≤ n̄.

As before, the terms of trade between a buyer who holds portfolio a and is in a match of

type i with a seller who holds portfolio ã, i.e., [qi (a, ã) ,pi (a, ã)], for i = 1, 2, are determined

by a take-it-or-leave-it offer by the buyer. That is,
¡
qi,pi

¢
solves

max
qi,pi

©
u
£
(1− �)κd+ qi

¤
+W

¡
a− pi, s

¢
− u [(1− �)κd]−W (a, s)

ª
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s.t. u
£
(1 + �)κd− qi

¤
+W

¡
ã+ pi, s

¢
− u [(1 + �)κd]−W (ã, s) ≥ 0,

and subject to p1 =
¡
0, pb

¢
, and pb ≤ ab, if i = 1 (matches where only bonds can be used as

means of payment), or subject to p2 =
¡
ps, pb

¢
≤ a, if i = 2 (matches where both shares and

bonds can be used for payment). Define the function q (z; y) as

q (z; y) =

½
�y if z ≥ u [(1 + �) y]− u (y)
q̂ (z; y) if z < u [(1 + �) y]− u (y) ,

where q̂ (z; y) denotes the q that solves u [(1 + �) y]−u [(1 + �) y − q] = z. Then, the bargaining

solution is qi (at, ãt) = q
¡
λitat;κdt

¢
, for i = 1, 2, where λ1t ≡

¡
0, λbt

¢
, and λ2t ≡ λt =

¡
λst , λ

b
t

¢
.

This, and the fact that W
£
a+ pi (a, ã) , s

¤
= W (a, s) + λpi (a, ã), imply that the value of

search can be written as

V (a, s) = α
X
i=1,2

θi bS ¡λia; d¢+W (a, s) + (1− 2α) ū (d) , (60)

where bS ¡λitat; dt¢ = u
£
(1− �)κdt + q

¡
λitat;κdt

¢¤
+ u

£
(1 + �)κdt − q

¡
λitat;κdt

¢¤
.

The agent’s optimal choices of ct and nt are characterized by

U 0 (ct) =
At

wt
(61)

v0 [Z (dt)nt] =
At

Z (dt)
. (62)

For i = s, b, the portfolio choice, at+1, satisfies

U 0 (ct)φ
i
t = βEt

∂V (at+1, st+1)

∂ait+1
, (63)

where

∂V (at+1, st+1)

∂abt+1
=

⎡⎣1 + α
X
i=1,2

θi

Ã
u0
£
(1− �)κdt+1 + q

¡
λit+1at+1;κdt+1

¢¤
u0
£
(1 + �)κdt+1 − q

¡
λit+1at+1;κdt+1

¢¤ − 1!
⎤⎦λbt+1,

∂V (at+1, st+1)

∂ast+1
=

"
1 + αθ2

Ã
u0
£
(1− �)κdt+1 + q

¡
λ2t+1at+1;κdt+1

¢¤
u0
£
(1 + �)κdt+1 − q

¡
λ2t+1at+1;κdt+1

¢¤ − 1!#λst+1,
are obtained from (60). As usual, the agent’s choices do not depend on his individual asset

holdings, and the distribution of assets is degenerate in the equilibrium.
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Given the dividend process {dt}∞t=0, and a path {Bt, τ t}∞t=0, an equilibrium is an allocation

{ct, yt, nt, ht,at+1}∞t=0, together with a set of prices {wt,φt}∞t=0, and bilateral terms of trade

{qt}∞t=0, such that: (i) the individual choices {ct, yt, nt, ht,at+1}
∞
t=0 solve the agent’s problem

in the decentralized market, given prices; (ii) the terms of trade are determined by Nash

bargaining, i.e., q1t = q
¡
λbta

b
t ;κdt

¢
, and q2t = q (λtat;κdt); and (iii) prices are such that the

centralized market clears, i.e., ct = dt, ast+1 = 1, a
b
t+1 = Bt+1, and (21) is satisfied.

To solve for the equilibruim, first notice that (63) imply that asset prices satisfy (43)—(46).

Parametrizing preferences by assuming U (c) = u (c) = c1−σ

1−σ , posing that the supply of bonds is

set according to the rule Bt+1 = f (dt, xt) = Bidt if xt = γi, and focusing on recursive equilibria

where share prices are homogeneous of degree one in d, leads to (47)—(50). The equilibrium

asset prices are: φs (d, i) = φsid, and φb (d, i) = φbi , where
¡
φsi , φ

b
i

¢n
i=1

solve (47) and (48) for

i = 1, ..., n. The decision rules for bond holdings, shares, and consumption, are: ab (d, i) = Bid,

as (d, i) = 1, and c (d, i) = d, respectively.

A buyer who enters a bilateral meeting holding a =
¡
as, ab

¢
in a period where the state is

(d, i), has a portfolio that is worth (d+ φsid) a
s+ab in terms of fruit in the round of centralized

trade that follows.40 Such a buyer purchases

q(abd−σ;κd) = min

(
�κ, (1 + �)κ−

µ
1

[(1+�)κ]1−σ+(σ−1)ab
d

¶ 1
σ−1
)
d

in a decentralized meeting in which he can only pay with bonds, or

q[(d+ φsid) a
sd−σ + abd−σ, κd] = min

⎧⎨⎩�κ, (1 + �)κ−
Ã

1

[(1+�)κ]1−σ+(σ−1)
h
(1+φsi )a

s+ab

d

i
! 1

σ−1
⎫⎬⎭ d

in a meeting in which he can pay with bonds or shares. Along the equilibrium path, if the state

today is (dt, i), all agents bring as (dt, i) = 1 and ab (dt, i) = Bidt into the following period’s

round of decentralized trade. Note that if in the following period the state is (dt+1, j), then

the bond holdings of agents in that period, ab (dt, i), can be written as Bi
γj
dt+1. Thus, along the

40 In terms of marginal utility, the value of this portfolio is λ (d, i)a, where λ (d, i) =
£
λs (d, i) , λb (d)

¤
, with

λb (d) = U 0 (d), and λs (d, i) = U 0 (d) (1 + φsi ) d. Intuitively, λ
b (d, i) and λs (d, i) are the end-of-period values (in

terms of marginal utility of fruit) of a bond and a share, respectively, in a period where the state is (d, i).
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equilibrium path, in a period where the state is (d, j), and the outstanding stock of bonds is

Bi
γj
d, a buyer purchases a quantity

min

⎧⎨⎩�κ, (1 + �)κ−
Ã

1

[(1+�)κ]1−σ+(σ−1)Bi
γj

! 1
σ−1
⎫⎬⎭ d

in a decentralized meeting in which he can only pay with bonds, or a quantity

min

⎧⎪⎨⎪⎩�κ, (1 + �)κ−

⎛⎝ 1

[(1+�)κ]1−σ+(σ−1)
µ
1+φsj+

Bi
γj

¶
⎞⎠ 1

σ−1
⎫⎪⎬⎪⎭ d

in a meeting in which he can pay with bonds or shares. In the former, the buyer pays

min

½
Bi

γj
,
h
(1 + �)1−σ − 1

i κ1−σ

1− σ

¾
d

bonds, and in the latter, he pays with a combination of bonds and shares, p2 =
¡
ps, pb

¢
∈ R,

with real value (in terms of fruit)

(1 + φsj)p
sd+ pb = min

½
1 + φsj +

Bi

γj
,
h
(1 + �)1−σ − 1

i κ1−σ

1− σ

¾
d, (64)

where 0 ≤ ps ≤ 1, and 0 ≤ pb ≤ Bi
γj
d. The real value of the portfolio that changes hands is

pinned down, but the precise composition is indeterminate.41

To derive equilibrium real wage (wt), and the remaining individual choices, namely labor

demand (nt), consumption of general good in the second subperiod (yt), and labor supply (ht),

we need to parametrize v, Z (dt), and At. Let v (y) =
y1−σ

1−σ , Z (dt) = Zdt, and At = Ad1−σt ,

where σ, Z, and A, are positive constants.42 Then, (61) and (62) imply w (d) = Ad, n (d) = n∗,

and y (d) = Zn∗d, where n∗ =
¡
AZσ−1¢−1/σ.

41This is also a feature that can be found in Lagos and Rocheteau (2004), a version of Lagos and Wright (2005)
where capital goods and fiat money compete as media of exchange.
42Setting At = Ad1−σt , means that the disutility from work depends on the level of technology of the economy.

This specification is useful for two reasons. First, it makes the agent’s preferences consistent with balanced
growth. And second, it allows one to derive relatively simple conditions to ensure that the constraints 0 ≤ ht ≤ n̄
are slack at all dates and for all states of the world–which must be the case for the distribution of asset holdings
to be degenerate in the equilibrium. Alternatively, one could assume At = γ(1−σ)t, where γ is the mean growth
rate of the economy, as done in many RBC models (see Greewood, Rogerson, and Wright (1995), or Neumeyer
and Perri (2004)). This formulation is enough to guarantee that ht has no secular trend, but in the present
context, one would still have to verify that the structure of the shocks and other primitives of the model are
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Finally, along the equilibrium path, (59) implies

ht = n∗ +
1

wt

h
(φst + dt) (1− ast ) +Bt − abt

i
. (65)

Intuitively, agents supply labor to finance their consumption of the general good (the first term),

and possibly also to rebalance their portfolios.43

Recall that the whole analysis so far has been predicated on the premise that the distribution

of assets is degenerate at the beginning of each decentralized round of trade–which will indeed

be the case, as in Lagos and Wright (2005)–provided the constraints 0 ≤ ht ≤ n̄ are always

slack. To conclude, I provide sufficient conditions on parameters, such that this is indeed the

case along the equilibrium path. In a period where the state is (d, i), and the outstanding stock

of bonds is Bj

γi
d, the right-hand side of (65) can be written as

h (d, i, Bj) = n∗ +
1

A

∙
(1 + φsi ) (1− as) +

Bj

γi
− ab

d

¸
.

Along the conjectured equilibrium path, 0 ≤ as ≤ 2, and 0 ≤ ab ≤ 2
Bj

γi
d. That is, after a

round of decentralized trade, an agent can enter the centralized market neither with a negative

asset position, nor holding more than twice his beginning-of-period portfolio. Thus, h (i, j) ≤

h (d, i, Bj) ≤ h (i, j), where h (i, j) ≡ n∗ − 1
A(1 + φsi −

Bj

γi
), and h (i, j) ≡ n∗ + 1

A(1 + φsi −
Bj

γi
).

Let ∆ = maxi,j(1 + φsi −
Bj

γi
), and note that ∆ is independent of Z and A. Then, it follows

that ∆
A ≤ n∗ ≤ n̄ − ∆

A implies 0 ≤ h (d, i, Bj) ≤ n̄, for all i and all j. Equivalently, if Z
1−σ
σ ∈

[∆, n̄A−∆]A 1−σ
σ , then the constraints 0 ≤ ht ≤ n̄ are slack at all dates, with probability one.

such that the choice of ht is interior for all realizations of the uncertainty. In fact, this should not be too
difficult, for instance, if the variance of the shocks is small, since both formulations coincide if the economy
grows deterministically. To conclude this technical digression, I would like to stress that although the particular
specification for At (and Z (dt), and v) matters “globally,” i.e., to ensure that the equilibrium is indeed within
the class of those with a degenerate distribution of asset holdings–as was conjectured for the derivations–it
does not matter “locally,” e.g., for the behavior of asset prices. That is, given that the equilibrium distribution
of asset holdings is degenerate, asset prices are independent of At, Z (dt), and v. Observe that (47)—(50) were
derived before parametrizing At, Z (dt), and v.
43For example, an agent who neither bought nor sold in the decentralized market enters the centralized market

holding ast = 1, and ab = Bt, chooses ht = n∗, since he has no need to rebalance his portfolio.

64



A.3 Derivation of the Bond—Equity Trade-Volume Bounds

In equilibrium, in a period where the state is (d, j) and the outstanding stock of bonds is Bi
γj
d,

the portfolio that is traded in meetings where only bonds can be used to pay, i.e., p1ij = (0, p
b
ij),

where pbij = min
n
Bi
γj
,
h
(1 + �)1−σ − 1

i
κ1−σ

1−σ

o
d. In meetings where both assets can be used in

exchange, the portfolio that is traded is p2ij = (1,
Bi
γj
d) if the liquidity constraint binds, and any

vector (0, 0) ≤ (psij , pbij) ≤ (1, Bi
γj
d) that satisfies (64), if it is slack. Given all this, it is possible

to derive an upper and a lower bound for the quantities of bonds and shares traded in each

state, vbij and v
s
ij . To derive the upper bound, resolve the (potential) indetarminacy in (p̂

s
ij , p̂

b
ij),

namely in the quantities of shares and bonds that get traded in a meeting where either can

be used for payment, by assuming that buyers always follow a spend-bonds-first rule. This rule

means that (p̂sij , p̂
b
ij) = (p

s
ij
, pbij), where

pbij = min

½
Bi

γj
,
h
(1 + �)1−σ − 1

i κ1−σ

1− σ

¾
d

ps
ij

= min

½
1,max

½h
(1 + �)1−σ − 1

i κ1−σ

1− σ
− Bi

γj
, 0

¾
1

1 + φsj

¾
.

To derive the lower bound, resolve the indetarminacy in (p̂sij , p̂
b
ij) by assuming that buyers follow

a spend-shares-first rule. This implies (p̂sij , p̂
b
ij) = (p

s
ij , p

b
ij
), where

psij = min

½
1,
h
(1 + �)1−σ − 1

i κ1−σ

1− σ

1

1 + φsj

¾
pb
ij

= min

½
Bi

γj
,max

½h
(1 + �)1−σ − 1

i κ1−σ

1− σ
−
¡
1 + φsj

¢
, 0

¾¾
d.

Thus, pbij and ps
ij
are the quantities of assets traded in matches of type 2 when the buyer uses

the spend-bonds-first rule, and psij and pb
ij
are the assets traded in matches of type 2 when

the buyer uses the rule spend-shares-first rule. (Note that the formulas for pbij , p
s
ij
, pb

ij
, and

psij are general, in that they apply both, when the liquidity constraint binds and when it is

slack.) Recall that the total quantities traded in the period are vbij =
α̂
2

h
θpbij + (1− θ) p̂bij

i
, and
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vsij = α̂ (1− θ) p̂sij , and define the following bounds on the total quantities traded

vbij =
α̂

2

h
θpbij + (1− θ) pbij

i
vbij =

α̂

2

h
θpbij + (1− θ) pb

ij

i
vsij = α̂ (1− θ) psij

vsij = α̂ (1− θ) ps
ij
.

So vbij and vsij are the total quantities of bonds and shares traded under the spend-bonds-first

regime, while vbij and vsij are the total quantities of bonds and shares traded under the spend-

shares-first regime. In turn, these bounds can be used to derive upper and lower bounds for

the ratio υij , namely

υij =
γjv

b
ij

vsijBid
and υij =

γjv
b
ij

vsijBid
.

Finally, the average upper and lower bounds for the ratio of the value of traded bonds (as a

proportion of the value of the outstanding stock of bonds) to the value of traded shares (as a

proportion of the value of outstanding equity) are υ =
P

i

P
j µ̄iµijυij , and υ =

P
i

P
j µ̄iµijυij .

These bounds can be compared with actual trade volume data to assess the plausibility of the

underlying value of θ.

A.4 Robustness

In this section I verify the robustness of the benchmark results to changes in the values of the

parameters B̂, κ, and ε, the key parameters that were not in Mehra and Prescott (1985).

The benchmark parametrization is perhaps too conservative, in the sense that it biases the

case against the liquidity mechansim by using 0.3 as the target ratio of M1∗ to annual GDP,

which implied B̂ = 0.75. Tables 5 and 6 are analogous to Tables 3 and 4, but with B̂ = 0.5,

which is consistent with a ratio of M1∗ to annual GDP of 0.2 (this is roughly the average for

the 1975—1995 period). All the other parameters are kept at their benchmark levels. All entries

corresponding to σ = 1 through 7 in Table 5 are identical to those in Table 3. In both, the

liquidity constraints bind for σ ≥ 8. When the constraints bind, the asset returns are only
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slightly lower in Table 5, as is natural, since the relative scarcity of outside bonds means that

both assets yield larger liquidity returns. The equity premium is essentially unchanged.

The first six columns of Table 6 are identical to the corresponding columns of Table 4

through σ = 7. Again, equity returns and premia are slightly lower in the economy with lower

B̂ for higher values of σ. Since the bond to GDP ratio is smaller in this economy, the liquidity

constraint is even more binding in trades where only bonds can circulate, and therefore the

implied values for θ are uniformly lower in Table 6 relative to Table 4. In Table 6, the volume

bounds implied by the values of θ corresponding to σ = 5, 4, and 3, i.e., those that imply

returns consistent with the data, are: [.004, 2], [.03, 5], and [.23, 14] respectively.

Insert Tables 5 and 6 here

In the benchmark calibration, I set κ = 0.5 so that the model implies that the fraction of

GDP that corresponds to trees that have outstanding tradeable equity shares equals 0.4. Next,

I report how the results change if the share of GDP produced by traded “trees” is in fact larger,

say 0.45. (Recall that the gross value added of the nonfinancial corporate business sector as a

share of GDP, i.e., the upper bound on the relevant target, is about 0.5.) Table 7 corresponds

to the economy with κ = 2/9 and B̂ = 0.6658, which imply that tradeable trees produce 45%

of GDP, and that the average bond to GDP ratio is 0.3 (as in the benchmark), and θ = 0.

For this parametrization, the liquidity constraints start binding for σ = 4. The equilibrium for

lower values of σ (and hence all entries in the table), are just as in Mehra—Prescott. Comparing

Table 7 with Table 3, it is apparent that liquidity constraints are tighter in the economy with

lower κ.44 First, they start binding for lower values of σ, i.e., 4 as opposed to 8), and second,

they are tighter when they both bind. (This is evident from the comparing the magnitudes

of the Euler Equation wedges in Table 7 to their counterparts in Table 3.) Tighter liquidity

constraints imply that equity and bond returns are uniformly lower in this economy than in the

44The reason is that with CRRA preferences, the difference u [(1 + �)κ] − u (κ) is decreasing in κ for σ > 1.
This difference, is essentially what determines the size of the right-hand side of the inequalities that appear in
the definitions of the sets Ω and Ωθ in (53) and (54). Thus, the liquidity mechanism is stronger for smaller κ.
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one with higher κ. For σ = 9 or larger, agent’s are so eager for liquidity, that they are willing

to hold bonds even though their intrinsic return is negative on average (bonds still sell at a

discount in the high state).

Table 8 reports the results for the model with exogenous liquidity differences. For σ = 3

and lower, the first six columns are the same as those of Table 4. But for each value of σ, the

implied values of θ are uniformly lower in Table 8, the case with smaller κ. For σ = 6 the

liquidity needs are so severe that there is no positive θ that can induce a risk-free rate as high

as 1%. Summarizing, the liquidity mechanism is magnified in parametrizations with smaller

values of κ. This implies that somewhat smaller values of θ are needed to account for the equity

premium.45

Higher values of κ tend to relax the liquidity constraints, and in fact, they will bind in at

least some state of the world iff κ < κ, where

κ =

"
1− (1 + �)1−σ

(σ − 1)mini,j
¡
Bi/γj

¢# 1
σ−1

.

Given the rest of the parameters and data targets are as in the benchmark, I found that for

targets of the share of GDP produced by trees with tradeable equity that are less than 35%,

there are no liquidity needs in any state.46

Insert Tables 7 and 8 here

In the baseline calibration, I use � = 0.8. Now suppose � = 0.5, and keep all other parameters

as in the benchmark. Tables 9 and 10 are very similar to Tables 3 and 4, so the key results

appear robust to lowering ε. The volume bounds implied by the values of θ corresponding to

45The volume bounds do not appear too sensitive, e.g., those corresponding to σ = 3, are now [.69, 20].
46 If this target is set slighthly higher, at 36% for example, then the liquidity constraints are slack in all trades,

even those where only bonds can be used, up to σ = 7. For σ = 8 and σ = 9, setting θ = 1 is not enough of
a liquidity advantage on bonds to bring their return down to 1%. With σ = 8 and θ = 1 the risk-free rate is
11.27%, virually as high as in the Mehra—Prescott economy. With σ = 9 and θ = 1 the risk-free rate is 6%, half
of what it would be for Mehra—Prescott, but still high. With σ = 10, setting θ = 0.7 induces a risk-free rate
of 1%, and the return on equity is essentially the same as in Mehra—Prescott, 15.79%. (With σ = 10, θ = 0.7
implies [υ, υ] = [9, 62].)
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σ = 5, 4, and 3 in Table 10 are: [.05, 3], [.3, 8], and [3, 43], respectively.

Insert Tables 9 and 10 here

Next, consider the parametrization with � = 1, and all other parameters kept at their

benchmark values. The results for the case with θ = 0 and for the one where θ is chosen so that

the risk-free rate is 1% are reported in Tables 11 and 12 respectively. The results do not seem

to be altered much by increasing � away from its benchmark value. For example in Table 12,

the volume bounds implied by the values of θ corresponding to σ = 5, 4, and 3 are: [.007, 2.4],

[.05, 5.75], and [.39, 16] respectively.

Insert Tables 11 and 12 here

The choice of � has implications for consumption inequality. In the benchmark calibration

with � = 0.8, the variance of the log of total (i.e., including general goods and fruit in both

subperiods) per capita consumption is 0.013, and the variance of log per capita consumption of

in the first subperiod (which is the only source of consumption inequality in the model) is 0.67.

The parametrization with � = 0.5 used to generate Tables 9 and 10 implies that the variance of

the log of total consumption equals 0.005, while the variance of the log of consumption in the

first subperiod equals 0.156. (See footnote 22.)
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Data set % real return % real return on a % equity premium
on a market relatively riskless (mean)
index (mean) security (mean)

1889—1978 (Mehra—Prescott) 6.98 0.8 6.18
1889—2000 (Mehra—Prescott) 8.06 1.14 6.92
1926—2000 (Ibbotson) 8.8 0.4 8.4
1871—1999 (Shiller) 6.99 1.74 5.25
1802—1998 (Siegel) 7.0 2.9 4.1

Table 1: U.S. equity premium from different data sets

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

1 2.83 2.70 0.13 3.6 .035
2 4.58 4.30 0.28 4.2 .068
3 6.27 5.79 0.48 4.8 .099
4 7.89 7.18 0.71 5.5 .128
5 9.42 8.45 0.97 6.2 .156
6 10.88 9.62 1.26 6.9 .182
7 12.24 10.67 1.57 7.6 .207
8 13.52 11.60 1.92 8.3 .231
9 14.70 12.41 2.29 9.0 .254
10 15.79 13.10 2.69 9.7 .276

Table 2: The Mehra-Prescott economy

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE wedges
ωe, ωb

1 2.83 2.70 0.13 3.6 .035 0,0
2 4.58 4.30 0.28 4.2 .068 0,0
3 6.27 5.79 0.48 4.8 .099 0,0
4 7.89 7.18 0.71 5.5 .128 0,0
5 9.42 8.45 0.97 6.2 .156 0,0
6 10.88 9.62 1.26 6.9 .182 0,0
7 12.24 10.67 1.57 7.6 .207 0,0
8 8.80 6.76 2.04 8.4 .244 .0010,-.0435
9 5.97 3.54 2.43 9.0 .272 .0014,-.0790
10 4.35 1.50 2.85 9.6 .298 .0017,-.1027

Table 3: Benchmark economy with θ = 0
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σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

θ

1 2.83 2.70 0.13 3.6 0.035 0,0 [0,1]
2 4.58 1 3.58 4.2 0.847 .0316,-.0316 .3799
3 6.27 1 5.27 4.8 1.084 .0453,-.0453 .0742
4 7.89 1 6.89 5.5 1.247 .0576,-.0576 .0222
5 9.42 1 8.42 6.2 1.357 .0687,-.0687 .062×10−1
6 10.88 1 9.88 6.9 1.431 .0786,-.0786 .015×10−1
7 12.24 1 11.24 7.6 1.478 .0873,-.0873 0.03×10−2
8 8.80 1 7.80 8.4 0.929 .0526,-.0950 3.40×10−5
9 5.97 1 4.97 9.0 0.555 .0240,-.1016 2.40×10−6
10 4.35 1 3.35 9.6 0.350 .0062,-.1072 7.26×10−8

Table 4: Benchmark economy with exogenous liquidity differences

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

1 2.83 2.70 0.13 3.6 .035 0,0
2 4.58 4.30 0.28 4.2 .068 0,0
3 6.27 5.79 0.48 4.8 .099 0,0
4 7.89 7.18 0.71 5.5 .128 0,0
5 9.42 8.45 0.97 6.2 .156 0,0
6 10.88 9.62 1.26 6.9 .182 0,0
7 12.24 10.67 1.57 7.6 .207 0,0
8 8.70 6.65 2.05 8.4 .244 .0010,-.0444
9 5.94 3.50 2.44 9.0 .272 .0014,-.0794
10 4.34 1.49 2.85 9.6 .298 .0017,-.1028

Table 5: Robustness, lower B̂ with θ = 0
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σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

θ

1 2.83 2.70 0.13 3.6 0.035 0,0 [0,1]
2 4.58 1 3.58 4.2 0.847 .0316,-.0316 .078
3 6.27 1 5.27 4.8 1.084 .0453,-.0453 .0263
4 7.89 1 6.89 5.5 1.247 .0576,-.0576 .00802
5 9.42 1 8.42 6.2 1.357 .0687,-.0687 .00208
6 10.88 1 9.88 6.9 1.431 .0786,-.0786 .000464
7 12.24 1 11.24 7.6 1.478 .0873,-.0873 9.0×10−5
8 8.70 1 7.70 8.4 0.917 .0517,-.0950 8.7×10−6
9 5.94 1 4.94 9.0 0.551 .0237,-.1016 5.8×10−7
10 4.34 1 3.34 9.6 0.349 .0061,-.1072 1.6×10−8

Table 6: Robustness, lower B̂ with exogenous liquidity differences

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

1 2.83 2.70 0.13 3.6 .035 0,0
2 4.58 4.30 0.28 4.2 .068 0,0
3 6.27 5.79 0.48 4.8 .099 0,0
4 6.33 5.58 0.75 5.6 .134 .0003,-.0149
5 3.15 2.13 1.02 6.1 .166 .0006,-.0584
6 2.29 0.96 1.33 6.8 .196 .0008,-.0790
7 2.10 0.43 1.67 7.5 .224 .0011,-.0926
8 2.08 0.04 2.04 8.1 .250 .0014,-.1036
9 2.12 -0.31 2.43 8.8 .276 .0016,-.1133
10 2.18 -0.67 2.85 9.5 .301 .0019,-.1219

Table 7: Robustness, lower κ with θ = 0

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

θ

1 2.83 2.70 0.13 3.6 0.035 0,0 [0,1]
2 4.58 1 3.58 4.2 0.848 .0316,-.0316 .0260
3 6.27 1 5.27 4.8 1.084 .0453,-.0453 .022×10−1
4 6.33 1 5.33 5.6 0.954 .0430,-.0576 .011×10−2
5 3.15 1 2.15 6.1 0.350 .0110,-.0687 17×10−7
6 2.29 0.96 1.33 6.8 0.196 .0008,-.0790 0

Table 8: Robustness, lower κ with exogenous liquidity differences
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σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

1 2.83 2.70 0.13 3.6 .035 0,0
2 4.58 4.30 0.28 4.2 .068 0,0
3 6.27 5.79 0.48 4.8 .099 0,0
4 7.89 7.18 0.71 5.5 .128 0,0
5 9.42 8.45 0.97 6.2 .156 0,0
6 10.88 9.62 1.26 6.9 .182 0,0
7 12.24 10.67 1.57 7.6 .207 0,0
8 9.13 7.09 2.04 8.4 .243 .0009,-.0405
9 6.11 3.69 2.42 8.9 .271 .0013,-.0777
10 4.41 1.57 2.84 9.5 .297 .0017,-.1021

Table 9: Robustness, � = 0.5 with θ = 0

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

θ

1 2.83 2.70 0.13 3.6 0.035 0,0 [0,1]
2 4.58 4.30 0.28 4.2 0.068 0,0 [0,1]
3 6.27 1 5.27 4.8 1.084 .0453,-.0453 .218
4 7.89 1 6.89 5.5 1.247 .0576,-.0576 .06
5 9.42 1 8.42 6.2 1.357 .0687,-.0687 .02
6 10.88 1 9.88 6.9 1.431 .0786,-.0786 0.06×10−1
7 12.24 1 11.24 7.6 1.478 .0873,-.0873 0.02×10−1
8 9.13 1 8.13 8.4 0.968 .0555,-.0950 3.49×10−4
9 6.11 1 5.11 8.9 0.571 .0252,-.1016 4.20×10−5
10 4.41 1 3.41 9.5 0.357 .0067,-.1072 2.38×10−6

Table 10: Robustness, � = 0.5 with exogenous liquidity differences

σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

1 2.8301 2.7038 .1262 3.6 .0347 0,0
2 4.5842 4.2973 .2868 4.2 .0678 0,0
3 6.2722 5.7905 .4817 4.8 .0991 0,0
4 7.8871 7.1774 .7097 5.5 .1285 0,0
5 9.4238 8.4542 .9696 6.2 .1562 0,0
6 10.8780 9.6180 1.260 6.9 .1825 0,0
7 12.2454 10.6663 1.579 7.6 .2075 0,0
8 8.7428 6.6923 2.0506 8.4 .2441 .0010,-.0440
9 5.9525 3.5163 2.4362 9.0 .2718 .00138,-.07924
10 4.3440 1.4950 2.8489 9.56 .2978 .0017,-.1028

Table 11: Robustness, � = 1 with θ = 0
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σ
Equity
Return

Bond
Return

Equity
Premium

SD Equity
Return

Sharpe
Ratio

EE Wedges
ωe, ωb

θ

1 2.83 2.70 0.13 3.6 0.035 0,0 [0,1]
2 4.58 1 3.58 4.2 0.847 .0316,-.0316 .1693
3 6.27 1 5.27 4.8 1.084 .0453,-.0453 .0467
4 7.89 1 6.89 5.5 1.247 .0576,-.0576 .0140
5 9.42 1 8.42 6.2 1.357 .0687,-.0687 .037×10−1
6 10.88 1 9.88 6.9 1.431 .0786,-.0786 .083×10−2
7 12.24 1 11.24 7.6 1.478 .0873,-.0873 1.62×10−4
8 8.74 1 7.74 8.4 0.922 .0520,-.0950 1.57×10−5
9 5.95 1 4.95 9.0 0.562 .0238,-.1016 1.02×10−6
10 4.34 1 3.34 9.6 0.350 .0061,-.1072 2.71×10−8

Table 12: Robustness, � = 1 with exogenous liquidity differences

Mean Variance-Covariance

R̂s R̂b Ls Lb Rs Rb MRS

R̂s 1.043518 .00914 .00282 -.00268 -.00268 .00728 .00039 -.02569

R̂b 1.015041 .00269 -.00023 -.00023 .00287 .00274 -.00219
Ls 1.103996 .00099 .00099 -.00193 .00075 .00946
Lb 1.103996 .00099 -.00193 .00075 .00946
Rs 1.149354 .00601 .00121 -.01849
Rb 1.120370 .00378 .00719

MRS 0.886144 .09063

Table 13: Moments of returns, baseline with σ = 10 and θ = 0

Mean Variance-Covariance

R̂s R̂b Ls Lb Rs Rb MRS

R̂s 1.078871 .00305 .00042 0 .00028 .00305 .00074 -.00701

R̂b 1.01 .00039 0 -2.8×10−8 .00042 .00042 -.00036
Ls 1.00 0 0 0 0 0
Lb 1.061942 .00003 .00028 .00003 -.00073
Rs 1.078871 .00305 .00074 -.00701
Rb 1.072561 .00048 -.00112

MRS 0.933394 .01722

Table 14: Moments of returns, baseline with σ = 4 and θ = 0.0222
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Figure 1: Hansen—Jagannathan bounds
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