1 Concepts

Definition 1. (Extreme consequentialism)
\succeq is said to be extremely consequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Definition 2. (First opportunity set ranking strong consequentialism)
\succeq is said to be first opportunity set ranking strongly consequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{2}$),
$\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left[\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right.$
$\left.\Leftrightarrow\left|A_{1}\right| \geq\left|B_{1}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.
Definition 3. (Second opportunity set ranking strong consequentialism)
\succeq is said to be second opportunity set ranking strongly consequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{2}$),
$\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left[\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right.$
$\left.\Leftrightarrow\left|A_{2}\right| \geq\left|B_{2}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.
Definition 4. (Sum-ranking strong consequentialism)
\succeq is said to be sum-ranking strongly consequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in$ $\Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left[\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left|A_{1}\right|+\right.$ $\left.\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Definition 7. (First opportunity set ranking extreme nonconsequentialism)
\succeq is said to be first opportunity set ranking extremely nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right| \geq\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.

Definition 8. (Second opportunity set ranking extreme nonconsequentialism)
\succeq is said to be second opportunity set ranking extremely nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(x_{1}, x_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{2}\right| \geq\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.

Definition 9. (Sum-ranking extreme nonconsequentialism)
\succeq is said to be sum-ranking extremely nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right)$ $\in \Omega,\left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Definition 10. (Weighted sum-ranking extremely nonconsequentialism)
\succeq is said to be Weighted sum-ranking extremely nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$),
$\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega, \alpha\left|A_{1}\right|+\beta\left|A_{2}\right| \geq \alpha\left|B_{1}\right|+\beta\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.
Definition 11. (Lexicographic extreme nonconsequentialism for first opportunity set) \succeq is said to be lexicographic extremely nonconsequential for first opportunity set if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left[\left|A_{2}\right| \geq\left|B_{2}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Definition 12. (First opportunity set ranking Strong nonconsequentialism)
\succeq is said to be sum-ranking strongly nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right.$
$\left.\succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.
Definition 13. (Second opportunity set ranking Strong nonconsequentialism)
\succeq is said to be sum-ranking strongly nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$
$\Omega,\left|A_{2}\right|>\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right.$
$\left.\succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.
Definition 14. (Sum-ranking Strong nonconsequentialism)
\succeq is said to be sum-ranking strongly nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{1}\right|+\left|A_{2}\right|>\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+$ $\left|B_{2}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Definition 15. (Lexicographic strong nonconsequentialism for first opportunity set) \succeq is said to be lexicographic strongly nonconsequential for first opportunity set if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, $\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left[\left|A_{2}\right|>\left|B_{2}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$, and $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Definition 16. (Multiplicative-ranking strong consequentialism)
\succeq is said to be Multiplicative-ranking strongly consequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$,
$\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left[\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)\right.$
$\left.\Leftrightarrow\left|A_{1}\right| \times\left|A_{2}\right| \geq\left|B_{1}\right| \times\left|B_{2}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$
$\succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.
Definition 17. (Multiplicative-ranking extreme nonconsequentialism)
\succeq is said to be multiplicative-ranking extremely nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right| \times\left|A_{2}\right| \geq\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.
Definition 18. (Multiplicative-ranking strong nonconsequentialism)
\succeq is said to be multiplicative-ranking strongly nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right| \times\left|A_{2}\right|>\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, and $\left|A_{1}\right| \times\left|A_{2}\right|=\left|B_{1}\right| \times\left|B_{2}\right|$, then $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ $\succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

2 Axioms

Axiom 1. Independence for Addition(IND)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{1} \in X_{1} \backslash\left\{A_{1} \cup B_{1}\right\}$ and all $z_{2} \in X_{2} \backslash\left\{A_{2} \cup\right.$ $\left.B_{2}\right\},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1} \cup\left\{z_{1}\right\}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1} \cup\left\{z_{1}\right\}, B_{2}\right)$ and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2} \cup\left\{z_{2}\right\}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.
Axiom 2. Simple Indifference(SI)
For all $x_{1} \in X_{1}$ and all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $x_{2} \in X_{2}$ and all $y_{2}, z_{2} \in X_{2} \backslash\left\{x_{2}\right\}$, $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, z_{2}\right\}\right)$.
Axiom 3. Indifference(BI)
For all $x_{1} \in X_{1}$ and all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $x_{2} \in X_{2}$ and all $y_{2}, z_{2} \in X_{2} \backslash\left\{x_{2}\right\}$, $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, z_{2}\right\}\right)$.
Axiom 4. Local Indifference 1(LI1)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exist $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \in \Omega$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right)$ where $A_{1} \neq\left\{x_{1}\right\}$.
Axiom 5. Local Indifference 2(LI2)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exist $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \in \Omega$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right)$ where $A_{2} \neq\left\{x_{2}\right\}$.

Axiom 6. Local Strict Monotonicity 1 (LSM1)

For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exists $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \in \Omega \backslash\left\{\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right\}$ such that $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$.
Axiom 7. Local Strict Monotonicity 2 (LSM2)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exists $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \in \Omega \backslash\left\{\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right\}$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$.

Axiom 8. Robustness(ROB)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{1} \in X_{1}, z_{2} \in X_{2}$, if $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1} \cup\right.$ $\left.\left\{z_{1}\right\}, B_{2}\right)$ and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.

Axiom 9. Trinary Indifference(TI)
For all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right)$
Axiom 10. Indifference of No-Choice Situations(INS)
For all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$.
Axiom 11. Proportional Inddiference(PI)
For all $x_{1} \in X_{1}$ and all $x_{2} \in X_{2}$, there exists A_{1}, A_{2}, B_{1} and B_{2} such that $\alpha\left|A_{1}\right|+\beta\left|A_{2}\right|=$ $\alpha\left|B_{1}\right|+\beta\left|B_{2}\right|,\left|A_{1}\right| \neq\left|B_{1}\right|$ and $\left|A_{2}\right| \neq\left|B_{2}\right|$, and $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$

Axiom 12. Weakly Robustness for first opportunity set (WROB1)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.

Axiom 13. Simple Preference for First Opportunities(SPO1)
For all distinct $x_{1}, y_{1} \in X_{1}$ and all distinct $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$
Axiom 14. Simple Preference for Second Opportunities(SPO2)
For all distinct $x_{1}, y_{1} \in X_{1}$ and all distinct $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$
Axiom 15. Stronly Robustness for first opportunity set (SROB1)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{1} \in X_{1}, z_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.

Axiom 16. Indifference for Multiplication (INDM)
$n \in \mathbb{N}$ and $i, j \in\{1,2\}$. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all C_{i}, D_{j} such that $A_{1} \cap C_{1}=\emptyset, B_{1} \cap D_{1}=\emptyset, n \times\left|A_{i}\right|=\left|A_{i} \cup C_{i}\right|$ and $n \times\left|B_{j}\right|=\left|B_{j} \cup D_{j}\right|$, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left(x_{i}, x_{3-i} ; A_{i} \cup C_{i}, A_{3-i}\right) \succeq\left(x_{j}, x_{3-j} ; B_{j} \cup D_{j}, B_{3-j}\right)$.

Axiom 17. Semi-Local Indifference(SLI)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1} \in K_{1},\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ or, for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{2} \in K_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$

Axiom 18. Semi-Local Strict Monotonicity(SLSM)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}, A_{1} \supset B_{1} \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ$ $\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$ or, for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{2}, B_{2} \in K_{2}, A_{2} \supset B_{2} \Rightarrow$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, B_{2}\right)$

Axiom 19. Semi-Strict Preference for Opportunity(SSPO)
For all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ where $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$, and all $A_{1}, B_{1} \in K_{1}$, $A_{1} \supset B_{1} \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{1},\left\{y_{2}\right\}\right)$ or, for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ where $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$, and all $A_{2}, B_{2} \in K_{2}, A_{2} \supset B_{2} \Rightarrow\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\}, B_{2}\right)$

3 Summary of Results

IND: Independence for addition
INDM: Indifference for Multiplication
BI: Baseline Indifference
LI i : Local Indifference for i th opportunity set
LSM i : Local Strict Monotonicity for i th opportunity set
SPO: Strong Preference for Opportunities
INS: Indifferece of No-choice Situations
ROB: Robustness
TI: Trinary Indifference
PI: Proportional Indifference
WROB1: Weakly Robustness for first opportunity set
*note; $(A) \oplus(B)$ indicates the logical combination of the two axioms A and B.

