Talking Freedom of Choice Seriously

Susumu Cato

January 17, 2006

Road Map

- 1. Introduction...10 minutes
- 2. Basic Framework...5 minutes
- 3. Results...15 minutes
- 4. Future research...5 minutes

Freedom of Choice

- Choice situation 1;
 Choice from {Guitar, Piano, Trumpet}
- Choice situation 2;
 Choice from {Guitar, Piano, Trumpet, Drums}
- Measure of Freedom of Choice is the cardinality of opportunity set.
- In choice situation 1 , freedom of choice is three.
- In both choice situations, Davis, M. chose Trumpet.
- How evaluate goodness of Davis?
 - In both situation, Davis achieve same utilities.

- Consequentialism;
 - Consequence matters, and opprtunities don't matter.
 - Situation 1 and 2 are indifferent.
- Nonconsequentialism;
 - Nonconsequential feature mattars.
 - In choice situation, Freedom of Choice is nonconsequential feature.
 - Freedom of choice matters.
 - Situation 2 is better than 1.

Related Literature

- Sen(1985,1988,1991,1992,2002)
- Suzumura and Xu(2001,2003,2004)
- Pattanaik and Xu(1990,2000), Bossert, Pattaniak and Xu (1994)
- Gravel(1994,1998)
- Kreps(1979), Jones and Sugden(1982)
- Puppe(1995,1996), Baharad and Nitzen(2000), Romeo-Medina(2001)

Motivation

- My approach; Multiple opportunity set
- In actual life, we face the opportunity of many choices...a life plan, educational choice, books, and food
- Situation 3: Choice from {Car,Bus} and {Guitar,Tranpet}
- Situation 4: Choice from {Car} and {Guiter, Piano, Tranpet}
- Which situation is better for nonconsequentialist?
- certain some opportunity sets are important, while other opportunity sets are not so important.

• Relation to single opportunity set... $A_1 = \{Lady Chatterley's Lover(L), My$ Fair Lady(M) $\}$ and $A_2 = \{Teacher(T), Artist(A)\} \Rightarrow$ $A := A_1 \times A_2 = \{(L,T), (L,A), (M,T), (M,A)\}$ **Basic Framework**

- X_1, X_2 ; set of alternatives
- x_1, y_1, z_1, \cdots ; the elements of X_1
- K_1 ; collection of non-empty subset of X_1
- x_2, y_2, z_2, \cdots ; the elements of X_2
- K_2 ; collection of non-empty subset of X_2
- A_1, B_1, C_1, \cdots ; the elements in K_1
- A_2, B_2, C_2, \cdots ; the elements in K_2

Extended Alternatives; $(x_1, x_2; A_1, A_2), (y_1, y_2; B_1, B_2) \in \Omega$ Alternative x_1 is chosen from the opportunity set A_1 and x_2 is chosen from the opportunity set A_2 .

The consequence is $(x_1, x_2) \in X_1 \times X_2$.

 \succeq is an ordering over Ω .

 \succeq be a reflexive, complete and transitive binary relation over Ω .

The asymmetric and symmetric part of \succeq will be denoted by \succ and \sim , respectively.

Basic Concepts

According to Suzumura and Xu(2001), we define the following concepts.

- Extreme Consequentialism...Only consequence matters.
- Strong Consequentialism...First, consequence matter. If consequences are indifferent, opportunities matter.
- Extreme Nonconsequentialism...Only freedom of choice matter.
- Strong Nonconsequentialism...First, freedom of choice matter. If opportunities are indifferent, consequence matters.

Evaluation of freedom of choice

Freedom of Choice of $(x_1, x_2; A_1, A_2)$

- Additive class
 - Partial-ranking... $|A_1|$ or $|A_2|$
 - Lexicographic ranking...First $|A_1|$ matters. Next, $|A_2|$ matters
 - Sum-ranking... $|A_1| + |A_2|$
 - Weighted sum ranking... $\alpha |A_1| + \beta |A_2|$
- Multiplicative class... $|A_1| \times |A_2|$

My Future Research

- General Framework...Trade off between consequence and opportunity... $f : \mathbb{R} \times \mathbb{Z} \times \mathbb{Z}$ such that $f(u(x_1, x_2), |A_1|, |A_2|) \ge f(u(y_1, y_2), |B_1|, |B_2|)$
 - Additive Case
 - Multiplicative Case
- Re-examination of Arrovian Impossibility Theorem... Resolution of dictatorship in strong consequentialist society