
U.S. R&D Made Japan’s Development Miracle

R. Anton Braun
University of Tokyo

Toshihiro Okada
Kwansei Gakuin University

Nao Sudou
Bank of Japan

April 26, 2005

Abstract

In the thirty year period between 1960 and 1990 Japan saw labor
productivity rise from a level of 27 percent of the U.S. to 87 percent of
the U.S. This development miracle can be explained by an initial low
capital stock and measured variations in TFP. These facts motivate our
investigation into the sources of Japanese TFP variations. We consider
Japanese and U.S. data that is filtered to retain medium cycle events
such as the productivity slow down in the 1970’s and find that US R&D
is the main determinant of medium cycle Japanese TFP. U.S. R&D leads
Japanese R&D by about four years and accounts for as much as 60% of
the variation in medium term cycle Japanese TFP. A simulations which
assume that U.S. R&D is the sole driver of medium term cycle Japanese
TFP do a better job of accounting for the medium term cycle data facts
in Japan than other specifications that rely on domestic R&D.
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1 Introduction
In the thirty year period between 1960 and 1990 Japan experienced very rapid
gains in productivity. Labor productivity increased from a level of 27 percent
of the US in 1960 to 87 percent of the U.S. in 1990. Productivity gains of
this magnitude over such a short period are unusual and have led Parente and
Prescott (1994) to refer to Japan’s experience as a development miracle. What
explains Japan’s development miracle? Recent research has focused on two
factors: technology diffusion and capital deepening.
A firm’s knowledge about the best technique for combining capital and labor

to produce a good is now widely thought to be an international public good.
Over time this proprietary knowledge diffuses to a firm’s competitors within the
same country as well as producers in other countries. Recent research by Eaton
and Kortum (1999), Howitt (2000), Klenow and Rodriguez (2004) and Parente
and Prescott (2004) posits a common world technology frontier. In their models
economic growth rates are eventually the same in all countries and investment
and TFP determine a country’s relative income level. From the perspective of
these models Japan’s development miracle occurred because it was successful in
adopting frontier production technologies.
Formal hypotheses for Japan’s development miracle have been offered by

Parente and Prescott (1994) and Eaton and Kortum (1997). Parente and Prescott
(1994) emphasize the role of barriers that limit firms’ incentives to adopt tech-
nology. They assume that the world frontier technology grows at an exogenous
rate but that local institutions including work rules and other implicit taxes on
investment affect the returns from investing in better technologies by local firms.
Rules and institutions set up by the U.S. in Japan after World War II lowered the
barriers and increased the return from investment. Firms then adopted better
technologies and Japan rapidly developed. A calibrated model that formalizes
this hypothesis can reproduce the timing and speed of Japan’s development
miracle if the capital share parameter is 0.5 - 0.55. Values in this range point to
a significant role for organizational capital, which includes unmeasured human
capital from learning by doing and managerial practices. Parente and Prescott
(1994) estimate that stock of organizational capital is about 40% of output in
Japan. The rapid rise in income in their model simulations is associated with
large increases in measured TFP and the capital output ratio. In their model
lower barriers promote capital deepening.
Eaton and Kortum (1997) focus instead on the processes of innovation and

diffusion of ideas. TFP differs across countries due to country specific differences
in rates of innovation and adoption of domestic and foreign ideas. They abstract
entirely from capital deepening and link technology adoption to the rate of
arrival of new ideas. The rate of arrival of domestic ideas increases with the
size of the domestic R&D sector and other ideas diffuse from abroad. Rates of
innovation and diffusion of ideas among countries are calibrated on a bilateral
basis using patent application data. Eaton and Kortum’s (1997) theory can
also account for Japan’s development miracle if there is a large initial knowledge
gap between the U.S. and Japan. Under the same assumption their theory also
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accounts for convergence of TFP growth rates in the UK, France and Germany.
The goal of this paper is to provide some new facts about the magnitude

and sources of technology diffusion to Japan between 1960 and 1990. Our
analysis builds on recent work by Chen et al. (2005) who show that one can
account for the pattern of savings rates in Japan between 1960 and 2000 using
the neoclassical growth model with an initially low capital stock and measured
variation in Solow’s residual. We extend the model to allow for endogenous
labor supply and show that the same two factors also account for the principal
movements in GNP, investment and the capital output ratio between 1960 and
2002. If one conditions on the measured pattern in Solow’s residual there is no
need to appeal to organizational capital or changes in the size of the barriers to
investment to produce Japan’s development miracle.
We next turn to analyze the source of variations in Japanese TFP over the

1960 - 2002 sample period. Comin and Gertler (2003) have suggested that fo-
cusing on the medium cycle component of filtered data offers useful information
for understanding the diffusion of ideas within the United States. This filter
removes the trend but retains medium cycle information such as the produc-
tivity slow down in the 1970’s.1 When we filter Japanese data to remove all
fluctuations with duration of more than 40 years, the resulting medium cycle
component exhibits a distinctive pattern of co-movements that show strong ev-
idence of technology diffusion from the US to Japan. Empirical evidence based
on cross-correlations indicates that US R&D leads Japanese TFP by four years
whereas Japanese R&D is coincident with Japanese TFP. Granger Causality
tests indicate that US R&D Granger Causes Japanese TFP even after control-
ling for the effects of Japanese R&D. And a decomposition of the variance of
medium cycle Japanese TFP suggests that US R&D accounts for a much larger
fraction of the variance in Japanese TFP than Japanese R&D.
Finally, we use the model to assess the quantitative role of technology dif-

fusion from the US to Japan for other variables. If technology diffusion from
the U.S. is an important determinant of Japanese TFP and Japanese TFP is
an important determinant of Japanese economic activity, then current values of
US R&D should predict future movements in Japanese economic activity. We
use model simulations to assess this hypothesis versus an alternative hypothesis
that assigns a primary role to Japanese R&D. The simulation results confirm
the diffusion hypothesis. Current values of US R&D are important determi-
nants of future Japanese medium cycle output, the capital output ratio and
investment. Current Japanese R&D, in contrast is much less important for un-
derstanding the future evolution of Japanese medium cycle output, investment
and the capital output ratio.
Our finding that the diffusion of technology from the U.S. to Japan is an

important determinant of Japanese TFP is consistent with other results in the
literature. Eaton and Kortum (1996) decompose Japanese growth in labor pro-
ductivity into domestic and foreign R&D components and find that 27% of

1Klenow and Rodriguez (2004) present evidence that the productivity slowdown in the
1970’s was a global phenomenon and use this fact to argue that there are important knowledge
spillovers across countries.
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Japanese productivity growth is due to domestic R&D and 62% is due to U.S.
R&D. Bernstein and Mohnen (1998), estimate R&D spillovers between the U.S.
and Japan using growth accounting methods applied to R&D intensive indus-
tries. They find no evidence of spillovers from Japan to the U.S. but find that
46% of Japanese TFP growth is due to spillovers from U.S. R&D capital. Our
results are also broadly consistent Keller (2002) and Okada(1999). Keller (2002)
considers a partial equilibrium model and finds that international R&D from
the G5 countries accounts for 90% of R&D’s total contribution to TFP growth
in 9 other OECD countries. Okada(1999) performs an empirical analysis that
decomposes growth for a panel of countries into two components capital deepen-
ing and technology transfer and finds that technology diffusion from the leader
has a large effect on middle income countries. Our results suggest that these
spillover effects are also important in Japan.
Our findings also leave little role for domestic demand disturbances in ac-

counting for medium term fluctuations in Japan. This does not necessarily rule
out the possibility that demand disturbances influence R&D and thus TFP as
posited by Comin and Gertler (2003). However, if demand disturbances are im-
portant for understanding the Japanese medium cycle than it must be demand
shocks that have their origin in the US.
Finally, our results fail to find an important independent role for domestic

R&D. This stands in contrast to work by Branstetter (1999) who finds that most
knowledge spillovers in Japan are intranational and Comin (2002) who argues
that the contribution of R&D to TFP is small. Our results suggest instead that
the nature of technology diffusion from the U.S. to Japan did not require large
amounts of domestic R&D to be adopted.
The remainder of the paper is as follows. Section 2 describes our model.

Section 3 documents the important role of variations in TFP in accounting for
Japanese GNP, investment and the capital output ratio. Section 4 conducts an
empirical analysis and establishes that the important role of US R&D account
for Japanese TFP medium cycle fluctuations. Section 5 uses the model to
measure the contribution of US R&D in accounting for Japanese medium cycle
facts. Section 6 contains our concluding remarks.

2 The Model
The representative household maximizes:

U =
∞X
t=0

βtNt

µ
ln

Ct

Nt
+ α ln(T − Ht

Nt
)

¶
, (1)

where β is a discount factor, Nt is the number of working-age members of the
household , Ct is total consumption of the household , T is time endowment
per working-age person, Ht is total hours worked by all working-age members
of the household.
The period budget constraint of the representative household is given by:
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(1 + τ c)Ct +Xt = (1− τw)wtHt + rtKt − τk(rt − δ)Kt (2)

where
Kt+1 = (1− δ)Kt +Xt . (3)

Here, Kt is capital stock, Xt is investment, wt is a wage rate, rt is the return
on capital, τ c is the tax rate of consumption, τw is the tax rate of labor income,
τk is the tax rate of capital income, and δ is the depreciation rate of capital.
The aggregate resource constraint is given by:

Ct +Xt +Gt = Yt , (4)

where

Gt = ψtYt . (5)

Here, Gt is government purchases, Yt is output, and ψt is the output share of
government purchases.
The production technology is given by:

Yt = AtK
θ
tH

1−θ
t , (6)

where At is TFP.

2.1 Household Optimization

The household’s optimization problem is to maximize U in Eq.(1), subject to
the budget constraint in Eq.(2). We assume no uncertainty. Since all working-
age members of the household know that the number of working-age members
increases at the exogenous rate γn,t =

Nt

Nt−1
, the maximization problem can be

written as follows (by normalizing N0 as N0 = 1) :

Max
∞X
t=0

"
βt(

tY
s=0

γn,s) (ln ct + α ln(T − ht))

#
subject to

(1 + τ c)ct + γn,t+1kt+1 − kt = (1− τw)wtht + (1− τk)(rt − δ)kt , (7)

where ct = Ct
Nt

, kt =
Kt

Nt
, ht =

Ht

Nt
and γn,0 = 1. The present value Hamiltonian

can be set up as:

H = βt(
tY

s=0

γn,s) (ln ct + α ln(T − ht))

+λt+1

∙
(1− τw)wtht + (1− τk)(rt − δ)kt − (1 + τ c)ct + kt

γn,t+1
− kt

¸
,(8)
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where the expression in [ ] equals kt+1 − kt and λt+1 is Hamiltonian multiplier.
The first order conditions are given by:

∂H

∂ct
= βt(

tY
s=0

γn,s)
1

ct
− λt+1(1 + τ c)

γn,t+1
= 0 , (9)

∂H

∂ht
= −

αβt
tY

s=0

γn,s

T − ht
+

λt+1(1− τw)wt

γn,t+1
= 0 , (10)

∂H

∂kt
=

λt+1
γn,t+1

[1 + (1− τk)(rt − δ)]− λt+1 = −(λt+1 − λt) . (11)

From Eq.(9), we can get

βt−1(
t−1Y
s=0

γn,s)
1

ct−1
− λt(1 + τ c)

γn,t
= 0 . (9’)

Substituting Eq.(9’) into Eq.(11) for λt and Eq.(9) into Eq.(11) for λt+1 yields:

βt−1(
t−1Y
s=0

γn,s) γn,t

ct−1(1 + τ c)
=

βt(
tY

s=0

γn,s)

ct(1 + τ c)
[1 + (1− τk)(rt − δ)] .

Simplifying the above expression yields:

ct
ct−1

= β [1 + (1− τk)(rt − δ)] . (12)

Next, substituting Eq.(10) into Eq.(9) for λt+1
γn,t+1

yields:

α(1 + τ c)

T − ht
ct = (1− τw)wt . (13)

2.2 Firm Optimization

Firms are perfectly competitive and rent capital and labor in competitive fac-
tor markets. Assuming no adjustment cost, the representative firm’s profit
optimization problem becomes a static one and the usual equation between a
marginal product and a factor price gives:

rt = θAtk
θ−1
t h1−θt , (14)

wt = (1− θ)Atk
θ
t h
−θ
t . (15)
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2.3 Equilibrium Conditions for the Economy

Above all, the equilibrium conditions for the economy are given by the following
equations:

ct
ct−1

= β [1 + (1− τk)(rt − δ)] , (12)

α(1 + τ c)

T − ht
ct = (1− τw)wt , (13)

(1 + τ c)ct + γn,t+1kt+1 − kt = (1− τw)wtht + (1− τk)(rt − δ)kt , (7)

rt = θAtk
θ−1
t h1−θt , (14)

wt = (1− θ)Atk
θ
t h
−θ
t , (15)

ct + γn,t+1kt+1 − (1− δ)kt + ψtyt = yt . (16)

Next, by letting Zt = A
1

1−θ
t , we transform variables in the following way:ect =

ct/Zt, ekt = kt/Zt, eyt = yy/Zt, ewt = wt/Zt. Then, by letting γz,t =
Zt
Zt−1

, the
above equilibrium conditions can be rewritten as:

ectect−1 γz,t = β [1 + (1− τk)(rt − δ)] (17)

α(1 + τ c)

T − ht
ect = (1− τw) ewt (18)

(1 + τ c)ect + γn,t+1γz,t+1
ekt+1 − ekt = (1− τw) ewtht + (1− τk)(rt − δ)ekt (19)

rt = θekθ−1t h1−θt (20)

ewt = (1− θ)ekθt h−θt (21)

ect + γn,t+1γz,t+1
ekt+1 − (1− δ)ekt + ψteyt = eyt . (22)
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2.4 Steady State

Using Eqs.(17)-(22), and letting ect = ect+1 = ec, ekt = ekt+1 = ek, ert = ert+1 =er, ewt = ewt+1 = ew, eyt = eyt+1 = ey, eγn,t = eγn,t+1 = eγn and eγz,t = eγz,t+1 = eγz,
we can get the following set of equations:

γz = β
h
1 + (1− τk)(θekθ−1h1−θ − δ)

i
, (23)

α(1 + τ c)

T − h
ec = (1− τw)(1− θ)ekθh−θ , (24)

ec+ [γnγz − (1− δ)]ek = (1− ψ)ekθh1−θ . (25)

Eqs.(23)-(25) show the restrictions applied in the steady state.

3 Calibration and Baseline Simulation Results
The calibration of our model is reported in Table 1. Most of the parameters
are calibrated in the same way as Hayashi and Prescott (2002) using data from
1984-2001. This includes β,the preference discount parameter, the capital share
parameter, θ, the depreciation rate on capital,δ, and the capital tax rate, τ .
Our preference specification, however, is different from Hayashi and Prescott
(2002). So the leisure weight in preferences is calibrated using equation (13).
We use Japanese data on consumption, capital and hours running from 1984-
2001 that is constructed using the same methodology as Hayashi and Prescott
(2002).2 This is the same sample period used by Hayashi and Prescott (2002)
to calibrate their model.
Chen et al. (2005) conduct perfect foresight simulations using a model that

is similar to ours except that labor input is exogenous. They condition on actual
Japanese TFP data and assume a low initial value of the capital stock. Under
these assumptions their model does a good job of accounting for movements
in the Japanese Saving rate between 1960 and 2000. Consider Figure 1, which
reports results for our model with endogenous labor and Japanese data for the
1961 -2001 sample period. The initial capital stock is set to 21% of its steady-
state value. This choice reproduces the investment share of output in Japanese
data in 1961. Our model also does a very good job of matching the Japanese
national saving rate data. Notice also that the model reproduces the patterns
on GNP, investment and the capital output ratio. The biggest gap between the
model’s predictions and Japanese data lie in its implications for the consumption
share of output. The model predicts less variability in the consumption share
than we see in Japanese data and the model also fails to reproduce the steady
increase in consumption’s share of output between 1990 and 2000. In terms
of the variability of consumption it should be pointed out that our measure of

2The wage rate is measured using the marginal product pricing relationship with a capital
share of 0.363.
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consumption includes durables. Japanese NIPA data doesn’t provide separate
measures of durables, and other consumption categories. So there is no way
to break durables out and treat them as part of investment which is common
practice when working with US data. The conclusion that we draw from Figure
1 is that one can attribute the most important economic events in Japan between
1961-2000 to a low initial capital stock and measured variations in TFP.
It is useful to compare these results with those of Parente and Prescott

(1994). Their theory combines an initial low capital stock with two other ingre-
dients, a capital share of 0.55 and a tax on investment that is set to the level
of 0.85 for the 1960-1973 sub-sample and to the value of 1.10 for the sample
1975-1988 sub-sample. For their theory to account for the facts they need to
increase the barriers to change to account for the productivity slow-down. It
is interesting to note that Klenow and Rodriguez (2004) have found that the
productivity slow-down was a global phenomenon. Our model accounts for the
productivity slow-down via slower growth in exogenous TFP. Whereas in their
model the level of TFP is endogenous and depends on the size of the tax on
investment.
We view our results as suggesting that it may not be necessary to resort

to organizational capital and the high capital share it delivers to account for
Japan’s development miracle. Instead it may be sufficient to consider more
carefully the sources of variations in TFP.
We now turn to document some facts that suggest that a good theory of

Japanese TFP, is technology diffusion of technology from the United States.

4 Data facts
Our decision about what data facts to report is motivated by two things. First,
although Japanese TFP growth rates have declined over time, these declines
have not been monotonic. During the 1960s TFP growth was high, but TFP
growth slowed in the 1970s and early 1980s. Then TFP growth picked up again
in the 1980s before slowing again in the 1990s. Second, it is our conviction
that Japan’s development miracle is a levels miracle. The variations in TFP
that produce Japan’s development miracle confound two effects. A levels ef-
fect that pins down Japan’s relative position in the wealth of nations and a
growth effect that is common to all countries. For these reasons we choose to
follow the example of Comin and Gertler (2003) and filter the data in a way
that retains medium cycle content. The medium cycle filter retains cycles with
duration of 40 years or less. This filter thus removes the trend component but
retains the ups and downs in Japanese TFP that we think is valuable for un-
derstanding the sources of Japanese TFP variation. In an analysis of U.S. data
Comin and Gertler (2003) have found that medium term cycles are large and
exhibit a distinctive pattern of co-movements. We will demonstrate that filter-
ing Japanese data also exhibits a distinctive pattern of co-movements and that
these co-movements unmask some interesting information about the source of
variations in Japanese TFP.
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We decompose Japanese data into a trend and cycle component. The medium
term cycle component includes all frequencies 40 years or less and the trend com-
ponent includes frequencies longer than 40 years. In some of the analysis below
we will further decompose the medium term cycle data into two further compo-
nents a medium frequency component and a high frequency component. The
medium frequency component includes frequencies between 8 and 40 years while
the high frequency component includes frequencies between 2 and 8 years. The
high frequency component corresponds to the conventional definition of business
cycle frequencies.
We use the Christiano-Fitzgerald (2003) band pass filter to decompose the

data. To construct an optimal band pass filter one needs to know the time series
representation of the raw data. Christiano and Fitzgerald (2003) argue that
a random walk filter approximation, which assumes that the data generating
process is a random walk, is nearly optimal for most US macroeconomic time-
series. Before filtering the data first take natural logarithms.

4.1 Facts about the Japanese medium cycle

Japanese data also exhibit large and distinctive medium cycle fluctuations. Ta-
ble 2 shows that the standard deviation of the medium term cycle component
of Japanese GNP is 4.5 times as large as the standard deviation of its high
frequency component. Much of this variation is concentrated at medium term
frequencies as illustrated by the fact that the medium term frequency component
of GNP is 4.4 times as large as the high frequency component. Consumption,
capital, TFP and investment exhibit similar patterns.
It is well known that GNP and TFP have a similar pattern at business cycle

frequencies. This is also true for medium term cycle data. Consider Figure
2 which shows a plot of Japanese medium term cycle GNP and TFP. Both
time series exhibit fluctuations of the same magnitude. The peaks and troughs
of both variables coincide and their overall pattern is remarkably similar with
the exception of the period between 1960 to 1962. In fact, the co-movements
between GNP and TFP are even stronger in medium term cycle data than in
high frequency data. Table 3 reports that the correlation between the medium
term cycle component of these two variables is 0.95 and the correlation between
the high frequency component is 0.88.
It is also interesting to compare Japanese medium term cycle R&D with

GNP. Comin and Gertler (2003) find that US medium term cycle R&D lead
GNP. This fact motivates their endogenous growth model which attributes
variation in TFP to variation in R&D. In Japanese data GNP and R&D are
highly correlated but coincident. Consider Figure 3 which shows the cross-
correlation function of GNP and R&D peaks at zero with a contemporaneous
correlation of 0.71 and falls sharply as one moves in either direction away from
zero. A comparison of medium term cycle R&D and TFP exhibits the same
pattern. On the basis of cross-correlations there is no evidence that R&D leads
either GNP or TFP in medium term cycle Japanese data. In Japanese high
frequency data the peak cross-correlations of R&D with GNP and TFP are

10



much lower and there is also no evidence that Japanese R&D leads either GNP
or TFP.
In order to explore this issue further we estimated bivariate vector auto-

regressions or VAR’s with Japanese medium term cycle R&D and Japanese
GNP using alternatively one, two, three or four lags. As Table 4 shows, in no
case did we find evidence that Japanese medium term R&D Granger causes
(GC) Japanese medium term GNP. Similarly, tests of Granger Causality based
on bivariate VAR’s with and Japanese R&D and TFP also showed no evidence
that Japanese R&D Granger causes Japanese TFP when the number of lags
ranges from one to four.
R&D may still be an important source of fluctuations in medium term cycle

GNP and/ or TFP even though R&D does not lead or Granger Cause either of
these two variables. We explore this possibility using variance decompositions
of the two types of VAR’s described above. In the case of the VAR using one
lag with R&D and GNP (see Table 5), if GNP is ordered first R&D accounts
for only 9% of the variance in GNP at a 10 year horizon. If R&D is ordered
first it accounts for 72% of the variance in GNP at the same horizon. For the
VAR using one lag with TFP and R&D (see Table 6) when TFP is ordered first
R&D accounts for 0.3% of the variance in TFP. With the other ordering R&D
accounts for 44% of the variance in TFP. These results suggest there are other
and perhaps more important sources of variation in Japanese medium term TFP
than Japanese R&D. The fact that Japanese R&D does not lead Japanese TFP
and accounts for a relatively small share of the variance in Japanese TFP casts
doubt on the relevance of Comin and Gertler’s (2003) theory of TFP for Japan.
If movements in R&D are driving economic growth then we would expect them
to lead TFP and also account for a large fraction of the variance of TFP. We
now turn to provide evidence on an alternative and more important source of
variation in Japanese medium term TFP and output.

4.2 Comparison of Japanese and U.S. medium term TFP

Consider Figure 4 which plots the medium term cycle component of Japanese
and U.S. TFP. Details on the calculation of TFP for each country is reported in
the Data Appendix. There are two noteworthy features of this Figure. First,
the general patterns of medium term cycle Japanese TFP and U.S. TFP are
remarkably similar. TFP in both countries increases in the 1960’s, declines
during the 1970’s and increases again in the 1980’s. Second, TFP in Japan
appears to lag US TFP.
More concrete evidence about this second point can be found by calculating

the cross-correlation function of Japanese and US TFP. Figure 5-(1) reports
the cross-correlation function for these two variables. Note that the peak cross-
correlation occurs when current period Japanese TFP is correlated with period
t-1 US TFP and the value of the correlation is 0.83. The cross-correlations then
fall monotonically as one moves in either direction. Figure 5-(2) reports the
cross-correlation function of US R&D with US TFP. US R&D leads US TFP by
three years and the peak correlation is 0.59. Next consider the cross-correlation
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function of US R&D and Japanese TFP as reported in Figure 5-(3). US R&D
leads Japanese TFP by 4 years. Surprisingly, Japanese medium term cycle
TFP is even more highly correlated with US R&D than Japanese R&D with a
peak correlation of 0.73. Finally, consider the cross-correlation of US R&D and
Japanese R&D. Figure 5-(4) reports that US R&D also leads Japanese R&D by
about four years and the peak correlation is 0.74. These results are consistent
with other results reported in Coe and Helpman (1995), Eaton and Kortum
(1999) and Keller (2004) who find a significant role of technology adopted from
foreign countries in accounting for domestic TFP.
Next we consider some additional evidence based on tri-variate VAR’s with

Japanese TFP, Japanese R&D and U.S. R&D. As Table 7 shows, Ganger causal-
ity tests find that US R&D Granger causes Japanese TFP for VAR’s with one,
two, three and four lags. Japanese R&D, however, does not Granger cause
Japanese TFP with one, two, three and four lags.
Table 8 reports the results of variance decompositions of Japanese TFP.

Variance decompositions of Japanese TFP with Japanese TFP ordered first,
Japanese R&D ordered second and US R&D ordered third show that US R&D
explains substantially more of the variance of medium term cycle Japanese TFP
than Japanese R&D. For a specification with one lag US R&D explains 31%
of the variance of Japanese TFP whereas Japanese R&D only explains 10% at
the 10 year horizon. If the number of lags in the VAR is increased to three the
fraction of Japanese TFP explained by US TFP rises to 61% and the fraction
explained by Japanese R&D is 9%.
The data analysis we have performed is provocative. If we take seriously the

notion that our medium cycle measure of TFP represents the state of know-how
in combining labor and capital then there is considerable evidence that US TFP
and Japanese TFP are being driven by a common factor and that this common
factor is US R&D. US R&D is an even more important determinant of Japanese
TFP than US TFP. US R&D is also much more important for understanding
medium term fluctuations in Japanese TFP than Japanese R&D. Next we use
our model to assess the importance of US R&D for Japanese economic activity
more generally.

5 Simulation Results
In Section 3 we found that the growth model with a low initial capital stock and
measured variations in Japanese TFP accounts for the principal movements in
GNP, investment, consumption and the capital output ratio in Japanese data.
The results from Section 3 suggest two things. First, that there is a lot of infor-
mation in medium term cycle data and second, that this information suggests
that technology diffusion from the US to Japan accounts for a substantial frac-
tion of Japanese TFP movements. We now use our model to assess the role
of Japanese R&D and the diffusion of US R&D for medium cycle fluctuations
in Japanese economic activity. If R&D is a significant determinant of Japanese
TFP then we should find that a specification that isolates the role of R&D
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should account for medium term fluctuations in other Japanese macroeconomic
variables too. In addition, if technology diffusion from US R&D is impor-
tant then previous levels of US R&D should help account for contemporaneous
movements in Japanese macroeconomic variables too.
In order to investigate the roles of Japanese and US R&D we need a way to

isolate the effects of these variables on Japanese TFP. The effects of Japanese
R&D and medium term fluctuations in economic activity are isolated and as-
sessed in the following way. First, decompose Japanese TFP and Japanese
R&D into trend and medium cycle components in the way described in Section
3. Next project the medium cycle component of Japanese TFP on four lags
of Japanese medium cycle R&D. Take the predicted values of TFP from this
regression and add them back together with the trend component of TFP. This
constructed measure of TFP can now be used to simulate the model using the
methodology described in Section 2. Finally, the model output is filtered using
the medium cycle filter and summary statistics are tabulated. The same set of
procedures is used to isolate the effects of US R&D. Table 9 reports simulation
results on relative variabilities using medium term cycle filtered data. Consider
first the simulation results labeled ”baseline.” These results are computed by
applying the medium term cycle filter to the simulated data reported in Figure
1. The baseline model reproduces some of the principal features of Japanese
medium cycle data. Investment is about twice as variable as output and con-
sumption and hours are less variable than output. However, the model predicts
considerably more variation in output than we see in Japanese data and un-
derstates the relative variability of the capital output ratio. Figure 6 reports
plots of the model predictions and the corresponding Japanese medium cycle
filtered Japanese data. As we can see from the figure the model captures the
principal movements in the data of all variables. Model consumption is a bit
more variable than consumption in the data but overall the fit is quite good.
Table 10 summarizes the information in this figure in a Table. Note that the
correlations between the model and data medium cycle filtered time-series is
above 0.9 for all variables except consumption where the correlation is 0.89.
Next consider the results for simulations that attempt to isolate the contribu-

tion of Japanese R&D to Japanese TFP at medium cycle frequencies. Looking
first at the results for relative volatilities observe that the specification with lags
1 through 4 of Japanese R&D is similar and somewhat better than the baseline
model. The correlations of the predicted with actual data are in virtually all
cases lower than for the baseline specification with all correlations between 0.7
and 0.8 with the exception of consumption, which has a correlation of 0.86 with
actual data. In order get an idea of the timing we also report results in which
only lags of Japanese R&D of 2-4, 3-4 and 4 are used to predict Japanese TFP.
Now the standard deviation of output in the model and the data are of about
the same magnitude. The general picture that emerges from these other runs
is that most of the predictive power is in the first lag of Japanese R&D. The
correlations in the specification with lags 2-4 are quite a bit lower. The cor-
relation of model investment with investment in the data is only 0.55 and the
correlation between the model and data capital output ratio is 0.47. Omitting
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successively lags 2 and 3 further reduces the quality of the fit.
Finally consider the results in which US R&D is used to predict Japanese

TFP. Surprisingly, the US R&D specification with lags 1-4 does a better job
of reproducing the relative variabilities of investment, the capital output ratio,
consumption and hours than either the Baseline or the Japanese R&D speci-
fication with lags 1 -4. Moreover, as we successively move to the specification
with only the fourth lag there is no discernible deterioration in fit. The US
R&D specification with only lags 3-4 appears to have the best overall match in
terms of relative volatilities and also does quite well in terms of correlations with
actuals as reported in Table 10. But the specification with only the fourth lag
of US R&D does nearly as well. The correlation of model predictions with the
data are in excess of 0.8 for all variables but investment where the correlation
is 0.71.
Given the success of US R&D in accounting for Japanese medium cycle

facts it is interesting to consider the 1990’s. Figure 7 reports the results for the
US R&D specification with 3-4 lags. This figure shows that the 1990’s is not a
puzzle for our theory. According to our theory the decline in medium cycle TFP
growth during the 1990’s is due to declining medium term US R&D between
1985 and 1994.Jorgenson and Nomura(2004) provide evidence of a slowing in the
rate of relative price declines for memory chips during this period. They also
argue that from 1995 on technological progress in the semi-conductor industry
rapidly accelerated and that Japanese TFP in the late 1990’s is higher once one
accounts for this acceleration. It is interesting that the timing of these events
lines up surprisingly well with our theory. In Figure 7 the trough in Japanese
medium cycle TFP occurs in 1999 exactly four years after the acceleration in
TFP in the semi-conductor industry started.

6 Conclusion
This paper has documented the important role for US R&D for Japanese TFP
and Japanese economic activity more generally. We have shown that one can
account for Japan’s miracle by appealing to the same two factors emphasized in
Chen at al. (2005), a low initial capital stock and measured variation in Solow’s
residual. To understand what made Japan’s development miracle it is sufficient
to understand what factors produced variations in measured TFP. Motivated
by previous research by Comin and Gertler (2003) and Klenow and Rodriguez
(2004) we filtered Japanese data in a way that removes the trend but retains
cycles of length 40 years or less. Our analysis of Japanese and U.S. medium
cycle data isolates a large in significant role for US R&D. For Japan there is
no role for domestic demand shocks in producing either the high growth of the
1980’s or the low growth of the 1990’s. Movements in US R&D are sufficient
to explain the medium cycle facts for Japan.
There are many important questions left open by our analysis. For instance,

the previous literature has assumed that there are substantial costs of adopting
foreign technology and that domestic R&D is also an important determinant of
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TFP. One interpretation of our results is that domestic R&D is not important
for Japan. We explain the medium cycle facts from Japan very well with a spec-
ification that assigns no role to Japanese R&D. This suggests that the diffusion
of technology to Japan from the U.S. was of a form that did not require large
domestic R&D investments in order to be adopted.
In our future research we plan to look further into the mechanism(s) whereby

Japan adopts US technology and try and quantify the role of domestic R&D
and foreign domestic investment using Industry level data.
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Table 1: Model Calibration
β δ θ τk α

0.977 0.085 0.363 0.45 2.79

Table 2: Standard Deviations of Japanese Filtered Data
Percentage Standard Deviations

Medium Term Cycle Medium Frequency High Frequency
GNP 5.53 5.40 1.22

Consumption 2.94 2.78 0.97
Investment 13.04 12.55 3.41

Total Hours Worked 2.32 2.07 0.95
Capital 7.07 7.05 1.56
R&D 9.39 9.00 2.68
TFP 6.86 6.57 1.89

Table 3: Correlation between Filtered Japanese GNP and TFP
Corr(GNPJapan , TFPJapan)

Medium Term Cycle Medium Frequency High Frequency
0.95 0.96 0.88

Table 4: Granger Causality Tests Based on Bivariate VAR
Lags p valueGNP AIC SBC p valueTFP AIC SBC
1 0.282 -526.9 -517.0 0.881 -491.7 -481.9
2 0.857 -525.3 -509.2 0.974 -489.0 -472.9
3 0.930 -510.0 -487.8 0.899 -473.6 -451.4
4 0.867 -496.7 -468.7 0.270 -467.9 -439.9

Note:
1. The 1st column shows the number of lags.
2. The 2nd (5th) column shows the p-value of the test under the null hypothesis
that Japanese R&D does not Granger Cause Japanese GNP (TFP).
3. AIC and SBC show Akaike Information Criterion and Schwatz
Bayesian Criterion for choosing lag length in each bivariate VAR (Japanese GNP
and Japanese R&D, Japanese TFP and Japanese R&D). The one with the smallest
value of AIC and/or SBC is the best specification.
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Table 5: Variance Decomposition Percentage of 10 Year Error Variance of
Japanese GNP in Bivariate VAR

Ordering: GNPJapan →R&DJapan Ordering: R&DJapan →GNPJapan
Lags R&DJapan GNPJapan R&DJapan GNPJapan

1 9.31 90.69 72.42 27.58
2 1.56 98.44 51.43 48.57
3 2.43 97.58 56.51 43.49
4 2.36 97.64 45.29 55.71

Table 6: Variance Decomposition Percentage of 10 Year Error Variance of
Japanese TFP by Bivariate VAR

Ordering: TFPJapan →R&DJapan Ordering: R&DJapan →TFPJapan
Lags R&DJapan TFPJapan R&DJapan TFPJapan

1 0.26 99.76 44.43 55.57
2 0.44 99.56 49.89 50.11
3 1.50 98.50 46.92 53.08
4 7.07 92.93 35.23 64.77

Table 7: Granger Causality Tests Based on Trivariate VAR
Lags p valueJapan p valueUS AIC SBC
1 0.473 0.014 -769.6 -750.0
2 0.642 0.075 -757.2 -723.4
3 0.502 0.014 -744.5 -697.0
4 0.136 0.037 -730.2 -669.6

Note:
1. The 1st column shows the number of lags.
2. The 2nd (3rd) column shows the p-value of the test under the null hypothesis
that Japanese (US) R&D does not Granger Cause Japanese TFP.
3. AIC and SBC show Akaike Information Criterion and Schwatz
Bayesian Criterion for choosing lag length in trivariate VAR (Japanese TFP,
Japanese R&D, and US R&D). The one with the smallest value of AIC and/or
SBC is the best specification.

Table 8: Variance Decomposition Percentage of 10 Year Error Variance of
Japanese TFP by Trivariate VAR

Ordering: TFPJapan →R&DJapan →R&DUS
Lags R&DJapan R&DUS TFPJapan

1 10.24 31.09 58.67
2 6.30 30.60 63.10
3 8.84 61.30 29.87
4 10.64 63.35 26.02
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Table 9: Relative Volatilities Japanese Data and Models (Medium term cycle
filtered data)

Specification σY σZ/σY σI/σY σK
Y
/σY σC/σY σH/σY

Japanese data 0.061 1.15 2.23 1.61 0.59 0.33
Baseline 0.09 0.78 1.98 1.28 0.68 0.31

Japan R&D lags 1-4 0.066 0.74 1.97 1.36 0.64 0.35
US R&D lags 1-4 0.072 0.75 2.22 1.67 0.61 0.33
Japan R&D lags 2-4 0.06 0.73 2.00 1.3 0.63 0.35
US R&D lags 2-4 0.072 0.74 2.22 1.67 0.61 0.33
Japan R&D lags 3-4 0.052 0.71 1.76 1.12 0.71 0.33
US R&D lags 3-4 0.071 0.75 2.25 1.69 0.62 0.34
Japan R&D lag 4 0.043 0.65 1.30 0.58 0.79 0.26
US R&D lag 4 0.087 0.74 2.18 1.95 0.60 0.36

Table 10: Correlation between Model Predicted Values and Actual Values in
Japanese Data (Medium term cycle filtered data)

Specification corr(Y m , Y d) corr(Im , Id) corr(KY
m
, KY

d
) corr(Cm , Cd)

Baseline 0.98 0.93 0.93 0.89
Japan R&D lags 1-4 0.79 0.73 0.70 0.87
US R&D lags 1-4 0.92 0.90 0.81 0.86
Japan R&D lags 2-4 0.68 0.55 0.47 0.88
US R&D lags 2-4 0.91 0.89 0.78 0.86
Japan R&D lags 3-4 0.56 0.36 0.30 0.86
US R&D lags 3-4 0.91 0.88 0.78 0.86
Japan R&D lag 4 0.43 0.09 -0.13 0.86
US R&D lag 4 0.88 0.77 0.81 0.81

Y m,Im,KY
m
, and Cm denote model predicted values of GNP, Investment, K/Y, and

consumption, respectively. Y d ,Id ,KY
d
, and Cd denote actual values of GNP, investment,

K/Y, and consumption, respectively. All data are medium term cycle filtered.
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Figure 1: Simulation Results for the Model
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Figure 2: Japanese Medium Term Cycle GNP and TFP
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Figure 3: Cross-correlation of Japanese R&D with Japanese GNP and TFP
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Figure 4: Japanese Medium Term Cycle TFP and U.S. Medium Term Cycle
TFP
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Figure 5: Cross-correlation Functions of TFP and R&D of Japan and the U.S.
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Figure 6: The Model Predictions and Medium Term Cycle Filtered Japanese
Data
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Figure 7: The Model Predictions with the US R&D Specification
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