Talking Freedom of Choice Seriously *

Susumu Cato ${ }^{\dagger}$

January 17, 2006

Abstract

In actual life, we face the opportunity of many choices, from that opportunity set, we have to choose from different alternatives. So, Freedom of Choice is essential when you lead a life as a valuable human being. However, we may often consider that certain some opportunity sets are important, while other opportunity sets are not so important. Thus, in order to grasp the relation between two or more opportunity sets, I extended Suzumura and $\mathrm{Xu}(2001,2003)$ to multiple-opportunity sets, and axiomatized the concept of various consequentialism and nonconsequentialism.

JEL classification D00; D60; D63; D71

Keywords Freedom of Choice; Multiple opportunities; Extended alternatives; Consequentialism; Nonconsequentialism

Contents

1 Introduction 2
2 The Basic Model 4
2.1 Notations 4
2.2 Basic Axioms 4
3 Consequentialism 5
3.1 Extreme consequentialism 5
3.2 Strongly consequentialism 7
4 Nonconsequentialism 11
4.1 Extreme nonconsequentialism 11
4.2 Strong nonconsequentialism 15
5 The Case of Multiplicative-ranking 19
6 Extension to n Opportunity Sets 23
6.1 Notation 23
6.2 The Results 23
7 Conclusion 25

[^0]
1 Introduction

Welfarist-Cosequentialism has long dominated the tradition of economic thought. 1 On the view of Welfarist-Cosequentialism, the intrinsic value of freedom of choice is ignored. Today, some people are pointing out the intrinsic value of freedom of choice, they claim that "choosing may itself be a value part of living" (Sen, 1992). ${ }^{2}$ Note that only Freedom of Choice which affects one's life can have the intrinsic value of opportunities. According to Sen, it is "life of genuine choice with serious options may be ... richer". For example, it would not have the intrinsic value, even if Freedom of Choice of choosing others' lunch were given. Freedoms that are guarantee by the constitution, such that political liberty, freedom of speech and freedom of choice of work, have the intrinsic value. ${ }^{3}$

The purpose of this paper is extending the issue on freedom of choice of the individual who faced multiple-choices and examine the above problems. In many papers, the representative individual who likes freedom of choice is formalized. ${ }^{4}$ And evaluation of choice in the situation which consists of single-opportunity set is dealt with in almost all papers. However, there is an important aspect of freedom of choice which cannot be grasped exists in single-opportunity set approach. Then, treating multiple-opportunity sets simultaneously, it is possible to grasp the relation between two or more opportunity sets.

In actual life, we face various choice situations such as a life plan, choices in educational choice, books, and food ... In such situation, people enjoy Freedom of Choice and utilities by choice. When we are in the choice situation we faced various opportunity sets, how can we evaluate degree of our Freedom of Choice? Freedom of Choice of what is it? Can we ask which opportunity set is important, for example, Freedom of Choice of work or Freedom of Choice of food? It is known that in actual life, many people think that Freedom of Choice of work is more important than Freedom of Choice of food. Here, two persons, Eric, and Layla, exist and there are two choice situations, the choice of Eric's job and Layla's lunch. Suppose that Eric has the right for choosing of Layla's lunch. So, he has Freedom of choice, and can choose what she eats as he like. However, choice of Layla's lunch is not essential for the life of Eric. In the life of Eric, choice of his job is essential, and Freedom of Choice to work of Eric gives the intrinsic value of opportunities to him. According to this argument, although some Freedom of Choice has the intrinsic value of opportunities for an individual, some other Freedom of Choice does not have it. That is, the diversity about the intrinsic value of opportunities exists. In this paper, we examine the diversity of Freedom of Choice by extending some frameworks and using multiple-opportunity sets.

In order to achieve our purpose there are two possible ways; binary relation over opportunity sets and binary relation over extended alternatives. The former is traditional approach and developed by Kreps(1979), Jones and Sugden(1982), Bosert, Pattanaik and Xu (1994) et all. ${ }^{5}$ By considering binary relation over the set of available alternatives, and axiomatized the relation. In formal, $A \succeq B$ where A, B

[^1]are opportunity sets. The latter is dealt with in recently papers, Suzumura and $\mathrm{Xu}(2001,2003,2004)$, it is used in order to characterizing consequentialism and nonconsequentialism. ${ }^{6}$ They consider the ordering over extended alternative (x, A), which means "Choosing alternative from opportunity set". 7 Since we also interest the feature of consequentialism and nonconsequentialism, then we adopt the approach of Suzumura and $\mathrm{Xu}(2001,2003)$.

Since our main purpose is consideration in the choice from multiple opportunity sets, our extended alternative $\left(x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right)$ means "choosing x_{1} from A_{1} and choosing x_{2} from A_{2} and \cdots and choosing x_{n} from A_{n} ". Vector of alternatives $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ represents consequence of the choice situation, and utility $u\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is given by numerical function $u(\cdot)$. According to Suzumura and $\mathrm{Xu}(2001)$, extreme consequentialist only consequence $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, and extreme nonconsequentialist mind only the cardinality of opportunity sets $\left(\left|A_{1}\right|,\left|A_{2}\right|, \cdots,\left|A_{n}\right|\right)$.

Consider extremely non-consequential person who faces the choice situation in books and jobs. Let denote A_{1}, B_{1} opportunity sets of job and A_{2}, B_{2} opportunity sets of book, and suppose consequence is same and cardinality of opportunity set is as follows; $\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=(2,1)$ and $\left(\left|B_{1}\right|,\left|B_{2}\right|\right)=(1,2)$. which does the individual prefer $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ or $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$? If the individual consider the freedom of choice of book is more important than one of job, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. If the individual consider the freedom of choice of job is as important as one of book, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. We must remark the relation between single opportunity set approach and multiple one. Suppose that $A_{1}=\{$ Lady Chatterley's Lover(L), My Fair Lady(M) $\}$ and $A_{2}=\{\operatorname{Teacher}(\mathrm{T}), \operatorname{Artist}(\mathrm{A})\} .4$ consequences from this choice situation are possible; (Lady Chatterley's Lover, Teacher), (Lady Chatterley's Lover, Artist), (My Fair Lady, Teacher) and (My Fair Lady, Artist). Constructing the opportunity set $A=\{(L, T),(L, A),(M, T),(M, A)\}$, we can obtain single opportunity set. In general, if individual face n opportunity sets A_{1}, \cdots, A_{n}, we reconsider single opportunity set by taking $A=A_{1} \times A_{2} \times \cdots \times A_{n}$. Therefore, our approach is reinterpreted as decomposition A into categories A_{1}, \cdots, A_{n}. 8

Finally the structure of this paper is described as follows. In section 2, we explain basic notation and basic axioms, and show those simple implications by it. The decision under two opportunity sets, which is the simplest case, is covered first. In section 3 we define consequentialism, and examine them axiomatically. In section 4, we discuss nonconsequentialism and characterize the concept of various nonconsequentialism axiomatically. Section5, we treat the relationship with Suzumura and $\mathrm{Xu}(2001)$, and present axioms which are essential and differ from ones in previous section. Furthermore, in section 6 we extend the model to general case, which is considering the decision-making under limited opportunity sets. Finally section 7 conclude this paper and give some remarks.

[^2]
2 The Basic Model

2.1 Notations

Let X_{1} and X_{2}, where $3 \leq\left|X_{1}\right|,\left|X_{2}\right|<\infty$, be sets of all mutually exclusive and jointly exhaustive alternatives in category 1 and 2 respectively, and $X_{1} \cap X_{2}=\emptyset$. The elements of X_{1} will be denoted by $x_{1}, y_{1}, z_{1}, \cdots$. K_{1} denotes a collection of non-empty subset of X_{1}. Similarly, The elements of X_{2} will be denoted by $x_{2}, y_{2}, z_{2}, \cdots$, and K_{2} denotes a collection of non-empty subset of X_{2}. The elements in K_{1} will be denoted by $A_{1}, B_{1}, C_{1}, \cdots$, and the elements in K_{2} will be denoted by $A_{2}, B_{2}, C_{2}, \cdots$, and they are called opportunity sets. Let $X_{1} \times X_{2} \times K_{1} \times K_{2}$ will be denoted by $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right),\left(z_{1}, z_{2} ; C_{1}, C_{2}\right), \cdots$, and they are called extended alternatives. Let $\Omega=\left\{\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \mid A_{1} \in K_{1}, A_{2} \in K_{2}, x_{1} \in A_{1}\right.$ and $\left.x_{2} \in A_{2}\right\}$. That is, Ω contains all ($x_{1}, x_{2} ; A_{1}, A_{2}$) such that A_{1} is an element in K_{1}, A_{2} is an element in K_{2}, x_{1} is an element in A_{1} and x_{2} is an element in A_{2}. It should be clear that $\Omega \subset X_{1} \times X_{2} \times K_{1} \times K_{2}$, and for all ($x_{1}, x_{2} ; A_{1}, A_{2}$), $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$ holds. For all ($x_{1}, x_{2} ; A_{1}, A_{2}$), the intended interpretation is that alternative x_{1} is chosen from the opportunity set A_{1} and x_{2} is chosen from the opportunity set A_{2}. In this formulation, the consequence is $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$. Note that opportunity sets are multiple, but consequence from opportunity sets is only one. Moreover, let ($x_{2}, x_{1} ; A_{2}, A_{1}$) means ($x_{1}, x_{2} ; A_{1}, A_{2}$).

Let \succeq be a reflexive, complete and transitive binary relation over Ω. That is, \succeq is an ordering over Ω. The asymmetric and symmetric part of \succeq will be denoted by \succ and \sim, respectively. For any $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ is interpreted as "choosing x_{1} from A_{1} and x_{2} from A_{2} is at least good as choosing y_{1} from B_{1} and y_{2} from B_{2} ".

Note that, in this framework, If we define $X=X_{1} \times X_{2}$ and $K=K_{1} \times K_{2}$, the extended alternatives corresponds to the framework of Suzumura and $\mathrm{Xu}(2001,2003)$. Moreover, in this framework, it is possible to deal difference of intrinsic value between opportunity sets.

2.2 Basic Axioms

In this subsection, we propose basic axioms and show the implication of them. We extend axioms proposed by Suzumura and $\mathrm{Xu}(2001,2003)$ to axioms with multiple opportunity sets.

Axiom 1. Independence for Addition(IND)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{1} \in X_{1} \backslash\left\{A_{1} \cup B_{1}\right\}$ and all $z_{2} \in X_{2} \backslash\left\{A_{2} \cup B_{2}\right\},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1} \cup\left\{z_{1}\right\}, A_{2}\right) \succeq$ $\left(y_{1}, y_{2} ; B_{1} \cup\left\{z_{1}\right\}, B_{2}\right)$ and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2} \cup\right.$ $\left.\left\{z_{2}\right\}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.
Axiom 2. Simple Indifference(SI)
For all $x_{1} \in X_{1}$ and all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $x_{2} \in X_{2}$ and all $y_{2}, z_{2} \in X_{2} \backslash$ $\left\{x_{2}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, z_{2}\right\}\right)$.

Axiom 3. Baseline Indifference(BI)
For all $x_{1} \in X_{1}$ and all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $x_{2} \in X_{2}$ and all $y_{2}, z_{2} \in X_{2} \backslash\left\{x_{2}\right\}$, $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, z_{2}\right\}\right)$.
(IND) is a similar concept to the independence axiom proposed by Suzumura and $\mathrm{Xu}(2001,2003,2004)$. Its implication is simple: if z_{1} is not in A_{1} and z_{2} is not in A_{2}, the ordering over ($x_{1}, x_{2} ; A_{1} \cup\left\{z_{1}\right\}, A_{2}$) and ($y_{1}, y_{2} ; B_{1} \cup\left\{z_{1}\right\}, B_{2}$), and that over ($x_{1}, x_{2} ; A_{1}, A_{2} \cup\left\{z_{2}\right\}$) and ($y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}$) are corresponding to the ordering over ($x_{1}, x_{2} ; A_{1}, A_{2}$) and ($y_{1}, y_{2} ; B_{1}, B_{2}$) regardless of the nature of z_{1} and z_{2}.
(SI) and (BI) are very similar axioms. (SI) requires that choosing consequence $\left(x_{1}, x_{2}\right)$ from opportunity sets such that $\left|A_{1}\right|=2$ and $\left|A_{2}\right|=1$ are indifferent, and choosing (x_{1}, x_{2}) from opportunity sets that $\left|A_{1}\right|=1$ and $\left|A_{2}\right|=2$ are indifferent. That is, alternative that do not choose is ignored. (BI) requires that if consequence $\left(x_{1}, x_{2}\right)$ is same, choices from opportunity set that have two alternatives are indifferent. In the case of multiple opportunity sets, however, (IND) occur much problems.

The problem is which we need both (SI) and (BI) or do not. The following result summarizes the relation of above three axioms, that is (IND), (SI) and (BI) are not independent.

Lemma 1. If \succeq satisfies (BI) and (IND), then it satisfy (SI)
Proof. Let \succeq satisfy (IND) and (BI). From (BI), for all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $y_{2} \in$ $X_{2} \backslash\left\{x_{2}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, y_{2}\right\}\right)$. By using (IND), for all $x_{1} \in X_{1}$ and all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $x_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$.

By similar argument, we can show for all $x_{1} \in X_{1}$ and all $x_{2} \in X_{2}$ and all $y_{2}, z_{2} \in X_{2} \backslash\left\{x_{2}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right)$.
Q.E.D.

The following implication of (IND) and (BI) prove very useful.
Theorem 1. Suppose \succeq satisfy (IND) and (BI). If $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Proof. First, we consider the case that $A_{1} \cap B_{1}=\left\{x_{1}\right\}$ and $A_{2} \cap B_{2}=\left\{x_{2}\right\}$. Suppose that $A_{1}=\left\{x_{1}, a_{11}, a_{12}, \cdots, a_{1 l}\right\}$ and $A_{2}=\left\{x_{2}, a_{21}, a_{22}, \cdots, a_{2 k}\right\}$ and $B_{1}=$ $\left\{x_{1}, b_{11}, b_{12}, \cdots, b_{1 l}\right\}$ and $B_{2}=\left\{x_{2}, b_{21}, b_{22}, \cdots, b_{2 k}\right\}$. Let $l, k<\infty$. From (BI), $\left(x_{1}, x_{2} ;\left\{x_{1}, a_{1 g}\right\},\left\{x_{2}, a_{2 h}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, b_{1 i}\right\},\left\{x_{2}, b_{2 j}\right\}\right)$ for all $g, i=1,2, \cdots, k$ and $h, j=1,2, \cdots, l$.

By using (IND), $\left(x_{1}, x_{2} ;\left\{x_{1}, a_{11}, a_{12}\right\},\left\{x_{2}, a_{2 h}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, a_{11}, b_{12}\right\},\left\{x_{2}, b_{2 j}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}, a_{11}, b_{12}\right\},\left\{x_{2}, a_{2 h}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, b_{11}, b_{12}\right\},\left\{x_{2}, b_{2 j}\right\}\right)$. From the transitivity, $\left(x_{1}, x_{2} ;\left\{x_{1}, a_{11}, a_{12}\right\},\left\{x_{2}, a_{2 h}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, b_{11}, b_{12}\right\},\left\{x_{2}, b_{2 j}\right\}\right)$. Since opportunity sets are finite, we obtain that, for all $A_{1}, B_{1} \in X_{1}$ and $a_{2 h}, b_{2 j} \in X_{2}$, $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}, a_{2 h}\right\}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}, b_{2 j}\right\}\right)$ by using (IND) repeatedly.

Moreover, by using (IND), $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}, a_{21}, a_{22}\right\}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}, a_{21}, b_{22}\right\}\right)$ and $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}, a_{21}, b_{22}\right\}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}, b_{21}, b_{22}\right\}\right)$. By the transitivity of $\succeq,\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}, a_{21}, a_{22}\right\}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}, b_{21}, b_{22}\right\}\right)$. By using (IND) and the transitivity, we can obtain $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$

Next, we consider the case that $A 1 \cap B 1=\left\{x_{1}\right\} \cup C_{1}$ and $A 2 \cap B 2=\left\{x_{2}\right\} \cup C_{2}$ where C_{1} or C_{2} is nonempty. Note that $\left(x_{1}, x_{2} ; A_{1} \backslash C_{1}, A_{2} \backslash C_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1} \backslash\right.$ $C_{1}, B_{2} \backslash C_{2}$) because $\left|A_{1} \backslash C_{1}\right|=\left|B_{1} \backslash C_{1}\right|$ and $\left|A_{2} \backslash C_{2}\right|=\left|B_{2} \backslash C_{2}\right|$. Then, we can get $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$ by (IND).
Q.E.D.

3 Consequentialism

In this section, we define and characterize extreme consequentialism and strong consequentialism.

3.1 Extreme consequentialism

To begin with, we define extreme consequentialism as follows.
Definition 1. (Extreme consequentialism)
\succeq is said to be extremely consequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in$ $\Omega,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Our consequentialism definition corresponds to one in Suzumura and $\mathrm{Xu}[? ?]$. Extreme consequentialism implies that the ordering depend on only consequences $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$, and any opportunity sets A_{1}, A_{2}, B_{1} and B_{2} don't affect the ordering. To characterize extreme consequentialism, we propose the following axioms.

Axiom 4. Local Indifference 1(LI1)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exist $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \in \Omega$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ ($x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}$) where $A_{1} \neq\left\{x_{1}\right\}$.

Axiom 5. Local Indifference 2(LI2)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exist $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \in \Omega$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right)$ where $A_{2} \neq\left\{x_{2}\right\}$.
(LI1) require that there exists $A_{1} \in K_{1}$, which is not $\left\{x_{1}\right\}$ such that choosing x_{1} from A_{1} and x_{2} from $\left\{x_{2}\right\}$ is regarded as being indifferent as choosing x_{1} from $\left\{x_{1}\right\}$ and x_{2} from $\left\{x_{2}\right\}$. Similarly, (LI2) require that there exists $A_{2} \in K_{2}$ which is not $\left\{x_{2}\right\}$, such that choosing x_{1} from $\left\{x_{1}\right\}$ and x_{2} from A_{2} is regarded as being indifferent as choosing x_{1} from $\left\{x_{1}\right\}$ and x_{2} from $\left\{x_{2}\right\}$. Combining these axioms with (IND) and (BI), we can get the following result.

Theorem 2. \succeq satisfies (IND),(BI), (LI1) and (LI2) if and only if it is extremely consequential.

Proof. If \succeq is extremely consequential, it is satisfies (IND),(BI),(LI1) and (LI2). Therefore, we have only to show that if \succeq satisfy (IND),(BI), (LI1) and (LI2), then it is extremely consequential.

Let \succeq satisfy (IND),(BI), (LI1) and (LI2). Now, since \succeq satisfy (IND) and (BI), from Theorem1, we have the following.

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \tag{1}
\end{equation*}
$$

Therefore, we have only to show the case where $\left|A_{1}\right| \neq\left|B_{1}\right|$ or $\left|A_{2}\right| \neq\left|B_{2}\right|$. To begin with, we show the following relation.

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \text { for all } y_{1} \in X_{1} \backslash\left\{x_{1}\right\} \tag{2}
\end{equation*}
$$

Suppose that there exist $a_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}, a_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$. From (BI) and the transitivity, we can get the following.

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \text { for all } y_{1} \in X_{1} \backslash\left\{x_{1}\right\} \tag{3}
\end{equation*}
$$

By using (IND), $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$ for all $z_{1} \in$ $X_{1} \backslash\left\{x_{1}, y_{1}\right\}$. From Theorem 1 and the transitivity of $\succeq,\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ for all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$. By using similar argument, we can show the following.
$\forall A_{1} \in K_{1}$ where $\left|A_{1}\right| \geq 2, \forall x_{1} \in X_{1}, \forall x_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$

Equation(4) is contradiction with (LI1). Similarly, if there exist $b_{1} \in X_{1} \backslash\left\{x_{2}\right\}$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}, b_{1}\right\},\left\{x_{2}\right\}\right)$, this cause another contradiction. So, equation(2) holds. From equation(1) and (2), since opportunity sets is finite, by using (IND) and the transitivity repeatedly,

$$
\begin{equation*}
\forall A_{1} \in K_{1}, \forall x_{1} \in X_{1}, \forall x_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) . \tag{5}
\end{equation*}
$$

By same argument, we can show that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ for all $y_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ Hence, from (IND) and transitivity, we can get the following.

$$
\begin{equation*}
\forall A_{2} \in K_{2}, \forall x_{1} \in X_{1}, \forall x_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \tag{6}
\end{equation*}
$$

From equation(5) and equation(6), For all $A_{1} \in K_{1}$, all $A_{2} \in K_{2}$, all $x_{1} \in X_{1}$ and all $x_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right)$.

So, $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}, z_{3}\right\}\right)$. By simple application of (IND), $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, a_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, a_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, a_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}, z_{3}, a_{2}\right\}\right)$. These relationships and equation(1) lead us to have the following.

$$
\begin{gathered}
\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim \\
\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim \\
\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}, z_{3}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}, z_{3}, w_{2}\right\}\right) .
\end{gathered}
$$

By using this argument, since opportunity sets is finite, we can get the case where $\left|A_{1}\right| \neq\left|B_{1}\right|$ or $\left|A_{2}\right| \neq\left|B_{2}\right|$.
Q.E.D.

3.2 Strongly consequentialism

According to Suzumura and $\mathrm{Xu}(2001,2003,2004)$, we define strong consequentialism. Strong consequentialism requires that when the individual prefers ($\left.x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ to ($y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}$), then he or she prefers $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ to $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, so opportunities do not matter. If alternatives are indifferent in choice from singleton opportunity sets, he ore she evaluates by cardinalities of each opportunity set. That is, opportunities matter only when the individual is indifferent between $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ and ($\left.y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. In our framework, several version of strong consequentialism can be defined.

Before proposing strong consequentialism, we present the following axioms that will be use in our characterization results.

Axiom 6. Local Strict Monotonicity 1 (LSM1)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exists $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \in \Omega \backslash\left\{\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right\}$ such that $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$.

Axiom 7. Local Strict Monotonicity 2 (LSM2)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, there exists $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \in \Omega \backslash\left\{\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \mid\right.$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$.
(LSM1) requires that there exist a first opportunity set A_{1} such that choosing x_{1} from first opportunity set A_{1} and x_{2} from second opportunity set $\left\{x_{2}\right\}$ is strictly better than choosing x_{1} and x_{2} from the singleton sets $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$. Similarly, (LSM2) requires that there exist a first opportunity set A_{2} such that choosing x_{1} from first opportunity set $\left\{x_{1}\right\}$ and x_{2} from second opportunity set A_{2} is strictly better than choosing x_{1} and x_{2} from the singleton sets $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$. These axioms are a minimal and local requirement for the intrinsic value of freedom of choice.

Combining (IND) and (BI), Local Strict Monotonicity axiom imply the following results that will prove useful in establishing the reminder of our results in this paper.

Lemma 2. If \succeq satisfy (IND), (BI) and (LSM1), then, for all ($x_{1}, x_{2} ; A_{1}, A_{2}$), $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega,\left|A_{1}\right|>\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.
Proof. Let \succeq satisfy (IND), (BI) and (LSM1).
To begin with, we show the following.

$$
\begin{equation*}
\forall x_{1} \in X_{1}, \forall y_{1} \in X_{1} \backslash\left\{x_{1}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \tag{7}
\end{equation*}
$$

Suppose that there exist $a_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ such that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, a_{1}\right\},\left\{x_{2}\right\}\right)$. From (BI) and the transitivity, we can get the following.

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \text { for all } y_{1} \in X_{1} \backslash\left\{x_{1}\right\} \tag{8}
\end{equation*}
$$

By using (IND), $\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$ for all $z_{1} \in$ $X_{1} \backslash\left\{x_{1}, y_{1}\right\}$. From Theorem 1 and the transitivity of $\succeq,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq$ $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$ for all $y_{1}, z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$. By using similar argument, we can show the following.
$\forall A_{1} \in K_{1}$ where $\left|A_{1}\right| \geq 2, \forall x_{1} \in X_{1}, \forall x_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right)$

Equation(9) is contradiction with (LSM1). Hence, by completeness of \succeq, equation(7) holds. By using equation(7) and (IND) repeatedly, we get the following.

Forall $A_{1}, B_{1} \in K_{1}$, all $x_{2} \in X_{2},\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$
From this equation and (IND) and Theorem1, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in$ $\Omega,\left|A_{1}\right|>\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.
Q.E.D.

Lemma 3. If \succeq satisfies (IND), (BI) and (LSM2), then, for all ($x_{1}, x_{2} ; A_{1}, A_{2}$), $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega,\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|>\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Proof. Exactly analogous to that of Lemma2
Q.E.D.

Corollary 1. If \succeq satisfies (IND), (BI) and (LSM1) and (LSM2), then, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega,\left|A_{1}\right| \geq\left|B_{1}\right|$ and $\left|A_{2}\right| \geq\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq$ $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Proof. Let \succeq satisfy (IND),(BI), (LSM1) and (LSM2). There are 3 cases, (i) $\left|A_{1}\right|>$ $\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|$, (ii) $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|>\left|B_{2}\right|$, and (iii) $\left|A_{1}\right|>\left|B_{1}\right|$ and $\left|A_{2}\right|>\left|B_{2}\right|$. It is straightforward to show the first case and the second case by Lemma2 and Lemma3.

Therefore, we have only to show that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$, $\left|A_{1}\right|>\left|B_{1}\right|$ and $\left|A_{2}\right|>\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. There exist $C_{1} \in$ K_{1} such that $C_{1} \subset A_{1}, x_{1} \notin C_{1}$ and $\left|C_{1}\right|=\left|B_{1}\right|$. Since $\left|C_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|>\left|B_{2}\right|$, by Lemma3, $\left(x_{1}, x_{2} ; C_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. Moreover, since $\left|A_{1}\right|>\left|C_{1}\right|$ and $\left|A_{2}\right|=\left|A_{2}\right|$, by Lemma2, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; C_{1}, A_{2}\right)$. By the transitivity of $\succeq,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.
Q.E.D.

Now, we define several variations of strong consequentialism. These concepts is deferent in how to evaluate opportunities.

Definition 2. (First opportunity set ranking strong consequentialism) \succeq is said to be first opportunity set ranking strongly consequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow[$ $\left.\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left|A_{1}\right| \geq\left|B_{1}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Definition 3. (Second opportunity set ranking strong consequentialism) \succeq is said to be second opportunity set ranking strongly consequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow[$ $\left.\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left|A_{2}\right| \geq\left|B_{2}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Definition 4. (Sum-ranking strong consequentialism)
\succeq is said to be sum-ranking strongly consequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{2}$), $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in$
$\Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left[\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right.$ $\left.\Leftrightarrow\left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

To characterize strong consequentialism, we need additional axiom.

Axiom 8. Robustness(ROB)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{1} \in X_{1}, z_{2} \in X_{2}$, if $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ $\left(y_{1}, y_{2} ; B_{1} \cup\left\{z_{1}\right\}, B_{2}\right)$ and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.
(ROB) require that for all $z_{1} \in X_{1}$ and all $z_{2} \in X_{2}$, if the individual ranking higher $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ than ($y_{1}, y_{2} ; B_{1}, B_{2}$), then ($x_{1}, x_{2} ; A_{1}, A_{2}$) is still ranked higher than $\left(y_{1}, y_{2} ; B_{1} \cup\left\{z_{1}\right\}, B_{2}\right)$ and $\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.

Theorem 3. \succeq satisfy (IND), (BI), (LSM1), (LI2) and (ROB) if and only if it is first opportunity set ranking strongly consequential.

Proof. If \succeq is first opportunity set ranking strongly consequential, then it satisfy (IND), (BI), (LSM1), (LI2) and (ROB). Therefore, we have only to show that if \succeq satisfy (IND), (BI), (LSM1), (LI2) and (ROB), then it is first opportunity set ranking strongly consequential.

Let \succeq satisfy (IND), (BI), (LSM1), (LI2) and (ROB). By similar argument in Theorem2, we have the following.

$$
\begin{equation*}
\forall A_{2} \in K_{2}, \forall x_{1} \in X_{1}, \forall x_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \tag{10}
\end{equation*}
$$

By using (IND) and Theorem1, for all $A_{2} \in K_{2}$ and for all $A_{1}, B_{1} \in K_{1}$ such that $\left|A_{1}\right|=\left|B_{1}\right|,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$. From Lemma2, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right| \geq\left|B_{1}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \tag{11}
\end{equation*}
$$

First, consider that, for all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By using (IND) and Theorem1, $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$. From equation(11) and the transitivity, we obtain $\left|A_{1}\right| \geq\left|B_{1}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Next, suppose that, for all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By using (ROB), $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}, z_{2}\right\}\right)$. Moreover, by using (ROB) repeatedly, $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$. By simple application of equation(11) and the transitivity of \succeq, we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$

$$
\Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
$$

Q.E.D.

Theorem 4. \succeq satisfy (IND), (BI), (LI1), (LSM2) and (ROB) if and only if it is first opportunity set ranking strongly consequential.

Proof. Exactly analogous to that of Theorem3
Q.E.D.

Since sum-ranking strong nonconsequentialism allows trade-off between the value of first opportunity set and one of second, to characterize it, we need more axiom.

Axiom 9. Trinary Indifference(CI)
For all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right)$
According to (TI), if consequence $\left(x_{1}, x_{2}\right)$ is same, choices from opportunity set such that the summation of the cardinality is three are indifferent, independent of the nature of the alternative that is not chosen.

We note the following results which will prove useful in establishing the reminder of our results in this paper.

Lemma 4. If \succeq satisfy (IND), (BI), (LSM1), (LSM2), (TI), then $\left|A_{1}\right|+\left|A_{2}\right| \geq$ $\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Proof. Let \succeq satisfy (IND), (BI), (LSM1), (LSM2) and (TI). First, by Theorem1, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(x_{1}, x_{2} ; B_{1}, B_{1}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \tag{12}
\end{equation*}
$$

Moreover, (TI) implies that, $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|=3,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim$ $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

From simple application of (TI) and (IND), for all distinct $x_{1}, y_{1}, z_{1} \in X_{1}$ and all distinct $x_{2}, y_{2}, z_{2} \in X_{2}$,
$\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\}\right)$

By using equation(12) and equation(13), for all $A_{1}, B_{1} \in X_{1}$ and all $A_{2}, B_{2} \in X_{2}$, $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right| \leq 4 \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Since opportunity sets is finite, by similar argument, we obtain the following. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \tag{14}
\end{equation*}
$$

Now, suppose $\left|A_{1}\right|+\left|A_{2}\right|>\left|B_{1}\right|+\left|B_{2}\right|$. There exists $C_{1} \in X_{1}$ and $C_{2} \in X_{2}$ such that $\left|A_{1}\right|+\left|A_{2}\right|=\left|C_{1}\right|+\left|C_{2}\right|$ and $\left|C_{1}\right|>\left|B_{1}\right| \wedge\left|C_{2}\right|=\left|B_{2}\right|$. By Lemma2, $\left(x_{1}, x_{2} ; C_{1}, C_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. And, by using equation(14), since $\left|A_{1}\right|+\left|A_{2}\right|=$ $\left|C_{1}\right|+\left|C_{2}\right|,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; C_{1}, C_{2}\right)$. From transitivity of $\succeq,\left|A_{1}\right|+\left|A_{2}\right|>$ $\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ .\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. Then, we obtain that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(x_{1}, x_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq$ $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.
Q.E.D.

We are now ready to axiomatize completely sum-ranking strong consequentialism.

Theorem 5. \succeq satisfy (IND), (BI), (TI), (LSM1), (LSM2) and (ROB) if and only if it is sum-ranking strongly consequential.

Proof. If \succeq is sum-ranking strongly consequential, then it satisfy (IND), (BI), (TI), (LSM1), (LSM2) and (ROB). Therefore, we have only to show that if \succeq satisfy (IND), (BI), (TI), (LSM1), (LSM2) and (ROB), then it is sum-ranking strongly consequential.

Let \succeq satisfy (IND), (BI), (TI), (LSM1), (LSM2) and (ROB). By Lemma4, we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \tag{15}
\end{equation*}
$$

First, suppose that, for all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By (IND), for all $z_{1} \in X_{1}$ and all $z_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right)$ $\sim\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, z_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}, z_{2}\right\}\right)$. By us$\operatorname{ing}(\mathrm{TI})$ and Theorem1, we obtain that $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{x_{1}, y_{1}\right\},\left\{y_{2}\right\}\right)$ $\sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right)$. From the finiteness of opportunity sets, by using (IND) repeatedly, we have the following.

$$
\begin{aligned}
& \text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega, \text { if }\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim \\
& \quad\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right), \text { then }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow
\end{aligned}
$$

$$
\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|
$$

By repeated application of equation(15) and the transitivity, we have the following.

$$
\begin{aligned}
& \text { For all }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega \text {, if }\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim \\
& \qquad\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \text {, then }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \Leftrightarrow \\
& \left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right|
\end{aligned}
$$

Next, suppose that, for all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By using (ROB), $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}, z_{2}\right\}\right)$. Moreover, by using (ROB) repeatedly, $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$. By simple application of equation (10) and the transitivity of \succeq, we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$
Q.E.D.

4 Nonconsequentialism

4.1 Extreme nonconsequentialism

In this subsection, we define and characterize various type of extreme nonconsequentialism. First, we define the basic concept of extreme nonconsequentialism.

Definition 5. (Extreme nonconsequentialism)
\succeq is said to be extremely nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.

This formulation of extreme nonconsequentialism is different from Suzumura and $\mathrm{Xu}(2001)$. They present extreme nonconsequentialism as the concept that require increasing the cardinality of opportunity sets is good. However, essential requirement of extreme consequentialism is no regard for consequences. Our concept of extreme nonconsequentialism says that if first and second opportunity set have the same cardinality respectively, then extended alternatives are indifferent. Note that by this formulation we cannot completely judge two choice situation, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ and ($y_{1}, y_{2} ; B_{1}, B_{2}$).

To characterize extreme nonconsequentialism, we introduce the following axiom.
Axiom 10. Indifference of No-Choice Situations(INS)
For all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$.
(INS) requires that two choice situation that both opportunity sets are singleton is indifferent. In many papers relating with freedom of choice, there are very similar concepts. ${ }^{9}$

Next, we characterize the extreme consequentialism.
Theorem 6. \succeq satisfy (IND), (BI) and (INS) if and only if it is extremely nonconsequential.

Proof. If \succeq is extreme nonconsequential, then it clearly satisfies (IND), (BI) and (INS). Hence, we have only to show that, if \succeq satisfy (IND), (BI) and (INS), then it is extremely nonconsequential.

Let \succeq satisfy (IND), (BI) and (INS). By (INS), for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in$ $X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. Moreover, by (IND) and the transitivity of \succeq, For all $x_{1}, y_{1}, z_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}\right\}\right)$. From Theorem1, for all $x_{1}, y_{1}, z_{1}, w_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$, $\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}, w_{1}\right\},\left\{y_{2}\right\}\right)$.

By using (IND) and Theorem 1 repeatedly, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; A_{1}, A_{2}\right) . \quad$ Q.E.D.

[^3]By our definition of extreme nonconsequentialism, when he individual judge two choice situation by opportunities, the individual may not value the freedom of choice and consider harmful. The following definition guarantees that extreme nonconsequentialist values the freedom of choice.

Definition 6. (opportunity lover)
\succeq is said to be opportunity lover if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$, $\left|A_{1}\right| \geq\left|B_{1}\right|$ and $\left|A_{2}\right| \geq\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.

Note that the concept of opportunity lover implies the increasing freedom of choice is good. Between two choice situation $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right)$ and $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right)$ such that $\left|A_{1}\right| \geq\left|B_{1}\right|$ and $\left|A_{2}\right| \geq\left|B_{2}\right|$, we judge which is better. But between two choice situation $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right)$ and $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right)$ such that $\left|A_{1}\right| \geq\left|B_{1}\right|$ and $\left|A_{2}\right| \leq\left|B_{2}\right|$, we cannot judge which is better.

Lemma 5. \succeq satisfy (IND), (BI), (LSM1), (LSM2) and (INS) if and only if it is opportunity lover.

Proof. If \succeq is opportunity lover, then it satisfy (IND), (BI), (LSM1), (LSM2) and (INS). Hence, we have only to show that if \succeq satisfy (IND), (BI), (LSM1), (LSM2) and (INS), then it is opportunity lover.

Let \succeq satisfy (IND), (BI), (LSM1), (LSM2) and (INS). To begin with, from Corollary 1 , we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; C_{1}, C_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right| \geq\left|C_{1}\right| \text { and }\left|A_{2}\right| \geq\left|C_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; C_{1}, C_{2}\right) \tag{16}
\end{equation*}
$$

Moreover, from Theorem6, since \succeq is extremely nonconsequential from Theorem $\underline{6}$, we have the following. For all $\left(x_{1}, x_{2} ; C_{1}, C_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$,

$$
\begin{equation*}
\left|C_{1}\right|=\left|B_{1}\right| \text { and }\left|C_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; C_{1}, C_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{17}
\end{equation*}
$$

From equation(16), equation(17) and the transitivity, for all $\left.\left(x_{1}, x_{2} ; A_{1}, A_{1}\right), y_{1}, y_{2} ; B_{1}, B_{1}\right)$ $\in \Omega,\left|A_{1}\right| \geq\left|B_{1}\right|$ and $\left|A_{2}\right| \geq\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$. Q.E.D.

Now, we propose concepts by which we can perfectly judge two choice situations. We introduce four concepts, Part-ranking extreme nonconsequentialism, Sum-ranking extreme nonconsequentialism and Weighted sum-ranking extreme nonconsequentialism, lexicographic extreme nonconsequentialism.

The concept of part-ranking extreme nonconsequentialism requires that the ordering base on one opportunity set and ignore another. There are two type of partranking extremely nonconsequentialism, first opportunity set ranking extremely nonconsequentialism and second opportunity set ranking extremely nonconsequentialism.

According to first opportunity set-ranking extreme nonconsequentialism, the extended alternatives ranked according to the cardinality of first opportunity set, and second opportunity set and consequence don't matters. Similarly, second opportunity set-ranking extreme nonconsequentialism requires that the extended alternatives ranked according to the cardinality of second opportunity set, Their definitions are given below.

Definition 7. (First opportunity set ranking extreme nonconsequentialism)
\succeq is said to be first opportunity set ranking extremely nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right| \geq\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$

Definition 8. (Second opportunity set ranking extreme nonconsequentialism) \succeq is said to be second opportunity set ranking extremely nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(x_{1}, x_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{2}\right| \geq\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq$ $\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.

Now, we state the full characterization of first opportunity set ranking extreme nonconsequentialism.

Theorem 7. If \succeq satisfy (IND), (BI), (INS), (LI2) and (LSM1), then, it is first opportunity set ranking extreme nonconsequential, that is, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$, $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left|A_{1}\right| \geq\left|B_{1}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Proof. If \succeq is first opportunity set ranking extremely nonconsequential, then, it is satisfy (IND), (BI), (INS), (LI2) and (LSM1). Therefore, we have only to show that, if \succeq satisfy (IND), (BI), (INS), (LI2) and (LSM1), then, it is first opportunity set ranking extremely nonconsequential, that is, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in$ $\Omega,\left|A_{1}\right| \geq\left|B_{1}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Let \succeq satisfy (IND), (BI), (INS), (LI2) and (LSM1). To begin with, by Theorem6, we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{18}
\end{equation*}
$$

From (IND), (BI), (LI2), by the argument similar to Theorem2, we obtain the following.

$$
\begin{equation*}
\forall A_{2} \in K_{2}, \forall x_{1} \in X_{1},\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \tag{19}
\end{equation*}
$$

By using (IND) and equation(19), we can show the following. for all $x_{1} \in X_{1}$, all $x_{2} \in X_{2}$, all $A_{1} \in K_{1}$ and $A_{2} \in K_{2}$,

$$
\begin{equation*}
\forall x_{2} \in X_{2}, \forall A_{1} \in K_{1}, \forall A_{2} \in K_{2},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \tag{20}
\end{equation*}
$$

From equation(18) and equation(20), we obtain the following. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$, $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{21}
\end{equation*}
$$

Moreover, from lemma2, we have following. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ $\in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|>\left|B_{1}\right| \text { and }\left|A_{2}\right|=\left|B_{2}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{22}
\end{equation*}
$$

By equation(21) and equation(22), for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$, $\left|A_{1}\right| \geq\left|B_{1}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$. Q.E.D.

Theorem 8. \succeq satisfy (IND), (BI), (INS), (LI1) and (LSM2) if and only if it is second opportunity set-ranking extremely nonconsequential, that is, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left|A_{2}\right| \geq\left|B_{2}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Proof. Exactly analogous to that of Theorem7.
Q.E.D.

Next, we define sum-ranking extreme nonconsequentialism.
Definition 9. (Sum-ranking extreme nonconsequentialism)
\succeq is said to be sum-ranking extremely nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Sum-ranking extreme nonconsequentialist evaluate all opportunity as same. Sum-ranking extreme nonconsequentialism requires that in two choice situation, the individual ranks extended alternatives according to the summation of each cardinality of opportunity sets.

Theorem 9. \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (TI) if and only if it is sum-ranking extremely nonconsequential.

Proof. If \succeq is sum-ranking extremely nonconsequential, then it satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (TI). Therefore, we have only to show that, if \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (TI), then it is sum-ranking extremely nonconsequential.

Let \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (TI). First, by theorem6, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{23}
\end{equation*}
$$

Then, this relation implies the following. For all $x_{1}, y_{1}, z_{1} \in X_{1}$ and all $x_{2}, y_{2}, z_{1} \in$ X_{2},

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}\right\}\right) \tag{24}
\end{equation*}
$$

From (TI), for all $y_{1}, z_{1} \in X_{1}$ and all $y_{2}, z_{2} \in X_{2},\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}, z_{2}\right\}\right)$ By using this and equation(24), for all $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2}$,

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}, z_{2}\right\}\right) \tag{25}
\end{equation*}
$$

Therefore, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$ where $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+$ $\left|B_{2}\right|=3$, alternatives are indifferent.

From simple application of (TI) and (IND), for all distinct $x_{1}, y_{1}, z_{1} \in X_{1}$ and all distinct $x_{2}, y_{2}, z_{2} \in X_{2}$,
$\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\}\right)$

By using equation(23) and equation(24), for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$ where $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|=4$, extended alternatives are indifferent.

Since opportunity sets is finite, by similar argument, we obtain the following. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1,2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|+\left|B_{1}\right|=\left|A_{2}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{27}
\end{equation*}
$$

From equation(24) and Lemmad, $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{x_{1}\right\},\left\{y_{1}, y_{2}\right\}\right)$ $\succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. Since opportunity sets are finite, using equation(27) and Lemma2 according to similar argument, we obtain that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right| \geq\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq$ $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Q.E.D.

Definition 10. (Weighted sum-ranking extremely nonconsequentialism) \succeq is said to be weighted sum-ranking extremely nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega, \alpha\left|A_{1}\right|+\beta\left|A_{2}\right| \geq \alpha\left|B_{1}\right|+\beta\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$.

Weighted sum-ranking extremely nonconsequentialism is general case of sumranking extremely nonconsequentialism. If $\alpha, \beta=1$, then \succeq is sum-ranking extremely nonconsequential. Since opportunity set is finite, this concept don't represent part-ranking extremely consequentialism.

Axiom 11. Proportional Indifference(PI)
For all $x_{1} \in X_{1}$ and all $x_{2} \in X_{2}$, there exists A_{1}, A_{2}, B_{1} and B_{2} such that $\alpha\left|A_{1}\right|+\beta\left|A_{2}\right|=\alpha\left|B_{1}\right|+\beta\left|B_{2}\right|,\left|A_{1}\right| \neq\left|B_{1}\right|$ and $\left|A_{2}\right| \neq\left|B_{2}\right|$, and $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right) \sim$ $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$

This axiom is general case of (TI). If $\alpha, \beta=1$, then (PI) is correspondent with (TI). Changing (TI) for (PI) in conditions of Theorem9, we can get weighted sum-ranking extremely nonconsequential ordering.

Theorem 10. \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (PI) if and only if it is weighted sum-ranking extremely nonconsequential.

Definition 11. (Lexicographic extreme nonconsequentialism for first opportunity set)
\succeq is said to be lexicographic extremely nonconsequential for first opportunity set if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left[\left|A_{2}\right| \geq\left|B_{2}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Thus, according to lexicographic extreme nonconsequentialism for first opportunity set, consequence $\left(x_{1}, x_{2}\right)$ do not matter and opportunities matter, and if $\left|A_{1}\right|>\left|B_{2}\right|$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and second opportunity set do not matter. Only when $\left|A_{1}\right|=\left|B_{2}\right|$, the individual compares the cardinalities of second opportunity set. Similarly, we can consider lexicographic extreme nonconsequentialism for second opportunity set.

To characterize lexicographic extreme nonconsequentialism for first opportunity set, we need the next axiom.

Axiom 12. Weakly Robustness for first opportunity set (WROB1)
For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.

This axiom is similar to (ROB). If individual ranks $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ higher than $\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$, then adding $\left\{z_{2}\right\}$ to B_{1} while maintaining y_{1} from new opportunity set will not affect individual's ranking.

Theorem 11. \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1) if and only if it is lexicographic extremely nonconsequential.

Proof. If \succeq is lexicographic extremely nonconsequential, then it satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1). Hence, we have only to show that if \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1), it is lexicographic extremely nonconsequential.

Let \succeq satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1). First, we consider the case that $\left|A_{1}\right|>\left|B_{1}\right|$ for $A_{1}, B_{1} \in X_{1}$. By Lemma $2,\left(x_{1}, x_{2} ; A_{1},\left\{x_{1}\right\}\right) \succ$ $\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$ since $\left|A_{1}\right|>\left|B_{1}\right|$ and $\left|\left\{x_{1}\right\}\right|=\left|\left\{x_{2}\right\}\right|=1$. By using (WROB1), $\left(x_{1}, x_{2} ; A_{1},\left\{x_{1}\right\}\right) \succ\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}, z_{1}\right\}\right)$. Repeatedly, we obtain that, for all $B_{2} \in$ $X_{2},\left(x_{1}, x_{2} ; A_{1},\left\{x_{1}\right\}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. Lemma 2 and Theorem 1 imply $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq$ $\left(x_{1}, x_{2} ; A_{1},\left\{x_{1}\right\}\right)$ for all $A_{2} \in X_{2}$. By the transitivity, $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$. Moreover, Theorem6 implies $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ for all $x_{1}, y_{1} \in X_{1}$, all $x_{2}, y_{2} \in X_{2}$ and all $A_{2}, B_{2} \in X_{2}$.

Next, suppose that $\left|A_{1}\right|=\left|B_{1}\right|$ for $A_{1}, B_{1} \in X_{1}$. By Lemma 3, we have the following.

$$
\begin{equation*}
\left|A_{1}\right|=\left|C_{1}\right| \text { and }\left|A_{2}\right|>\left|C_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(x_{1}, x_{2} ; C_{1}, C_{2}\right) \tag{28}
\end{equation*}
$$

Moreover, Theorem 6 implies the following.

$$
\begin{equation*}
\left|C_{1}\right|=\left|B_{1}\right| \text { and }\left|C_{2}\right|=\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; C_{1}, C_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{29}
\end{equation*}
$$

Combining equation(28) and equation(29), if $\left|A_{1}\right|=\left|B_{1}\right|$, then $\left|A_{2}\right|>\left|B_{2}\right| \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$. By Theorem6, $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$. Therefore, if $\left|A_{1}\right|=\left|B_{1}\right|$, then $\left|A_{2}\right| \geq\left|B_{2}\right| \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.
Q.E.D.

4.2 Strong nonconsequentialism

In this subsection, we define and characterize the strong nonconsequentialism. First, we propose the following axiom before defining the strong nonconsequentialism.

Axiom 13. Simple Preference for First Opportunities(SPO1)
For all distinct $x_{1}, y_{1} \in X_{1}$ and all distinct $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$

Axiom 14. Simple Preference for Second Opportunities(SPO2)
For all distinct $x_{1}, y_{1} \in X_{1}$ and all distinct $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$

We note that the following lemma that will prove useful to characterize the strong nonconsequentialism.

Lemma 6. If \succeq satisfies (IND), (SI) and (SPO1), then it also satisfies (LSM1).
Proof. Let \succeq satisfies (IND),(SI) and (SPO). By (SPO), for all distinct $x_{1}, y_{1} \in X_{1}$ and all $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. Combining with (IND), for all $z_{1} \in X_{1} /\left\{x_{1}, y_{1}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}\right\}\right)$. (SI) implies $\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{x_{1}, y_{1}\right\},\left\{y_{2}\right\}\right)$. Therefore, by the transitivity $\left.\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ y_{1}, y_{2} ;\left\{x_{1}, y_{1}\right\},\left\{y_{2}\right\}\right)$. By (SPO), $\left(y_{1}, y_{2} ;\left\{x_{1}, y_{1}\right\},\left\{y_{2}\right\}\right) \succ$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$. Hence, we obtain that, $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$
Q.E.D.

Lemma 7. If \succeq satisfies (IND), (SI) and (SPO2), then it also satisfies (LSM2).
Proof. Exactly analogous to that of Lemma 6
Q.E.D.

Corollary 2. If \succeq satisfies (IND), (BI), (SPO1) and (SPO2), then it also satisfies (LSM1) and (LSM2).

Proof. It is straightforward to show this by lemma1 and lemma6.
Q.E.D.

Now, we define four types of the strong nonconsequentialism.
Definition 12. (First opportunity set ranking Strong nonconsequentialism)
\succeq is said to be sum-ranking strongly nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right.$ $\left.\succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Definition 13. (Second opportunity set ranking Strong nonconsequentialism) \succeq is said to be sum-ranking strongly nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{2}\right|>\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)\right.$ $\left.\succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Definition 14. (Sum-ranking Strong nonconsequentialism) \succeq is said to be sum-ranking strongly nonconsequential if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in$ $\Omega,\left|A_{1}\right|+\left|A_{2}\right|>\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ and $\left|A_{1}\right|+$ $\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\right.$ $\left.\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Definition 15. (Lexicographic strong nonconsequentialism for first opportunity set)
\succeq is said to be lexicographic strongly nonconsequential for first opportunity set if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right),\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left[\left|A_{2}\right|>\left|B_{2}\right| \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$, and $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left[\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Leftrightarrow\right.$ $\left.\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)\right]$.

Sum-ranking Strong nonconsequentialism require that consequence do not matter and $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ when $\left|A_{1}\right|+\left|A_{2}\right|>\left|B_{1}\right|+\left|B_{2}\right|$. Only when $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|$, consequence matters and preference correspond to one over choice situation from singleton opportunity sets.

We are now ready to put forward the full characterization of the concepts of strong nonconsequentialism as follows.

Theorem 12. \succeq satisfy (IND), (BI), (SPO1) and (LI2) if and only if it is sumranking strongly nonconsequential.

Proof. If \succeq is sum-ranking strong nonconsequential, then it satisfy (IND), (BI), (SPO1) and (LI2). Hence, we have only to show that if \succeq satisfy (IND), (BI), (SPO1), (LI2), it is sum-ranking strongly nonconsequential.

Let \succeq satisfy (IND), (BI), (SPO1), (LI2). To begin with, since \succeq satisfies (IND), (BI) and (LI2), by a similar argument in Theorem2, for all $A_{2} \in K_{2}$, $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{1}\right\}\right)$. By using (IND) repeatedly, for all $A_{2} \in K_{2}$ and $A_{1} \in K_{1},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; A_{1},\left\{x_{1}\right\}\right)$. From Theorem1, we have that,
$\forall A_{2} \in K_{2}$ and $\forall A_{1}, B_{1} \in K_{1},\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{1}\right\}\right)(30$
By (SPO1), for all distinct $x_{1}, y_{1} \in X_{1}$ and all distinct $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right)$
$\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By Theorem1, for all $z_{1} \in X_{1} \backslash\left\{x_{1}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. Combining with equation(30), for all $A_{2}, B_{2} \in K_{2}\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\}, A_{2}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\}, B_{2}\right)$. So, we obtain that

$$
\begin{equation*}
\left|A_{1}\right|=2 \text { and }\left|B_{2}\right|=1 \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{31}
\end{equation*}
$$

Now, suppose that $\left|A_{1}\right|=k+1$ and $\left|B_{2}\right|=k \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$. By using (IND) and Theorem1, $\left|A_{1}\right|=k+2$ and $\left|B_{2}\right|=k+1 \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ$ ($y_{1}, y_{2} ; B_{1}, B_{2}$). By mathematical induction, we obtain the following.

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{2}\right|+1 \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{32}
\end{equation*}
$$

From equation(32), by the transitivity of \succeq, we have the following.

$$
\begin{gathered}
\text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow \\
\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
\end{gathered}
$$

Now, consider that, for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ ($y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}$). Equation(30), (IND) and Theorem1 lead us obtain the following.

$$
\begin{gathered}
\text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim \\
\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right), \operatorname{then}\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
\end{gathered}
$$

Next, consider that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By an argument similar to the proof of Theorem 5 , we have the following.

$$
\begin{gathered}
\text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ \\
\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right), \operatorname{then}\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
\end{gathered}
$$

Q.E.D.

Theorem 13. \succeq satisfy (IND), (BI), (LI1) and (SPO2) if and only if it is sumranking strongly nonconsequential.
Proof. Exactly analogous to that of Theorem12. Q.E.D.
Theorem 14. \succeq satisfy (IND), (BI), (SPO1), (SPO2) and (TI) if and only if it is sum-ranking strongly nonconsequential.
Proof. If \succeq is sum-ranking strong nonconsequential, then it satisfy (IND), (BI), (SPO1), (SPO2) and (TI). Hence, we have only to show that if \succeq satisfy (IND), (BI), (SPO1), (SPO2) and (TI), it is sum-ranking strongly nonconsequential.

Let \succeq satisfy (IND), (BI), (SPO1), (SPO2) and (TI). To begin with, by (SPO1) and (SPO2), for all distinct $x_{1}, y_{1} \in X_{1}$ and all distinct $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By Theorem1, for all $z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $z_{2} \in X_{2} \backslash\left\{x_{2}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, z_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. Then, by Lemma4, we obtain that
for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(x_{1}, x_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right|=3$ and $\left|B_{1}\right|+\left|B_{2}\right|=2 \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$
By using (IND), for all $w_{1} \in X_{1} \backslash\left\{x_{1}, z_{1}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}, w_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}, w_{1}\right\},\left\{y_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}, w_{1}\right\},\left\{x_{2}, z_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}, w_{1}\right\},\left\{y_{2}\right\}\right)$. Similarly, for all $w_{1} \in X_{1} \backslash$ $\left\{x_{2}, z_{2}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, w_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}, w_{2}\right\}\right)$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, z_{2}, w_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}, w_{2}\right\}\right)$.

By the transitivity and Lemma4, we have the following.
for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right|=4$ and $\left|B_{1}\right|+\left|B_{2}\right|=3 \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$
Since opportunity sets is finite, by repeated using an above argument, we get the following. By Theorem 1 and Lemma 4 , we obtain that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right)$, $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|+1 \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{33}
\end{equation*}
$$

From equation(33), by the transitivity of \succeq and Lemma4, we have the following.

$$
\begin{gathered}
\text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right|>\left|B_{1}\right|+\left|B_{2}\right| \Rightarrow \\
\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
\end{gathered}
$$

Now, suppose that, for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. An argument similar to the proof of Theorem 5 makes us obtain the following.

$$
\begin{aligned}
& \text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right| \text { and } \\
& \left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right), \text { then }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
\end{aligned}
$$

Next, consider that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By an argument similar to the proof of Theorem5, we have the following.

$$
\begin{gathered}
\text { for all }\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right| \text { and } \\
\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right), \text { then }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)
\end{gathered}
$$

Q.E.D.

To characterize lexicographic strong nonconsequentialism for first opportunity set, we present the following axiom. Note that (WROB1) is not sufficient to give complete characterization of lexicographic strong nonconsequentialism for first opportunity set.

Axiom 15. Strongly Robustness for first opportunity set (SROB1)
For all ($x_{1}, x_{2} ; A_{1}, A_{2}$), ($\left.y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all $z_{1} \in X_{1}, z_{2} \in X_{2},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ $\succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2} \cup\left\{z_{2}\right\}\right)$.

Note that (SROB1) imply (WROB1).
Theorem 15. \succeq satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1) if and only if it is lexicographic strong nonconsequentialism for first opportunity set.

Proof. If \succeq is lexicographic strong nonconsequentialism for first opportunity set, then it satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1). Hense, we have only to show that if \succeq satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1), it is lexicographic strong nonconsequentialism for first opportunity set.

Let \succeq satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1). By (SPO1) and Theorem1 for all $z_{1} \in X_{1} \backslash\left\{x_{1}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By using (SROB1) repeatedly, for all $z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $B_{2} \in K_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succ$ ($y_{1}, y_{2} ;\left\{y_{1}\right\}, B_{2}$). From Lemma2, by the transitivity, we obtain that,
for all $z_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ and all $A_{2}, B_{2} \in K_{2},\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\}, A_{2}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\}, B_{2}\right)(34)$

From (IND) and Theorem1, by similar argument in Theorem12, we obtain the following. For all $\left(x_{1}, x_{2} ;\left\{x_{1}, z_{1}\right\}, A_{2}\right),\left(y_{1}, y_{2} ;\left\{y_{1}\right\}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; A_{2}, B_{2}\right) \tag{35}
\end{equation*}
$$

Next, we consider the case of $\left|A_{1}\right|=\left|B_{1}\right|$. By (SPO2) and Theorem1, for all $z_{1} \in$ $X_{1} \backslash\left\{x_{1}\right\}$ and all $z_{2} \in X_{2} \backslash\left\{x_{2}\right\},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}, z_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. From (IND) and Theorem1, we obtain the following. For all $\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}, z_{2}\right\}\right),\left(y_{1}, y_{2} ; B_{1},\left\{y_{2}\right\}\right) \in$ Ω,

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}, z_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{2},\left\{y_{2}\right\}\right) \tag{36}
\end{equation*}
$$

From (IND) and Theorem1, by similar argument in Theorem12, we obtain the following. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left|A_{2}\right|>\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; A_{2}, B_{2}\right) \tag{37}
\end{equation*}
$$

Now, suppose that, for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ ($y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}$). Clearly, by (IND) and the transitivity, for all $A_{1} \in K_{1}$ and $A_{2} \in K_{2},\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; A_{1}, A_{2}\right)$. By Theorem1, $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right| \Rightarrow\left(y_{1}, y_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$ By the transitivity of \succeq, we obtain that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|=\left|B_{1}\right|,\left|A_{2}\right|=\left|B_{2}\right|$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$

Next, consider that, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By an argument similar to the proof of Theorem5, we have the following.
for all $\left(x_{1}, x_{2} ; A_{1}, A_{1}\right),\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|$ and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$
Q.E.D.

5 The Case of Multiplicative-ranking

In Suzumura and $\mathrm{Xu}(2001)$, choice from single opportunity set (x, A) is considered. (x, A) means choosing x from opportunity set A. If we set $X=X_{1} \times X_{2}$ and $K=$ $K_{1} \times K_{2}$, our framework become (x, A). For example, extreme nonconsequentialism in Suzumura and $\mathrm{Xu}(2001)$ is as follows.

$$
\text { For all }(x, A) \text { and }(y, B),|A| \geq|B| \Rightarrow(x, A) \succeq(y, B)
$$

The following definition of consequentialism and nonconsequentialism corresponds to concepts in Suzumura and $\mathrm{Xu}(2001)$.

Definition 16. (Multiplicative-ranking strong consequentialism)
\succeq is said to be sum-ranking strongly consequentialism if, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$, $\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left[\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\right.$ $\left.\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left|A_{1}\right| \times\left|A_{2}\right| \geq\left|B_{1}\right| \times\left|B_{2}\right|\right]$, and $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Definition 17. (Multiplicative-ranking extreme nonconsequentialism)
\succeq is said to be multiplicative-ranking extremely nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right| \times\left|A_{2}\right| \geq\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Definition 18. (Multiplicative-ranking strong nonconsequentialism)
\succeq is said to be multiplicative-ranking strongly nonconsequential if, for all ($x_{1}, x_{2} ; A_{1}, A_{1}$), $\left(y_{1}, y_{2} ; B_{1}, B_{1}\right) \in \Omega,\left|A_{1}\right| \times\left|A_{2}\right|>\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$, and $\left|A_{1}\right| \times\left|A_{2}\right|=\left|B_{1}\right| \times\left|B_{2}\right|$, then $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$.

Multiplicative-ranking strong consequentialism, multiplicative-ranking extreme nonconsequentialism and multiplicative-ranking strong nonconsequentialism correspond to strong consequentialism, extreme nonconsequentialism and strong nonconsequentialism in Suzumura and $\mathrm{Xu}(2001)$ respectively. 10

These concepts evaluate the freedom of choice by the multiplication of the cardinality of opportunity sets. Note that these multiplicative-ranking case do not satisfy (IND). For example, suppose that $A_{1}=\left\{x_{1}, y_{1}, z_{1}\right\}, A_{2}=\left\{x_{2}, y_{1}\right\}, B_{1}=\left\{x_{1}, y_{1}\right\}$, $B_{2}=\left\{x_{2}, y_{2}, z_{2}\right\}$, and $\left(x_{1}, x_{2},\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{1}\right\}\right) \sim\left(x_{1}, x_{2},\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\}\right)$. In this case, $\left|A_{1}\right| \times\left|A_{2}\right|=\left|B_{1}\right| \times\left|B_{2}\right|=6$, then this example satisfies the requirement of above multiplicative-ranking concepts. Moreover, suppose that \succeq satisfies (IND). If $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right),\left(x_{1}, x_{2} ; A_{1} \cup\left\{w_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1} \cup\left\{w_{1}\right\}, B_{2}\right)$. Then, in this case, $\left(x_{1}, x_{2},\left\{x_{1}, y_{1}, z_{1}, w_{1}\right\},\left\{x_{2}, y_{1}\right\}\right) \sim\left(x_{1}, x_{2},\left\{x_{1}, y_{1}, w_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\}\right)$. Since $\left|\left\{x_{1}, y_{1}, z_{1}, w_{1}\right\}\right| \times\left|\left\{x_{2}, y_{1}\right\}\right|=8$ and $\left|\left\{x_{1}, y_{1}, w_{1}\right\}\right| \times\left|\left\{x_{2}, y_{2}, z_{2}\right\}\right|=9$, this relation contradicts the requirement of multiplicative-ranking concepts.

So far, (IND) have important role in our framework. But, to characterize the concepts of multiplicative case, we need other axioms. Note that $\left(x_{2}, x_{1} ; A_{2}, A_{1}\right)$ and ($x_{1}, x_{2} ; A_{1}, A_{2}$) means the same.

Axiom 16. Indifference for Multiplication (INDM)
$n \in \mathbb{N}$ and $i, j \in\{1,2\}$. For all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$ and all C_{i}, D_{j} such that $A_{1} \cap C_{1}=\emptyset, B_{1} \cap D_{1}=\emptyset, n \times\left|A_{i}\right|=\left|A_{i} \cup C_{i}\right|$ and $n \times\left|B_{j}\right|=\mid B_{j} \cup$ $D_{j} \mid,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \Leftrightarrow\left(x_{i}, x_{3-i} ; A_{i} \cup C_{i}, A_{3-i}\right) \succeq\left(x_{j}, x_{3-j} ; B_{j} \cup\right.$ $\left.D_{j}, B_{3-j}\right)$.
(INDM) have a similar role to (IND). This axiom is very strong, because (INDM) implies (BI) and (SI). For example, suppose that $A_{1}=\left\{x_{1}, y_{1}, z_{1}\right\}, A_{2}=\left\{x_{2}\right\}, B_{1}=$ $\left\{x_{1}, y_{1}\right\}, B_{2}=\left\{x_{2}\right\}$, and $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}\right\}\right)$. If \succeq satisfies (INDM), then we have $\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}, w_{1}, a_{1}, b_{1}\right\},\left\{x_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, c_{1}, d_{1}\right\},\left\{x_{2}\right\}\right)$.11]
In this case, $\left|\left\{x_{1}, y_{1}, z_{1}, w_{1}, a_{1}, b_{1}\right\}\right|=2\left|A_{1}\right|$ and $\left|\left\{x_{1}, y_{1}, c_{1}, d_{1}\right\}\right|=2\left|B_{1}\right|$. (INDM) implies that $\left(x_{1}, x_{2},\left\{x_{1}, y_{1}, z_{1}\right\} ;\left\{x_{2}, y_{2}, z_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, a_{2}, b_{2}\right\}\right){ }^{12}$ As another case, by (INDM), we have ($\left.x_{1}, x_{2} ;\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2}\right\}\right) \succeq\left(x_{1}, x_{2} ;\left\{x_{1}, y_{1}, a_{1}, b_{1}\right\},\left\{x_{2}\right\}\right)$.
In this case, $\left|\left\{x_{2}, y_{2}\right\}\right|=2\left|A_{1}\right|$ and $\left|\left\{x_{1}, y_{1}, a_{1}, b_{1}\right\}\right|=2\left|B_{2}\right|$.
Next, we present three more axioms as follows.
Axiom 17. Semi-Local Indifference(SLI)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1} \in K_{1},\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ or, for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{2} \in K_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$

Axiom 18. Semi-Local Strict Monotonicity(SLSM)
For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}, A_{1} \supset B_{1} \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ$ $\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$ or, for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{2}, B_{2} \in K_{2}, A_{2} \supset B_{2} \Rightarrow$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \succ\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, B_{2}\right)$
Axiom 19. Semi-Strict Preference for Opportunity(SSPO)
For all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ where $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$, and all $A_{1}, B_{1} \in$ $K_{1}, A_{1} \supset B_{1} \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{1},\left\{y_{2}\right\}\right)$ or, for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ where $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$, and all $A_{2}, B_{2} \in K_{2}, A_{2} \supset B_{2} \Rightarrow$ $\left(x_{1}, x_{2} ;\left\{x_{1}\right\}, A_{2}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\}, B_{2}\right)$

[^4](SLI), (SLSM) and (SSPO) have a similar role to (LIi), (LSMi) and (SPO i) respectively. ${ }^{[13}$ (SLI) requires that there exists $i \in\{1,2\}$ such that, for any A_{i}, choosing x_{i} from A_{i} and x_{j} from $\left\{x_{j}\right\}$ where $i \neq j$ is regarded as being indifferent to choosing x_{1} and x_{2} from singleton sets. According to (SLMS), there $i \in\{1,2\}$ such that, for any $A_{i}, B_{i} \in K_{i}$ where $A_{i} \supset B_{i}$, choosing (x_{1}, x_{2}) from A_{i} and $\left\{x_{j}\right\}$ is regarded as being preferred to choosing $\left(x_{1}, x_{2}\right)$ from B_{i} and $\left\{x_{j}\right\}$, where $i \neq j$. According to (SSPO), there $i \in\{1,2\}$ such that, for any $A_{i}, B_{i} \in K_{i}$ where $A_{i} \supset B_{i}$ and for all distinct $x_{1}, y_{1} \in X_{1}$ and distinct $x_{2}, y_{2} \in X_{2}$, choosing (x_{1}, x_{2}) from A_{i} and $\left\{x_{j}\right\}$ is regarded as being preferred to choosing $\left(y_{1}, y_{2}\right)$ from B_{i} and $\left\{y_{j}\right\}$, where $i \neq j$.

Theorem 16. \succeq satisfy (INDM), (SLI) if and only if it is extremely consequential.
Proof. If \succeq is extreme consequential, it satisfy (INDM) and (SLI). Therefore, it is only to show that if \succeq satisfy (INDM) and (SLI), it is extreme consequential, that is, for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega,\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$.

Let \succeq satisfy (INDM) and (SLI). We have only to show the following relation.
For all $x_{1} \in X_{1}$ and all $x_{2} \in X_{2}$ and all $A_{1} \in K_{1}$ and all $A_{2} \in K_{2}$,

$$
\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)
$$

First, without loss of generality, by (SLI), for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $B_{1} \in$ $K_{1},\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$. By (INDM), we have the following. For all $x_{1} \in X_{1}$ and all $x_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}$ and all $A_{2} \in K_{2}$,

$$
\begin{equation*}
\left|A_{1}\right| \times\left|A_{2}\right|=n,\left|B_{1}\right|=n, n<\infty \Leftrightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right) \tag{38}
\end{equation*}
$$

Moreover, by (SLI), we have the following. For all $B_{1} \in K_{1}$ and $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$,

$$
\begin{equation*}
\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right) \sim\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \tag{39}
\end{equation*}
$$

Therefore, by equation(38), equation(39) and the transitivity of \succeq, for all $x_{1} \in$ X_{1} and all $x_{2} \in X_{2}$ and all $A_{1} \in K_{1}$ and all $A_{2} \in K_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$.
Q.E.D.

Note that, by this theorem and Theorem2, we obtain two characterization of extreme consequentialism.

Theorem 17. \succeq satisfy (INDM), (SLSM) and (ROB) if and only if it is multiplicativeranking strongly consequential.

Proof. If \succeq is multiplicative-ranking strongly consequential, it satisfy (INDM), (SLSM) and (ROB). Therefore, it is only to show that if \succeq satisfy (INDM), (SLSM) and (ROB), it is multiplicative-ranking strongly consequential.

Let \succeq satisfy (INDM), (SLSM) and (ROB). First, we consider the case that $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. To begin with, by (INDM), we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$,

$$
\begin{equation*}
\text { if }\left|A_{1}\right|=\left|B_{1}\right| \text { and }\left|A_{2}\right|=\left|B_{2}\right| \text {, then }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{40}
\end{equation*}
$$

In Theorem1, we get same result by assuming (IND) and (BI). Without loss of generality, by (SLSM), for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}, A_{1} \supset B_{1}$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$.

By using (SLMS) and equation(40), we obtain that for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{1} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}$,

$$
\begin{equation*}
\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{1},\left\{x_{2}\right\}\right) \tag{41}
\end{equation*}
$$

${ }^{13}$ Of course, $i \in\{1,2\}$.

By using equation(41) and (INDM), we obtain the following equation. For all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}$ and all $A_{2}, B_{2} \in K_{2}$, if $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$, then $\left|A_{1}\right| \times\left|A_{2}\right|>\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$ $\succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$. Combining equation(40) implies that, if $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \sim$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$,

$$
\begin{equation*}
\left|A_{1}\right| \times\left|A_{2}\right| \geq\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{42}
\end{equation*}
$$

Next, we consider the case that $\forall x_{1}, y_{1} \in X_{1}, \forall x_{2}, y_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ$ $\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right)$. By using (ROB), for all $z_{1} \in X_{1}$ and all $z_{2} \in X_{2},\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ $\succ\left(y_{1}, y_{2} ;\left\{y_{1}, z_{1}\right\},\left\{y_{2}, z_{2}\right\}\right)$. Moreover, By the repeated use of (ROB), for all $B_{1} \in$ K_{1} and all $B_{2} \in K_{2}$,

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{43}
\end{equation*}
$$

From equation (42) and (44) with the transitivity, we can obtain the following equation. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(x_{1}, x_{2} ; B_{1}, B_{2}\right) \in \Omega$,

$$
\begin{equation*}
\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{44}
\end{equation*}
$$

Q.E.D.

Theorem 18. \succeq satisfy (INDM), (SLSM) and (INS) if and only if it is multiplicativeranking extremely nonconsequential.

Proof. If \succeq is multiplicative-ranking extremely nonconsequential, it satisfy (INDM), (SLSM) and (INS). Therefore, it is only to show that if \succeq satisfy (INDM), (SLSM) and (INS), it is multiplicative-ranking extremely nonconsequential.

Let \succeq satisfy (INDM), (SLSM) and (INS). To begin with, by using (INDM) and (INS), we have the following. for all $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right),\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$,

$$
\begin{equation*}
\text { if }\left|A_{1}\right| \times\left|A_{2}\right|=\left|B_{1}\right| \times\left|B_{2}\right|, \text { then }\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{45}
\end{equation*}
$$

Without loss of generality, by (SLSM), for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}, A_{1} \supset B_{1} \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right)$. Since (INDM) implies that if $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|$, then $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right) \sim\left(x_{1}, x_{2} ; B_{1}, B_{2}\right)$, we have the following equation. For all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}$,

$$
\begin{equation*}
\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(x_{1}, x_{2} ; B_{1},\left\{x_{2}\right\}\right) \tag{46}
\end{equation*}
$$

Equation(45) and equation(46) imply that \succeq is multiplicative-ranking extremely nonconsequential.
Q.E.D.

Theorem 19. \succeq satisfy (INDM), (SLSM) and (SSPO) if and only if it is multiplicativeranking strongly nonconsequential.
Proof. If \succeq is multiplicative-ranking strongly nonconsequential, it satisfy (INDM), (SLSM) and (SSPO). Therefore, it is only to show that if \succeq satisfy (INDM), (SLSM) and (SSPO), it is multiplicative-ranking strongly nonconsequential.

Let \succeq satisfy (INDM), (SLSM) and (SSPO). Without loss of generality, by (SLSM), for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}, A_{1} \supset B_{1}$ $\Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{1},\left\{y_{2}\right\}\right)$. Since (SSPO) correspond to (SLMS) when $x_{1}=y_{1}$ and $x_{2}=y_{2}$, then (SSPO) implies (SLMS). By using (SSPO) and (INDM), we obtain the following relation. For all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in X_{2}$ and all $A_{1}, B_{1} \in K_{1}$,

$$
\begin{equation*}
\left|A_{1}\right|>\left|B_{1}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1},\left\{x_{2}\right\}\right) \succ\left(y_{1}, y_{2} ; B_{1},\left\{y_{2}\right\}\right) \tag{47}
\end{equation*}
$$

By using equation(47) and (INDM), we obtain that for all $x_{1}, y_{1} \in X_{1}$ and $x_{2}, y_{2} \in$ X_{2} and all $A_{1}, B_{1} \in K_{1}$ and all $A_{2}, B_{2} \in K_{2}$,

$$
\begin{equation*}
\left|A_{1}\right| \times\left|A_{2}\right|>\left|B_{1}\right| \times\left|B_{2}\right| \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{1}\right) \succ\left(y_{1}, y_{2} ; B_{1}, B_{2}\right) \tag{48}
\end{equation*}
$$

Next, consider that $\left|A_{1}\right| \times\left|A_{2}\right|=\left|B_{1}\right| \times\left|B_{2}\right|$ for $A_{1}, B_{1} \in X_{1}$ and $A_{2}, B_{2} \in X_{2}$. From (INDM), we obtain that for all $A_{1}, B_{1} \in K_{1}$ and all $A_{2}, B_{2} \in K_{2}$,

$$
\text { If }\left|A_{1}\right| \times\left|A_{2}\right|=\left|B_{1}\right| \times\left|B_{2}\right|,
$$

then $\left(x_{1}, x_{2} ;\left\{x_{1}\right\},\left\{x_{1}\right\}\right) \succeq\left(y_{1}, y_{2} ;\left\{y_{1}\right\},\left\{y_{2}\right\}\right) \Rightarrow\left(x_{1}, x_{2} ; A_{1}, A_{1}\right) \succeq\left(y_{1}, y_{2} ; B_{1}, B_{2}\right)$
Q.E.D.

6 Extension to n Opportunity Sets

In this section, we describe the general case that there are n opportunities of choice.

6.1 Notation

Let N denote $\{1,2, \cdots, n\}, n<\infty$. Moreover, for all $i \in N$, let $X_{i} i \in N$, $\left|X_{i}\right| \geq 3$, be a set of all mutually and jointly exclusive alternatives in category i. The elements of X_{i} will be denoted by $x_{i}, y_{i}, z_{i}, \cdots . . K_{i}$ denotes a collection of non-empty subset of X_{i} and the elements in K_{i} will be denoted by $A_{i}, B_{i}, C_{i}, \cdots$. Extended alternative is $\left(x_{1}, \cdots, x_{n} ; A_{1}, \cdots, A_{n}\right),\left(y_{1}, \cdots, y_{n} ; B_{1}, \cdots, B_{n}\right), \cdots$. Let x denote $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and A denote $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$. Therefore, $(x ; A)$ and $(y ; B)$ represent $\left(x_{1}, \cdots, x_{n} ; A_{1}, \cdots, A_{n}\right)$ and $\left(y_{1}, \cdots, y_{n} ; B_{1}, \cdots, B_{n}\right)$, respectively.

Let \succeq be a reflexive, complete and transitive binary relation over Ω. The asymmetric and symmetric part of \succeq will be denoted by \succ and \sim respectively.

6.2 The Results

In this subsection, we only present the general case of extreme consequentialism and extreme nonconsequentialism. However, by simple application, we can obtain the general case of extreme consequentialism, strong consequentialism and strong nonconsequentialism.

First, we state the general case of basic axioms.
Axiom 20. Independence for Addition'(IND')
We have the following for all $i \in N$. For all $\left(x_{1}, \cdots, x_{n} ; A_{1}, \cdots, A_{n}\right),\left(y_{1}, \cdots, y_{n} ; B_{1}, \cdots, B_{n}\right)$ $\in \Omega$ and all $z_{i} \in X_{i} \backslash\left\{A_{i} \cup B_{i}\right\},\left(x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right) \succeq\left(y_{1}, y_{2}, \cdots, y_{n} ; B_{1}, B_{2}, \cdots, B_{n}\right)$ $\Leftrightarrow\left(x_{1}, \cdots, x_{n} ; A_{1}, \cdots, A_{i} \cup\left\{z_{i}\right\}, \cdots, A_{n}\right) \succeq\left(y_{1}, \cdots, y_{n} ; B_{1}, \cdots, B_{i} \cup\left\{z_{i}\right\}, \cdots, B_{n}\right)$

Axiom 21. Baseline Indifference(BI')
For all $x_{i} \in X_{i}$ and $y_{i}, z_{i} \in X_{i} \backslash\left\{x_{i}\right\}, \forall i \in N,\left(x_{1}, x_{2}, \cdots, x_{n} ;\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \cdots,\left\{x_{n}, y_{n}\right\}\right)$ $\sim\left(x_{1}, x_{2}, \cdots, x_{n} ;\left\{x_{1}, z_{1}\right\},\left\{x_{2}, z_{2}\right\}, \cdots,\left\{x_{n}, z_{n}\right\}\right)$

If \succeq satisfies (BI') and (IND'), then it satisfies (SI'). The following result correspond to Theorem1.

Theorem 20. Suppose \succeq satisfy (IND') and (BI'). If $\left|A_{i}\right|=\left|B_{i}\right|$ for all $i \in N$, then $\left(x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right) \sim\left(x_{1}, x_{2}, \cdots, x_{n} ; B_{1}, B_{2}, \cdots, B_{n}\right)$.

Proof. Exactly analogous to that of Theorem 1 Q.E.D.
Next, we define the general statement of extreme consequentialism, sum-ranking extreme nonconsequentialism, multiplicative-ranking extreme nonconsequentialism.

Definition 19. (Generalized extreme consequentialism)
\succeq is said to be extremely consequential if, for all ($x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}$),
$\left(x_{1}, \cdots, x_{n} ; B_{1}, B_{2}, \cdots, B_{n}\right) \in \Omega,\left(x_{1}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right) \sim\left(x_{1}, \cdots, x_{n} ; B_{1}, B_{2}, \cdots, B_{n}\right)$.
Definition 20. (Generalized sum-ranking extreme nonconsequentialism)
\succeq is said to be sum-ranking extremely nonconsequential if, for all ($x_{1}, \cdots, x_{n} ; A_{1}, \cdots, A_{n}$), $\left(y_{1}, \cdots, y_{n} ; B_{1}, \cdots, B_{n}\right) \in \Omega, \sum_{i}\left|A_{i}\right| \geq \sum_{i}\left|B_{i}\right| \Rightarrow\left(x_{1}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right) \succeq$ $\left(y_{1}, \cdots, y_{n} ; B_{1}, B_{2}, \cdots, B_{n}\right)$.

Definition 21. (Generalized multiplicative-ranking extreme nonconsequentialism) \succeq is said to be sum-ranking extremely nonconsequential if, for all ($x_{1}, \cdots, x_{n} ; A_{1}, \cdots, A_{n}$), $\left(y_{1}, \cdots, y_{n} ; B_{1}, \cdots, B_{n}\right) \in \Omega, \prod_{i}\left|A_{i}\right| \geq \prod_{i}\left|B_{1}\right| \Rightarrow\left(x_{1}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right) \succeq$ $\left(y_{1}, \cdots, y_{n} ; B_{1}, B_{2}, \cdots, B_{n}\right)$.

Generalized extreme consequentialism, generalized sum-ranking extreme nonconsequentialism, generalized multiplicative extreme nonconsequentialism is the general case of extreme consequentialism, sum-ranking extreme nonconsequentialism, multiplicative-ranking extreme nonconsequentialism respectively. To characterize these concepts, we need the following axioms.

Axiom 22. Local Indifference' i (LI' i)
For $i \in N$ and all $x_{j} \in X_{j}$ where $j=1, \ldots n$, there exist $A_{i} \in X_{i} \backslash\left\{x_{i}\right\}$ such that
$\left(x_{1}, \cdots, x_{i}, \cdots, x_{n} ;\left\{x_{1}\right\}, \cdots,\left\{x_{i}\right\}, \cdots,\left\{x_{n}\right\}\right) \sim\left(x_{1}, \cdots, x_{i}, \cdots, x_{n} ;,\left\{x_{1}\right\}, \cdots, A_{i}, \cdots,\left\{x_{n}\right\}\right)$.
Axiom 23. Local Strict Monotonicity' i (LSM'i)
For $i \in N$ and all $x_{j} \in X_{j}$ where $j=1, \ldots n$, there exists $A_{i} \in K_{i} \backslash\left\{x_{i}\right\}$ such that $\left(x_{1}, \cdots, x_{n} ;\left\{x_{1}\right\}, \cdots, A_{i}, \cdots,\left\{x_{n}\right\}\right) \succ\left(x_{1},, \cdots, x_{n} ;\left\{x_{1}\right\},\left\{x_{2}\right\}, \cdots .\left\{x_{n}\right\}\right)$.

Axiom 24. Semi-Local Strict Monotonicity' (SLSM')
There exists $i \in N$, for all $x_{j} \in X_{j}$ where $j=\{1, \cdots, n\}$ and all $A_{i}, B_{i} \in X_{i}, A_{i} \supset$ $B_{i} \Rightarrow\left(x_{1}, \cdots, x_{n} ;\left\{x_{1}\right\}, \cdots, A_{i}, \cdots,\left\{x_{n}\right\}\right) \succ\left(x_{1},, \cdots, x_{n} ;\left\{x_{1}\right\}, \cdots, B_{i}, \cdots .\left\{x_{n}\right\}\right)$

Axiom 25. Indifference of No-choice Situation'(INS')
For all $x_{i}, y_{i} \in X_{i}$ where $i=1, \cdots n,\left(x_{1}, x_{2}, \cdots, x_{n} ;\left\{x_{1}\right\},\left\{x_{2}\right\}, \cdots,\left\{x_{n}\right\}\right) \sim$ $\left(y_{1}, y_{2}, \cdots, y_{n} ;\left\{y_{1}\right\},\left\{y_{2}\right\}, \cdots,\left\{y_{n}\right\}\right)$.

Axiom 26. Trinary Indifference(TI')
For all $i, j=1, \cdots, n$ and all $x_{1} \in X_{1}, x_{2} \in X_{2} \cdots, x_{n} \in X_{n}, y_{i} \in X_{i} \backslash x_{i}$ and $y_{j} \in$ $X_{j} \backslash x_{j},\left(x_{1}, \cdots, x_{i}, \cdots, x_{n} ;\left\{x_{1}\right\}, \cdots,\left\{x_{i}, y_{i}\right\}, \cdots,\left\{x_{j}\right\},\left\{x_{n}\right\}\right) \sim\left(x_{1}, \cdots, x_{i}, \cdots, x_{n} ;\right.$ $\left.\left\{x_{1}\right\}, \cdots\left\{x_{i}\right\}, \cdots,\left\{x_{j}, y_{j}\right\}, \cdots,\left\{x_{n}\right\}\right)$.

Axiom 27. Independence for Multiplication'(INDM')
$m \in \mathbb{N}$. For all $i, j=1, \cdots, n$ and all $\left(x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, A_{2}, \cdots, A_{n}\right),\left(x_{1}, x_{2}, \cdots, x_{n} ;\right.$ $\left.B_{1}, B_{2}, \cdots, B_{n}\right) \in \Omega$ and all $C_{i} \in X_{i}, D_{j} \in X_{j}$ such that $A_{i} \cap C_{i}=\emptyset, B_{i} \cap D_{j}=\emptyset, m \times$ $\left|A_{i}\right|=\left|A_{i} \cup C_{i}\right|$ and $m \times\left|B_{j}\right|=\left|B_{j} \cup D_{j}\right|,\left(x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, \cdots, A_{i}, \cdots, A_{j}, \cdots, A_{n}\right)$ $\succeq\left(x_{1}, x_{2}, \cdots, x_{n} ; B_{1}, \cdots, B_{i}, \cdots, B_{j}, \cdots, B_{n}\right) \Leftrightarrow\left(x_{1}, x_{2}, \cdots, x_{n} ; A_{1}, \cdots, A_{i} \cup C_{i}, \cdots, A_{j}, \cdots, A_{n}\right)$ $\succeq\left(x_{1}, x_{2}, \cdots, x_{n} ; B_{1}, \cdots, B_{i} \cdots, B_{j} \cup D_{j}, \cdots, B_{n}\right)$.

Main Results is as follows. All results are proved by similar argument in $n=2$ case.

Theorem 21. \succeq satisfy $\left(I N D^{\prime}\right),\left(B I^{\prime}\right),\left(L I^{\prime}\right)$ if and only if it is generalized extreme consequential.

Proof. Exactly analogous to that of Theorem 2
Q.E.D.

Theorem 22. \succeq satisfy (IND'), (BI'), (LSM'), (INS') and (TI') if and only if it is generalized sum-ranking extreme nonconsequential.

Proof. Exactly analogous to that of Theorem 9
Q.E.D.

Theorem 23. \succeq satisfy (INDM'), (SLSM') and (INS') if and only if it is generalized multiplicative-ranking extreme nonconsequential.

Proof. Exactly analogous to that of Theorem 18
Q.E.D.

7 Conclusion

In this paper, by extending multiple opportunity sets, we construct the framework that can make us treat the diversity of freedom of choice, and characterize various type of consequentialism and nonconsequentialism. There are two frameworks, additive-ranking case and multiplicative-ranking case. In additive-ranking case, (IND) and (BI) is basic axioms, additive-ranking consequentialism and nonconsequentialism all satisfy (IND) and (BI). In multiplicative-ranking case, (INDM) is basic axiom. In both case, we can characterize the traditional concepts of economics, extreme consequentialism.

First, we argue the additive-ranking case. In addition to (IND) and (BI), each opportunity sets $A_{i}, i \in\{1, \cdots, n\}$ satisfy (LI i) or (LSM i). If opportunity sets all satisfy Local Indifference axiom, (LI i) for all $i \in\{1, \cdots, n\}$, then all opportunity set don't have the intrinsic value and \succeq is extremely consequential. If opportunity sets all satisfy Local Strictly Monotonicity, (LSM i) for all $\in\{1, \cdots, n\}$, the freedom of choice of all have the intrinsic value. In the intermediate case, some opportunity sets satisfy Local Indifference axiom and others satisfy Local Strictly Monotonicity, opportunity sets that Local Strictly Monotonicity have the intrinsic value.

With Local Strictly Monotonicity, (IND) and (BI), (ROB) and (INS) and (SPO) is crucial for which the intrinsic value of opportunity sets and the value of consequence is important. (ROB) requires that the value of consequence is more important than the intrinsic value of opportunity sets. According to (INS), consequence has no value. With Local Strictly Monotonicity, (IND) and (BI), (SPO) requires that the intrinsic value of opportunity sets is important than the intrinsic value of opportunity sets. Moreover, how evaluate various freedom of choices is depend on (TI), (PI), (WROB1), (SROB1).

Next, we argue the multiplicative-ranking case, which correspond to the framework of Suzumura and $\mathrm{Xu}(2001)$. In this case, (SLI) and (SLSM) have to same role as Local Indifferent and Local strict Monotonicity respectively. (SLI) and (SLSM), however, is stronger axioms than Local Indifferent and Local strict Monotonicity. With (SLI), freedom of choice don't matters, and with (SLSM), freedom of choice have the intrinsic value. In this case, (INS) and (ROB) have the critical role to characterize extreme nonconsequentialism and strong consequentialism respectively. To characterize strong nonconsequentialism, however, (SPO) is not sufficient, and we need another stronger axiom, (SSPO).

Finally, we note that our axiomatization of this paper is special case of this framework. Allowing trade-off between the value of consequence and the intrinsic value of opportunities, we can construct more general characterization. These task must be left for our future research.

$$
\begin{aligned}
& (I N D M)\left\{\begin{array}{l}
\oplus(S L I)=\text { extreme consequentialism } \\
\oplus(S L S M)\left\{\begin{array}{l}
\oplus(R O B)=\text { multiplicative strong consequentialism } \\
\oplus(I N S)=\text { multiplicative extreme nonconsequentialism } \\
\oplus(S S P O)=\text { multiplicative strong nonconsequentialism }
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

IND: Independence for addition
INDM: Indifference for Multiplication
BI: Baseline Indifference
LIi: Local Indifference for i th opportunity set
LSM i : Local Strict Monotonicity for i th opportunity set
SPO: Strong Preference for Opportunities
INS: Indifference of No-choice Situations
ROB: Robustness
TI: Trinary Indifference
PI: Proportional Indifference
WROB: Weakly Robustness
SROB: Strongly Robustness
SLI: Semi-Local Indifference
SLSM: Semi-Local Strict Monotonicity
SSPO: Semi-Strong Preference for Opportunities
*note; $(A) \oplus(B)$ indicates the logical combination of the two axioms A and B.

Appendix: Figure for 2 opportunity sets

IND: Independence for addition
INDM: Indifference for Multiplication
BI: Baseline Indifference
LI1: Local Indifference for first opportunity set
LI2: Local Indifference for second opportunity set
LSM1: Local Strict Monotonicity for first opportunity set
LSM2: Local Strict Monotonicity for second opportunity set
SPO: Strong Preference for Opportunities
INS: Indifference of No-choice Situations
ROB: Robustness
TI: Trinary Indifference
PI: Proportional Indifference
WROB1: Weakly Robustness for first opportunity set
SROB1: Strongly Robustness for first opportunity set
SLI: Semi-Local Indifference
SLSM: Semi-Local Strict Monotonicity
SSPO: Semi-Strong Preference for Opportunities
*note; $(A) \oplus(B)$ indicates the logical combination of the two axioms A and B.

References

[1] Anscombe,G.E.M (1958) "Modern Moral Philosophy" Philosophy 33, 1-19
[2] Arrow,K.J (1995) "A Note on Freedom and Flexibility" in Basu, Pattanaik and Suzumura(eds.) Choice, Welfare and Development Oxford University Press
[3] Baharad,E. and Nitzen,S. (2000) "Extended preference and freedom of choice" Social Choice and Welfare 17, 629-637
[4] Barbera,S., Bossert,W. and Pattanaik,K. (2004) "Ranking Set of Objects" in Barbera and Seidl Handbook of Utility Thoery Vol. 2:Extentions Kluenr Academic
[5] Bossert,W. Pattaniak,P.K. and Xu.Y (1994) "Ranking Opportunity Sets: An Axiomatic Approach" Journal of Economic Theory 63, 326-345
[6] Carter,I (2004) "Choice, freedom, and freedom of choice" Social Choice and Welfare 22, 61-81
[7] Gravel,N. (1994) "Can a Ranking of Opportunity sets Attach an Intrinsic Importance to Freedom of Choice?" American Economic Review 84, 454-458
[8] Gravel,N. (1998) "Ranking Opportunity Sets on the Basis of Their Freedom of Choice and Their Ability to Satisfy Preference: A Difficulty" Social Choice and Welfare 15,371-382
[9] Hart,H.L.A (1973) "Rawls on Liberty and Its priority" University of Chicago Law Review 40
[10] Jones,P. and Sugden,R. (1982) "Evaluating Choice" International Review of Law and Economics 2, 47-65
[11] Kreps,D.M. (1979) "Representation Theorem for 'Preference for Flexibility'" Econometrica 47, 565-577
[12] Nagel,T (1979) Mortal Questions Cambridge University Press
[13] Pattanaik,P.K. and Xu,Y. (1998) "On preference and freedom" Theory and Decision
[14] Pattanaik,P.K. and Xu,Y. (2000) "On diversity and freedom of choice" Mathematical Social Sciences
[15] Perfit,D. (1974) Reasons and Persons Oxford, U.K.: Clarendon Press
[16] Puppe,C (1995) "Freedom of choice and Rational Decision" Social Choice and Welfare 12, 137-153
[17] Puppe,C (1996) "An Axiomatic Approach to 'Preference for Freedom of Choice' " Journal of Economic Theory 68: 174-199
[18] Rawls,J. (1971) A Theory of Justice Oxford University Press
[19] Scheffer,S (1982) The Rejection of Consequentialism Oxford, U.K.: Clarendon Press
[20] Romeo-Medina,A. (2001) "More on preference and freedom" Social choice and welfare 18, 179-191
[21] Sen,A.K. (1970) Collective Choice and Social Welfare North-Holland
[22] Sen,A,K (1979) "Utilitarianism and Welfarism" Journal of Philosophy 76 ,463489
[23] Sen,A.K. (1982) "Evaluator relativity and consequential evaluation" Philosophy and Public Affairs 12, 113-132
[24] Sen,A.K. (1985a) Commodities and Capabilities Elsevier science Publishers
[25] Sen,A,K (1985b) "Well-being, Agency and Freedom" Journal of Philosophy 82, 169-221
[26] Sen,A.K. (1987) On Ethics and Economics Oxford:Basil Blackwell
[27] Sen,A.K. (1988) "Freedom of Choice: concept and content" European Economic Review 32, 269-294
[28] Sen,A.K. (1991)"Welfare, preference and freedom" Journal of Econometrics 50, 15-29
[29] Sen,A.K. (1992) Inequality Reexamined Oxford University Press
[30] Sen,A.K. (1995) "Rationality and social choice" American Economic Review 85, 1-24
[31] Sen,A.K. (1996) "Maximization and the act of choice" Econometrica 65, 745779
[32] Sen,A.K. (1999) Development as Freedom New York: Alfred A. Knoph
[33] Sen,A.K. (2002) Rationality and Freedom The Belknap Press of Harvard University Press
[34] Suzumura.K (1999) "Consequence, opportunities, and procedures" Social Choice and Welfare 16, 17-40
[35] Suzumura,K. (2000) "Welfare economics beyond welfarist-consequentialism" Japanese Economic Review 51, 1-32
[36] Suzumura,K. and Xu,Y. (2001) "Characterizations of consequentialism and non-consequentialism" Journal of Economic Theory 101, 423-436
[37] Suzumura,K. and Xu,Y.(2003) "Consequense, opportunities and generalized consequentialism and non-consequentialism" Journal of Economic Theory 111, 293-304
[38] Suzumura,K. and Xu,Y. (2004) "Welfarist-consequentialism, similarity of attitudes, and Arrow's general impossibility theorem" Social Choice and Welfare 22,237-251
[39] Williams,B.A.O (1973) "A critique of utilitarianism" in Smart and Williams(1973): Utilitarianism: For and Against. Cambridge University Press
[40] Williams,B.A.O (1981) Moral Luck Cambridge University Press

[^0]: *I am grateful to Katsuhito Iwai for many helpful conversations and suggestions. Several improvements are due to the comments of Hiroaki Ino, and Tomohiko Kawamori.
 'mailto, ksusumu@hotmail.co.jp, Graduate School of Economics, University of Tokyo

[^1]: ${ }^{1}$ See $\operatorname{Sen}(1979,1987)$ and Suzumura(2000).
 ${ }^{2}$ See also $\operatorname{Arrow}(1995)$ and $\operatorname{Sen}(1985 a, 1985 b, 1988,1991,1992,2002)$.
 ${ }^{3}$ For political philosophy, it is important problem whether the constitution guarantee essential freedoms for intrinsic values or for instrumental values.
 In Rawls(1971), as a result of choice of persons in the original position, a list of liberties are guaranteed by the first principle of justice. However, we cannot conclude that such freedoms have the intrinsic value for them. Since he does not know a certain personal status, they may agree a list of liberties for instrumental values. This issue related with Hart(1973) and the discussion of the priority of liberty, and we does not dealt here.
 Sen(1999) insists that political liberty have not only the instrumental value but also the intrinsic value.
 ${ }^{4}$ See Baharad and Nitzen(2000), Bossert, Pattanaik and $\mathrm{Xu}(1994)$, Pattanaik and $\mathrm{Xu}(1998,2000)$, Puppe $(1995,1996)$ and Romeo-Medina(2001).
 ${ }^{5}$ Barbera, Bossert and Pattanaik(2004) provides an extemsive review for this.

[^2]: ${ }^{6}$ The word of consequentialism originates from Anscombe(1958). On the detail definition of the concept, see Perfit(1984), Scheffler(1982). See also Nagel(1979) and Williams(1971,1981).
 ${ }^{7}$ Before Suzumura and $\mathrm{Xu}(2001,2003,2004)$, Grevel(1994.1998) analyzes the ordering over extended alternatives.
 ${ }^{8}$ How single opportunity set A is decomposed into multiple opportunity sets may be subjective. Consider 3 opportunities, choice of where you go, choice of how to go and choice of lunch. Suppose that opportunity set of where you go A_{1} is $\{\operatorname{London}(\mathrm{L}), \operatorname{Tokyo}(\mathrm{T})\}$, opportunity set of how you go A_{2} is $\{$ Airplane $(\mathrm{A}), \operatorname{Ship}(\mathrm{S})\}$, opportunity set of choice of lunch A_{3} is $\{\operatorname{Curry}(\mathrm{C}), \operatorname{Pasta}(\mathrm{P})\}$. Some people feel that they face 3 opportunities, but other recognize 2 opportunities, choice from $\{(\mathrm{L}, \mathrm{A}),(\mathrm{L}, \mathrm{S}),(\mathrm{T}, \mathrm{A}),(\mathrm{T}, \mathrm{S})\}$ and choice from $\{\mathrm{C}, \mathrm{P}\}$.

[^3]: ${ }^{9}$ (INS) corresponds to the axiom in Suzumura and $\mathrm{Xu}(2001)$. Similar concepts axiomatized in a form that Pattanaik and $\mathrm{Xu}(1990)$ call "indifference between no choice situation" and Jones and Sugden(1982) call "principle of no choice". Carter(2004) discuss for the axiom of "indifference between no choice situation".

[^4]: ${ }^{10}$ Now let $x, y, z \ldots$ and $A, B, C \ldots$ denote a element of $X_{1} \times X_{2}$ and $K_{1} \times K_{2}$. Then, (x, A) represents $\left(x_{1}, x_{2} ; A_{1}, A_{2}\right)$. The definition of our concepts rewritten as follows.

 Extreme consequentialism; For all $(x, A),(x, B) \in \Omega,(x, A) \sim(x, B)$
 Multiplicative-ranking strong consequentialism; For all $(x, A),(y, B) \in \Omega,(x, A) \succeq(x, B) \Leftrightarrow[$ $(x,\{x\}) \succ(y,\{y\})$ or $((x,\{x\}) \sim(y,\{y\}) \wedge|A| \geq|B|)]$

 Multiplicative-ranking extreme nonconsequentialism; For all $(x, A),(y, B) \in \Omega,|A| \geq|B| \Leftrightarrow(x, A) \succeq$ (x, B)

 Multiplicative-ranking strong nonconsequentialism; For all $(x, A),(y, B) \in \Omega,(x, A) \succeq(x, B) \Leftrightarrow[$ $|A|>|B|$ or $(|A|=|B| \wedge(x,\{x\}) \succeq(y,\{y\})]$
 ${ }^{11}$ In this case, $n=2$ and we adopt (INDM) for first opportunity set.
 ${ }^{12}$ In this case, $n=3$ and we adopt (INDM) for second opportunity set.

