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Abstract

In actual life, we face the opportunity of many choices, from that opportunity
set, we have to choose from different alternatives. So, Freedom of Choice is essential
when you lead a life as a valuable human being. However, we may often consider
that certain some opportunity sets are important, while other opportunity sets are
not so important. Thus, in order to grasp the relation between two or more oppor-
tunity sets, I extended Suzumura and Xu(2001,2003) to multiple-opportunity sets,
and axiomatized the concept of various consequentialism and nonconsequentialism.
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1 Introduction

Welfarist-Cosequentialism has long dominated the tradition of economic thought.1

On the view of Welfarist-Cosequentialism, the intrinsic value of freedom of choice
is ignored. Today, some people are pointing out the intrinsic value of freedom of
choice, they claim that “choosing may itself be a value part of living”(Sen,1992).2

Note that only Freedom of Choice which affects one’s life can have the intrinsic
value of opportunities. According to Sen, it is “life of genuine choice with serious
options may be . . . richer”. For example, it would not have the intrinsic value,
even if Freedom of Choice of choosing others’ lunch were given. Freedoms that are
guarantee by the constitution, such that political liberty, freedom of speech and
freedom of choice of work, have the intrinsic value.3

The purpose of this paper is extending the issue on freedom of choice of the
individual who faced multiple-choices and examine the above problems. In many
papers, the representative individual who likes freedom of choice is formalized.4

And evaluation of choice in the situation which consists of single-opportunity set is
dealt with in almost all papers. However, there is an important aspect of freedom
of choice which cannot be grasped exists in single-opportunity set approach. Then,
treating multiple-opportunity sets simultaneously, it is possible to grasp the relation
between two or more opportunity sets.

In actual life, we face various choice situations such as a life plan, choices in
educational choice, books, and food ... In such situation, people enjoy Freedom
of Choice and utilities by choice. When we are in the choice situation we faced
various opportunity sets, how can we evaluate degree of our Freedom of Choice?
Freedom of Choice of what is it? Can we ask which opportunity set is important,
for example, Freedom of Choice of work or Freedom of Choice of food? It is known
that in actual life, many people think that Freedom of Choice of work is more
important than Freedom of Choice of food. Here, two persons, Eric, and Layla,
exist and there are two choice situations, the choice of Eric’s job and Layla’s lunch.
Suppose that Eric has the right for choosing of Layla’s lunch. So, he has Freedom
of choice, and can choose what she eats as he like. However, choice of Layla’s lunch
is not essential for the life of Eric. In the life of Eric, choice of his job is essential,
and Freedom of Choice to work of Eric gives the intrinsic value of opportunities
to him. According to this argument, although some Freedom of Choice has the
intrinsic value of opportunities for an individual, some other Freedom of Choice
does not have it. That is, the diversity about the intrinsic value of opportunities
exists. In this paper, we examine the diversity of Freedom of Choice by extending
some frameworks and using multiple-opportunity sets.

In order to achieve our purpose there are two possible ways; binary relation over
opportunity sets and binary relation over extended alternatives. The former is tra-
ditional approach and developed by Kreps(1979), Jones and Sugden(1982), Bosert,
Pattanaik and Xu (1994) et all.5 By considering binary relation over the set of
available alternatives, and axiomatized the relation. In formal, A º B where A,B

1 See Sen(1979,1987) and Suzumura(2000).
2See also Arrow(1995) and Sen(1985a,1985b,1988,1991,1992,2002).
3 For political philosophy, it is important problem whether the constitution guarantee essential free-

doms for intrinsic values or for instrumental values.
In Rawls(1971), as a result of choice of persons in the original position, a list of liberties are guaranteed

by the first principle of justice. However, we cannot conclude that such freedoms have the intrinsic value
for them. Since he does not know a certain personal status, they may agree a list of liberties for
instrumental values. This issue related with Hart(1973) and the discussion of the priority of liberty, and
we does not dealt here.

Sen(1999) insists that political liberty have not only the instrumental value but also the intrinsic value.
4 See Baharad and Nitzen(2000), Bossert, Pattanaik and Xu(1994), Pattanaik and Xu(1998,2000),

Puppe(1995,1996) and Romeo-Medina(2001).
5 Barbera, Bossert and Pattanaik(2004) provides an extemsive review for this.
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are opportunity sets. The latter is dealt with in recently papers, Suzumura and
Xu(2001,2003,2004), it is used in order to characterizing consequentialism and non-
consequentialism. 6 They consider the ordering over extended alternative (x,A),
which means “Choosing alternative from opportunity set”. 7 Since we also inter-
est the feature of consequentialism and nonconsequentialism, then we adopt the
approach of Suzumura and Xu(2001,2003).

Since our main purpose is consideration in the choice from multiple opportunity
sets, our extended alternative (x1, x2, · · · , xn;A1, A2, · · · , An) means “choosing x1

from A1 and choosing x2 from A2 and · · · and choosing xn from An”. Vector
of alternatives (x1, x2, · · · , xn) represents consequence of the choice situation, and
utility u(x1, x2, · · · , xn) is given by numerical function u(·). According to Suzu-
mura and Xu(2001), extreme consequentialist only consequence (x1, x2, · · · , xn),
and extreme nonconsequentialist mind only the cardinality of opportunity sets
(|A1|, |A2|, · · · , |An|).

Consider extremely non-consequential person who faces the choice situation
in books and jobs. Let denote A1, B1 opportunity sets of job and A2, B2 op-
portunity sets of book, and suppose consequence is same and cardinality of op-
portunity set is as follows; (|A1|, |A2|) = (2, 1) and (|B1|, |B2|) = (1, 2). which
does the individual prefer (x1, x2;A1, A2) or (x1, x2; B1, B2)? If the individual
consider the freedom of choice of book is more important than one of job, then
(x1, x2; A1, A2) Â (x1, x2; B1, B2). If the individual consider the freedom of choice
of job is as important as one of book, (x1, x2; A1, A2) ∼ (x1, x2;B1, B2). We
must remark the relation between single opportunity set approach and multiple
one. Suppose that A1 = {Lady Chatterley’s Lover(L), My Fair Lady(M)} and
A2 = {Teacher(T), Artist(A)}. 4 consequences from this choice situation are pos-
sible; (Lady Chatterley’s Lover, Teacher), (Lady Chatterley’s Lover, Artist), (My
Fair Lady, Teacher) and (My Fair Lady, Artist). Constructing the opportunity
set A = {(L, T ), (L, A), (M, T ), (M, A)}, we can obtain single opportunity set. In
general, if individual face n opportunity sets A1, · · · , An, we reconsider single op-
portunity set by taking A = A1 × A2 × · · · × An. Therefore, our approach is
reinterpreted as decomposition A into categories A1, · · · , An. 8

Finally the structure of this paper is described as follows. In section 2, we
explain basic notation and basic axioms, and show those simple implications by
it. The decision under two opportunity sets, which is the simplest case, is covered
first. In section 3 we define consequentialism, and examine them axiomatically. In
section 4, we discuss nonconsequentialism and characterize the concept of various
nonconsequentialism axiomatically. Section5, we treat the relationship with Suzu-
mura and Xu(2001), and present axioms which are essential and differ from ones in
previous section. Furthermore, in section 6 we extend the model to general case,
which is considering the decision-making under limited opportunity sets. Finally
section 7 conclude this paper and give some remarks.

6The word of consequentialism originates from Anscombe(1958). On the detail definition of the
concept, see Perfit(1984), Scheffler(1982). See also Nagel(1979) and Williams(1971,1981).

7Before Suzumura and Xu(2001,2003,2004), Grevel(1994.1998) analyzes the ordering over extended
alternatives.

8How single opportunity set A is decomposed into multiple opportunity sets may be subjective.
Consider 3 opportunities, choice of where you go, choice of how to go and choice of lunch. Suppose
that opportunity set of where you go A1 is {London(L),Tokyo(T)}, opportunity set of how you go A2 is
{Airplane(A),Ship(S)}, opportunity set of choice of lunch A3 is {Curry(C),Pasta(P)}. Some people feel
that they face 3 opportunities, but other recognize 2 opportunities, choice from {(L,A),(L,S),(T,A),(T,S)}
and choice from {C,P}.
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2 The Basic Model

2.1 Notations

Let X1 and X2, where 3 ≤ |X1|, |X2| < ∞, be sets of all mutually exclusive and
jointly exhaustive alternatives in category 1 and 2 respectively, and X1 ∩X2 = ∅.
The elements of X1 will be denoted by x1, y1, z1, · · · . K1 denotes a collection
of non-empty subset of X1. Similarly, The elements of X2 will be denoted by
x2, y2, z2, · · · , and K2 denotes a collection of non-empty subset of X2. The elements
in K1 will be denoted by A1, B1, C1, · · · , and the elements in K2 will be denoted
by A2, B2, C2, · · · , and they are called opportunity sets. Let X1 × X2 ×K1 ×K2

will be denoted by (x1, x2; A1, A2), (y1, y2; B1, B2), (z1, z2;C1, C2), · · · , and they are
called extended alternatives. Let Ω = {(x1, x2;A1, A2)|A1 ∈ K1, A2 ∈ K2, x1 ∈ A1

and x2 ∈ A2}. That is, Ω contains all (x1, x2; A1, A2) such that A1 is an element
in K1, A2 is an element in K2, ,x1 is an element in A1 and x2 is an element in
A2. It should be clear that Ω ⊂ X1 × X2 ×K1 ×K2, and for all (x1, x2; A1, A2),
x1 ∈ A1 and x2 ∈ A2 holds. For all (x1, x2;A1, A2), the intended interpretation is
that alternative x1 is chosen from the opportunity set A1 and x2 is chosen from
the opportunity set A2. In this formulation, the consequence is (x1, x2) ∈ X1×X2.
Note that opportunity sets are multiple, but consequence from opportunity sets is
only one. Moreover, let (x2, x1; A2, A1) means (x1, x2; A1, A2).

Let º be a reflexive, complete and transitive binary relation over Ω. That
is, º is an ordering over Ω. The asymmetric and symmetric part of º will be
denoted by Â and ∼, respectively. For any (x1, x2; A1, A2), (y1, y2; B1, B2) ∈ Ω,
(x1, x2; A1, A2) º (y1, y2; B1, B2) is interpreted as ”choosing x1 from A1 and x2

from A2 is at least good as choosing y1 from B1 and y2 from B2”.
Note that, in this framework, If we define X = X1×X2 and K = K1×K2, the ex-

tended alternatives corresponds to the framework of Suzumura and Xu(2001,2003).
Moreover, in this framework, it is possible to deal difference of intrinsic value be-
tween opportunity sets.

2.2 Basic Axioms

In this subsection, we propose basic axioms and show the implication of them. We
extend axioms proposed by Suzumura and Xu(2001,2003) to axioms with multiple
opportunity sets.

Axiom 1. Independence for Addition(IND)
For all (x1, x2; A1, A2), (y1, y2; B1, B2)∈ Ω and all z1 ∈ X1 \ {A1 ∪ B1} and all
z2 ∈ X2 \ {A2 ∪ B2}, (x1, x2;A1, A2) º (y1, y2;B1, B2) ⇔ (x1, x2; A1 ∪ {z1}, A2) º
(y1, y2; B1 ∪ {z1}, B2) and (x1, x2;A1, A2) º (y1, y2;B1, B2) ⇔ (x1, x2; A1, A2 ∪
{z2}) º (y1, y2; B1, B2 ∪ {z2}).
Axiom 2. Simple Indifference(SI)
For all x1 ∈ X1 and all y1, z1 ∈ X1 \ {x1} and all x2 ∈ X2 and all y2, z2 ∈ X2 \
{x2}, (x1, x2; {x1, y1}, {x2}) ∼ (x1, x2; {x1, z1}, {x2}) and (x1, x2; {x1}, {x2, y2}) ∼
(x1, x2; {x1}, {x2, z2}).
Axiom 3. Baseline Indifference(BI)
For all x1 ∈ X1 and all y1, z1 ∈ X1 \{x1} and all x2 ∈ X2 and all y2, z2 ∈ X2 \{x2},
(x1, x2; {x1, y1}, {x2, y2}) ∼ (x1, x2; {x1, z1}, {x2, z2}).

(IND) is a similar concept to the independence axiom proposed by Suzumura
and Xu(2001,2003,2004). Its implication is simple: if z1 is not in A1 and z2 is
not in A2, the ordering over (x1, x2; A1 ∪ {z1}, A2) and (y1, y2; B1 ∪ {z1}, B2), and
that over (x1, x2;A1, A2 ∪{z2}) and (y1, y2;B1, B2 ∪{z2}) are corresponding to the
ordering over (x1, x2; A1, A2) and (y1, y2; B1, B2) regardless of the nature of z1 and
z2.
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(SI) and (BI) are very similar axioms. (SI) requires that choosing consequence
(x1, x2) from opportunity sets such that |A1| = 2 and |A2| = 1 are indifferent, and
choosing (x1, x2) from opportunity sets that |A1| = 1 and |A2| = 2 are indifferent.
That is, alternative that do not choose is ignored. (BI) requires that if consequence
(x1, x2) is same, choices from opportunity set that have two alternatives are in-
different. In the case of multiple opportunity sets, however, (IND) occur much
problems.

The problem is which we need both (SI) and (BI) or do not. The following
result summarizes the relation of above three axioms, that is (IND), (SI) and (BI)
are not independent.

Lemma 1. If º satisfies (BI) and (IND), then it satisfy (SI)

Proof. Letº satisfy (IND) and (BI). From (BI), for all y1, z1 ∈ X1\{x1} and all y2 ∈
X2 \ {x2}, (x1, x2; {x1, y1}, {x2, y2}) ∼ (x1, x2; {x1, z1}, {x2, y2}). By using (IND),
for all x1 ∈ X1 and all y1, z1 ∈ X1 \ {x1} and all x2 ∈ X2, (x1, x2; {x1, y1}, {x2}) ∼
(x1, x2; {x1, z1}, {x2}).

By similar argument, we can show for all x1 ∈ X1 and all x2 ∈ X2 and all
y2, z2 ∈ X2 \ {x2}, (x1, x2; {x1}, {x2, y2}) ∼ (x1, x2; {x1}, {x2, y2}). Q.E.D.

The following implication of (IND) and (BI) prove very useful.

Theorem 1. Suppose º satisfy (IND) and (BI). If |A1| = |B1|and|A2| = |B2|,
then (x1, x2; A1, A2) ∼ (x1, x2;B1, B2).

Proof. First, we consider the case that A1 ∩ B1 = {x1} and A2 ∩ B2 = {x2}.
Suppose that A1 = {x1, a11, a12, · · · , a1l} and A2 = {x2, a21, a22, · · · , a2k} and B1 =
{x1, b11, b12, · · · , b1l} and B2 = {x2, b21, b22, · · · , b2k}. Let l, k < ∞. From (BI),
(x1, x2; {x1, a1g}, {x2, a2h}) ∼ (x1, x2; {x1, b1i}, {x2, b2j}) for all g, i = 1, 2, · · · , k
and h, j = 1, 2, · · · , l.

By using (IND), (x1, x2; {x1, a11, a12}, {x2, a2h}) ∼ (x1, x2; {x1, a11, b12}, {x2, b2j})
and (x1, x2; {x1, a11, b12}, {x2, a2h}) ∼ (x1, x2; {x1, b11, b12}, {x2, b2j}). From the
transitivity, (x1, x2; {x1, a11, a12}, {x2, a2h}) ∼ (x1, x2; {x1, b11, b12}, {x2, b2j}). Since
opportunity sets are finite, we obtain that, for all A1, B1 ∈ X1 and a2h, b2j ∈ X2,
(x1, x2; A1, {x2, a2h}) ∼ (x1, x2; B1, {x2, b2j}) by using (IND) repeatedly.

Moreover, by using (IND),(x1, x2; A1, {x2, a21, a22}) ∼ (x1, x2;B1, {x2, a21, b22})
and (x1, x2;A1, {x2, a21, b22}) ∼ (x1, x2; B1, {x2, b21, b22}). By the transitivity of
º, (x1, x2; A1, {x2, a21, a22}) ∼ (x1, x2;B1, {x2, b21, b22}). By using (IND) and the
transitivity, we can obtain (x1, x2;A1, A2) ∼ (x1, x2; B1, B2)

Next, we consider the case that A1∩B1 = {x1} ∪C1 and A2∩B2 = {x2} ∪C2

where C1 or C2 is nonempty. Note that (x1, x2; A1 \ C1, A2 \ C2) ∼ (x1, x2;B1 \
C1, B2 \C2) because |A1 \C1| = |B1 \C1| and |A2 \C2| = |B2 \C2|. Then, we can
get (x1, x2; A1, A2) ∼ (x1, x2; B1, B2) by (IND). Q.E.D.

3 Consequentialism

In this section, we define and characterize extreme consequentialism and strong
consequentialism.

3.1 Extreme consequentialism

To begin with, we define extreme consequentialism as follows.

Definition 1. (Extreme consequentialism)
º is said to be extremely consequential if, for all (x1, x2; A1, A2), (x1, x2; B1, B2) ∈
Ω, (x1, x2; A1, A2) ∼ (x1, x2; B1, B2).
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Our consequentialism definition corresponds to one in Suzumura and Xu[??].
Extreme consequentialism implies that the ordering depend on only consequences
(x1, x2), (y1, y2), and any opportunity sets A1, A2, B1 and B2 don’t affect the order-
ing. To characterize extreme consequentialism, we propose the following axioms.

Axiom 4. Local Indifference 1(LI1)
For all x1 ∈ X1 and x2 ∈ X2, there exist (x1, x2; A1, {x2}) ∈ Ω such that (x1, x2; {x1}, {x2}) ∼
(x1, x2; A1, {x2}) where A1 6= {x1}.
Axiom 5. Local Indifference 2(LI2)
For all x1 ∈ X1 and x2 ∈ X2, there exist (x1, x2; {x1}, A2) ∈ Ω such that (x1, x2; {x1}, {x2}) ∼
(x1, x2; {x1}, A2) where A2 6= {x2}.

(LI1) require that there exists A1 ∈ K1, which is not {x1} such that choosing
x1 from A1 and x2 from {x2} is regarded as being indifferent as choosing x1 from
{x1} and x2 from {x2}. Similarly, (LI2) require that there exists A2 ∈ K2 which
is not {x2}, such that choosing x1 from {x1} and x2 from A2 is regarded as being
indifferent as choosing x1 from {x1} and x2 from {x2}. Combining these axioms
with (IND) and (BI), we can get the following result.

Theorem 2. º satisfies (IND),(BI), (LI1) and (LI2) if and only if it is extremely
consequential.

Proof. If º is extremely consequential, it is satisfies (IND),(BI),(LI1) and (LI2).
Therefore, we have only to show that if º satisfy (IND),(BI), (LI1) and (LI2), then
it is extremely consequential.

Let º satisfy (IND),(BI), (LI1) and (LI2). Now, since º satisfy (IND) and (BI),
from Theorem1, we have the following.

|A1| = |B1| and |A2| = |B2| ⇒ (x1, x2; A1, A2) ∼ (x1, x2;B1, B2) (1)

Therefore, we have only to show the case where |A1| 6= |B1| or |A2| 6= |B2|. To
begin with, we show the following relation.

(x1, x2; {x1, y1}, {x2}) ∼ (x1, x2; {x1}, {x2}) for all y1 ∈ X1 \ {x1} (2)

Suppose that there exist a1 ∈ X1 \ {x1} such that (x1, x2; {x1, a1}, {x2}) Â
(x1, x2; {x1}, {x2}). From (BI) and the transitivity, we can get the following.

(x1, x2; {x1, y1}, {x2}) Â (x1, x2; {x1}, {x2}) for all y1 ∈ X1 \ {x1} (3)

By using (IND), (x1, x2; {x1, y1, z1}, {x2}) Â (x1, x2; {x1, z1}, {x2}) for all z1 ∈
X1\{x1, y1}. From Theorem1 and the transitivity of º, (x1, x2; {x1, y1, z1}, {x2}) Â
(x1, x2; {x1}, {x2}) for all y1, z1 ∈ X1 \ {x1}. By using similar argument, we can
show the following.

∀A1 ∈ K1 where |A1| ≥ 2,∀x1 ∈ X1, ∀x2 ∈ X2, (x1, x2; A1, {x2}) Â (x1, x2; {x1}, {x2})
(4)

Equation(4) is contradiction with (LI1). Similarly, if there exist b1 ∈ X1 \ {x2}
such that (x1, x2; {x1}, {x2}) Â (x1, x2; {x1, b1}, {x2}), this cause another contra-
diction. So, equation(2) holds. From equation(1) and (2), since opportunity sets is
finite, by using (IND) and the transitivity repeatedly,

∀A1 ∈ K1, ∀x1 ∈ X1, ∀x2 ∈ X2, (x1, x2; A1, {x2}) ∼ (x1, x2; {x1}, {x2}). (5)

By same argument, we can show that (x1, x2; {x1}, {x2, y2}) ∼ (x1, x2; {x1}, {x2})
for all y1 ∈ X1 \ {x1} Hence, from (IND) and transitivity, we can get the following.

∀A2 ∈ K2, ∀x1 ∈ X1, ∀x2 ∈ X2, (x1, x2; {x1}, A2) ∼ (x1, x2; {x1}, {x2}) (6)
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From equation(5) and equation(6), For all A1 ∈ K1, all A2 ∈ K2, all x1 ∈ X1

and all x2 ∈ X2, (x1, x2; A1, {x2}) ∼ (x1, x2; {x1}, {x2}) ∼ (x1, x2; {x1}, A2).
So,(x1, x2; {x1, y1, z1}, {x2}) ∼ (x1, x2; {x1, z1}, {x2}) ∼ (x1, x2; {x1}, {x2}) ∼

(x1, x2; {x1}, {x2, y2}) ∼ (x1, x2; {x1}, {x2, y2, z3}). By simple application of (IND),
(x1, x2; {x1, y1, z1}, {x2, a2}) ∼ (x1, x2; {x1, z1}, {x2, a2}) ∼ (x1, x2; {x1}, {x2, a2}) ∼
(x1, x2; {x1}, {x2, y2, a2}) ∼ (x1, x2; {x1}, {x2, y2, z3, a2}). These relationships and
equation(1) lead us to have the following.

(x1, x2; {x1, y1, z1}, {x2, y2}) ∼ (x1, x2; {x1, y1, z1}, {x2}) ∼
(x1, x2; {x1, z1}, {x2, y2}) ∼ (x1, x2; {x1, z1}, {x2}) ∼ (x1, x2; {x1}, {x2}) ∼

(x1, x2; {x1}, {x2, y2}) ∼ (x1, x2; {x1}, {x2, y2, z3}) ∼ (x1, x2; {x1}, {x2, y2, z3, w2}).
By using this argument, since opportunity sets is finite, we can get the case

where |A1| 6= |B1| or |A2| 6= |B2|.
Q.E.D.

3.2 Strongly consequentialism

According to Suzumura and Xu(2001,2003,2004), we define strong consequential-
ism. Strong consequentialism requires that when the individual prefers (x1, x2; {x1}, {x2})
to (y1, y2; {y1}, {y2}), then he or she prefers (x1, x2; A1, A2) to (y1, y2; B1, B2), so
opportunities do not matter. If alternatives are indifferent in choice from sin-
gleton opportunity sets, he ore she evaluates by cardinalities of each opportunity
set. That is, opportunities matter only when the individual is indifferent between
(x1, x2; {x1}, {x2}) and (y1, y2; {y1}, {y2}). In our framework, several version of
strong consequentialism can be defined.

Before proposing strong consequentialism, we present the following axioms that
will be use in our characterization results.

Axiom 6. Local Strict Monotonicity 1 (LSM1)
For all x1 ∈ X1 and x2 ∈ X2,there exists (x1, x2;A1, {x2}) ∈ Ω\{(x1, x2; {x1}, {x2})}
such that (x1, x2; A1, {x2}) Â (x1, x2; {x1}, {x2}).
Axiom 7. Local Strict Monotonicity 2 (LSM2)
For all x1 ∈ X1 and x2 ∈ X2,there exists (x1, x2; {x1}, A2) ∈ Ω\{(x1, x2; {x1}, {x2})|
such that (x1, x2; {x1}, A2) Â (x1, x2; {x1}, {x2}).

(LSM1) requires that there exist a first opportunity set A1 such that choosing
x1 from first opportunity set A1 and x2 from second opportunity set {x2} is strictly
better than choosing x1 and x2 from the singleton sets {x1} and {x2}. Similarly,
(LSM2) requires that there exist a first opportunity set A2 such that choosing x1

from first opportunity set {x1} and x2 from second opportunity set A2 is strictly
better than choosing x1 and x2 from the singleton sets {x1} and {x2}. These axioms
are a minimal and local requirement for the intrinsic value of freedom of choice.

Combining (IND) and (BI), Local Strict Monotonicity axiom imply the following
results that will prove useful in establishing the reminder of our results in this paper.

Lemma 2. If º satisfy (IND), (BI) and (LSM1), then, for all (x1, x2; A1, A2),
(x1, x2; B1, B2)∈ Ω, |A1| > |B1| and |A2| = |B2| ⇒ (x1, x2; A1, A2) Â (x1, x2; B1, B2).

Proof. Let º satisfy (IND), (BI) and (LSM1).
To begin with, we show the following.

∀x1 ∈ X1, ∀y1 ∈ X1 \ {x1}, (x1, x2; {x1, y1}, {x2}) Â (x1, x2; {x1}, {x2}) (7)

Suppose that there exist a1 ∈ X1\{x1} such that (x1, x2; {x1}, {x2}) º (x1, x2; {x1, a1}, {x2}).
From (BI) and the transitivity, we can get the following.

(x1, x2; {x1}, {x2}) º (x1, x2; {x1, y1}, {x2}) for all y1 ∈ X1 \ {x1} (8)
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By using (IND), (x1, x2; {x1, z1}, {x2}) º (x1, x2; {x1, y1, z1}, {x2}) for all z1 ∈
X1 \ {x1, y1}. From Theorem1 and the transitivity of º, (x1, x2; {x1}, {x2}) º
(x1, x2; {x1, y1, z1}, {x2}) for all y1, z1 ∈ X1 \ {x1}. By using similar argument, we
can show the following.

∀A1 ∈ K1 where |A1| ≥ 2,∀x1 ∈ X1, ∀x2 ∈ X2, (x1, x2; {x1}, {x2}) º (x1, x2;A1, {x2})
(9)

Equation(9) is contradiction with (LSM1). Hence, by completeness of º, equa-
tion(7) holds. By using equation(7) and (IND) repeatedly, we get the following.

ForallA1, B1 ∈ K1, allx2 ∈ X2, |A1| > |B1| ⇒ (x1, x2; A1, {x2}) Â (x1, x2;B1, {x2})

From this equation and (IND) and Theorem1, for all (x1, x2;A1, A2), (x1, x2;B1, B2)∈
Ω, |A1| > |B1| and |A2| = |B2| ⇒ (x1, x2;A1, A2) Â (x1, x2; B1, B2). Q.E.D.

Lemma 3. If º satisfies (IND), (BI) and (LSM2), then, for all (x1, x2; A1, A2),
(x1, x2; B1, B2)∈ Ω, |A1| = |B1| and |A2| > |B2| ⇒ (x1, x2; A1, A2) Â (x1, x2; B1, B2).

Proof. Exactly analogous to that of Lemma2 Q.E.D.

Corollary 1. If º satisfies (IND), (BI) and (LSM1) and (LSM2), then, for all
(x1, x2; A1, A2), (x1, x2; B1, B2)∈ Ω, |A1| ≥ |B1| and |A2| ≥ |B2| ⇒ (x1, x2; A1, A2) º
(x1, x2; B1, B2).

Proof. Let º satisfy (IND),(BI), (LSM1) and (LSM2). There are 3 cases, (i)|A1| >
|B1| and |A2| = |B2|, (ii)|A1| = |B1| and |A2| > |B2|, and (iii)|A1| > |B1| and
|A2| > |B2|. It is straightforward to show the first case and the second case by
Lemma2 and Lemma3.

Therefore, we have only to show that, for all (x1, x2; A1, A2), (x1, x2;B1, B2)∈ Ω,
|A1| > |B1| and |A2| > |B2| ⇒ (x1, x2; A1, A2) Â (x1, x2; B1, B2). There exist C1 ∈
K1 such that C1 ⊂ A1, x1 /∈ C1 and |C1| = |B1|. Since |C1| = |B1| and |A2| > |B2|,
by Lemma3, (x1, x2; C1, A2) Â (x1, x2; B1, B2). Moreover, since |A1| > |C1| and
|A2| = |A2|, by Lemma2, (x1, x2; A1, A2) Â (x1, x2; C1, A2). By the transitivity of
º, (x1, x2; A1, A2) Â (x1, x2;B1, B2). Q.E.D.

Now, we define several variations of strong consequentialism. These concepts is
deferent in how to evaluate opportunities.

Definition 2. (First opportunity set ranking strong consequentialism)
º is said to be first opportunity set ranking strongly consequential if, for all
(x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω, (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}) ⇒ [
(x1, x2; A1, A2)º (y1, y2; B1, B2)⇔ |A1| ≥ |B1| ], and (x1, x2; {x1}, {x2})Â (y1, y2; {y1}, {y2})
⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2).

Definition 3. (Second opportunity set ranking strong consequentialism)
º is said to be second opportunity set ranking strongly consequential if, for all
(x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω, (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}) ⇒ [
(x1, x2; A1, A2)º (y1, y2; B1, B2)⇔ |A2| ≥ |B2| ], and (x1, x2; {x1}, {x2})Â (y1, y2; {y1}, {y2})
⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2).

Definition 4. (Sum-ranking strong consequentialism)
º is said to be sum-ranking strongly consequential if, for all (x1, x2;A1, A2), (y1, y2; B1, B2)∈
Ω, (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}) ⇒ [ (x1, x2; A1, A2) º (y1, y2; B1, B2)
⇔ |A1| + |A2| ≥ |B1| + |B2| ], and (x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2}) ⇒
(x1, x2; A1, A2) Â (y1, y2;B1, B2).

To characterize strong consequentialism, we need additional axiom.
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Axiom 8. Robustness(ROB)
For all (x1, x2;A1, A2), (y1, y2; B1, B2)∈ Ω and all z1 ∈ X1 ,z2 ∈ X2, if (x1, x2; {x1}, {x2})
Â (y1, y2; {y1}, {y2}) and (x1, x2; A1, A2) Â (y1, y2; B1, B2), then (x1, x2; A1, A2) Â
(y1, y2; B1 ∪ {z1}, B2) and (x1, x2; A1, A2) Â (y1, y2; B1, B2 ∪ {z2}).

(ROB) require that for all z1 ∈ X1 and all z2 ∈ X2, if the individual rank-
ing higher (x1, x2;A1, A2) than (y1, y2; B1, B2), then (x1, x2; A1, A2) is still ranked
higher than (y1, y2; B1 ∪ {z1}, B2) and (y1, y2; B1, B2 ∪ {z2}).
Theorem 3. º satisfy (IND), (BI), (LSM1), (LI2) and (ROB) if and only if it is
first opportunity set ranking strongly consequential.

Proof. If º is first opportunity set ranking strongly consequential, then it satisfy
(IND), (BI), (LSM1), (LI2) and (ROB). Therefore, we have only to show that if
º satisfy (IND), (BI), (LSM1), (LI2) and (ROB), then it is first opportunity set
ranking strongly consequential.

Let º satisfy (IND), (BI), (LSM1), (LI2) and (ROB). By similar argument in
Theorem2, we have the following.

∀A2 ∈ K2, ∀x1 ∈ X1, ∀x2 ∈ X2, (x1, x2; {x1}, A2) ∼ (x1, x2; {x1}, {x2}). (10)

By using (IND) and Theorem1, for all A2 ∈ K2 and for all A1, B1 ∈ K1 such
that |A1| = |B1|, (x1, x2;A1, A2) ∼ (x1, x2; B1, {x2}). From Lemma2, for all
(x1, x2; A1, A2), (x1, x2; B1, B2) ∈ Ω,

|A1| ≥ |B1| ⇔ (x1, x2; A1, A2) º (x1, x2; B1, B2). (11)

First, consider that, for all x1, y1 ∈ X1 and all x2, y2 ∈ X2,(x1, x2; {x1}, {x2})
∼ (y1, y2; {y1}, {y2}). By using (IND) and Theorem1, |A1| = |B1| and |A2| = |B2|
⇒ (x1, x2;A1, A2) ∼ (y1, y2; B1, B2). From equation(11) and the transitivity, we
obtain |A1| ≥ |B1| ⇔ (x1, x2; A1, A2) º (y1, y2; B1, B2).

Next, suppose that, for all x1, y1 ∈ X1 and all x2, y2 ∈ X2, (x1, x2; {x1}, {x2}) Â
(y1, y2; {y1}, {y2}). By using (ROB), (x1, x2; {x1}, {x2})Â (y1, y2; {y1, z1}, {y2, z2}).
Moreover, by using (ROB) repeatedly, (x1, x2; {x1}, {x2}) Â (y1, y2; A1, A2). By
simple application of equation(11) and the transitivity of º, we have the following.

for all (x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω, (x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2})
⇒ (x1, x2;A1, A2) Â (y1, y2; B1, B2)

Q.E.D.

Theorem 4. º satisfy (IND), (BI), (LI1), (LSM2) and (ROB) if and only if it is
first opportunity set ranking strongly consequential.

Proof. Exactly analogous to that of Theorem3 Q.E.D.

Since sum-ranking strong nonconsequentialism allows trade-off between the value
of first opportunity set and one of second, to characterize it, we need more axiom.

Axiom 9. Trinary Indifference(CI)
For all x1, y1 ∈ X1 and all x2, y2 ∈ X2, (x1, x2; {x1, y1}, {x2}) ∼ (x1, x2; {x1}, {x2, y2})

According to (TI), if consequence (x1, x2) is same, choices from opportunity set
such that the summation of the cardinality is three are indifferent, independent of
the nature of the alternative that is not chosen.

We note the following results which will prove useful in establishing the reminder
of our results in this paper.

Lemma 4. If º satisfy (IND), (BI), (LSM1), (LSM2), (TI), then |A1| + |A2| ≥
|B1|+ |B2| ⇒ (x1, x2;A1, A2) º (x1, x2; B1, B2).
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Proof. Let º satisfy (IND), (BI), (LSM1), (LSM2) and (TI). First, by Theorem1,
for all (x1, x2; A1, A1), (x1, x2; B1, B1) ∈ Ω,

|A1| = |B1| and |A2| = |B2| ⇒ (x1, x2; A1, A2) ∼ (x1, x2;B1, B2) (12)

Moreover, (TI) implies that, |A1| + |A2| = |B1| + |B2| = 3, (x1, x2; A1, A2) ∼
(x1, x2; B1, B2).

From simple application of (TI) and (IND), for all distinct x1, y1, z1 ∈ X1 and
all distinct x2, y2, z2 ∈ X2,

(x1, x2; {x1, y1, z1}, {x2}) ∼ (x1, x2; {x1, y1}, {x2, y2}) ∼ (x1, x2; {x1, y1}, {x2, y2, z2})
(13)

By using equation(12) and equation(13), for all A1, B1 ∈ X1 and all A2, B2 ∈ X2,
|A1|+ |A2| = |B1|+ |B2| ≤ 4 ⇒ (x1, x2; A1, A2) ∼ (x1, x2; B1, B2).

Since opportunity sets is finite, by similar argument, we obtain the following.
For all (x1, x2; A1, A2), (x1, x2; B1, B2) ∈ Ω,

|A1|+ |A2| = |B1|+ |B2| ⇒ (x1, x2; A1, A2) ∼ (x1, x2; B1, B2) (14)

Now, suppose |A1| + |A2| > |B1| + |B2|. There exists C1 ∈ X1 and C2 ∈ X2

such that |A1| + |A2| = |C1| + |C2| and |C1| > |B1| ∧ |C2| = |B2|. By Lemma2,
(x1, x2; C1, C2) Â (x1, x2; B1, B2). And, by using equation(14), since |A1|+ |A2| =
|C1|+ |C2|, (x1, x2; A1, A2) ∼ (x1, x2; C1, C2). From transitivity of º, |A1|+ |A2| >
|B1| + |B2| ⇒ (x1, x2; A1, A2) Â .(x1, x2; B1, B2). Then, we obtain that, for all
(x1, x2; A1, A1), (x1, x2; B1, B1) ∈ Ω, |A1|+ |A2| ≥ |B1|+ |B2| ⇒ (x1, x2;A1, A2) º
(x1, x2; B1, B2). Q.E.D.

We are now ready to axiomatize completely sum-ranking strong consequential-
ism.

Theorem 5. º satisfy (IND), (BI), (TI), (LSM1), (LSM2) and (ROB) if and only
if it is sum-ranking strongly consequential.

Proof. If º is sum-ranking strongly consequential, then it satisfy (IND), (BI), (TI),
(LSM1), (LSM2) and (ROB). Therefore, we have only to show that if º satisfy
(IND), (BI), (TI), (LSM1), (LSM2) and (ROB), then it is sum-ranking strongly
consequential.

Let º satisfy (IND), (BI), (TI), (LSM1), (LSM2) and (ROB). By Lemma4, we
have the following. for all (x1, x2; A1, A2),(x1, x2; B1, B2)∈ Ω,

|A1|+ |A2| ≥ |B1|+ |B2| ⇒ (x1, x2; A1, A2) º (x1, x2; B1, B2) (15)

First, suppose that, for all x1, y1 ∈ X1 and all x2, y2 ∈ X2,(x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}). By (IND), for all z1 ∈ X1 and all z2 ∈ X2, (x1, x2; {x1, z1}, {x2})
∼ (y1, y2; {y1, z1}, {y2}) and (x1, x2; {x1}, {x2, z2}) ∼ (y1, y2; {y1}, {y2, z2}). By us-
ing (TI) and Theorem1, we obtain that (x1, x2; {x1, y1}, {x2})∼ (y1, y2; {x1, y1}, {y2})
∼ (x1, x2; {x1}, {x2, y2}) ∼ (y1, y2; {y1}, {x2, y2}). From the finiteness of opportu-
nity sets, by using (IND) repeatedly, we have the following.

for all (x1, x2;A1, A2), (y1, y2; B1, B2) ∈ Ω, if (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}), then (x1, x2; A1, A2) ∼ (y1, y2;B1, B2) ⇔

|A1|+ |A2| = |B1|+ |B2|
By repeated application of equation(15) and the transitivity, we have the following.

For all (x1, x2;A1, A2), (y1, y2; B1, B2) ∈ Ω, if (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}), then (x1, x2; A1, A2) º (y1, y2;B1, B2) ⇔

|A1|+ |A2| ≥ |B1|+ |B2|

10



Next, suppose that, for all x1, y1 ∈ X1 and all x2, y2 ∈ X2, (x1, x2; {x1}, {x2}) Â
(y1, y2; {y1}, {y2}). By using (ROB), (x1, x2; {x1}, {x2})Â (y1, y2; {y1, z1}, {y2, z2}).
Moreover, by using (ROB) repeatedly, (x1, x2; {x1}, {x2}) Â (y1, y2; A1, A2). By
simple application of equation(10) and the transitivity of º, we have the following.

for all (x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω, (x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2})
⇒ (x1, x2;A1, A2) Â (y1, y2; B1, B2)

Q.E.D.

4 Nonconsequentialism

4.1 Extreme nonconsequentialism

In this subsection, we define and characterize various type of extreme nonconse-
quentialism. First, we define the basic concept of extreme nonconsequentialism.

Definition 5. (Extreme nonconsequentialism)
º is said to be extremely nonconsequential if, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈
Ω, |A1| = |B1| and |A2| = |B2| ⇒ (x1, x2; A1, A2) ∼ (y1, y2;A1, A2).

This formulation of extreme nonconsequentialism is different from Suzumura
and Xu(2001). They present extreme nonconsequentialism as the concept that re-
quire increasing the cardinality of opportunity sets is good. However, essential
requirement of extreme consequentialism is no regard for consequences. Our con-
cept of extreme nonconsequentialism says that if first and second opportunity set
have the same cardinality respectively, then extended alternatives are indifferent.
Note that by this formulation we cannot completely judge two choice situation,
(x1, x2; A1, A2) and (y1, y2;B1, B2).

To characterize extreme nonconsequentialism, we introduce the following axiom.

Axiom 10. Indifference of No-Choice Situations(INS)
For all x1, y1 ∈ X1 and x2, y2 ∈ X2, (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}).

(INS) requires that two choice situation that both opportunity sets are singleton
is indifferent. In many papers relating with freedom of choice, there are very similar
concepts. 9

Next, we characterize the extreme consequentialism.

Theorem 6. º satisfy (IND), (BI) and (INS) if and only if it is extremely non-
consequential.

Proof. If º is extreme nonconsequential, then it clearly satisfies (IND), (BI) and
(INS). Hence, we have only to show that, if º satisfy (IND), (BI) and (INS), then
it is extremely nonconsequential.

Let º satisfy (IND), (BI) and (INS). By (INS), for all x1, y1 ∈ X1 and x2, y2 ∈
X2, (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}). Moreover, by (IND) and the tran-
sitivity of º, For all x1, y1, z1 ∈ X1 and x2, y2 ∈ X2, (x1, x2; {x1, z1}, {x2}) ∼
(y1, y2; {y1, z1}, {y2}). From Theorem1, for all x1, y1, z1, w1 ∈ X1 and x2, y2 ∈ X2,
(x1, x2; {x1, z1}, {x2}) ∼ (y1, y2; {y1, w1}, {y2}).

By using (IND) and Theorem1 repeatedly, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈
Ω, |A1| = |B1| and |A2| = |B2| ⇒ (x1, x2; A1, A2) ∼ (y1, y2;A1, A2). Q.E.D.

9(INS) corresponds to the axiom in Suzumura and Xu(2001). Similar concepts axiomatized in a form
that Pattanaik and Xu(1990) call “indifference between no choice situation” and Jones and Sugden(1982)
call “principle of no choice”. Carter(2004) discuss for the axiom of “indifference between no choice
situation”.
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By our definition of extreme nonconsequentialism, when he individual judge
two choice situation by opportunities, the individual may not value the freedom
of choice and consider harmful. The following definition guarantees that extreme
nonconsequentialist values the freedom of choice.

Definition 6. (opportunity lover)
º is said to be opportunity lover if, for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω,
|A1| ≥ |B1| and |A2| ≥ |B2| ⇒ (x1, x2; A1, A2) º (y1, y2; A1, A2).

Note that the concept of opportunity lover implies the increasing freedom of
choice is good. Between two choice situation (x1, x2; A1, A1) and (y1, y2; B1, B1)such
that |A1| ≥ |B1| and |A2| ≥ |B2|, we judge which is better. But between two choice
situation (x1, x2;A1, A1) and (y1, y2; B1, B1) such that |A1| ≥ |B1| and |A2| ≤ |B2|,
we cannot judge which is better.

Lemma 5. º satisfy (IND), (BI), (LSM1), (LSM2) and (INS) if and only if it is
opportunity lover.

Proof. If º is opportunity lover, then it satisfy (IND), (BI), (LSM1), (LSM2) and
(INS). Hence, we have only to show that if º satisfy (IND), (BI), (LSM1), (LSM2)
and (INS), then it is opportunity lover.

Let º satisfy (IND), (BI), (LSM1), (LSM2) and (INS). To begin with, from
Corollary1, we have the following. for all (x1, x2;A1, A2),(x1, x2; C1, C2)∈ Ω,

|A1| ≥ |C1| and |A2| ≥ |C2| ⇒ (x1, x2; A1, A2) º (x1, x2;C1, C2) (16)

Moreover, from Theorem6, since º is extremely nonconsequential from Theorem6,
we have the following. For all (x1, x2; C1, C1), (y1, y2; B1, B1) ∈ Ω,

|C1| = |B1| and |C2| = |B2| ⇒ (x1, x2;C1, C2) ∼ (y1, y2; B1, B2) (17)

From equation(16), equation(17) and the transitivity, for all (x1, x2;A1, A1), y1, y2; B1, B1)
∈ Ω, |A1| ≥ |B1| and |A2| ≥ |B2| ⇒ (x1, x2; A1, A2) º (y1, y2; A1, A2). Q.E.D.

Now, we propose concepts by which we can perfectly judge two choice situ-
ations. We introduce four concepts, Part-ranking extreme nonconsequentialism,
Sum-ranking extreme nonconsequentialism and Weighted sum-ranking extreme non-
consequentialism, lexicographic extreme nonconsequentialism.

The concept of part-ranking extreme nonconsequentialism requires that the or-
dering base on one opportunity set and ignore another. There are two type of part-
ranking extremely nonconsequentialism, first opportunity set ranking extremely
nonconsequentialism and second opportunity set ranking extremely nonconsequen-
tialism.

According to first opportunity set-ranking extreme nonconsequentialism, the
extended alternatives ranked according to the cardinality of first opportunity set,
and second opportunity set and consequence don’t matters. Similarly, second op-
portunity set-ranking extreme nonconsequentialism requires that the extended al-
ternatives ranked according to the cardinality of second opportunity set, Their
definitions are given below.

Definition 7. (First opportunity set ranking extreme nonconsequentialism)
º is said to be first opportunity set ranking extremely nonconsequential if, for all
(x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1| ≥ |B1| ⇒ (x1, x2; A1, A2) º (y1, y2; A1, A2)
.

Definition 8. (Second opportunity set ranking extreme nonconsequentialism)
º is said to be second opportunity set ranking extremely nonconsequential if,
for all (x1, x2; A1, A1), (x1, x2;B1, B1) ∈ Ω, |A2| ≥ |B2| ⇒ (x1, x2; A1, A2) º
(y1, y2; A1, A2).
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Now, we state the full characterization of first opportunity set ranking extreme
nonconsequentialism.

Theorem 7. If º satisfy (IND), (BI), (INS), (LI2) and (LSM1), then, it is first
opportunity set ranking extreme nonconsequential, that is, for all (x1, x2; A1, A2),
(y1, y2; B1, B2)∈ Ω, |A1| ≥ |B1| ⇔ (x1, x2;A1, A2) º (y1, y2; B1, B2).

Proof. If º is first opportunity set ranking extremely nonconsequential, then, it is
satisfy (IND), (BI), (INS), (LI2) and (LSM1). Therefore, we have only to show that,
if º satisfy (IND), (BI), (INS), (LI2) and (LSM1), then, it is first opportunity set
ranking extremely nonconsequential, that is, for all (x1, x2; A1, A2),(y1, y2; B1, B2)∈
Ω, |A1| ≥ |B1| ⇔ (x1, x2; A1, A2) º (y1, y2;B1, B2).

Let º satisfy (IND), (BI), (INS), (LI2) and (LSM1). To begin with, by Theo-
rem6, we have the following. for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω,

|A1| = |B1| and |A2| = |B2| ⇒ (x1, x2;A1, A2) ∼ (y1, y2; B1, B2) (18)

From (IND), (BI), (LI2), by the argument similar to Theorem2, we obtain the
following.

∀A2 ∈ K2, ∀x1 ∈ X1, (x1, x2; {x1}, A2) ∼ (x1, x2; {x1}, {x2}) (19)

By using (IND) and equation(19), we can show the following. for all x1 ∈ X1,
all x2 ∈ X2, all A1 ∈ K1 and A2 ∈ K2,

∀x2 ∈ X2, ∀A1 ∈ K1, ∀A2 ∈ K2, (x1, x2;A1, A2) ∼ (x1, x2; A1, {x2}) (20)

From equation(18) and equation(20), we obtain the following. For all (x1, x2; A1, A2),
(y1, y2; B1, B2) ∈ Ω,

|A1| = |B1| ⇒ (x1, x2; A1, A2) ∼ (y1, y2; B1, B2) (21)

Moreover, from lemma2, we have following. For all (x1, x2; A1, A2), (y1, y2; B1, B2)
∈ Ω,

|A1| > |B1| and |A2| = |B2| ⇔ (x1, x2;A1, A2) Â (y1, y2; B1, B2) (22)

By equation(21) and equation(22), for all (x1, x2; A1, A2),(y1, y2; B1, B2)∈ Ω,
|A1| ≥ |B1| ⇔ (x1, x2; A1, A2) º (y1, y2;B1, B2). Q.E.D.

Theorem 8. º satisfy (IND), (BI), (INS), (LI1) and (LSM2) if and only if
it is second opportunity set-ranking extremely nonconsequential, that is, for all
(x1, x2; A1, A2),(y1, y2; B1, B2)∈ Ω, |A2| ≥ |B2| ⇔ (x1, x2; A1, A2) º (y1, y2;B1, B2).

Proof. Exactly analogous to that of Theorem7. Q.E.D.

Next, we define sum-ranking extreme nonconsequentialism.

Definition 9. (Sum-ranking extreme nonconsequentialism)
º is said to be sum-ranking extremely nonconsequential if, for all (x1, x2; A1, A1),
(y1, y2; B1, B1) ∈ Ω, |A1|+ |A2| ≥ |B1|+ |B2| ⇒ (x1, x2; A1, A2) º (y1, y2; B1, B2).

Sum-ranking extreme nonconsequentialist evaluate all opportunity as same.
Sum-ranking extreme nonconsequentialism requires that in two choice situation,
the individual ranks extended alternatives according to the summation of each car-
dinality of opportunity sets.

Theorem 9. º satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (TI) if and only
if it is sum-ranking extremely nonconsequential.
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Proof. If º is sum-ranking extremely nonconsequential, then it satisfy (IND), (BI),
(LSM1), (LSM2), (INS) and (TI). Therefore, we have only to show that, if º satisfy
(IND), (BI), (LSM1), (LSM2), (INS) and (TI), then it is sum-ranking extremely
nonconsequential.

Let º satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (TI). First, by theorem6,
for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω,

|A1| = |B1| and |A2| = |B2| ⇒ (x1, x2;A1, A2) ∼ (y1, y2; B1, B2) (23)

Then, this relation implies the following. For all x1, y1, z1 ∈ X1 and all x2, y2, z1 ∈
X2,

(x1, x2; {x1, z1}, {x2}) ∼ (y1, y2; {y1, z1}, {y2}) (24)

From (TI), for all y1, z1 ∈ X1 and all y2, z2 ∈ X2, (y1, y2; {y1, z1}, {y2}) ∼ (y1, y2; {y1}, {y2, z2})
By using this and equation(24), for all x1, y1 ∈ X1 and all x2, y2 ∈ X2,

(x1, x2; {x1, z1}, {x2}) ∼ (y1, y2; {y1}, {y2, z2}) (25)

Therefore, for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω where |A1| + |A2| = |B1| +
|B2| = 3, alternatives are indifferent.

From simple application of (TI) and (IND), for all distinct x1, y1, z1 ∈ X1 and
all distinct x2, y2, z2 ∈ X2,

(x1, x2; {x1, y1, z1}, {x2}) ∼ (x1, x2; {x1, y1}, {x2, y2}) ∼ (x1, x2; {x1, y1}, {x2, y2, z2})
(26)

By using equation(23) and equation(24), for all (x1, x2; A1, A1), (y1, y2;B1, B1) ∈ Ω
where |A1|+ |A2| = |B1|+ |B2| = 4, extended alternatives are indifferent.

Since opportunity sets is finite, by similar argument, we obtain the following.
For all (x1, x2; A1, A2), (y1,2 ; B1, B2) ∈ Ω,

|A1|+ |B1| = |A2|+ |B2| ⇒ (x1, x2;A1, A2) ∼ (y1, y2; B1, B2) (27)

From equation(24) and Lemma2, (x1, x2; {x1, y1}, {x2}) ∼ (y1, y2; {x1}, {y1, y2})
Â (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}). Since opportunity sets are finite, using
equation(27) and Lemma2 according to similar argument, we obtain that, for all
(x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1| + |A2| ≥ |B1| + |B2| ⇒ (x1, x2; A1, A2) º
(y1, y2; B1, B2). Q.E.D.

Definition 10. (Weighted sum-ranking extremely nonconsequentialism)
º is said to be weighted sum-ranking extremely nonconsequential if, for all (x1, x2;A1, A1),
(y1, y2; B1, B1) ∈ Ω, α|A1|+β|A2| ≥ α|B1|+β|B2| ⇒ (x1, x2; A1, A2) º (y1, y2; A1, A2).

Weighted sum-ranking extremely nonconsequentialism is general case of sum-
ranking extremely nonconsequentialism. If α, β = 1, then º is sum-ranking ex-
tremely nonconsequential. Since opportunity set is finite, this concept don’t repre-
sent part-ranking extremely consequentialism.

Axiom 11. Proportional Indifference(PI)
For all x1 ∈ X1 and all x2 ∈ X2, there exists A1, A2, B1 and B2 such that
α|A1|+ β|A2| = α|B1|+ β|B2|, |A1| 6= |B1| and |A2| 6= |B2|, and (x1, x2;A1, A1) ∼
(x1, x2; B1, B2)

This axiom is general case of (TI). If α, β = 1, then (PI) is correspondent
with (TI). Changing (TI) for (PI) in conditions of Theorem9, we can get weighted
sum-ranking extremely nonconsequential ordering.

Theorem 10. º satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (PI) if and
only if it is weighted sum-ranking extremely nonconsequential.
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Proof. Exactly analogous to that of Theorem9. Q.E.D.

Definition 11. (Lexicographic extreme nonconsequentialism for first opportunity
set)
º is said to be lexicographic extremely nonconsequential for first opportunity set
if, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈ Ω, |A1| > |B1| ⇒ (x1, x2; A1, A2) Â
(y1, y2; B1, B2) and |A1| = |B1| ⇒ [ |A2| ≥ |B2| ⇔ (x1, x2; A1, A2) º (y1, y2; B1, B2)].

Thus, according to lexicographic extreme nonconsequentialism for first oppor-
tunity set, consequence (x1, x2) do not matter and opportunities matter, and if
|A1| > |B2|, then (x1, x2; A1, A2) Â (y1, y2; B1, B2) and second opportunity set do
not matter. Only when |A1| = |B2|, the individual compares the cardinalities of
second opportunity set. Similarly, we can consider lexicographic extreme noncon-
sequentialism for second opportunity set.

To characterize lexicographic extreme nonconsequentialism for first opportunity
set, we need the next axiom.

Axiom 12. Weakly Robustness for first opportunity set (WROB1)
For all (x1, x2; A1, A2), (x1, x2;B1, B2) ∈ Ω and all z2 ∈ X2, (x1, x2; A1, A2) Â
(x1, x2; B1, B2), then (x1, x2; A1, A2) Â (x1, x2;B1, B2 ∪ {z2}).

This axiom is similar to (ROB). If individual ranks (x1, x2; A1, A2) higher than
(x1, x2; B1, B2), then adding {z2} to B1 while maintaining y1 from new opportunity
set will not affect individual’s ranking.

Theorem 11. º satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1) if
and only if it is lexicographic extremely nonconsequential.

Proof. If º is lexicographic extremely nonconsequential, then it satisfy (IND), (BI),
(LSM1), (LSM2), (INS) and (WROB1). Hence, we have only to show that if º
satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1), it is lexicographic
extremely nonconsequential.

Let º satisfy (IND), (BI), (LSM1), (LSM2), (INS) and (WROB1). First, we
consider the case that |A1| > |B1| for A1, B1 ∈ X1. By Lemma2, (x1, x2;A1, {x1}) Â
(x1, x2; B1, {x2}) since |A1| > |B1| and |{x1}| = |{x2}| = 1. By using (WROB1),
(x1, x2; A1, {x1}) Â (x1, x2;B1, {x2, z1}). Repeatedly, we obtain that, for all B2 ∈
X2, (x1, x2;A1, {x1}) Â (x1, x2; B1, B2). Lemma2 and Theorem1 imply (x1, x2; A1, A2) º
(x1, x2; A1, {x1}) for all A2 ∈ X2. By the transitivity, (x1, x2; A1, A2) Â (x1, x2; B1, B2).
Moreover, Theorem6 implies (x1, x2;A1, A2) Â (y1, y2; B1, B2) for all x1, y1 ∈ X1,
all x2, y2 ∈ X2 and all A2, B2 ∈ X2.

Next, suppose that |A1| = |B1| for A1, B1 ∈ X1. By Lemma3, we have the
following.

|A1| = |C1| and |A2| > |C2| ⇒ (x1, x2; A1, A2) Â (x1, x2;C1, C2) (28)

Moreover, Theorem6 implies the following.

|C1| = |B1| and |C2| = |B2| ⇒ (x1, x2;C1, C2) ∼ (y1, y2; B1, B2) (29)

Combining equation(28) and equation(29), if |A1| = |B1|, then |A2| > |B2| ⇒
(x1, x2; A1, A2) Â (y1, y2;B1, B2). By Theorem6, |A1| = |B1| and |A2| = |B2| ⇒
(x1, x2; A1, A2) ∼ (y1, y2; B1, B2). Therefore, if |A1| = |B1|, then |A2| ≥ |B2| ⇒
(x1, x2; A1, A2) º (y1, y2;B1, B2). Q.E.D.

4.2 Strong nonconsequentialism

In this subsection, we define and characterize the strong nonconsequentialism. First,
we propose the following axiom before defining the strong nonconsequentialism.
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Axiom 13. Simple Preference for First Opportunities(SPO1)
For all distinct x1, y1 ∈ X1 and all distinct x2, y2 ∈ X2, (x1, x2; {x1, y1}, {x2}) Â
(y1, y2; {y1}, {y2})
Axiom 14. Simple Preference for Second Opportunities(SPO2)
For all distinct x1, y1 ∈ X1 and all distinct x2, y2 ∈ X2, (x1, x2; {x1}, {x2, y2}) Â
(y1, y2; {y1}, {y2})

We note that the following lemma that will prove useful to characterize the
strong nonconsequentialism.

Lemma 6. If º satisfies (IND),(SI) and (SPO1), then it also satisfies (LSM1).

Proof. Let º satisfies (IND),(SI) and (SPO). By (SPO), for all distinct x1, y1 ∈ X1

and all x2, y2 ∈ X2, (x1, x2; {x1, y1}, {x2}) Â (y1, y2; {y1}, {y2}). Combining with
(IND), for all z1 ∈ X1/{x1, y1}, (x1, x2; {x1, y1, z1}, {x2}) Â (y1, y2; {y1, z1}, {y2}).
(SI) implies (y1, y2; {y1, z1}, {y2}) ∼ (y1, y2; {x1, y1}, {y2}). Therefore, by the tran-
sitivity (x1, x2; {x1, y1, z1}, {x2}) Â y1, y2; {x1, y1}, {y2}). By (SPO), (y1, y2; {x1, y1}, {y2}) Â
(x1, x2; {x1}, {x2}). Hence, we obtain that, (x1, x2; {x1, y1, z1}, {x2}) Â (x1, x2; {x1}, {x2})

Q.E.D.

Lemma 7. If º satisfies (IND),(SI) and (SPO2), then it also satisfies (LSM2).

Proof. Exactly analogous to that of Lemma6 Q.E.D.

Corollary 2. If º satisfies (IND), (BI), (SPO1) and (SPO2), then it also satisfies
(LSM1) and (LSM2).

Proof. It is straightforward to show this by lemma1 and lemma6. Q.E.D.

Now, we define four types of the strong nonconsequentialism.

Definition 12. (First opportunity set ranking Strong nonconsequentialism)
º is said to be sum-ranking strongly nonconsequential if, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈
Ω, |A1| > |B1| ⇒ (x1, x2;A1, A2) Â (y1, y2; B1, B2) and |A1| = |B1| ⇒ [(x1, x2; {x1}, {x2})
º (y1, y2; {y1}, {y2}) ⇔ (x1, x2;A1, A2) º (y1, y2; B1, B2)].

Definition 13. (Second opportunity set ranking Strong nonconsequentialism)
º is said to be sum-ranking strongly nonconsequential if, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈
Ω, |A2| > |B2| ⇒ (x1, x2;A1, A2) Â (y1, y2; B1, B2) and |A2| = |B2| ⇒ [(x1, x2; {x1}, {x2})
º (y1, y2; {y1}, {y2}) ⇔ (x1, x2;A1, A2) º (y1, y2; B1, B2)].

Definition 14. (Sum-ranking Strong nonconsequentialism)
º is said to be sum-ranking strongly nonconsequential if, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈
Ω, |A1| + |A2| > |B1| + |B2| ⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2) and |A1| +
|A2| = |B1|+ |B2| ⇒ [(x1, x2; {x1}, {x2}) º (y1, y2; {y1}, {y2}) ⇔ (x1, x2;A1, A2) º
(y1, y2; B1, B2)].

Definition 15. (Lexicographic strong nonconsequentialism for first opportunity
set)
º is said to be lexicographic strongly nonconsequential for first opportunity set
if, for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈ Ω, |A1| > |B1| ⇒ (x1, x2; A1, A2) Â
(y1, y2; B1, B2), |A1| = |B1| ⇒ [ |A2| > |B2| ⇔ (x1, x2; A1, A2) Â (y1, y2; B1, B2)],
and |A1| = |B1| and |A2| = |B2| ⇒ [ (x1, x2; {x1}, {x2}) º (y1, y2; {y1}, {y2}) ⇔
(x1, x2; A1, A2) º (y1, y2;B1, B2)].

Sum-ranking Strong nonconsequentialism require that consequence do not mat-
ter and (x1, x2;A1, A2) Â (y1, y2; B1, B2) when |A1|+ |A2| > |B1|+ |B2|. Only when
|A1| + |A2| = |B1| + |B2|, consequence matters and preference correspond to one
over choice situation from singleton opportunity sets.

We are now ready to put forward the full characterization of the concepts of
strong nonconsequentialism as follows.
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Theorem 12. º satisfy (IND), (BI), (SPO1) and (LI2) if and only if it is sum-
ranking strongly nonconsequential.

Proof. If º is sum-ranking strong nonconsequential, then it satisfy (IND), (BI),
(SPO1) and (LI2). Hence, we have only to show that if º satisfy (IND), (BI),
(SPO1), (LI2), it is sum-ranking strongly nonconsequential.

Let º satisfy (IND), (BI), (SPO1), (LI2). To begin with, since º satisfies
(IND), (BI) and (LI2), by a similar argument in Theorem2, for all A2 ∈ K2,
(x1, x2; {x1}, A2) ∼ (x1, x2; {x1}, {x1}). By using (IND) repeatedly, for all A2 ∈ K2

and A1 ∈ K1, (x1, x2; A1, A2) ∼ (x1, x2; A1, {x1}). From Theorem1, we have that,

∀A2 ∈ K2 and ∀A1, B1 ∈ K1, |A1| = |B1| ⇒ (x1, x2;A1, A2) ∼ (x1, x2; B1, {x1})(30)

By (SPO1), for all distinct x1, y1 ∈ X1 and all distinct x2, y2 ∈ X2, (x1, x2; {x1, y1}, {x2})
Â (y1, y2; {y1}, {y2}). By Theorem1, for all z1 ∈ X1\{x1}, (x1, x2; {x1, z1}, {x2}) Â
(y1, y2; {y1}, {y2}). Combining with equation(30), for all A2, B2 ∈ K2 (x1, x2; {x1, y1}, A2)
Â (y1, y2; {y1}, B2). So, we obtain that

|A1| = 2 and |B2| = 1 ⇒ (x1, x2;A1, A2) Â (y1, y2;B1, B2) (31)

Now, suppose that |A1| = k + 1 and |B2| = k ⇒ (x1, x2;A1, A2) Â (y1, y2; B1, B2).
By using (IND) and Theorem1, |A1| = k + 2 and |B2| = k + 1 ⇒ (x1, x2;A1, A2) Â
(y1, y2; B1, B2). By mathematical induction, we obtain the following.

|A1| = |B2|+ 1 ⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2) (32)

From equation(32), by the transitivity of º, we have the following.

for all (x1, x2; A1, A1), (y1, y2;B1, B1) ∈ Ω, |A1| > |B1| ⇒
(x1, x2; A1, A2) Â (y1, y2; B1, B2)

Now, consider that, for all x1, y1 ∈ X1 and x2, y2 ∈ X2, (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}). Equation(30), (IND) and Theorem1 lead us obtain the follow-
ing.

for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1| = |B1| and (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}), then(x1, x2; A1, A2) ∼ (y1, y2; B1, B2)

Next, consider that, for all (x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω,(x1, x2; {x1}, {x2})
Â (y1, y2; {y1}, {y2}). By an argument similar to the proof of Theorem5, we have
the following.

for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1| = |B1| and (x1, x2; {x1}, {x2}) Â
(y1, y2; {y1}, {y2}), then(x1, x2; A1, A2) Â (y1, y2; B1, B2)

Q.E.D.

Theorem 13. º satisfy (IND), (BI), (LI1) and (SPO2) if and only if it is sum-
ranking strongly nonconsequential.

Proof. Exactly analogous to that of Theorem12. Q.E.D.

Theorem 14. º satisfy (IND), (BI), (SPO1), (SPO2) and (TI) if and only if it
is sum-ranking strongly nonconsequential.

Proof. If º is sum-ranking strong nonconsequential, then it satisfy (IND), (BI),
(SPO1), (SPO2) and (TI). Hence, we have only to show that if º satisfy (IND),
(BI), (SPO1), (SPO2) and (TI), it is sum-ranking strongly nonconsequential.

Let º satisfy (IND), (BI), (SPO1), (SPO2) and (TI). To begin with, by (SPO1)
and (SPO2), for all distinct x1, y1 ∈ X1 and all distinct x2, y2 ∈ X2, (x1, x2; {x1, y1}, {x2})
Â (y1, y2; {y1}, {y2}) and (x1, x2; {x1}, {x2, y2}) Â (y1, y2; {y1}, {y2}). By Theo-
rem1, for all z1 ∈ X1 \ {x1} and all z2 ∈ X2 \ {x2}, (x1, x2; {x1, z1}, {x2}) Â
(y1, y2; {y1}, {y2}) and (x1, x2; {x1}, {x2, z2}) Â (y1, y2; {y1}, {y2}). Then, by Lemma4,
we obtain that
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for all (x1, x2; A1, A1), (x1, x2; B1, B1) ∈ Ω, |A1|+ |A2| = 3 and |B1|+ |B2| = 2 ⇒
(x1, x2; A1, A2) Â (y1, y2; B1, B2)

By using (IND), for all w1 ∈ X1\{x1, z1}, (x1, x2; {x1, z1, w1}, {x2}) Â (y1, y2; {y1, w1}, {y2})
and (x1, x2; {x1, w1}, {x2, z2}) Â (y1, y2; {y1, w1}, {y2}). Similarly, for all w1 ∈ X1 \
{x2, z2}, (x1, x2; {x1, z1}, {x2, w2}) Â (y1, y2; {y1}, {y2, w2}) and (x1, x2; {x1}, {x2, z2, w2})
Â (y1, y2; {y1}, {y2, w2}).

By the transitivity and Lemma4, we have the following.

for all (x1, x2; A1, A1), (y1, y2;B1, B1) ∈ Ω, |A1|+ |A2| = 4 and |B1|+ |B2| = 3 ⇒
(x1, x2; A1, A2) Â (y1, y2; B1, B2)

Since opportunity sets is finite, by repeated using an above argument, we get
the following. By Theorem1 and Lemma4, we obtain that, for all (x1, x2; A1, A1),
(y1, y2; B1, B1) ∈ Ω,

|A1|+ |A2| = |B1|+ |B2|+ 1 ⇒ (x1, x2;A1, A2) Â (y1, y2; B1, B2) (33)

From equation(33), by the transitivity of º and Lemma4, we have the following.

for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1|+ |A2| > |B1|+ |B2| ⇒
(x1, x2; A1, A2) Â (y1, y2; B1, B2)

Now, suppose that, for all x1, y1 ∈ X1 and x2, y2 ∈ X2, (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}). An argument similar to the proof of Theorem5 makes us obtain
the following.

for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈ Ω, |A1|+ |A2| = |B1|+ |B2| and
(x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}), then(x1, x2; A1, A2) ∼ (y1, y2;B1, B2)

Next, consider that, for all (x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω,(x1, x2; {x1}, {x2})
Â (y1, y2; {y1}, {y2}). By an argument similar to the proof of Theorem5, we have
the following.

for all (x1, x2;A1, A1), (y1, y2;B1, B1) ∈ Ω, |A1|+ |A2| = |B1|+ |B2| and
(x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2}), then(x1, x2; A1, A2) Â (y1, y2;B1, B2)

Q.E.D.

To characterize lexicographic strong nonconsequentialism for first opportunity
set, we present the following axiom. Note that (WROB1) is not sufficient to give
complete characterization of lexicographic strong nonconsequentialism for first op-
portunity set.

Axiom 15. Strongly Robustness for first opportunity set (SROB1)
For all (x1, x2;A1, A2), (y1, y2; B1, B2) ∈ Ω and all z1 ∈ X1 ,z2 ∈ X2, (x1, x2;A1, A2)
Â (y1, y2; B1, B2), then (x1, x2; A1, A2) Â (y1, y2; B1, B2 ∪ {z2}).

Note that (SROB1) imply (WROB1).

Theorem 15. º satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1) if and only
if it is lexicographic strong nonconsequentialism for first opportunity set.

Proof. If º is lexicographic strong nonconsequentialism for first opportunity set,
then it satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1). Hense, we have only to
show that ifº satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1), it is lexicographic
strong nonconsequentialism for first opportunity set.

Let º satisfy (IND), (BI), (SPO1), (SPO2) and (SROB1). By (SPO1) and The-
orem1, for all z1 ∈ X1 \{x1}, (x1, x2; {x1, z1}, {x2}) Â (y1, y2; {y1}, {y2}). By using
(SROB1) repeatedly, for all z1 ∈ X1\{x1} and all B2 ∈ K2, (x1, x2; {x1, z1}, {x2}) Â
(y1, y2; {y1}, B2). From Lemma2, by the transitivity, we obtain that,

for all z1 ∈ X1 \ {x1} and all A2, B2 ∈ K2, (x1, x2; {x1, z1}, A2) Â (y1, y2; {y1}, B2)(34)
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From (IND) and Theorem1, by similar argument in Theorem12, we obtain the
following. For all (x1, x2; {x1, z1}, A2), (y1, y2; {y1}, B2) ∈ Ω,

|A1| > |B1| ⇒ (x1, x2;A1, A2) Â (y1, y2; A2, B2) (35)

Next, we consider the case of |A1| = |B1|. By (SPO2) and Theorem1, for all z1 ∈
X1 \{x1} and all z2 ∈ X2 \{x2}, (x1, x2; {x1}, {x2, z2}) Â (y1, y2; {y1}, {y2}). From
(IND) and Theorem1, we obtain the following. For all (x1, x2;A1, {x2, z2}), (y1, y2; B1, {y2}) ∈
Ω,

|A1| = |B1| ⇒ (x1, x2;A1, {x2, z2}) Â (y1, y2;B2, {y2}) (36)

From (IND) and Theorem1, by similar argument in Theorem12, we obtain the
following. For all (x1, x2; A1, A2), (y1, y2; B1, B2) ∈ Ω,

|A1| = |B1| and |A2| > |B2| ⇒ (x1, x2; A1, A2) Â (y1, y2;A2, B2) (37)

Now, suppose that, for all x1, y1 ∈ X1 and x2, y2 ∈ X2, (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}). Clearly, by (IND) and the transitivity, for all A1 ∈ K1 and
A2 ∈ K2, (x1, x2;A1, A2) ∼ (y1, y2; A1, A2). By Theorem1, |A1| = |B1| and
|A2| = |B2| ⇒ (y1, y2; A1, A2) ∼ (y1, y2; B1, B2) By the transitivity of º, we ob-
tain that, for all (x1, x2; A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1| = |B1|, |A2| = |B2| and
(x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}), then (x1, x2; A1, A2) ∼ (y1, y2;B1, B2)

Next, consider that, for all (x1, x2; A1, A2), (y1, y2;B1, B2)∈ Ω,(x1, x2; {x1}, {x2})
Â (y1, y2; {y1}, {y2}). By an argument similar to the proof of Theorem5, we have
the following.

for all (x1, x2;A1, A1), (y1, y2; B1, B1) ∈ Ω, |A1| = |B1| and |A2| = |B2| and
(x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2}), then(x1, x2; A1, A2) Â (y1, y2;B1, B2)

Q.E.D.

5 The Case of Multiplicative-ranking

In Suzumura and Xu(2001), choice from single opportunity set (x,A) is considered.
(x,A) means choosing x from opportunity set A. If we set X = X1 ×X2 and K =
K1×K2, our framework become (x,A). For example, extreme nonconsequentialism
in Suzumura and Xu(2001) is as follows.

For all (x, A) and (y, B), |A| ≥ |B| ⇒ (x,A) º (y, B)

The following definition of consequentialism and nonconsequentialism corresponds
to concepts in Suzumura and Xu(2001).

Definition 16. (Multiplicative-ranking strong consequentialism)
º is said to be sum-ranking strongly consequentialism if, for all (x1, x2; A1, A2),
(y1, y2; B1, B2)∈ Ω, (x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}) ⇒ [ (x1, x2;A1, A2) º
(x1, x2; B1, B2)⇔ |A1|×|A2| ≥ |B1|×|B2| ], and (x1, x2; {x1}, {x2})Â (y1, y2; {y1}, {y2})
⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2).

Definition 17. (Multiplicative-ranking extreme nonconsequentialism)
º is said to be multiplicative-ranking extremely nonconsequential if, for all (x1, x2; A1, A1),
(y1, y2; B1, B1) ∈ Ω, |A1| × |A2| ≥ |B1| × |B2| ⇒ (x1, x2;A1, A2) º (y1, y2; B1, B2).

Definition 18. (Multiplicative-ranking strong nonconsequentialism)
º is said to be multiplicative-ranking strongly nonconsequential if, for all (x1, x2; A1, A1),
(y1, y2; B1, B1) ∈ Ω, |A1| × |A2| > |B1| × |B2| ⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2),
and |A1| × |A2| = |B1| × |B2|, then (x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2}) ⇒
(x1, x2; A1, A2) Â (y1, y2;B1, B2).
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Multiplicative-ranking strong consequentialism, multiplicative-ranking extreme
nonconsequentialism and multiplicative-ranking strong nonconsequentialism corre-
spond to strong consequentialism, extreme nonconsequentialism and strong non-
consequentialism in Suzumura and Xu(2001) respectively.10

These concepts evaluate the freedom of choice by the multiplication of the cardi-
nality of opportunity sets. Note that these multiplicative-ranking case do not satisfy
(IND). For example, suppose that A1 = {x1, y1, z1}, A2 = {x2, y1}, B1 = {x1, y1},
B2 = {x2, y2, z2}, and (x1, x2, {x1, y1, z1}, {x2, y1}) ∼ (x1, x2, {x1, y1}, {x2, y2, z2}).
In this case, |A1|×|A2| = |B1|×|B2| = 6, then this example satisfies the requirement
of above multiplicative-ranking concepts. Moreover, suppose that º satisfies (IND).
If (x1, x2; A1, A2) ∼ (x1, x2; B1, B2), (x1, x2; A1∪{w1}, A2) ∼ (x1, x2; B1∪{w1}, B2).
Then, in this case, (x1, x2, {x1, y1, z1, w1}, {x2, y1}) ∼ (x1, x2, {x1, y1, w1}, {x2, y2, z2}).
Since |{x1, y1, z1, w1}|× |{x2, y1}| = 8 and |{x1, y1, w1}|× |{x2, y2, z2}| = 9, this re-
lation contradicts the requirement of multiplicative-ranking concepts.

So far, (IND) have important role in our framework. But, to characterize the
concepts of multiplicative case, we need other axioms. Note that (x2, x1;A2, A1)
and (x1, x2; A1, A2) means the same.

Axiom 16. Indifference for Multiplication (INDM)
n ∈ N and i, j ∈ {1, 2}. For all (x1, x2; A1, A2),(x1, x2; B1, B2) ∈ Ω and all Ci,Dj

such that A1 ∩ C1 = ∅, B1 ∩ D1 = ∅, n × |Ai| = |Ai ∪ Ci| and n × |Bj | = |Bj ∪
Dj |, (x1, x2; A1, A2) º (x1, x2; B1, B2) ⇔ (xi, x3−i; Ai ∪ Ci, A3−i) º (xj , x3−j ; Bj ∪
Dj , B3−j).

(INDM) have a similar role to (IND). This axiom is very strong, because (INDM)
implies (BI) and (SI). For example, suppose that A1 = {x1, y1, z1}, A2 = {x2}, B1 =
{x1, y1}, B2 = {x2}, and (x1, x2; {x1, y1, z1}, {x2}) º (x1, x2; {x1, y1}, {x2}). If º
satisfies (INDM), then we have (x1, x2; {x1, y1, z1, w1, a1, b1}, {x2}) º (x1, x2; {x1, y1, c1, d1}, {x2}).11

In this case, |{x1, y1, z1, w1, a1, b1}| = 2|A1| and |{x1, y1, c1, d1}| = 2|B1|. (INDM)
implies that (x1, x2, {x1, y1, z1}; {x2, y2, z2}) º (x1, x2; {x1, y1}, {x2, a2, b2}).12 As
another case, by (INDM), we have (x1, x2; {x1, y1, z1}, {x2, y2}) º (x1, x2; {x1, y1, a1, b1}, {x2}).
In this case, |{x2, y2}| = 2|A1| and |{x1, y1, a1, b1}| = 2|B2|.

Next, we present three more axioms as follows.

Axiom 17. Semi-Local Indifference(SLI)
For all x1 ∈ X1 and x2 ∈ X2 and all A1 ∈ K1, (x1, x2; A1, {x2}) ∼ (x1, x2; {x1}, {x2})
or, for all x1 ∈ X1 and x2 ∈ X2 and all A2 ∈ K2, (x1, x2; {x1}, A2) ∼ (x1, x2; {x1}, {x2})
Axiom 18. Semi-Local Strict Monotonicity(SLSM)
For all x1 ∈ X1 and x2 ∈ X2 and all A1, B1 ∈ K1, A1 ⊃ B1 ⇒ (x1, x2; A1, {x2}) Â
(x1, x2; B1, {x2}) or, for all x1 ∈ X1 and x2 ∈ X2 and all A2, B2 ∈ K2, A2 ⊃ B2 ⇒
(x1, x2; {x1}, A2) Â (x1, x2; {x1}, B2)

Axiom 19. Semi-Strict Preference for Opportunity(SSPO)
For all x1, y1 ∈ X1 and x2, y2 ∈ X2 where x1 6= y1 and x2 6= y2, and all A1, B1 ∈
K1, A1 ⊃ B1 ⇒ (x1, x2; A1, {x2}) Â (y1, y2; B1, {y2}) or, for all x1, y1 ∈ X1 and
x2, y2 ∈ X2 where x1 6= y1 and x2 6= y2, and all A2, B2 ∈ K2, A2 ⊃ B2 ⇒
(x1, x2; {x1}, A2) Â (y1, y2; {y1}, B2)

10 Now let x, y, z . . . and A,B, C . . . denote a element of X1×X2 and K1×K2. Then, (x,A) represents
(x1, x2; A1, A2). The definition of our concepts rewritten as follows.

Extreme consequentialism; For all (x,A), (x,B) ∈ Ω, (x,A) ∼ (x,B)
Multiplicative-ranking strong consequentialism; For all (x,A), (y, B) ∈ Ω, (x,A) º (x,B) ⇔ [

(x, {x}) Â (y, {y}) or ( (x, {x}) ∼ (y, {y}) ∧ |A| ≥ |B| ) ]
Multiplicative-ranking extreme nonconsequentialism; For all (x,A), (y, B) ∈ Ω, |A| ≥ |B| ⇔ (x, A) º

(x,B)
Multiplicative-ranking strong nonconsequentialism; For all (x,A), (y, B) ∈ Ω, (x,A) º (x,B) ⇔ [

|A| > |B| or ( |A| = |B| ∧ (x, {x}) º (y, {y}) ]
11 In this case, n = 2 and we adopt (INDM) for first opportunity set.
12 In this case, n = 3 and we adopt (INDM) for second opportunity set.
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(SLI), (SLSM) and (SSPO) have a similar role to (LIi), (LSMi) and (SPOi)
respectively.13 (SLI) requires that there exists i ∈ {1, 2} such that, for any Ai,
choosing xi from Ai and xj from {xj} where i 6= j is regarded as being indifferent
to choosing x1 and x2 from singleton sets. According to (SLMS), there i ∈ {1, 2}
such that, for any Ai, Bi ∈ Ki where Ai ⊃ Bi, choosing (x1, x2) from Ai and {xj}
is regarded as being preferred to choosing (x1, x2) from Bi and {xj}, where i 6= j.
According to (SSPO), there i ∈ {1, 2} such that, for any Ai, Bi ∈ Ki where Ai ⊃ Bi

and for all distinct x1, y1 ∈ X1 and distinct x2, y2 ∈ X2, choosing (x1, x2) from
Ai and {xj} is regarded as being preferred to choosing (y1, y2) from Bi and {yj},
where i 6= j.

Theorem 16. º satisfy (INDM), (SLI) if and only if it is extremely consequential.

Proof. If º is extreme consequential, it satisfy (INDM) and (SLI). Therefore, it is
only to show that if º satisfy (INDM) and (SLI), it is extreme consequential, that
is, for all (x1, x2; A1, A2),(x1, x2; B1, B2) ∈ Ω, (x1, x2;A1, A2) ∼ (x1, x2; B1, B2).

Let º satisfy (INDM) and (SLI). We have only to show the following relation.

For all x1 ∈ X1 and all x2 ∈ X2 and all A1 ∈ K1 and all A2 ∈ K2,
(x1, x2; {x1}, {x2}) ∼ (x1, x2; A1, A2)

First, without loss of generality, by (SLI), for all x1 ∈ X1 and x2 ∈ X2 and all B1 ∈
K1, (x1, x2; B1, {x2}) ∼ (x1, x2; {x1}, {x2}). By (INDM), we have the following.
For all x1 ∈ X1 and all x2 ∈ X2 and all A1, B1 ∈ K1 and all A2 ∈ K2,

|A1| × |A2| = n, |B1| = n, n < ∞⇔ (x1, x2;A1, A2) ∼ (x1, x2; B1, {x2}) (38)

Moreover, by (SLI), we have the following. For all B1 ∈ K1 and x1 ∈ X1 and
x2 ∈ X2,

(x1, x2; B1, {x2}) ∼ (x1, x2; {x1}, {x2}) (39)

Therefore, by equation(38), equation(39) and the transitivity of º, for all x1 ∈
X1 and all x2 ∈ X2 and all A1 ∈ K1 and all A2 ∈ K2, (x1, x2; {x1}, {x2}) ∼
(x1, x2; A1, A2). Q.E.D.

Note that, by this theorem and Theorem2, we obtain two characterization of
extreme consequentialism.

Theorem 17. º satisfy (INDM), (SLSM) and (ROB) if and only if it is multiplicative-
ranking strongly consequential.

Proof. If º is multiplicative-ranking strongly consequential, it satisfy (INDM),
(SLSM) and (ROB). Therefore, it is only to show that if º satisfy (INDM), (SLSM)
and (ROB), it is multiplicative-ranking strongly consequential.

Let º satisfy (INDM), (SLSM) and (ROB). First, we consider the case that
(x1, x2; {x1}, {x2}) ∼ (y1, y2; {y1}, {y2}). To begin with, by (INDM), we have the
following. for all (x1, x2; A1, A2),(y1, y2; B1, B2),

if |A1| = |B1|and|A2| = |B2|, then (x1, x2; A1, A2) ∼ (y1, y2;B1, B2) (40)

In Theorem1, we get same result by assuming (IND) and (BI). Without loss of
generality, by (SLSM), for all x1 ∈ X1 and x2 ∈ X2 and all A1, B1 ∈ K1, A1 ⊃ B1

⇒ (x1, x2; A1, {x2}) Â (x1, x2; B1, {x2}).
By using (SLMS) and equation(40), we obtain that for all x1, y1 ∈ X1 and

x2, y1 ∈ X2 and all A1, B1 ∈ K1,

|A1| > |B1| ⇒ (x1, x2;A1, {x2}) Â (y1, y2; B1, {x2}) (41)

13Of course, i ∈ {1, 2}.
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By using equation(41) and (INDM), we obtain the following equation. For
all x1, y1 ∈ X1 and x2, y2 ∈ X2 and all A1, B1 ∈ K1 and all A2, B2 ∈ K2, if
(x1, x2; {x1}, {x2})∼ (y1, y2; {y1}, {y2}), then |A1|×|A2| > |B1|×|B2| ⇒ (x1, x2; A1, A2)
Â (y1, y2; B1, B2). Combining equation(40) implies that, if (x1, x2; {x1}, {x2}) ∼
(y1, y2; {y1}, {y2}),

|A1| × |A2| ≥ |B1| × |B2| ⇒ (x1, x2;A1, A2) º (y1, y2; B1, B2) (42)

Next, we consider the case that ∀x1, y1 ∈ X1, ∀x2, y2 ∈ X2, (x1, x2; {x1}, {x2})Â
(y1, y2; {y1}, {y2}). By using (ROB), for all z1 ∈ X1 and all z2 ∈ X2, (x1, x2; {x1}, {x2})
Â (y1, y2; {y1, z1}, {y2, z2}). Moreover, By the repeated use of (ROB), for all B1 ∈
K1 and all B2 ∈ K2,

(x1, x2; {x1}, {x2}) Â (y1, y2; B1, B2) (43)

From equation (42) and (44) with the transitivity, we can obtain the following
equation. for all (x1, x2;A1, A2), (x1, x2;B1, B2)∈ Ω,

(x1, x2; {x1}, {x2}) Â (y1, y2; {y1}, {y2}) ⇒ (x1, x2; A1, A2) Â (y1, y2; B1, B2) (44)

Q.E.D.

Theorem 18. º satisfy (INDM), (SLSM) and (INS) if and only if it is multiplicative-
ranking extremely nonconsequential.

Proof. Ifº is multiplicative-ranking extremely nonconsequential, it satisfy (INDM),
(SLSM) and (INS). Therefore, it is only to show that if º satisfy (INDM), (SLSM)
and (INS), it is multiplicative-ranking extremely nonconsequential.

Let º satisfy (INDM), (SLSM) and (INS). To begin with, by using (INDM) and
(INS), we have the following. for all (x1, x2; A1, A2),(y1, y2; B1, B2),

if |A1| × |A2| = |B1| × |B2|, then (x1, x2; A1, A2) ∼ (y1, y2; B1, B2) (45)

Without loss of generality, by (SLSM), for all x1 ∈ X1 and x2 ∈ X2 and all
A1, B1 ∈ K1, A1 ⊃ B1 ⇒ (x1, x2; A1, {x2}) Â (x1, x2; B1, {x2}). Since (INDM)
implies that if |A1| = |B1| and |A2| = |B2|, then (x1, x2; A1, A2) ∼ (x1, x2; B1, B2),
we have the following equation. For all x1 ∈ X1 and x2 ∈ X2 and all A1, B1 ∈ K1,

|A1| > |B1| ⇒ (x1, x2; A1, {x2}) Â (x1, x2;B1, {x2}) (46)

Equation(45) and equation(46) imply that º is multiplicative-ranking extremely
nonconsequential. Q.E.D.

Theorem 19. º satisfy (INDM), (SLSM) and (SSPO) if and only if it is multiplicative-
ranking strongly nonconsequential.

Proof. If º is multiplicative-ranking strongly nonconsequential, it satisfy (INDM),
(SLSM) and (SSPO). Therefore, it is only to show that ifº satisfy (INDM), (SLSM)
and (SSPO), it is multiplicative-ranking strongly nonconsequential.

Let º satisfy (INDM), (SLSM) and (SSPO). Without loss of generality, by
(SLSM), for all x1, y1 ∈ X1 and x2, y2 ∈ X2 and all A1, B1 ∈ K1, A1 ⊃ B1

⇒ (x1, x2; A1, {x2}) Â (y1, y2; B1, {y2}). Since (SSPO) correspond to (SLMS)
whenx1 = y1 and x2 = y2, then (SSPO) implies (SLMS). By using (SSPO) and
(INDM), we obtain the following relation. For all x1, y1 ∈ X1 and x2, y2 ∈ X2 and
all A1, B1 ∈ K1,

|A1| > |B1| ⇒ (x1, x2; A1, {x2}) Â (y1, y2; B1, {y2}) (47)

By using equation(47) and (INDM), we obtain that for all x1, y1 ∈ X1 and x2, y2 ∈
X2 and all A1, B1 ∈ K1 and all A2, B2 ∈ K2,

|A1| × |A2| > |B1| × |B2| ⇒ (x1, x2;A1, A1) Â (y1, y2; B1, B2) (48)

Next, consider that |A1| × |A2| = |B1| × |B2| for A1, B1 ∈ X1 and A2, B2 ∈ X2.
From (INDM), we obtain that for all A1, B1 ∈ K1 and all A2, B2 ∈ K2,
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If |A1| × |A2| = |B1| × |B2|,
then (x1, x2; {x1}, {x1}) º (y1, y2; {y1}, {y2}) ⇒ (x1, x2; A1, A1) º (y1, y2; B1, B2)

Q.E.D.

6 Extension to n Opportunity Sets

In this section, we describe the general case that there are n opportunities of choice.

6.1 Notation

Let N denote {1, 2, · · · , n}, n < ∞. Moreover, for all i ∈ N , let Xi i ∈ N ,
|Xi| ≥ 3, be a set of all mutually and jointly exclusive alternatives in category i.
The elements of Xi will be denoted by xi, yi, zi, · · · .. Ki denotes a collection of
non-empty subset of Xi and the elements in Ki will be denoted by Ai, Bi, Ci, · · · .
Extended alternative is (x1, · · · , xn; A1, · · · , An), (y1, · · · , yn; B1, · · · , Bn), · · · . Let
x denote (x1, x2, · · · , xn) and A denote (A1, A2, · · · , An). Therefore, (x;A) and
(y;B) represent (x1, · · · , xn; A1, · · · , An) and (y1, · · · , yn; B1, · · · , Bn), respectively.

Let º be a reflexive, complete and transitive binary relation over Ω. The asym-
metric and symmetric part of º will be denoted by Â and ∼ respectively.

6.2 The Results

In this subsection, we only present the general case of extreme consequentialism
and extreme nonconsequentialism. However, by simple application, we can obtain
the general case of extreme consequentialism, strong consequentialism and strong
nonconsequentialism.

First, we state the general case of basic axioms.

Axiom 20. Independence for Addition’(IND’)
We have the following for all i ∈ N . For all (x1, · · · , xn;A1, · · · , An), (y1, · · · , yn; B1, · · · , Bn)
∈ Ω and all zi ∈ Xi\{Ai∪Bi}, (x1, x2, · · · , xn; A1, A2, · · · , An) º (y1, y2, · · · , yn;B1, B2, · · · , Bn)
⇔ (x1, · · · , xn; A1, · · · , Ai ∪{zi}, · · · , An) º (y1, · · · , yn; B1, · · · , Bi ∪{zi}, · · · , Bn)

Axiom 21. Baseline Indifference(BI’)
For all xi ∈ Xi and yi, zi ∈ Xi\{xi}, ∀i ∈ N , (x1, x2, · · · , xn; {x1, y1}, {x2, y2}, · · · , {xn, yn})
∼ (x1, x2, · · · , xn; {x1, z1}, {x2, z2}, · · · , {xn, zn})

If º satisfies (BI’) and (IND’), then it satisfies (SI’). The following result corre-
spond to Theorem1.

Theorem 20. Suppose º satisfy (IND’) and (BI’). If |Ai| = |Bi| for all i ∈ N ,
then (x1, x2, · · · , xn; A1, A2, · · · , An) ∼ (x1, x2, · · · , xn; B1, B2, · · · , Bn).

Proof. Exactly analogous to that of Theorem1 Q.E.D.

Next, we define the general statement of extreme consequentialism, sum-ranking
extreme nonconsequentialism, multiplicative-ranking extreme nonconsequentialism.

Definition 19. (Generalized extreme consequentialism)
º is said to be extremely consequential if, for all (x1, x2, · · · , xn;A1, A2, · · · , An),
(x1, · · · , xn;B1, B2, · · · , Bn) ∈ Ω, (x1, · · · , xn;A1, A2, · · · , An)∼ (x1, · · · , xn; B1, B2, · · · , Bn).

Definition 20. (Generalized sum-ranking extreme nonconsequentialism)
º is said to be sum-ranking extremely nonconsequential if, for all (x1, · · · , xn;A1, · · · , An),
(y1, · · · , yn; B1, · · · , Bn) ∈ Ω,

∑
i |Ai| ≥

∑
i |Bi| ⇒ (x1, · · · , xn; A1, A2, · · · , An) º

(y1, · · · , yn; B1, B2, · · · , Bn).
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Definition 21. (Generalized multiplicative-ranking extreme nonconsequentialism)
º is said to be sum-ranking extremely nonconsequential if, for all (x1, · · · , xn;A1, · · · , An),
(y1, · · · , yn; B1, · · · , Bn) ∈ Ω,

∏
i |Ai| ≥

∏
i |B1| ⇒ (x1, · · · , xn; A1, A2, · · · , An) º

(y1, · · · , yn; B1, B2, · · · , Bn).

Generalized extreme consequentialism, generalized sum-ranking extreme non-
consequentialism, generalized multiplicative extreme nonconsequentialism is the
general case of extreme consequentialism, sum-ranking extreme nonconsequential-
ism, multiplicative-ranking extreme nonconsequentialism respectively. To charac-
terize these concepts, we need the following axioms.

Axiom 22. Local Indifference’ i (LI’i)
For i ∈ N and all xj ∈ Xj where j = 1, . . . n, there exist Ai ∈ Xi \ {xi} such that
(x1, · · · , xi, · · · , xn; {x1}, · · · , {xi}, · · · , {xn})∼ (x1, · · · , xi, · · · , xn; , {x1}, · · · , Ai, · · · , {xn}).
Axiom 23. Local Strict Monotonicity’ i (LSM’i)
For i ∈ N and all xj ∈ Xj where j = 1, . . . n, there exists Ai ∈ Ki \ {xi} such that
(x1, · · · , xn; {x1}, · · · , Ai, · · · , {xn}) Â (x1, , · · · , xn; {x1}, {x2}, · · · .{xn}).
Axiom 24. Semi-Local Strict Monotonicity’ (SLSM’)
There exists i ∈ N , for all xj ∈ Xj where j = {1, · · · , n} and all Ai, Bi ∈ Xi, Ai ⊃
Bi ⇒ (x1, · · · , xn; {x1}, · · · , Ai, · · · , {xn}) Â (x1, , · · · , xn; {x1}, · · · , Bi, · · · .{xn})
.

Axiom 25. Indifference of No-choice Situation’(INS’)
For all xi, yi ∈ Xi where i = 1, · · ·n, (x1, x2, · · · , xn; {x1}, {x2}, · · · , {xn}) ∼
(y1, y2, · · · , yn; {y1}, {y2}, · · · , {yn}).
Axiom 26. Trinary Indifference(TI’)
For all i, j = 1, · · · , n and all x1 ∈ X1, x2 ∈ X2 · · · ,xn ∈ Xn, yi ∈ Xi \ xi and yj ∈
Xj\xj , (x1, · · · , xi, · · · , xn; {x1}, · · · , {xi, yi}, · · · , {xj}, {xn})∼ (x1, · · · , xi, · · · , xn;
{x1}, · · · {xi}, · · · , {xj , yj}, · · · , {xn}).
Axiom 27. Independence for Multiplication’(INDM’)
m ∈ N. For all i, j = 1, · · · , n and all (x1, x2, · · · , xn; A1, A2, · · · , An),(x1, x2, · · · , xn;
B1, B2, · · · , Bn) ∈ Ω and all Ci ∈ Xi,Dj ∈ Xj such that Ai∩Ci = ∅, Bi∩Dj = ∅, m×
|Ai| = |Ai∪Ci| and m×|Bj | = |Bj∪Dj |, (x1, x2, · · · , xn; A1, · · · , Ai, · · · , Aj , · · · , An)
º (x1, x2, · · · , xn; B1, · · · , Bi, · · · , Bj , · · · , Bn)⇔ (x1, x2, · · · , xn; A1, · · · , Ai∪Ci, · · · , Aj , · · · , An)
º (x1, x2, · · · , xn; B1, · · · , Bi · · · , Bj ∪Dj , · · · , Bn).

Main Results is as follows. All results are proved by similar argument in n = 2
case.

Theorem 21. º satisfy (IND’),(BI’), (LI’) if and only if it is generalized extreme
consequential.

Proof. Exactly analogous to that of Theorem2 Q.E.D.

Theorem 22. º satisfy (IND’), (BI’), (LSM’), (INS’) and (TI’) if and only if it
is generalized sum-ranking extreme nonconsequential.

Proof. Exactly analogous to that of Theorem9 Q.E.D.

Theorem 23. º satisfy (INDM’), (SLSM’) and (INS’) if and only if it is gener-
alized multiplicative-ranking extreme nonconsequential.

Proof. Exactly analogous to that of Theorem18 Q.E.D.
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7 Conclusion

In this paper, by extending multiple opportunity sets, we construct the framework
that can make us treat the diversity of freedom of choice, and characterize vari-
ous type of consequentialism and nonconsequentialism. There are two frameworks,
additive-ranking case and multiplicative-ranking case. In additive-ranking case,
(IND) and (BI) is basic axioms, additive-ranking consequentialism and nonconse-
quentialism all satisfy (IND) and (BI). In multiplicative-ranking case, (INDM) is
basic axiom. In both case, we can characterize the traditional concepts of eco-
nomics, extreme consequentialism.

First, we argue the additive-ranking case. In addition to (IND) and (BI), each
opportunity sets Ai, i ∈ {1, · · · , n} satisfy (LI i) or (LSM i). If opportunity sets all
satisfy Local Indifference axiom, (LI i) for all i ∈ {1, · · · , n}, then all opportunity
set don’t have the intrinsic value and º is extremely consequential. If opportunity
sets all satisfy Local Strictly Monotonicity, (LSM i) for all ∈ {1, · · · , n}, the freedom
of choice of all have the intrinsic value. In the intermediate case, some opportunity
sets satisfy Local Indifference axiom and others satisfy Local Strictly Monotonicity,
opportunity sets that Local Strictly Monotonicity have the intrinsic value.

With Local Strictly Monotonicity, (IND) and (BI), (ROB) and (INS) and (SPO)
is crucial for which the intrinsic value of opportunity sets and the value of conse-
quence is important. (ROB) requires that the value of consequence is more impor-
tant than the intrinsic value of opportunity sets. According to (INS), consequence
has no value. With Local Strictly Monotonicity, (IND) and (BI), (SPO) requires
that the intrinsic value of opportunity sets is important than the intrinsic value of
opportunity sets. Moreover, how evaluate various freedom of choices is depend on
(TI), (PI), (WROB1), (SROB1).

Next, we argue the multiplicative-ranking case, which correspond to the frame-
work of Suzumura and Xu(2001). In this case, (SLI) and (SLSM) have to same role
as Local Indifferent and Local strict Monotonicity respectively. (SLI) and (SLSM),
however, is stronger axioms than Local Indifferent and Local strict Monotonicity.
With (SLI), freedom of choice don’t matters, and with (SLSM), freedom of choice
have the intrinsic value. In this case, (INS) and (ROB) have the critical role to char-
acterize extreme nonconsequentialism and strong consequentialism respectively. To
characterize strong nonconsequentialism, however, (SPO) is not sufficient, and we
need another stronger axiom, (SSPO).

Finally, we note that our axiomatization of this paper is special case of this
framework. Allowing trade-off between the value of consequence and the intrinsic
value of opportunities, we can construct more general characterization. These task
must be left for our future research.
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(IND)⊕ (BI)





⊕(LIi)∀i ∈ N =extreme consequentialism

⊕(LIi) for i ∈ S ⊂ N and (LSMi) for ∈ N \ S
(=partial consequentialism and nonconsequentialism)

⊕(LSMi)∀i ∈ N



⊕(ROB)
{ ⊕(TI) =sum-ranking strong consequentialism
⊕(PI) =weighted sum-ranking strong consequentialism

⊕(INS)




⊕(TI) =sum-ranking extreme nonconsequentialism
⊕(PI) =weighted sum-ranking extreme nonconsequentialism
⊕(WROB) =lexicographic extreme nonconsequentialism

⊕(SPO)
{ ⊕(TI) =sum-ranking strong nonconsequentialism
⊕(PI) =weighted sum-ranking strong nonconsequentialism⊕(SROB) =lexicographic extreme nonconsequentialism

(INDM)





⊕(SLI) =extreme consequentialism

⊕(SLSM)




⊕(ROB) =multiplicative strong consequentialism
⊕(INS) =multiplicative extreme nonconsequentialism
⊕(SSPO) =multiplicative strong nonconsequentialism

IND: Independence for addition
INDM: Indifference for Multiplication
BI: Baseline Indifference
LIi: Local Indifference for ith opportunity set
LSMi: Local Strict Monotonicity for ith opportunity set
SPO: Strong Preference for Opportunities
INS: Indifference of No-choice Situations
ROB: Robustness
TI: Trinary Indifference
PI: Proportional Indifference
WROB: Weakly Robustness
SROB: Strongly Robustness
SLI: Semi-Local Indifference
SLSM: Semi-Local Strict Monotonicity
SSPO: Semi-Strong Preference for Opportunities
*note; (A)⊕ (B) indicates the logical combination of the two axioms A and B.
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Appendix: Figure for 2 opportunity sets




(IND)⊕ (BI)





⊕(LI1)⊕ (LI2) = extreme consequentialism

⊕(LI1)⊕ (LSM2)




⊕(ROB) = 2nd opp. set ranking strong conseq.
⊕(INS) = 2nd opp. set ranking extreme nonconseq.
⊕(SPO2) = 2nd opp. set ranking strong nonconseq.

⊕(LI2)⊕ (LSM1)




⊕(ROB) = 1st opp. set ranking strong conseq.
⊕(INS) = 1st opp. set ranking extreme nonconseq.
⊕(SPO1) = 1st opp. set ranking strong nonconseq.

⊕(LSM1)⊕ (LSM2)



⊕(ROB)
{ ⊕(TI) = sum-ranking strong conseq.
⊕(PI) = weighted-sum ranking strong conseq.

⊕(INS)




⊕(TI) = sum-ranking extreme nonconseq.
⊕(PI) = weighted sum-ranking extreme nonconseq.
⊕(WROB1) = lexioco. extreme nonconseq.

⊕(SPO1)⊕ (SPO2)


⊕(TI) = sum-ranking strong nonconseq.
⊕(PI) = weighted sum-ranking strong nonconseq.
⊕(SROB1) = lexioco. strong nonconseq.

(INDM)





⊕(SLI) = extreme consequentialism

⊕(SLSM)




⊕(ROB) = multiplicative-ranking strong consequentialism
⊕(INS) = multiplicative-ranking extreme nonconsequentialism
⊕(SSPO) = multiplicative-ranking strong nonconsequentialism

IND: Independence for addition
INDM: Indifference for Multiplication
BI: Baseline Indifference
LI1: Local Indifference for first opportunity set
LI2: Local Indifference for second opportunity set
LSM1: Local Strict Monotonicity for first opportunity set
LSM2: Local Strict Monotonicity for second opportunity set
SPO: Strong Preference for Opportunities
INS: Indifference of No-choice Situations
ROB: Robustness
TI: Trinary Indifference
PI: Proportional Indifference
WROB1: Weakly Robustness for first opportunity set
SROB1: Strongly Robustness for first opportunity set
SLI: Semi-Local Indifference
SLSM: Semi-Local Strict Monotonicity
SSPO: Semi-Strong Preference for Opportunities
*note; (A)⊕ (B) indicates the logical combination of the two axioms A and B.
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