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1 Introduction

Casual observations suggest that certain consumption needs exhibit strong com-
plementarities with household characteristics—such as family size, location of
residence, or occupation of the wage-earner—that are not amenable to smooth
adjustments over time for a variety of reasons. The number of children is closely
related to the amount of food, clothing, housing, and medical services that must
be consumed to maintain decent standards of living, but cannot be continuously
updated because it takes time for children to grow up. The transportation ser-
vices required to make a living will necessarily depend on where one lives, but
moving homes too often can be unaffordable because of trading frictions in the
housing market. And being a professional athlete may require more health
maintenance than being an academic, but switching from one to the other can
be too costly because of the associated losses in occupation-specific skills. A
straightforward implication of these observations is that certain consumption
components are harder to adjust over time than others.

The purpose of this paper is to show how the adjustment frictions that arise
in this way can help explain a number of time series properties of aggregate
consumption and asset prices that have proved puzzling from the perspective
of standard consumption based asset pricing models. The paper develops a
two-good consumption based model that incorporates this type of friction and
compares it to U.S. data on aggregate stock price indexes and short-term interest
rates as well as several alternative measures of aggregate and disaggregated
consumption. The model maps a stream of near-i.i.d. aggregate consumption
growth rates with low volatility into a process representing stock returns and
interest rates. It is shown that the stochastic properties of these variables are
reasonably in line with their data counterparts. While only partial, the model
explains to a quantitatively significant extent the following facts: the high equity
premium; the high volatility of stock prices; the low level and volatility of risk-
free interest rates; the high persistence of price-dividend ratios and their ability
to forecast future excess returns; and the fact that expected returns, stock
market volatility, and the market price of risk seem to move countercyclically
over the business cycle. The model does not require high relative risk aversion
or negative time discount rates to do this.

The analysis in this paper relates to the literature as follows. First, it builds
on the basic framework of Lucas (1978), and extends it by subjecting households
to certain types of consumption adjustment frictions. A similar line of inquiry
was pursued by Grossman and Laroque (1990), Lynch (1996), Marshall and
Parekh (1999), and Gabaix and Laibson (2002). While close in spirit, this paper
departs from this earlier literature in that the model determines asset prices
endogenously and that it features two types of consumption goods. The former
feature makes it easier to deal sensibly with the rich temporal dependence of
certain asset return characteristics that have been documented in the empirical
literature, and the latter is essential for deriving the connections with habit
persistence and luxury goods that are discussed below.

The second strand in the literature to which the analysis relates is that of
habit persistence, due to Constantinides (1990) and Campbell and Cochrane
(1999) among others. In the model, the consumption component that is subject
to adjustment frictions behaves as a time-varying subsistence level that adjusts
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slowly in response to past consumption shocks. This helps the model explain the
behavior of asset prices through a mechanism that resembles habit persistence.
The idea that consumption adjustment frictions could generate habit-like effects
was anticipated by a number of authors and was recently confirmed by Chetty
and Szeidl (2004). The relationship between the two mechanisms as derived in
this paper is in fact almost an exact replication of what Chetty and Szeidl arrived
at, and not surprisingly, since the model is one that embeds a discrete-time
analogue of the household decision problem they studied in a general equilibrium
framework.

Finally, the model relates to the luxury-goods consumption based model of
Aı̈t-Sahalia, Parker, and Yogo (2004) in an important way. Both models share
the property that certain consumption components—luxury goods consumption
in their model and the consumption component that is “smoothly adjustable”
in the present model—provide the relevant measure of household marginal util-
ities, and that the stochastic properties of those components are sufficiently
different from those of aggregate consumption to justify the behavior of asset
prices. The mechanisms behind this common conclusion, however, are different
for the two models; in particular, Aı̈t-Sahalia, Parker, and Yogo resort to limited
stock market participation and non-homothetic preferences, neither of which are
used in the present study. Also, while Aı̈t-Sahalia, Parker, and Yogo provide
direct evidence that luxury goods consumption does in fact behave differently
from aggregate consumption, the economic forces behind this difference are not
well understood. This paper complements their study by providing a possible
explanation for this “puzzle” as well.

The paper is organized as follows. Section 2 sets up the model, and Section
3 characterizes its equilibrium. Section 4 compares to model to several related
models in the literature. Section 5 provides a quantitative assessment of the
model. The final section concludes.

2 The Model

2.1 Description of the Economy

The economy is populated by a unit measure of households indexed by i ∈ (0, 1).
Their consumption in each period t = 0, 1, 2, ... consists of two components
C1t(i) and C2t(i), which will be referred to as discretionary consumption and
precommitted consumption, respectively. Preferences are identical:

E0

[

∞
∑

t=0

βtU(C1t(i), C2t(i))

]

. (1)

Here, β ≥ 0 is a subjective time discount factor, E0[·] is an expectations operator
conditional on information available at time 0, and the utility kernel U(·, ·) is
taken to have Houthakker’s (1960) addilog form

U(C1, C2) =
2

∑

`=1

ψ`
C1−γ

` − 1

1 − γ
(ψ1 ≡ ψ,ψ2 = 1). (2)

Households receive Yt units of endowments in each period, which can be
converted into consumption goods using a linear “shopping technology”; let P`t
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for ` = 1, 2 be the “relative prices” of the two goods.1 Households also have
access to a complete set of state contingent claims paying off in endowments.
Each household faces a sequence of budget constraints

P1tC1t(i) + P2tC2t(i) + Et[Mt+1At+1(i)] ≤ Yt +At(i) (3)

where Mt+1 is the stochastic discount factor between periods t and t + 1 and
At+1(i) is household i’s asset holdings between periods t and t+1. A borrowing
limit

Wt+1(i) ≡ At+1(i) + Et+1





∞
∑

j=1

Mt+1→t+jYt+j



 ≥ 0, (4)

imposed for each t over all states of nature in t+ 1, prohibits households from
running Ponzi schemes. Here, Mt+1→t+j ≡

∏j
k=1Mt+k is the stochastic dis-

count factor over a horizon of j periods, and Wt+1(i) has the interpretation of
present-value wealth in period t+ 1.

In addition to this, household decisions are also subject to frictions of the
type mentioned in the Introduction, which will be formulated as follows. First,
a vector Xt(i) records household i’s various family characteristics such as family
size, area of residence, or occupation of the wage-earner. The consumption com-
ponent C2t(i), on the other hand, represents a composite of consumption service
flows that exhibit complementarities with Xt(i), such as certain types of food,
housing, medical services, transportation services, or health care. Deviations
from a relationship of the form

C2t(i) = h[Xt(i)] (5)

are then subject to certain costs, such as those associated with failing to feed
one’s children, commute to work, or keep one’s health conditions suitable for
one’s occupational endeavors.2 We capture this by assuming that these costs
are sufficiently large so that households have no incentive to deviate from (5)
at any time; households thus take the relation as a constraint in their decision
problems. And finally, the choice of Xt(i) is subject to adjustment frictions to
capture the fact that it is costly, and in some cases impossible, to instantaneously
adjust the number of children, move homes, or switch occupations. For the sake
of tractability, we choose to apply a Calvo (1983) type adjustment mechanism
to capture these costs:3 Xt(i) is predetermined as of date t, and in any period,
only a random fraction θ of the whole population—chosen independently of any
other event or variable—is given the chance to choose Xt+1(i) differently from
Xt(i); those who are not given this chance must set Xt+1(i) = Xt(i). From the

1In the terminology of general equilibrium theory, the P`’s are “technology parameters”
rather than “prices,” since the model will be closed as an endowment economy.

2The interpretation of the nature of these “costs” is, because they are not explicitly mod-
elled, flexible. They may be thought of as as coming in pecuniary terms (e.g., an income loss
occurs if one doesn’t commute to work) or utility terms (e.g., it is painful to see one’s children
starve).

3The use of a Calvo type adjustment rule distinguishes the present model from most of its
predecessors: Grossman and Laroque (1990) and Marshall and Parekh (1999) both feature
explicit adjustment costs, and Lynch (1996) and Gabaix and Laibson (2002) allow households
to adjust their consumption at fixed intervals. While these alternative formulations have their
virtues, so far no model with such frictions has been able to successfully determine asset prices
endogenously.
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assumptions made above then follows the simplification that households will
behave as if their choice of C2t(i) is subject to the same adjustment frictions as
Xt(i) is, and that once this is taken into account, Xt(i) can be substituted out
from their decision problems. The constraint on the choice of C2t(i) that arises
thus will be referred to as the precommittedness of C2t(i). For later reference,
let It(i) be an “indicator” such that It(i) = 1 if household i is given a chance
to choose of C2,t+1(i) differently from C2t(i) and It(i) = 0 if not.

In summary, then, households in this economy take as given a sequence
{Yt, It(i), P1t, P2t,Mt+1}

∞
t=0 and initial conditions A0(i), C2,0(i), and choose a

plan {C1t(i), C2,t+1(i), At+1(i)}
∞
t=0 to maximize lifetime utility (1) subject to

the budget constraints ((3) and (4)) and C2,t+1(i) = C2,t(i) if It(i) = 0. The
household decision problem, simplified in this way, is essentially a discrete-time
analogue of one studied by Chetty and Szeidl (2004).

We close the model as an endowment economy by an aggregate resource
constraint

P1tC1t + P2tC2t = Yt (6)

where C`t ≡
∫ 1

0
C`t(i)di for ` = 1, 2. The model takes an initial condition and

{Yt, P1t, P2t}
∞
t=0 as given, and determines the consumption allocation and asset

prices endogenously. In principle, closing the model in this way does not entail a
conceptual loss of generality: the allocations and asset prices in this economy will
coincide with those in a two-good production economy if the statistical model of
the exogenous sequence {Yt, P1t, P2t}

∞
t=0 is the same as the equilibrium sequence

of aggregate consumption and good prices in the production economy.

2.2 Definition of Equilibrium

Given an initial condition {A0(i), C2,0(i), I0(i)}i∈(0,1) and exogenous process
{Yt, P1t, P2t, {It+1(i)}i∈(0,1)}

∞
t=0, an equilibrium for this economy is a stochastic

process {{C1t(i), C2t(i), At+1(i)}i∈(0,1), Rt+1}
∞
t=0 such that: (i) for each i, the

plan {C1t(i), C2,t+1(i), At+1(i)}
∞
t=0 solves the corresponding household’s prob-

lem; and (ii) for each t ≥ 0 there holds (6) and
∫ 1

0
At+1(i)di = 0 almost surely.

2.3 Specification of Exogenous Variables

In order to allow for a numerical solution and evaluation of the model, we specify
the initial condition {A0(i), C2,0(i), I0(i)}i∈(0,1) and the distribution of the ex-
ogenous variables {Yt, P1t, P2t}

∞
t=0 as follows. First, for simplicity, the “relative

prices” of the consumption goods are fixed to unity for all t: P1t = P2t = 1.4

Although this assumption is somewhat restrictive, it provides a convenient con-
text for demonstrating that the model generates all of its interesting implications
from fluctuations in aggregate consumption endowments without resorting to
additional sources of risk.

Second, the law of motion for aggregate and individual endowments is taken
to be

∆yt = g + εt, (7)

where yt ≡ log Yt; lower cases will represent variables in logs hereafter. Here,
{εt}

∞
t=0 follows a finite-support distribution that approximates εt ∼ i.i.d. N(0, σ2)

4This would arise in a production economy if each of the two consumption goods are
produced using the same technology.
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in a certain sense; the exact specification will be given in Section 3.1.5 This
specification appears to be the simplest way to capture the salient features of
aggregate consumption data, and is used frequently in the consumption based
asset pricing literature.

Finally, to simplify the exposition to some extent, we take individual initial
conditions so that all households are treated symmetrically at time 0. It is
not possible to assume that households are perfectly ex-ante identical, however,
since a fraction θ of them must start with I0(i) = 1 whereas others begin
with I0(i) = 0. We therefore make the following assumptions. First, we set
C2,0(i) = C2,0 for all i, which is to say that all households start with the
same amount of precommitted consumption. Second, to “counteract” the initial
heterogeneity in I0(i), we take the initial wealth distribution {A0(i)}i∈(0,1) so
that household decisions at t = 0 satisfy C1,0(i) = C1,0 for all i.

3 Characterization of Equilibrium

As in Lucas (1978), the equilibrium is characterized in two steps. In the first
step, the consumption allocation is determined without explicit calculation of
asset prices. The second step, then, takes this allocation as given and reads asset
prices off the implied marginal utilities. The former step requires some elabora-
tion in this setting, since the model endogenously determines the intratemporal
allocation of consumption expenditures among the two components in a non-
trivial way.

3.1 The Aggregate Consumption Allocation

We begin our characterization of the equilibrium consumption allocation by
examining the household’s first order conditions (derivations are given in the
Appendix).

The condition for At+1(i), which applies to all households, gives the following
representation of the stochastic discount factor:

Mt+1 = β

(

C1,t+1(i)

C1t(i)

)−γ

. (8)

This is the standard condition that equates the prices of state contingent claims
with intertemporal marginal rates of substitution. To understand this point, it
is convenient to define household i’s “total consumption” by Ct(i) ≡ C1t(i) +
C2t(i) and note that its “atemporal indirect utility” Ū(Ct(i)) (the maximized
value of the period utility U when total consumption is Ct(i) and the value of
precommitted consumption is C2t(i)) is

Ū(Ct(i)) ≡ U(Ct(i) − C2t(i), C2t(i)). (9)

Expression (8) is then equivalent to Mt+1 = βŪ ′(Ct+1(i))/Ū
′(Ct(i)), a condi-

tion familiar from the standard, single-good/power-utility, consumption based

5Specifically, {εt}∞t=0
will be constructed using the residuals from a finite-state Markov

chain approximation of a first-order autoregressive process. This specification, although some-
what roundabout, is adopted to prevent situations in which extremely low realizations of ε

cause C1t(i) < 0, in which case utility is not defined.
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model. The economics behind (8) is exactly the same as that underlying the
standard model.

The first order condition for the optimal adjustment of C2,t+1(i) applies to
households for which It(i) = 1 (i.e., those who are given the chance to choose
their C2,t+1(i)’s differently from C2t(i)):

C2,t+1(i) =







(1 − ρ)Et

∞
∑

j=1

ρj−1ψC1,t+j(i)
−γ







−1/γ

(10)

where ρ ≡ (1 − θ)β. An interpretation of this condition is that households
make their consumption precommitments in a forward-looking manner so as
to minimize expected distortions in the intratemporal allocation of consump-
tion expenditures. This condition in conjunction with the adjustment rule that
C2,t+1(i) = C2t(i) if It(i) = 0 determines the time path of precommitted con-
sumption {C2t(i)}

∞
t=0.

It now follows from (8) and the completeness of financial markets together
with the assumption C1,0(i) = C1,0 for all i that C1t(i) = C1t for all i and t in
equilibrium. From this and (10), all households who readjust their C2,t+1(i)’s
choose the same value; call this value C∗

2,t+1. Aggregating across households
then gives the law of motion for aggregate precommitted consumption:

C2,t+1 = θC∗
2,t+1 + (1 − θ)C2t. (11)

As demonstrated in the Appendix, substituting the definition of C∗
2,t+1 in this

equation and dividing both sides by Yt gives an equilibrium characterization
of the aggregate expenditure share of precommitted consumption St ≡ C2t/Yt.
A recursive law of motion St+1 = f(St, εt+1) satisfying that restriction is then
found numerically. The procedure, which is detailed in the Appendix, involves
a log-linearization of the equilibrium condition to get an AR(1) representation
for ŝt ≡ log(St) − log(S̄)

ŝt+1 = αŝt − εt+1 (12)

and a finite-state Markov chain approximation of this law of motion using
Tauchen’s (1986) methodology. For each t, then, we use the residuals of that
chain to determine εt+1 = −ŝt+1 + αŝt. The law of motion St+1 = f(St, εt+1)
in conjunction with (7) then determines the aggregate consumption allocation
{C1t, C2t}

∞
t=0.

3.2 Asset Prices

A favorable property of this model is that asset prices can be determined directly
from the aggregate allocation {C1t, C2t}

∞
t=0 without finding the consumption

profiles of individual households. To see this point, substitute C1t(i) = C1t in
(8) and use the definition of St to get

Mt+1 = β

(

Yt+1

Yt

)−γ (

1 − St+1

1 − St

)−γ

. (13)

The aggregate allocation {C1t, C2t}
∞
t=0 thus determines the stochastic discount

factor Mt+1 via (13), which in turn pins down the gross rate of return Rt+1 on
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any asset through the “basic pricing equation”

1 = Et(Mt+1Rt+1). (14)

In the following, we use (14) and (13) in conjunction with the law of motion
St+1 = f(St, εt+1) to solve for asset prices as functions of St. These functions in
conjunction with the law of motion for St fully characterize the data generating
process of asset prices.

3.2.1 The Risk Free Asset

The risk free rate Rf
t+1 is given explicitly by

Rf
t+1(St) =

1

Et(Mt+1)
.

This easily follows from (14) and the fact that Rf
t+1 belongs to the time t

information set. The explicit formulas used in the computation are presented
in the Appendix.

3.2.2 The Consumption Claim

Following a common practice in the consumption based asset pricing literature,
we take a claim to the aggregate consumption endowment stream {Yt}

∞
t=0 to

stand for stocks in the economy. Let Qt be its price in period t. The one-period
return on this asset is Rs

t+1 ≡ (Yt+1+Qt+1)/Qt, so from (14), its price/dividend
ratio (or, equivalently, its price/consumption ratio) Qt/Yt is characterized as the
solution to the functional equation

Qt

Yt
(St) = Et

[

Mt+1

(

Yt+1

Yt

)[

1 +
Qt+1

Yt+1
(St+1)

]]

.

With the state space of St discretized, this reduces to a system of linear equa-
tions, which is easy to solve. Stock returns and related statistics were then
computed from this function; see the Appendix for details.

4 Comparison to Alternative Models

As is well-known, the asset pricing implications of any model is completely
summarized by its stochastic discount factor (see Cochrane (2005) for a detailed
exposition). Here, we exploit this fact to compare the present model to three
classes of models: the standard consumption based model, the habit persistence
models of Constantinides (1990) and Campbell and Cochrane (1999), and the
luxury goods consumption based model of Aı̈t-Sahalia et al. (2004).

4.1 Difference From the Standard Model

The standard consumption based asset pricing model with a single consumption
good and power utility prices assets through a stochastic discount factor of the
form

MS
t+1 = β

(

Yt+1

Yt

)−γ

(15)
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where Yt is aggregate consumption. There is now significant evidence against
this specification (see, e.g., Campbell (1999) for a survey), and therefore any
model must imply a stochastic discount factor different from MS if it is to
successfully account for the behavior of asset prices and aggregate consumption
as observed in the data.

The stochastic discount factor for the present model M , given by (14), differs
from MS in that

Mt+1 = MS
t+1

(

1 − St+1

1 − St

)−γ

. (16)

The factor ((1 − St+1)/(1 − St))
−γ multiplying MS on the right hand side is

therefore responsible for any difference from, or improvement over (if any), the
standard model. This factor can be thought of summarizing the contributions
of consumption precommitments: since C2t can adjust only sluggishly, the ex-
penditure share St = C2t/Yt fluctuates over time, which in turn affects the asset
pricing implications of the model through (16).

4.2 Similarity to Habit Persistence

In the habit persistence models of Constantinides (1990) and Campbell and
Cochrane (1999), assets are priced through a stochastic discount factor of the
form

MH
t+1 = β

(

Yt+1 − Zt+1

Yt − Zt

)−γ

, (17)

where Yt is aggregate consumption and Zt is a time-varying subsistence level,
also referred to as a “habit stock,” which adjusts slowly in response to past
consumption. Constantinides (1990) and Campbell and Cochrane (1999) show
that this specification does substantially better than the standard model with
(15) in explaining the joint time evolution of aggregate consumption and asset
prices.

The stochastic discount factor for the present model, on the other hand, can
be written as:

Mt+1 = β

(

Yt+1 − C2,t+1

Yt − C2t

)−γ

. (18)

Comparing this with (17) reveals an obvious similarity that was discovered in
the earlier work of Chetty and Szeidl (2004): aggregate precommitted consump-
tion C2t behaves as a “habit stock” that moves slowly over time—though in a
forward-looking rather than a backward-looking manner—affecting asset prices
through a functional form identical to (17). The mechanics of the model that
drive its implications with regard to asset prices are therefore very similar to
those of the habit persistence models of Constantinides (1990) and Campbell
and Cochrane (1999).

4.3 Relation to Luxury Goods

The luxury-goods consumption based model of Aı̈t-Sahalia et al. (2004) consid-
ers an economy in which households have non-homothetic preferences over two
consumption goods—basic goods and luxury goods—and stock market partic-
ipation is limited. They then argue that the stochastic discount factor that is
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relevant for pricing stocks takes the form:

ML
t+1 = β

(

Lt+1 + b

Lt + b

)−γ (

PLt

PL,t+1

)

, (19)

where Lt is luxury goods consumption, PLt is the relative price of luxury goods,
and b is a small constant parameterizing the utility function (a negative “subsis-
tence level”). Using several measures of luxury goods consumption, they obtain
substantial evidence in favor of this specification by estimating the model’s Euler
equations and expected-beta representations.

The stochastic discount factor for the present model, on the other hand, can
be written as

Mt+1 = β

(

C1,t+1

C1t

)−γ

. (20)

Under the assumption of constant relative prices PLt/PL,t+1 = 1 (as assumed
in this paper) and b ≈ 0 (as assumed in Aı̈t-Sahalia et al. (2004)), this is nearly
identical to (19) when C1t = Lt. Identifying C1 with L in this way is justified
when the measures of luxury goods used by Aı̈t-Sahalia et al. (2004)—including
luxury retail sales (Bulgari, Gucci, Hermès, LVMH, Saks, Tiffany, and Water-
ford Wedgwood), imported luxury automobiles (BMW, Mercedes, Jaguar, and
Porsche), and charitable contributions by wealthy households—can be thought
of as “purely discretionary” (i.e., do not exhibit complementarities with fam-
ily size etc.), which seems reasonably appropriate. Under this interpretation,
Aı̈t-Sahalia, Parker, and Yogo’s evaluation of (19) can also be interpreted as
an evaluation of (20), and their empirical findings can be taken as direct evi-
dence in favor of the present model’s specification. Several facts related to this
observation will be exploited in the quantitative analysis that follows.

5 Quantitative Analysis

This section solves the model numerically and evaluates its ability to explain the
time series properties of aggregate consumption and asset prices as observed in
a century-long U.S. data set covering years 1890-1995 used by Campbell (1999).
This data is available on John Campbell’s website. The main attraction of this
data set is its length, which is important given the high persistence of many
asset pricing statistics. The time period for the model is one year.

5.1 Calibration

The model has six free parameters that need to be calibrated in order to solve
the model numerically: g and σ are the mean and standard deviation of the
log consumption endowment growth rate, γ determines the curvature of the
utility kernel, β is the subjective discount factor, θ is the reciprocal of the
adjustment frequency of the family status variable (and hence of precommitted
consumption), and ψ governs the average expenditure share of precommitted
consumption. In the following, we find it convenient to re-parameterize ψ by
S̄, using a one-to-one mapping between the two implied by the model. The
parameter choices are summarized in Table 1.
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Table 1: Parameter Choices

Parameter Variable Value
Mean consumption growth (%) g 1.80
Standard deviation of consumption growth (%) σ 3.20
Utility curvature γ 2.50
Subjective discount factor β 0.99
Adjustment frequency parameter θ 1/15
Steady state expenditure of C2 S̄ 0.70

Note: All values are annual.

The first four parameters are chosen as follows. We take g and σ to match the
mean and standard deviation of aggregate consumption log growth rates ∆y as
observed in the data. We also set γ = 2.50 to keep the model’s implied relative
risk aversion coefficient around 3 on average (see Section 5.3.2 for details). And
for the subjective discount factor, we simply set β = 0.98.

In order to calibrate θ, we exploit the implication of the theory that a house-
hold’s family status Xt(i) is adjusted every 1/θ years on average, and take
1/θ = 15 as a benchmark. This choice is mainly motivated by the consideration
that a primary component of Xt(i) should be family size, which is arguably very
persistent: raising children, for example, can take around 20 years in total. This
suggests 1/θ = 20. An adjustment to 1/θ = 15 is made in view of the fact that
there are other elements in Xt(i), such as residential or occupational status,
that are presumably easier to adjust—for instance, Kambourov and Manovskii
(2004) report that that the average fraction of workers changing occupations or
industries within a year has ranged between 10 to 20 percent for the U.S. during
the period 1968-1997.

Finally, drawing on an interpretation discussed above in Section 4.3, we
choose S̄ so that the volatility of discretionary consumption growth ∆c1 implied
by the model roughly matches that of luxury goods consumption growth as
measured by Aı̈t-Sahalia et al. (2004). Under the benchmark choice S̄ = 0.70,
the former is about 11 percent, while the latter ranges between 10 and 20 percent
depending on the specific measure. The motivation for adopting this calibration
strategy derives from the following two considerations. The first is that the
model appears to be reasonably well-identified along this dimension in that a
high choice of S̄ consistently implies a high volatility of ∆c1. The intuition for
this is simple: if a large fraction of Y is occupied by a slowly-moving component
C2, the residual C1 = Y − C2 has no choice but to vary a lot. The second
consideration is that since the model’s stochastic discount factor has the form
(20) with a modest curvature parameter γ = 2.50, the model’s quantitative
performance as an asset pricing model depends crucially on the volatility of ∆c1.
Choosing S̄ so that this volatility has direct empirical support from the data
therefore disciplines the analysis to a considerable extent. A minor drawback of
this strategy is that it is “indirect” in the sense that it chooses an expenditure
share parameter without using any data on the expenditure shares of actual
consumption categories. A preliminary attempt in addressing this point is made
in Section 5.4 below, where we draw on data evidence from the U.S. National
Income Accounts (NIA) on how aggregate consumption breaks up into various
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Table 2: Means and Standard Deviations

Statistic Data Model
E(rs) 6.59 5.11
σ(rs) 18.5 20.4
E(rf ) 2.00 1.41
σ(rf ) 8.84 5.07
E(rs − rf ) 4.59 3.71
σ(rs − rf ) 18.4 19.5
E(rs − rf )/σ(rs − rf ) 0.25 0.19
exp(E(p− d)) 21.9 31.2
σ(p− d) 0.28 0.31

Notes: E and σ represent means and standard deviations, respectively. rs is the log
real return on stocks, rf is the log real return on risk-free assets, and p − d is the log
price/dividend ratio. All returns are in annual percentages.

components—such as food or housing—to obtain an estimate of S̄.

5.2 Asset Pricing Implications

We now simulate the model using the parameters discussed in the previous
section and compare the results to Campbell’s (1999) data. In the following
exercise, the risk free rate Rf is taken to stand for real returns on 3-month
T-bills (1931-1995), Treasury Certificates (1920-1930), and Prime Commercial
Paper (1890-1920), and the price of the consumption claim Q is interpreted
as the Standard and Poors 500 stock price index. Model statistics are sample
averages over 100,000 simulations, each of length 106 (equal to the number of
observations in the data sample).

5.2.1 Means and Standard Deviations

Table 2 reports the means and standard deviations of several variables of interest
from the data together with their model counterparts. Judged from the first
four rows in Table 2, the model captures a salient characteristic of the data
that stock returns are significantly higher in level and more volatile than the
risk-free interest rate. The high average return on stocks is in part reflected
in the equity premium E(rs − rf ), where the model accounts for about 80
percent of its historical value. This, combined with an excess return volatility
slightly higher than in the data, makes the model generate a log Sharpe ratio
E(rs − rf )/σ(rs − rf ) somewhat lower than in the data. The model’s risk-free
rate, on the other hand, is low and smooth, and in fact slightly errs on the side
of interest rate smoothness—a point which may be contrasted with a general
tendency in the literature for otherwise successful models to generate risk-free
rates that are too volatile, and sometimes even more volatile than stock returns.
Since the model generates these features with β < 1, it partially resolves the risk-
free rate puzzle of Weil (1989). Another interesting characteristic of the data,
also captured by the model, is the high volatility of stock prices as measured
by the standard deviation of the log price/dividend ratio. How this finding
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Table 3: Autocorrelations

Variable
Lag (Years)

1 2 3 4 5
p− d

Data 0.80 0.61 0.57 0.50 0.39
Model 0.80 0.63 0.50 0.39 0.30

rs − rf

Data 0.02 -0.21 0.10 -0.02 -0.16
Model -0.03 -0.03 -0.02 -0.02 -0.02

∑j
k=1 ρ(r

e
t , r

e
t−i)

∗

Data 0.02 -0.19 -0.10 -0.11 -0.27
Model -0.03 -0.06 -0.09 -0.11 -0.13

|rs|
Data 0.06 -0.11 0.08 0.05 -0.11
Model 0.02 0.02 0.01 0.00 0.00

Note: re
≡ rs

− rf is the log excess real return on stocks. The statistic ∗ is the partial
sum of its autocorrelation up to lag j.

relates to the volatility test literature will be discussed in Section 5.2.3 below.
The average level of the price/dividend ratio implied by the model, however, is
somewhat higher than in the data, possibly reflecting the fact that the model
does not provide a full account of the average level of stock returns.

5.2.2 Autocorrelations and Cross-correlations

Table 3 summarizes the autocorrelations of several variables from the data and
the model. The autocorrelations of the log price/dividend ratio indicate that the
model captures its high persistence that characterizes the data. The negative
autocorrelations of excess stock returns show mean-reversion as documented by
Fama and French (1988b) and Poterba and Summers (1988). Perhaps this point

Table 4: Cross-Correlations

Variable
Lag (Years)

1 2 3 4 5
pt − dt, r

e
t+j

Data -0.24 -0.22 -0.08 -0.19 -0.09
Model -0.10 -0.08 -0.07 -0.06 -0.06

re
t , |r

e
t+j |

Data -0.19 0.05 0.17 -0.05 -0.01
Model -0.08 -0.07 -0.06 -0.05 -0.04

pt − dt, |r
e
t+j |

Data -0.16 0.02 0.04 -0.17 -0.10
Model -0.17 -0.13 -0.11 -0.09 -0.07
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Table 5: Predictability of Excess Returns

re
t→t+k = a+ b(pt − dt)

Horizon k
Data Model

10 × b R2 10 × b R2

1 -1.7 0.06 -0.7 0.02
2 -3.4 0.12 -1.4 0.03
3 -4.2 0.13 -2.0 0.05
4 -5.3 0.16 -2.5 0.06
5 -6.8 0.22 -2.9 0.07
6 -7.6 0.25 -3.3 0.07
7 -8.5 0.28 -3.7 0.08

Notes: The dependent variable in the regression above is the k-year log excess return
on stocks over the risk free security, and the regressors are a constant and the log
price/dividend ratio.

is more vivid in the partial sums of these autocorrelations, where the model
roughly matches the quantitative magnitudes and pattern observed in the data.
Also, although somewhat small in quantitative magnitude, the model generates
a positive autocorrelation in absolute stock returns, indicating volatility persis-
tence that has been emphasized in the autoregressive conditional heteroskedas-
ticity (ARCH) literature (see Bollerslev, Chou, and Kroner (1992, Section 3.6)
for a survey).

Table 4 reports the cross-correlation structure of several variables. Here,
the negative correlation between the log price/dividend ratio and future excess
stock returns shows that the model captures a well-documented pattern of return
predictability that unusually low stock prices correspond with unusually high
returns in subsequent periods. This point will be examined from another point of
view in Section 5.2.3 below. The cross-correlation between excess stock returns
or price/dividend ratios with absolute excess returns in future periods, both of
which are negative, indicate that model also fits another familiar pattern that
large declines in stock prices are associated with high return volatility in future
periods—a “leverage effect” documented by Black (1976) and many others.

5.2.3 Return Predictability and Stock Price Volatility

Table 5 reports results from regressions of long-horizon excess stock returns
over future periods on current log price/dividend ratios. The data exhibits a
familiar pattern documented by Campbell and Shiller (1988) and Fama and
French (1988a): the coefficients are negative so that low stock prices predict
high excess returns over future periods, and the R2 statistics rise sharply with
the horizon. The model replicates this pattern to a reasonable extent, although
the magnitude of the both the coefficients and the R2 statistics are smaller than
in the data.

Closely related to the issue of return predictability is the “excess” volatility
of stock prices. A striking finding from the volatility test literature starting
with LeRoy and Porter (1981) and Shiller (1981) is that stock prices are too
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Table 6: Variance Decompositions

Source Returns (%) Dividends (%)
Data 0.96 -0.16
Model 1.04 -0.06

Note: The table reports the sample analogues of the first and second terms in (21),
both truncated at 15 lags and multiplied by 100.

volatile to be explained by varying expectations of future dividend growth and
interest rates. Instead, as pointed out by Cochrane (1992), nearly all variation
in the price/dividend ratio appears to be coming from changes in expected
returns. Cochrane’s analysis is based on a log-linearization of the identity 1 =
(Rs

t+1)
−1Rs

t+1 around Pt/Dt = P/D, which yields, in the absence of bubbles:

Var(pt − dt) ≈

∞
∑

j=1

ξjCov(pt − dt,∆dt+j) −

∞
∑

j=1

ξjCov(pt − dt, r
s
t+j) (21)

where ξ ≡ (P/D)/[1 + (P/D)]. This formula states that, ignoring the possible
contributions of “market irrationality,” the volatility of the log price/dividend
ratio is fully explained by the predictable variation of future dividend growth
(the first term) and that of future returns (the second term). Table 6 reports
the estimated contributions of each of these two components. The results show
that the model generates a pattern similar to that in the data, with almost
all variation in the log price/dividend ratio coming from predictable changes in
expected returns.

5.2.4 Asset Returns Over the Business Cycle

Figures 1 and 2 summarize the time dependence of several conditional moments
from the model by showing their values as functions of the single state variable
St. In interpreting these figures, it is useful to note the following. First, the
stationary distribution of S is nearly normal, peaks at the steady state value
S̄ = 0.70, and assigns virtually zero probability to S outside of the region
(.55, .85). The nature of the time evolution of St can be inferred from this in
conjunction with the fact that it exhibits slow mean reversion (which follows
from (12) and α ≈ 0.87). Second, S has the interpretation of a “recession status
variable” that is high during recessions and low during booms: since C2 moves
sluggishly over time, a recession that causes Y to drop sharply makes S = C2/Y
go up. Combining these two observations with the two figures, one can get an
idea of how the conditional moments they depict vary over the business cycle.

Figure 1 depicts two curves, representing the conditional expectation (lower
line) and standard deviation of excess stock returns (upper line) respectively,
both conditional on the current state being St. Consistent with the empirical
findings of Fama and French (1989) and Schwert (1989) among others, the
curves are upward-sloping, indicating that the two variables they depict vary
countercyclically and persistently over the business cycle. The two curves do not
move one-for-one, however, and the ratio of the former to the latter rises with
S. This is reflected in Figure 2, where the two curves depict the two variables
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Figure 1: Conditional expectation and standard deviation of excess stock returns
as functions of St.
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Table 7: Correlations with the Stochastic Discount Factor

Correlation of m with:
∆y rs ∆c1

-0.973 -0.997 -1.000

Note: m ≡ log M is the log stochastic discount factor.

that appear in the Hansen and Jagannathan (1991) inequality:

Et(R
s
t+1 −Rf

t+1)

σt(Rs
t+1 −Rf

t+1)
≤
σt(Mt+1)

Et(Mt+1)
. (22)

The lower line in the figure is the left hand side of this equation—the conditional
Sharpe ratio—and the upper line is the right hand side—the slope of the mean-
variance frontier, or the “market price of risk”—both as functions of St. Here,
again, the pattern is countercyclical, consistent with evidence documented by
Chou, Engle, and Kane (1992).

5.2.5 Correlations Between the Stochastic Discount Factor and Its Proxies

Table 7 reports the correlation between the log stochastic discount factor m and
three variables that major alternative models take as proxies of m: the Capital
Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) prices assets
using returns on the “market portfolio,” which may be interpreted as m ∝ rs in
the present model; the standard consumption based model with power utility
assumesm ∝ ∆y; and the luxury-goods consumption based model of Aı̈t-Sahalia
et al. (2004) can be interpreted as m ∝ ∆c1.

Consistent with evidence from Mankiw and Shapiro (1986) among others,
the model implies that the “market return” rs gives a better proxy of m than
does aggregate consumption growth ∆y, so that the CAPM will do a better job
at pricing assets than does the standard consumption based model. The impli-
cation that ∆c1 is even better correlated with m than the other two alternatives
is also consistent with Aı̈t-Sahalia, Parker, and Yogo’s finding that their luxury-
goods consumption based model does a better job at pricing the cross-section
of stock returns than the CAPM or the standard consumption based model.

5.3 Microeconomic Implications

This section presents several implications of the model with regard to consump-
tion and risk aversion. These results serve two purposes: first, they allow for
a further assessment of the quality of the model, and second, they help build
some intuition on how the model works.

5.3.1 Volatility of Discretionary Consumption

As noted earlier in Section 5.1, one of the most important factors underlying
the model’s ability to account for the behavior of asset prices is the volatility of
discretionary consumption growth ∆c1. This assertion follows from Hansen and
Jagannathan’s (1991) observation that the standard consumption based model
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Figure 3: Conditional standard deviations of ∆y and ∆c1 as function of S.

with power utility is unable to account for the observed Sharpe ratio because the
low volatility of aggregate consumption growth ∆y together with (15) makes the
stochastic discount factor insufficiently violate to satisfy the inequality (22). The
present model, whose stochastic discount factor can be written as (20), avoids
this problem by making ∆c1 volatile. Its standard deviation, as discussed in
Section 5.1, was chosen to be approximately 11 percent based on Aı̈t-Sahalia,
Parker, and Yogo’s (2004) finding that the standard deviation of luxury goods
consumption growth has been about that magnitude. This confirms the model’s
connection to Aı̈t-Sahalia, Parker, and Yogo’s luxury goods model: both models
“price” assets using a consumption component that is very volatile, and that
makes it possible for them to reconcile a high equity premium with smooth
aggregate consumption growth and a low curvature parameter γ.

An issue related to these is the conditional, as opposed to the unconditional,
volatility of discretionary consumption growth ∆c1. As discussed in Cochrane
(2005, p. 463), empirical evidence on the countercyclical variation of the mar-
ket price of risk taken together with the smoothness of risk-free interest rates
suggest—through the inequality (22)—that the stochastic discount factor must
be conditionally heteroskedastic. The standard consumption based model again
fails to fit this pattern because data on aggregate consumption growth ∆y does
not show strong evidence of conditional heteroskedasticity. The present model
gets around this problem by making discretionary consumption growth condi-
tionally heteroskedastic as well. This point is demonstrated in Figure 3, which
plots the conditional standard deviations of aggregate consumption growth ∆y
and discretionary consumption growth ∆c1 as functions of the recession state
variable S. As is clear from the figure, discretionary consumption is always
conditionally more volatile than aggregate consumption, and especially so dur-
ing recessions when S is high, exhibiting strong conditional heteroskedasticity.
The intuition for this is fairly straightforward: since aggregate consumption Y
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Figure 4: Local curvature of the utility function, relative risk aversion, and the
curvature parameter of the “average” household as functions of S.

moves around by “about the same amount” at any time—it is nearly condition-
ally homoskedastic—the larger the fraction occupied by the sluggishly-moving
C2, the more volatile becomes the residual C1 = Y −C2. From the perspective
of the model, therefore, the time variation of the market price of risk can be
understood as a consequence of a time-varying “quantity of risk,” as opposed
to time-varying risk aversion, once ∆c1 is viewed as the fundamental risk factor
driving asset returns.

5.3.2 Risk Aversion and Utility Curvature

A bulk of the literature on consumption based asset pricing has consisted of
attempts to resolve the equity premium puzzle of Mehra and Prescott (1985).
The nature of the puzzle is that it is difficult to produce equilibrium asset
pricing models that are consistent with the level of the equity premium that is
observed in the data without assuming extremely high risk aversion on the part
of households. Risk aversion is conventionally measured by the Arrow-Pratt
measure of relative risk aversion to wealth bets, which in the present context
becomes

RRAt(i) ≡ −
Wt(i)VWW

VW
, (23)

where V is the value function for household i. The value function, whose precise
definition is given in the Appendix, depends on variables that characterize the
state of the individual household—Wt(i), C2t(i), and It(i)—as well as those
about the aggregate economy—Yt and C2t. Conventional wisdom suggests that
this value should not be much larger than 2 or 3. The middle line in Figure 4
displays the RRAt(i)’s for time-t “average” households—defined as i’s for which
C2t(i)/Ct(i) = St, At(i) = 0, and It(i) = 0—as a function of the aggregate state
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St. The curve begins from slightly less than 3 and rises gradually to 4, taking
approximately 3.2 around the steady state S̄ = 0.70. This, together with the
high equity premium implied by the model, shows that the model partially
resolves the equity premium puzzle.

The top line in Figure 4, on the other hand, plots the local curvature of
the household utility function, or the Arrow-Pratt measure of aversion towards
fluctuations in total consumption Ct(i) = C1t(i) + C2t(i), defined as

ηt(i) ≡ −
Ct(i)Ū

′′(Ct(i))

Ū ′(Ct(i))
(24)

where Ū is the atemporal indirect utility function defined in (9). The values
reported in the figure are again those of time-t “average” households (in the same
sense as above) when the aggregate recession state is St. As is clear from the
figure, this quantity is significantly higher than both γ and the RRAt(i)’s, and
exhibits a strong countercyclical variation over the business cycle. Households
in this economy are therefore highly averse to consumption risk, and especially
so during severe recessions, even though their attitude toward wealth bets—
gambles or lotteries in the usual sense—is only moderate. The model, viewed in
this way, interprets the high equity premium as a consequence of this attitude:
households are risk averse to consumption risk; it is just that that aspect of
risk aversion is not reflected in their behavior toward ordinary bets. The time-
variation in ηt(i) also suggests that the cyclical behavior of the market price
of risk can be interpreted as a consequence of time-varying risk aversion, as
opposed to one of a time-varying quantity of risk, so long as ∆y is viewed as
the fundamental risk factor driving asset returns. Viewed in this way, the time-
series behavior of the utility curvature confirms the model’s analogy with habit
persistence: in both cases, households become more risk averse to consumption
risk (i.e., have higher curvature ηt(i)) during recessions, which allows the model
explain the cyclical variation of various asset return characteristics.6

5.3.3 Cross-sectional Heterogeneity

Another interesting feature of the model that deserves some attention is that
household consumption profiles are ex-post heterogeneous, even though their
treatment is ex-ante “symmetrical”—in the sense described earlier in Section
2.3—and financial markets are complete. This point is most clearly understood
by observing that the consumption profile of any individual household can be
backed out from the aggregate consumption allocation by first constructing
the sequence {C∗

2,t+1}
∞
t=0 from {C2t}

∞
t=0 using (11), and then setting for all

6The two setups are not observationally equivalent, however. In particular, it appears
that no habit persistence model so far has been able to reconcile smooth i.i.d. consumption
growth with a high equity premium, low interest rate volatility, and low relative risk aversion:
versions of Constantinides’s (1990) specification generate too much interest rate volatility
when consumption growth is i.i.d. and Campbell and Cochrane’s (1999) implies high rela-
tive risk aversion. The present model thus, in a sense, achieves a “cream skimming” of the
two. This may be thought of as following from fact that in the model, what corresponds to
the “habit” (precommitted consumption C2t(i)) evolves “internally” (in accordance with the
circumstances of individual households) as in Constantinides’s specification but responds non-
linearly to past consumption as in Campbell and Cochrane’s. The stochastic discount factor
retains a simple form despite these features because the “habit” evolves in a forward-looking,
rather than a backward-looking, manner.
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t ≥ 0: C1t(i) = C1t, C2,0(i) = C2,0, C2,t+1(i) = C∗
2,t+1 if It(i) = 1, and

C2,t+1(i) = C2t(i) if It(i) = 0. The ex-post heterogeneity of {C1t(i), C2t(i)}
∞
t=0

then follows from the fact that realizations of {It(i)}
∞
t=0 differ across each i.

The source of this unusual—and perhaps seemingly odd—phenomenon is
that, roughly speaking, the intratemporal marginal rates of substitutions U1/U2

between the two consumption components are not equated across households in
equilibrium:7 situations can arise in which two households i1 and i2 have time
t consumption profiles such that C1t(i1) = C1t(i2) and C2t(i1) > C2t(i2), yet
no further trade takes place. The key to understanding the economics behind
this result is to recognize that the inequality C2t(i1) > C2t(i2) is an empirical
manifestation of a deeper picture expressed by C2t(i1) = h[Xt(i1)] > h[Xt(i2)] =
C2t(i2). The first and last equalities say, for example, that each of the two
households live in houses that are large enough to accommodate their families,
and the middle inequality says that household i1 has a bigger family than does
household i2. In order to realize the apparent gain from trade in the situation
above, then, household i1 would have to give away one of its family members
to household i2. Such “gains” can remain unrealized in equilibrium because
households in the model are not allowed to make such transfers smoothly enough
in each period.8

An interesting corollary of the cross-sectional heterogeneity in consumption
that arises in this way is that, since the relative risk aversion coefficient RRAt(i)
and the local curvature of the utility function ηt(i) both depend on C2t(i), the
two quantities are endogenously heterogeneous as well. The intuition for this
is simple: since these quantities rise as C2t(i) gets closer to Ct(i), households
who happen to have a high value of C2t(i) at any point in time become more
averse to both wealth risk and consumption risk than the rest of the population.
The existence of this cross-sectional heterogeneity appears to be consistent with
a number of empirical studies (see, e.g., Barsky, Juster, Kimball, and Shapiro
(1997) for experimental evidence), and, together with the time-variation of these
quantities over the business cycle as discussed earlier, seems also to suggest a
possible line of explanation as to why most studies have had substantial diffi-
culty in obtaining sharp point estimates of these “parameters.” Also, of some
potential theoretical interest is that the model provides an example in which
utility curvature heterogeneity can be reconciled with a complete-markets, in-
finite horizon framework that features growth without predicting that a subset
of all households will eventually own all wealth and consume all resources in the
long-run.

5.4 Inferring S̄ From Disaggregated Consumption Data

In the benchmark calibration, the choice S̄ = 0.70 was based exclusively on
information about the volatility of ∆c1. Here, we make a preliminary attempt

7The discussion here is heuristic in that, strictly speaking, it makes sense only if the costs
associated with deviations from C2t(i) = h[Xt(i)] are interpreted as coming in pecuniary
terms. If those costs come in utility terms, the utility function (of the “underlying model” in
which those costs are explicitly modelled) can be discontinuous around C2t(i) = h[Xt(i)] and
the intratemporal marginal rate of substitution (again, of the “underlying model”) may not
be well-defined.

8However, one can think of a portion of the infrequent adjustments in Xt(i) as involving
such transfers, so the model is not inconsistent with the fact that such transfers can and do
take place in various forms from time to time.
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Table 8: Properties of Various Consumption Components

Consumption Category E(Cn/Y ) σ(∆cn)/σ(∆y)
Food + Medical care + Recreation 0.44 0.98
Clothing, accessories, and jewelry 0.05 1.77
Personal care 0.02 2.13
Housing 0.17 0.84
Household operation 0.09 1.60
Personal business 0.08 1.38
Transportation 0.08 4.08
Education and research 0.03 1.77
Religious and welfare activities 0.02 1.93

Notes: Data is from the National Income Accounts, annual 1929-2003. E(Cn/Y ) is
the average expenditure share of the consumption component, and σ(∆cn)/σ(∆y) is
the standard deviation of its log growth rates relative to total consumption.

in inferring this quantity using a more “direct” method that makes explicit use
of expenditure share data.

In this attempt, we compare the model to NIA data on how aggregate con-
sumption breaks up into various components such as food, clothing, housing,
medical care, transportation, recreation, education, and religious and welfare
activities. In relating the model variables to these consumption components, we
imagine that the time series of each of these components are generated by the
model, appended with the relationship

Cn
t = λn

1C1t + λn
2C2t (25)

where Cn
t is the n-th consumption category (n = 1, ..., N) and λn

` ’s (` = 1, 2)

are constants such that
∑N

n=1 λ
n
` = 1 for ` = 1, 2. The time series implied by

this relationship may be interpreted as an equilibrium in a 2N -good economy in
which each Cn

t consists of a “discretionary component” Cn
1t and “precommitted

component” Cn
2t (so that Cn

t = Cn
1t + Cn

2t) and the period utility function is
given by

Ũ(C1
1 , ..., C

N
1 , C

1
2 , ..., C

N
2 ) =

2
∑

`=1

ψ̃`
[
∏N

n=1(C
n
` )λn

` ]1−γ − 1

1 − γ
(26)

where ψ̃` = ψ`/[
∏N

n=1 λ
n
` ]1−γ . In this setting, Cn

`t(i) = λn
`C`t(i) follows from

second stage of a two-stage budgeting procedure because the intratemporal ag-
gregator is Cobb-Douglas. Summing this over ` = 1, 2 and integrating over
i ∈ (0, 1) gives (25).

The data facts we use to pin down the parameters—the average expenditure
shares and standard deviations of the log growth rates of these disaggregated
consumption components relative to that of total consumption—are reported
in Table 8. Here, food, recreation, and medical care are lumped into one cat-
egory to eliminate the strong time trends in the expenditure shares of these
categories—which is negative for food and positive for recreation and medical
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care—so as to make the mean expenditure share a meaningful statistic.9 We
limit our focus to nondurables and services consumption at this stage.

Using this data, then, we choose S̄ and λn
` ’s jointly to minimize the sum

of squared percentage prediction errors for the statistics reported in Table 8,
subject to the requirements that S̄ ∈ (0, 1), λn

` ∈ (0, 1), and
∑N

n=1 λ
n
` = 1 for ` =

1, 2. Notice here that there are 2N−1 “free” parameters and 2N−1 independent
data facts to be matched. This procedure gives a point estimate of S̄ = .66.
Given this, we adjust this value to correct for the contributions of durable goods
consumption—such as furnitures and automobiles—which intuition suggests are
important components of precommitted consumption. Since the expenditure
share of durable goods has averaged roughly 13 percent during the sampling
period, Slesnick’s (1992) finding that the service flows derived from consumer
durables goods are fairly close in magnitude to the expenditures on those durable
goods suggests that the adjustment be approximately (.66+ .13)/(1.00+ .13) ≈
.70. The procedure therefore gives some support for the benchmark choice
S̄ = 0.70 from an alternative point of view.

6 Conclusion

This paper developed and evaluated a consumption based asset pricing model in
which household consumption choices are subject to a certain type of adjustment
friction. The model was solved numerically using parameters values that were
selected based on evidence on aggregate and disaggregated consumption as well
as several other observations. The time series properties of the model’s endoge-
nous variables were shown to be reasonably consistent with the salient features
of asset prices and consumption, explaining substantive portions of many of the
associated statistics. The side-effects arising from the frictions incorporated in
the model also seem to be minor: the crucial mechanism—the volatility of a cer-
tain consumption component—has some direct support from the data on luxury
goods consumption presented by Aı̈t-Sahalia et al. (2004), and the model does
not require implausibly high relative risk aversion or negative time discounting
on the part of households.

As discussed in the paper, the model achieved many of these results through
a mechanism that exhibits a striking similarity to habit persistence. In a sense,
this finding is reassuring in that it provides an explanation as to why certain
macroeconomic time series seem to behave “as if” consumers are forming habits,
even though microeconomic evidence in favor of such preference specifications
is rather slim (e.g., Dynan (2000)). At a deeper level, however, the connection
between the two is potentially disruptive: Since what corresponds to the “habit
stock” in the model is endogenously determined by the households’ optimal
decision rules, its time evolution will most likely be affected in non-trivial ways
when there are important shifts in government policy regimes. To the extent
that the habit-like effects captured by and incorporated in many macroeconomic
models are in fact manifestations of a mechanism similar to one described in this
paper, then, it is conceivable that policy analyses carried out in such frameworks
can potentially fall prey to a very subtle version of the Lucas (1976) critique.

9A theoretical justification for this procedure may be possible if one is willing to accept the
position that the “discretionary/precommitted components” of these categories are perfect
substitutes.
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Given the wide spread use of habit persistence in a variety of contexts, whether
this issue can be safely ignored is certainly of much importance.

Another interesting connection to the literature, also heavily exploited in
the analysis, was the near-equivalence between the model’s stochastic discount
factor and that of Aı̈t-Sahalia, Parker, and Yogo’s (2004) luxury goods model.
Both models theoretically predict that, measurement issues aside, the growth
rates of particular types of consumption goods should serve as excellent risk
factors for pricing assets. Further investigations on the extent to which this
proposition is “true” enough to be useful are well deserved.

Perhaps the most controversial ingredient of the analysis is the adoption of a
Calvo (1983) type adjustment rule. Several authors have noted, primarily in the
context of sticky-price monetary models, that this formulation can overstate the
associated adjustment frictions in quantitatively important ways. Assessing the
robustness of the model along this dimension, which would require a model that
features a more “realistic” formulation of the adjustment frictions considered
here, would also be an interesting line of further inquiry.
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Appendix

A Derivations and Model Solution

A.1 Deriving the Household First Order Conditions

To obtain the first order conditions for household optimization, note that the
household’s decision problem can be formulated as a standard dynamic pro-
gramming problem in which the “state” at time t consists of At(i), C2t(i), It(i),
Yt, and C2t, and the “controls” are C1t(i), At+1(i), and C2,t+1(i). Denote the
value function by V (At(i), C2t(i), It(i);Yt, C2t).
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The Bellman equation can be written as

V (A(i), C2(i), I(i);Y,C2)

= max
C1(i),A′(i),C′

2
(i)

{U(C1(i), C2(i)) + βE[V (A′(i), C ′
2(i), I

′(i);Y ′, C ′
2)]} (27)

subject to the constraints

C1(i) + C2(i) + E[M ′A′(i)] ≤ Y +A(i) (28)

C ′
2(i) = C2(i) if I(i) = 0 (29)

the equilibrium transition laws

Y ′ = eg+ε′

Y (30)

C ′
2 = Y ′f(C2/Y, ε

′) (31)

and the equilibrium “pricing function”

M ′ = β

(

Y ′

Y

)−γ (

1 − C ′
2/Y

′

1 − C2/Y

)−γ

(32)

where “primes” denote next-period values and the expectation on the right hand
side is taken over ε′ and I ′(i).

Under suitable regularity conditions, the value function V satisfies the Bell-
man equation and the household’s optimal policy is characterized as one that
maximizes the right hand side of the Bellman equation. Assuming that those
conditions are satisfied, we can break up the household’s problem into a se-
quence of “time-t problems”: for each t, choose C1t(i), At+1(i), and C2,t+1(i)
to maximize

Et





∞
∑

j=0

βjU(C1,t+j(i), C2,t+j(i))



 (33)

subject to

C1t(i) + C2t(i) + Et[Mt+1At+1(i)] ≤ Yt +At(i) (34)

C2,t+1(i) = C2t(i) if It(i) = 0 (35)

taking the transition laws, equilibrium stochastic discount factor, and the “ini-
tial conditions” Wt(i), C2t(i), and It(i) as given. This characterization is
obtained by expressing V (At+1(i), C2,t+1(i), It+1(i);Yt+1, C2,t+1) as the utility
function evaluated at the optimal decision rule and then substituting it in the
right hand side of the Bellman equation.

Clearly, the budget constraint (34) must hold with equality at the optima,
so we can substitute it into the objective function (33) to get

Et





∞
∑

j=0

βjU(Yt+j +At+j(i) − C2,t+j(i) − Et+j [Mt+j+1At+j+1(i)], C2,t+j(i))



 .

(36)
The time-t problem then reduces to choosing At+1(i) and C2,t+1(i) to maximize
(36) subject to (34) and (35), taking Wt(i), C2t(i), and It(i) as given.
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A.1.1 Deriving Equation (8)

To derive (8), collect the terms in (36) that involve At+1(i) to get

Et[U(Yt +At(i) − C2t(i) − Et[Mt+1At+1(i)], C2t(i))

+ βU(Yt+1 +At+1(i) − C2,t+1(i) − Et+1[Mt+2At+2(i)], C2,t+1(i))].

The first order condition with respect to At+1(i) is then

0 = Mt+1U1(Yt +At(i) − C2t(i) − Et[Mt+1At+1(i)], C2t(i))

− βU1(Yt+1 +At+1(i) − C2,t+1(i) − Et+1[Mt+2At+2(i)], C2,t+1(i)).

Substituting (34) and using U1(C1, C2) = ψC−γ
1 gives (8).

A.1.2 Deriving Equation (10)

To derive (10), collect the terms in (36) that involve C2,t+1(i) to get

1

1 − θ
Et





∞
∑

j=1

ρjU(Yt+j +At+j(i) − C2,t+1(i) − Et[Mt+j+1At+j+1(i)], C2,t+1(i))





where ρ ≡ (1 − θ)β. Differentiating this expression with respect to C2,t+1(i)
and setting it to zero gives

0 = Et





∞
∑

j=1

ρj{U1(Yt+j +At+j(i) − C2,t+1(i) − Et[Mt+j+1At+j+1(i)], C2,t+1(i))

− U2(Yt+j +At+j(i) − C2,t+1(i) − Et[Mt+j+1At+j+1(i)], C2,t+1(i))}





Substitute back (34), noting that C2,t+j(i) = C2,t+1(i) for all j ≥ 0 in the
expression since the summation and expectation are over those states of na-
ture in which It+1(i) = · · · = It+j(i) = 0, and use u1(C1, C2) = ψC−γ

1 and
u2(C1, C2) = C−γ

2 to get

0 = Et





∞
∑

j=1

ρj
{

ψC1,t+j(i)
−γ − C2,t+1(i)

−γ
}





= Et





∞
∑

j=1

ρjψC1,t+j(i)
−γ



 −
ρ

1 − ρ
C2,t+1(i)

−γ

Rearranging gives (10).
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A.2 Characterization of St

The condition characterizing the law of motion of St is:

St+1

(

Yt+1

Yt

)

− (1 − θ)St

= θ







1 − ρ

ρ
Et

∞
∑

j=1

ρjψ(1 − St+j)
−γ

(

Yt+j

Yt

)−γ






−1/γ

(37)

To derive this, substitute the definition of C∗
2,t+1 in (11) to get

C2,t+1 = θ







(1 − ρ)Et

∞
∑

j=1

ρj−1ψC−γ
1,t+j







−1/γ

+ (1 − θ)C2t.

From the resource constraints C1,t+j + C2,t+j = Yt+j we have

C2,t+1 = θ







(1 − ρ)Et

∞
∑

j=1

ρj−1ψ(Yt+j − C2,t+j)
−γ







−1/γ

+ (1 − θ)C2t.

Now, divide both sides by Yt to get

C2,t+1

Yt
= θ







(1 − ρ)Et

∞
∑

j=1

ρj−1ψ

(

Yt+j

Yt
−
C2,t+j

Yt

)−γ






−1/γ

+ (1 − θ)
C2t

Yt
.

Rewriting,

C2,t+1

Yt+1

Yt+1

Yt
− (1 − θ)

C2t

Yt

= θ







1 − ρ

ρ
Et

∞
∑

j=1

ρjψ

(

1 −
C2,t+j

Yt+j

)−γ (

Yt+j

Yt

)−γ






−1/γ

.

Using the definition St ≡ C2t/Yt then gives the desired equation (37).

A.3 Steady State and Log-Linearization of (37)

To log-linearize (37), first note that

Yt+j

Yt
= egj+εt+1+···+εt+j .

Substitute this into (37) to get

St+1e
g+εt+1 − (1 − θ)St

= θ







1 − ρ

ρ
Et

∞
∑

j=1

ρ̃jψ(1 − St+j)
−γe−γ(εt+1+···+εt+j)







−1/γ

(38)
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where ρ̃ ≡ ρe−γg. The steady state value S̄ is therefore the solution to

S̄eg − (1 − θ)S̄ = θ







1 − ρ

ρ

∞
∑

j=1

ρ̃jψ(1 − S̄)−γ







−1/γ

.

This equation is linear in S̄ and can thus be solved explicitly as

S̄ =
Ξ

eg − (1 − θ) + Ξ

where

Ξ ≡ θ

(

ψ
1 − ρ

ρ

ρ̃

1 − ρ̃

)−1/γ

.

To log-linearize (38) around this S̄, rewrite it as

{

1

θ
(S̄eŝt+1+g+εt+1 − (1 − θ)S̄eŝt)

}−γ

=
1 − ρ

ρ
ψEt





∞
∑

j=1

ρ̃j(1 − S̄eŝt+j )−γe−γ(εt+1+···+εt+j)



 .

where ŝt+j ≡ log(St+j) − log(S̄). Linearizing this expression around ŝt+j = 0,
εt+j = 0 all j and rearranging gives

eg ŝt+1 + egεt+1 − (1 − θ)ŝt = −Ξ
1 − ρ̃

ρ̃
Et

∞
∑

j=1

ρ̃j ŝt+j .

To solve this by the method of undetermined coefficients, substitute ŝt+1 =
αŝt + ζεt+1 in the expression (where α and ζ are the undetermined coefficients)
to get

egαŝt + egζεt+1 + egεt+1 − (1 − θ)ŝt = −Ξ
1 − ρ̃

ρ̃

ρ̃α

1 − ρ̃α
ŝt.

Comparing coefficients on εt+1, we have

ζ = −1.

Comparing coefficients on ŝt gives the quadratic equation

φ0α
2 + φ1α+ φ2 = 0

where

φ0 ≡ −egρ̃,

φ1 ≡ eg + (1 − θ)ρ̃+ Ξ(1 − ρ̃),

φ2 ≡ −(1 − θ).

Choosing the α ∈ (0, 1) that solves this quadratic equation, we obtain the
AR(1) law of motion (12). We then apply Tauchen’s (1986) methodology to
approximate this AR(1) by a 15-state Markov chain, choosing suitably the sup-
port of ŝt so that St = S̄eŝt ∈ (0, 1) for any realization of ŝt. In the fol-
lowing discussion, we will denote the transition and stationary probabilities as
π(ŝ′|ŝ) ≡ Pr(ŝt+1 = ŝ′|ŝt+1 = ŝ) and π(ŝ) ≡ Pr(ŝt = ŝ), respectively.
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A.4 Asset Prices

To price assets, rewrite the stochastic discount factor as

Mt+1 = β

(

C1,t+1

C1t

)−γ

= β

(

Yt+1

Yt

)−γ (

1 − St+1

1 − St

)−γ

= βe−γ(g−ŝt+1+αŝt)

(

1 − S̄eŝt+1

1 − S̄eŝt

)−γ

.

Using this, we can price assets as functions of ŝt (and hence of St) from the
pricing equation

1 = Et(Mt+1Rt+1).

A.4.1 The Risk Free Rate

The risk free rate Rf
t+1 is obtained from the pricing equation, noting that Rf

t+1

belongs to the time-t information set, so that

1 = Et(Mt+1R
f
t+1) = Et(Mt+1)R

f
t+1

or

Rf
t+1 =

1

Et(Mt+1)
.

Taking logs and applying the formula for Mt+1, we have

rf
t+1 = − log Et(Mt+1)

= − log
∑

ŝt+1

βe−γ(g−ŝt+1+αŝt)

(

1 − S̄eŝt+1

1 − S̄eŝt

)−γ

π(ŝt+1|ŝt).

This gives an expression for rf
t+1 as a function of ŝt: r

f
t+1 = rf (ŝt).

A.4.2 The Price of the Consumption Claim

To obtain the price of the consumption claim Qt, apply the pricing equation to
the expression for returns on this claim

Rs
t+1 =

Yt+1 +Qt+1

Qt

to get
Qt

Yt
= Et

[

Mt+1

(

Yt+1

Yt

)(

1 +
Qt+1

Yt+1

)]

or

Qt

Yt
(ŝt) =

∑

ŝt+1

βe(1−γ)(g−ŝt+1+αŝt)

(

1 − S̄eŝt+1

1 − S̄eŝt

)−γ (

1 +
Qt+1

Yt+1
(ŝt+1)

)

π(ŝt+1|ŝt).
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This is a system of linear equations and can be solved easily for Qt/Yt as a
function of ŝt. The log price/dividend ratio is then obtained by simply taking
logs: log(Qt/Yt) = pd(ŝt). Log returns on the consumption claim are

rs
t+1 = log

[

Yt+1 +Qt+1

Qt

]

= log

[(

Yt+1

Yt

) (

1 +Qt+1/Yt+1

Qt/Yt

)]

= g − ŝt+1 + αŝt + log

[

1 +
Qt+1

Yt+1
(ŝt+1)

]

− log

[

Qt

Yt
(ŝt)

]

which gives the expression rs
t+1 = rs(ŝt, ŝt+1).

B Computing Relative Risk Aversion

The relative risk aversion coefficient is computed by a method that involves
simulations of individual consumption streams. The simulation method is de-
scribed in the first subsection, and the next subsection explains how to compute
the relative risk aversion coefficient using it.

B.1 Simulating Individual Consumption Streams

As mentioned in the main text, an individual household’s consumption stream
{C1t(i), C2t(i)}

T
t=0 can be easily backed out from the aggregate consumption

stream {C1t, C2t}
T
t=0, once a realization of {It(i)}

T−1
t=0 is given. The simulation

algorithm is follows:

1. Specify the initial values Y0, C2,0, and C2,0(i).

2. Set S0 = C2,0/Y0 and ŝ0 = log(S0) − log(S̄).

3. Starting from ŝ0, simulate a Markov chain {ŝt}
T
t=0 and construct {St}

T
t=0

by St = S̄eŝt .

4. Also draw an i.i.d. sequence {It(i)}
T−1
t=0 that takes It(i) = 1 with proba-

bility θ and It(i) = 0 with probability 1 − θ.

5. Construct {Yt}
T
t=0 recursively by Yt+1 = eg−ŝt+1−αstYt. Take C1t = (1 −

St)Yt, C2t = StYt, and C∗
2,t+1 = (C2,t+1 − (1 − θ)C2t)/θ for each t.

6. For each t, set C1t(i) = C1t and take

C2,t+1(i) =

{

C∗
2,t+1 if It(i) = 1

C2t(i) if It(i) = 0

B.2 Calculating the Relative Risk Aversion Coefficient

In the discussion above, the value function V was defined over financial wealth
At(i), rather than present value wealth Wt(i). To compute relative risk aversion,
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it is convenient to redefine the value function V over W (with an abuse of
notation) using the definition

Wt(i) ≡ At(i) + Et

∞
∑

j=0

Mt→t+j (39)

as

V (Wt(i), C2t(i), It(i);Yt, C2t)

= V



At(i) − Et

∞
∑

j=0

Mt→t+jYt+j , C2t(i), It(i);Yt, C2t



 (40)

where the V on the right hand side is the value function as defined previously.
Clearly, the two functions always return the same value. The newly defined V
has the interpretation of

V (W0(i), C2,0(i), I0(i);Y0, C2,0)

= max
{C1t(i),C2,t+1(i)}∞

t=0

E0

[

∞
∑

t=0

βju(C1t(i), C2t(i))

]

(41)

subject to the present-value budget constraint

E0

∞
∑

t=0

M0→t[C1t(i) + C2t(i)] ≤W0(i) (42)

and C2,t+1(i) = C2t(i) if It(i) = 0, since this optimization problem is equivalent
to the one that households solve in the model.

Using this newly defined V , a household’s relative risk aversion coefficient
is defined as a function of its individual state and the aggregate state of the
economy as

RRA(Wt(i), C2t(i), It(i);Yt, C2t) ≡ −
Wt(i)VWW

VW
= −

log VW

logWt(i)
. (43)

To compute this value, first use the envelope condition VW = U1 to get

RRA(W0(i), C2,0(i), I0(i);X0) = −
∂ log VW

∂ logW0(i)

= −
∂ logU1

∂ logC1,0(i)
×
∂ logC1,0(i)

∂ logW0(i)

= γ ×
∂ logC1,0(i)

∂ logW0(i)
.

where the final line uses −C1u11/u1 = γ. In order to find the elasticity
∂ logC1,0(i)/∂ logW0(i), which is the percentage increase in C1,0(i) that the
household would choose in response to a windfall that increases its present value
wealth W0(i) by one percent (with no change at the aggregate level), we adopt
the following strategy. First, suppose a household receives a windfall that in-
creases its present value wealth by k percent, and that this induces the household
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to increase its C1,0(i) by one percent. Once we find the number k, the elasticity
can be estimated as its reciprocal, so that ∂ logC1,0(i)/∂ logW0(i) ≈ 1/k. To

find k, let {C1t(i), C2t(i)}
∞
t=0 and {C̃1t(i), C̃2t(i)}

∞
t=0 be the household’s con-

sumption before and after the windfall, respectively. Since (42) holds with
equality, the value k is

k = log

[

E0

∑∞
t=0M0→t[C̃1t(i) + C̃2t(i)]

E0

∑∞
t=0M0→t[C1t(i) + C2t(i)]

]

× 100.

But from the previous subsection, we know how to simulate {C1t(i), C2t(i)}
T
t=0

from a given initial state (W0(i), C2,0(i), I0(i);Y0, C2,0) under particular realiza-

tions of {ŝt}
T
t=0 and {It(i)}

T−1
t=0 . Moreover, a draw from {C̃1t(i), C̃2t(i)}

T
t=0 (un-

der the same initial state (W0(i), C2,0(i), I0(i);X0) and realizations of {ŝt}
T
t=0

and {It(i)}
T−1
t=0 ) can be backed out from this, using the fact that for all t ≥ 0

C̃1t(i) = e0.01 × C1t(i) (44)

and

C̃2,0(i) = C2,0(i) (45)

C̃2,t+1(i) =

{

e0.01 × C∗
2,t+1 if It(i) = 1

C̃2t(i) if It(i) = 0
(46)

Here, (44) follows from C̃1,0(i) = e0.01×C1,0(i) (by construction) and the pricing
equation (8) together with the fact that asset prices do not change in response
to this windfall; (45) holds because C̃2,0(i) is predetermined as of date 0 and
household i is an “average” one; and (46) follows from the adjustment rule of
precommitted consumption and (44) plugged into (10). Thus, we can take a
large number T and a large number of simulated realizations of {C1t, C2t}

T
t=0,

{C1t(i), C2t(i)}
T
t=0, and {C̃1t(i), C̃2t(i)}

T
t=0 and use them to numerically esti-

mate the value k by

k̂ = log

[

Ê0

∑T
t=0M0→t[C̃1t(i) + C̃2t(i)]

Ê0

∑T
t=0M0→t[C1t(i) + C2t(i)]

]

× 100

where Ê0 represents Monte Carlo integration. Relative risk aversion is then
estimated by RRA ≈ γ/k̂.

The numbers used in Figure 4 were constructed using T = 200 and 100,000
Monte Carlo replications, starting from W0(i) = E0

∑∞
t=0M0→tYt, I0(i) = 0,

Y0 = 1.0,10 and C2,0(i) = C2,0 = StY0 for each St.

10The scale of Y0 is irrelevant: starting from W0(i) = E0

P

∞

t=0
M0→tYt, C2,0(i) = C2,0 =

S̄Y0, I0(i) = 0, Y0 = Y gives the same result for any Y > 0.

34


