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Abstract

This paper provides an empirical analysis of evolving networks of successful

R&D collaborations in the IT industry in the United States between 1985 and

1995. We first show that the network has become more extensive, more clus-

tered, and more unequal in the sense “stars” have emerged in the network. We

then perform regression analysis in which we control for firm similarity, includ-

ing unobserved similarities that we infer from the community structure of the

network. The results indicate significant triadic closure as well as preferntial

attachment biases.
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I. Introduction

Acquisition of new knowledge is crucial for successful innovation. A large body of

literature have consistently stressed the importance of knowledge spillovers between

firms, and demonstrated that knowledge absorption through inter-firm partnership

enhances innovative outputs (e.g., Jaffe 1986, Bernstein and Nadiri 1988). Recently,

researchers have analyzed inter-firm knowledge spillovers in a network setting (e.g.,

Goyal and Moraga-Gonzalez 2001, Cowan and Jonard 2004, Meagher and Rogers

2004). On the empirical side there is ample evidence that positioning of firms within

R&D network substantially affect their R&D performance (e.g., Powell, Koput and

Smith-Doerr 1996, Ahuja 2000, Gomes-Casseres, Hagedoorn and Jaffe 2006).

These studies assume the exogenous network architecture in measuring the effects

of knowledge spillover on innovation performance. R&D collaborations, however,

should be considered to form endogenously and evolve over time as firms decide with

whom to collaborate. In contrast with the abundance of evidence relating network

position and performance, little work has been done to understand the evolution of

R&D network.

The importance of strategic network formation has been widely recognized the-

oretically in the R&D literature.1 Yet, the empirical analyses of network formation

have been underrepresented in the literature. This paper aims to contribute to the

literature by analyzing evolutionary process of R&D network in the U.S. Information

and Technology (IT) industry during the period of 1985-1995. We identify an R&D

collaboration relationship between inovative IT companies if at least one common

researcher is observed between them at a given period of time. In order to collect the

information of inter-firm collaborations, we compile patent data of all IT companies

provided by NBER patent database (Hall, Jaffe and Trajtenberg 2001). The names

1For a recent review of theoretical literature, see, for example, Bloch (2005). Theoretical analysis
of network formation is a very active area of research, not only in the context of R&D but also in
other contexts as reviewed in Jackson (2006).
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of inventors are recorded with the name of the assignee for each patent. We match

the lists of inventors’ names across different assignee companies to see if they are

connected via common researchers. A longitudinal data of evolving R&D network is

created by collecting instantaneous networks that are yearly snapshotted.2

We assume that innovative IT firms collaborate with each other such that more

knowledge spillovers are expected. Following Cassiman and Veugelers (2002) who

emphasize the importance of distinguishing in- and out-flows of knowledge in R&D

process, we focus on firm’s incentives to strategically maneuver incoming and outgoing

spillovers. We assume that IT companies maximize the incoming spillovers from

partners, and at the same time, minimize outgoing spillovers to non-partners in order

to manage the external information effectively.

These abilities of controlling patterns of knowledge spillovers may crucially de-

pend on the R&D network structure. A company with many collaboration links in

an R&D network can benefit from inter-firm network flows of information. Such a

company has better access to knowledge flow through links to other companies. Thus,

maximizing incoming spillovers implies that firms try to collaborate with “more con-

nected” companies in order to access to novel information flows. Hence the more the

network links a company participating in R&D network has, the more attractive the

company is. Consequently, a company with more connection attract further connec-

tion with new partners. In terms of network theory, (e.g., Barabási and Albert 1999),

we can say that firms have “preferential attachment bias”, that is, a firm with more

2The patent data has been used in the literature to identify the collaborations among innovators.
For example, Cantner and Graf (2006) constructs a network of innovators in Jena, Germany, based on
the patent records. Singh (2005) analyzes the relationship between collaboration among innovators
and patent citation. The use of coinventors data in patents to identify R&D collaborations among
firms can be justified because coinventors of a patent collaborate intensively over extended period of
time as Fleming, King III and Juda (2004) reports, and such intensive collaboration will be difficult
without supports from the firms these inventors are working for. In addition, the fact that patent
database is publicly available gives an advantage of its use over other databases such as MERTI-
CATI database (Hagedoorn 2002). On this other hand, using the patent has its drawback as we fail
to capture those R&D collaborations that did not result in obtaining a patent. Our focus here is to
analyze the evolution of successful collaboration where the success is defined in terms of obtaining
a patent.
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collaborations has a higher propensity to receive further.

The firm’s ability to protect their proprietary knowledge may also depend on net-

work structures that facilitate cooperation between firms in an R&D network. The

theoretical literature (e.g., Shapiro and Willig 1990) demonstrates that imperfect ap-

propriability increases the incentive of firms to free ride on the R&D efforts. But,

if firms can use effective reputation or sanction mechanisms that monitor and guide

external knowledge flows, innovative idea or technology will be effectively protected

from free-riding by outsiders. This is reminiscent of the social capital theory pro-

posed by Coleman (1988b). The gist of argument is that a network closure creates a

reputation cost for inappropriate behavior which facilitates trustworthiness between

agents involved. Thus, the firms’ incentives to limit outgoing spillovers may lead to a

“cyclic closure bias” (Kossinets and Watts 2006), in particular, “triadic closure bias”

(Rapoport 1953, Watts 1999), that is, a firm has propensity to form a network closure

among a local circle of firms.

We first measure the properties of the network over time and demonstrate that

the network has become more extensive, more locally clustered, and more unequal in

the sense “star” companies have emerged in the network.3

We then estimate the strength of various mechanisms that have been proposed in

the literature as driving forces behind the network evolution. The regression analysis

reveals that, after controlling for characteristics of firms as much as possible, there

are significant “triadic closure” and “preferential attachment” biases.

The rest of the paper is organized as follows: The data is described in Section

II. Section III discusses the evolution of structure of networks over time. Section IV

shows the framework of our statistical analysis. The empirical results are discussed

in Section V, and Section VI concludes.

3Goyal, van der Leij and Moraga-González (2006) analyzes evolution of co-authorship network
among economists over time and argue that Economics is a field that has become increasingly “Small
World” (Watts 1999) over past 30 years.
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II. Data

We use NBER patent data (Hall et al. 2001). For each patent granted, the names

of the researchers, the assignee, the assignee ID, the application year, and the tech-

nological category are listed. We focus on the patents that are classified as category

two, “computers and communications.” We focus on this category because our em-

pirical strategy, which will be discussed in Section IV, is to estimate the likelihood

of formation of new partnership, and according to Hagedoorn (2002), IT industry

is the industry with the highest share of newly established R&D partnership among

high-tech industries from the latter half of 1980s (about 40% or more).

A. Constructing network data

We use a three year moving window in constructing the collaboration network data,

i.e., the patent applied (and consequently granted) between 1984 and 1986 are used

to construct the network data for 1985, those applied between 1985 and 1987 are used

to construct the network data for 1986, and so on.

We define that two companies have collaborated if the same researchers are listed

in the patents owned by these two companies.4 For example, in the example shown

in table 1, company A1 and A2 has collaborated in the period in question because

researcher R1 and R4 are involved in patents that are owned by the companies,

namely, P1, P2, and P3. In the same way, company A1 and A3 have collaborated

because researcher R2 is listed in the patents P1 and P4 that are owned by A1 and

A3, respectively.

We follow Cantner and Graf (2006) in construct such network of collaboration.

We first define a n × m matrix X where n is the number of companies and m is the

4We distinguish different researchers by their last name, first name, and the initial of the middle
name. This procedure is common in constructing co-authorship network, (Newman 2004, Goyal et
al. 2006). It is not perfect, of course, as Trajtenberg, Shiff and Melamed (2006) points out, two
different researchers may have the same last and first name as well as middle name initial.
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Table 1. An example of raw data.

Patent Assignee Researchers
P1 A1 R1, R2

P2 A2 R1, R3, R4

P3 A1 R1, R4

P4 A3 R2, R5

number of researchers in the data. The i-th row of the matrix represents the company

Ai, and the j-th column of the matrix corresponds to researcher Rj. The element i, j

of the matrix is set equal to one if researcher Rj is listed in the patents owned by

company Ai, and zero otherwise. Using the example shown in table 1, the X will be

as follows:

X =


1 1 0 1 0

1 0 1 1 0

0 1 0 0 1


The n × n matrix that defines the structure of the collaboration network, or the

weighted adjacency matrix, Γ , can be defined as

Γ̂ = XX′ =


3 2 1

2 3 0

1 0 2


as we do not consider a firm collaborating with itself, we replace the diagonal element

of Γ̂ with zero and obtain

Γ =


0 2 1

2 0 0

1 0 0


Since we consider the symmetric collaboration relations, Γij = Γji. The value greater
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than zero represents the existence of collaboration between two companies. And

the larger the value is, the more intensive the collaboration was in the sense that

there were more researchers involved in the collaboration activities. For example,

researchers R1 and R4 are both listed in the patents owned by company A1 and A2,

which results in Γ12 = Γ21 = 2.

Most of the existing statistics to characterize the structure of network do not uti-

lize the information regarding intensity of relationship. Also, our statistical analysis

in Section IV studies only the formation the relationship and not its intensity. There-

fore, what is needed is whether the relation exists or not. Thus, we can define the

unweighted adjacency matrix, G, the element of which takes the value one, if the

entry to the weighted adjacency matrix, Γ, is greater than zero.

G =


0 1 1

1 0 0

1 0 0


Given the way we construct our network, it is possible that a link between two

companies captures not only the genuine inter-firm collaborations but also researchers’

job hopping.5 Indeed, several surveys report that innovative companies recognize hir-

ing away researchers from other innovative companies as an important strategic tool

to acquire external knowledge. For example, Cassiman and Veugelers (2006) report

that 42% of companies in their survey in Belgium replied that they actively engaged in

hiring away personnel, while 37% of the companies replied that they actively engaged

in R&D contracting in order to acquire external technologies. Besides this report, a

study by Cantner and Graf (2006) on the local network formation in Jena, Germany,

shows that a firm is more likely to form R&D collaborations with firms that employ

researchers who have worked for it before. A case study by Saxenian (1994) also pro-

5We have chosen three year moving windows to minimize the possibility of capturing job hopping,
but the possibility still remains.
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vides anecdotal evidence from interviews with Silicon Valley engineers that extremely

frequent job-hopping enhanced inter-firm collaborations in the Silicon Valley in the

1970s. From these circumstantial evidence, we can intereprete that our R&D net-

works capture broader research collaborations among companies including potential

ones that eventually facilitate knowledge spillovers among innovative companies.

III. Dynamics of the collaboration network

In the sample period between 1985 and 1995, we find that the total number of com-

panies is 7773, while the number of observed collaborations between the companies is

9234. The average intensity per collaboration, i.e., the average number of researchers

involved in one R&D collaboration activity, is 4.61.

Table 2 shows the basic statistics that describe the structure of collaboration

network. The number of nodes is simply the number of companies in the network.6

As there are many nodes that are not connected with others (isolated nodes), the

table also report the number of linked nodes which excludes the isolated nodes. For

the linked nodes, the average degree and the clustering coefficient (Watts and Strogatz

1998) are reported.

The average degree captures the average number of collaborating partners. While

this has been quite stable until 1990, it has been increasing since. This shows that

collaborations among companies have become increasingly more common in 1990s.

At the same time, the size of the largest connected components as a fraction of the

number of linked nodes in the network is increasing. This illustrate that the companies

are increasingly being connected to other companies, directly or indirectly, in the web

of collaboration networks.

The clustering coefficient measures the degree of local connectedness of the net-

6As discussed above, since we take three year moving windows, the network for 1985 is based on
the granted patents that have been filed between 1984 and 1986.
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work.7 The clustering coefficient is much higher than expected if the connections

are made randomly among the existing nodes in the network.8 The high clustering

have been found not only in various social networks, such as collaboration among

economists (Goyal et al. 2006) or researchers in other fields (Newman 2004), but also

in the physical or neural networks (Watts and Strogatz 1998). The clustering coeffi-

cient shows the increasing trend since 1990, which suggests that the search for the col-

laborating partners have become increasingly more local (Jackson and Rogers 2006),

and resulted to give a “triadic closure bias” (Rapoport 1953, Watts 1999) in the way

the collaboration network has evolved.

Table 2 also reports the variance of Bonacich centrality (Bonacich 1987) which

measures the importance of central players, or “star” companies, in the network.9 The

low variance of the Bonacich centrality across the nodes in the network implies that

relative positions of nodes are similar to each other, while high variance represents

“core-periphery” structure in which there are a small number of “star” companies

that position themselves in the center of collaboration network. Table 2 shows that

the variance of the Bonacich centrality has been increasing throughout the sample

7It is defined as follows: let ki be the number nodes connected with node i (degree of node i).
The possible number of connections among those ki nodes is ki(ki − 1)/2. The clustering coefficient
for node i is defined as the ratio of the actual number of connection exists among these ki nodes to
the possible number, ki(ki − 1)/2. Thus, the more collaborations there are among the collaborating
partner for company i, the larger the clustering coefficient for company i becomes. The extreme
case is where the clustering coefficient is one. In such a case, there are many isolated groups of
companies that collaborate with all the other companies within the group, but do not collaborate
with those outside of the group.

8The clustering coefficient for random graphs with the same number of linked nodes are less than
0.002 for all the years.

9The Bonacich centrality for node i, bci, is defined as follows:

bci(α, β) =
∑

j

(α + βbcj)Γij

where α is set so that
∑

i bci(α, β)2 = 1, and β = 0.1. The value of β can be any value between 0 and
1.0. But it is common to set it to 0.1 (Haynie 2001). Setting it to other values does not change the
qualitative results much. Ballester, Calvó-Armengol and Zenou (2005) has recently demonstrated
a relationship between Bonacich centrality measures and Nash equilibrium action of a player in a
certain class of network games. It is of an interesting future research to exploit such relationship in
R&D collaboration network.
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period. Thus, as the collaborations have become more common, a few star companies

seem to have emerged in the network.

IV. Statistical Model

In this section we turn to statistical analysis of the R&D collaboration formation by

the innovating IT firms.

We use the standard latent utility framework to model the collaboration network

formation between companies. We assume that the latent utility of company i from

collaboration with company j at time t + 1 is given by the following linear function:

uij = α + βownXi(t) + βotherXj(t) + γZij(t) +
∑

k

ρkd
k−1
ij (t) + εij(t). (1)

The first component incorporates the systematic utility from collaboration where Xi

and Xj is the background characteristics (e.g., firm size) of company i, and Zij is the

common background characteristics of company i and j (e.g., similarity of production

process). The second component involves the kth cyclic closure bias. We define dk−1
ij

as the dummy variable that takes one if the shortest distance between i and j is

equal to k and zero otherwise. If ρk > 0, then the company obtains a positive utility

by forming the cycle of length k. So the parameter ρk measures the degree of the

tendency to form kth cyclic closure. It is the generalized notion of the triadic closure

bias (Kossinets and Watts 2006). The third component is an idiosyncratic random

error shock εij. As in the standard random utility model, we assume that the random

errors εij(t)s are independent across companies and over time, and are identically

distributed from the logistic distribution.

Without the loss of generality, the utility from no collaboration can be normalized

to be zero. Thus, if uij > 0, the company i is willing to collaborate with company j

11



at time t + 1. The probability is given by

Prob(uij > 0) = F

[
α + βownXi(t) + βotherXj(t) + γZij(t) +

∑
k≥3

ρkd
k−1
ij (t) + εij(t)

]
, (2)

where F is the cumulative distribution function of the logistic distribution.

Consider the collaboration formation between two companies, i and j, which are

not connected at time t. We assume that the two companies i and j collaborate

only if they are willing to collaborate at the same time. Let Gij(t) denote the R&D

collaboration between company i and j at time t. The conditional probability that

company i and j will initiate collaboration at time t + 1 given that they do not

collaborate at time t is presented by

Prob(Gij(t + 1) = 1|Gij(t) = 0) = Prob(uij > 0) · Prob(uji > 0) (3)

The equality follows from the assumption that εij(t) and εji(t) are independent. The

possibility that the random shocks are correlated will be discussed later.

The conditional likelihood that currently unconnected companies initiate the R&D

collaboration in the next period is given by

L(θ) =
∏
i<j

Prob(Gij(t + 1) = 1|Gij(t) = 0), (4)

where θ is the vector of parameters such that θ = (α, β, γ, ρk). The product
∏

is

taken over all possible pairs of (i, j) such that i < j. Because of Equation (4), the

conditional likelihood can be rewritten as

L(θ) =
∏

i

∏
j ̸=i

Prob(uij > 0). (5)

12



Thus the total log-likelihood function over the sample periods is presented by

ℓ(θ) =
∑

t

∑
i

∑
j ̸=i

ln F

[
α + βownXi(t) + βotherXj(t) + γZij(t) +

∑
k≥3

ρkd
k−1
ij (t) + εij(t)

]
. (6)

The structural parameter θ is estimated from the log likelihood function. Since

the F is the cumulative distribution function of the logistic distribution, the standard

logistic regression method is used for estimation.

One final note concerns the identification of parameters. It is found that two

parameters βown and βother cannot be separately identified from the data. The reason

is simple: Since these parameters are symmetric in the log likelihood function, any

two sets of symmetric values of (βown, βother), such as (b1, b2) and (b2, b1), yields the

same log likelihood value for equation (6). Thus in the empirical analysis below, we

simply report β = (βown + βother)/2. The parameter β can be interpreted as the

average effect between own and other’s background characteristics on link formation.

V. Empirical Results

We included a number of independent variables that are thought to influence the

firm’s decision to form R&D collaborations. Table 3 presents the definitions of the

variables that we used in the estimation.

The first set of such variables contains information on firms’ characteristics. These

include firms’ sales, R&D expenditures, and R&D intensity defined by the share of to-

tal R&D expenditures in total sales. These variables concerning firm size were shown

to affect cooperation in R&D in previous literature, e.g., Colombo and Garrrone

(1996), and Hernán, Maŕın and Siotis (2003), which argue that they will increase

firms’ “absorptive capacity” (Cohen and Levinthal 1989) of new innovation. We also

included the number of R&D collaborations in the current period as a predictor of

new collaboration in the next period. After controlling for firms’ “absorptive capac-

13



Table 3. Description of Variables

Variable Definition

Sale size Firms’ sales in 106 US dollars.
R&D size Firms’ R&D expenditure in 106 US dollars.
R&D intensity R&D expenditure share in total sales.
Number of current collaborations Number of R&D collaborations.
Similarity of production process A dummy variable that takes one if the 5-digit NAICS

codes match between firms, and zero otherwise.
Similarity of research activity Sample correlation of subcategories of applied patents

between firms. All patents applied in the sample period
are used to compute the similarity measure.

Similarity of sale size = 1/(1 + difference in sale size).
Similarity of R&D size = 1/(1 + difference in R&D size).
Same state dummy A dummy variable that takes one if the firms are located

in the same state, and zero otherwise.
Same county dummy A dummy variable that takes one if the firms are located

in the same county, and zero otherwise.
Time trend Time trend starting from 0 if the observation is in 1985,

up to 9 if the observation is in 1995
dk

ij (dummy variables) = 1 if the shortest distance btween inovating firm i and
j is equal to k where k = 2, 3, 4, 5.

ity”, this captures “preferential attachment bias” (Barabási and Albert 1999), i.e.,

tendency for those firms with many partners to form more collaborations in the fu-

ture. This bias, if it exists, explains the emergence of a few “star” companies in the

network of R&D collaborations we discussed in Section III.

The second set of control variables reflects similarities between firms. We expect

that the firms share many of the characteristics are more likely to cooperate with

each other than those are not. We computed similarity measure of firms’ production

processes using sub-industry grouping system by NAICS (North American Industry

Classification System). The similarity index takes one if two firms fall into the same

five-digit NAICS sub-industry class, and zero otherwise. As an alternative similarity

measure, we also computed non-centerred correlation coefficients of the technological

portfolios of applied patents between firms. We used a citation-probability-adjusted

14



version of the correlation coefficient defined by Jaffe (1986).10 It can be considered

to measure a similarity or closeness among technological categories of firms’ research

activity. We also considered the similarities of firms’ potential capacity. The similarity

indices are computed from firms’ sale size and R&D sizes, respectively.

In addition to these similarity indices, we included measures of geographical prox-

imity between firms. We expect that the firms that are located in the same state or

county are more likely to form R&D collaboration than those that are not.

Finally, we included the cyclic closure biases to measure tendencies for local clus-

tering. To capture the k-th cyclic closure bias, we computed the shortest (geodesic)

path between innovating firms in R&D collaboration network, and construct a dummy

variable dk−1
ij , which takes one if the shortest-distance between a pair of firm i and j

is k − 1, and zero otherwise. Since the pairs of firms that are connecting with more

than 5 distances are very rare, we included up to 6-th cyclic closure biases in the

estimation below.

Because the background characteristics are not available for all firms, we restrict

our attention to the subsample to the innovating IT companies that are listed on the

NYSE, NASDAQ, and AMEX in the sampling period. The data for these compa-

nies are obtained from S&P’s COMPUSTAT. We find that there are 478,654 possible

collaborations among those stock-market-listed firms, while only 288 collaborations

(0.06 percent) are newly formed in the sample period. It should be noted that, al-

though the sample are restricted by the stock-market-listed firms, the network related

10The correlation coefficient is difined by

Similarity of research activityij ≡
fiWf ′

j

[(fiWf ′
i)(fjWf ′

j)]1/2

where fi is a row vector of the number of patent applications in each technological subcategory taken
out by firm i, and W is the citation probability matrix among each technological subcategories that
are computed from the entire U.S. patent citation data from 1981 to 1999. The citation probability
matrix instead of the identity matrix is used as a weight so that the similrarity measure can pick up
the similarity or closeness among technological categories. By doing so, we coped with the problem of
a potential discrepancy between the artificial classification and the true linkage among technologies.

15



Table 4. Descriptive Statistics of Variables

min max mean standard
deviation

Sale size 0.000060 152.172000 4.719287 12.648110
R&D size 0.000051 7.035800 0.209263 0.622785
R&D intensity 0.002682 24.650000 0.108906 0.596994
Number of current collaborations 1 55 1.431433 2.171766
Similarity of production process 0 1 0.050838 0.219668
Similarity of research activity 0.000000 1.000000 0.237604 0.243423
Similarity of sale size 0.006529 1.000000 0.427505 0.322739
Similarity of R&D size 0.124444 1.000000 0.849150 0.200142
Same state dummy 0 1 0.093057 0.290512
Same county dummy 0 1 0.028806 0.167261
d2 0 1 0.002737 0.052243
d3 0 1 0.005495 0.073922
d4 0 1 0.005465 0.073726
d5 0 1 0.004103 0.063925

measures, such as the shortest distance, are calculated based on the full sample.

The descriptive statistics on the independent variables are reported in Table 4.

A. Baseline Estimation Result

Table 5 reports the marginal effect of the independent variables on the probability of

forming new collaboration and the estimates of the k-th cyclic closure bias parameter

ρk for k = 3, 4, 5, 6. The specification (1) and (2) provide the baseline estimates of

the structural parameters. The difference between these two specifications is whether

the liner time trend variable is included or not. The estimation results present that

the time trend coefficient is positive and statistically significant, and thus suggests

that the growth of R&D collaborations might be explained by a secular technological

progress in the sampling period.

Not surprisingly, we found that the similarities of firms’ production process and

research activity have highly significant and positive effect on the likelihood of R&D

collaboration. This suggests that the similar firms in line of industry are more likely

to cooperate in R&D activity, as is consistent with our prior expectation.
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Table 5. Baseline Estimation Results of Logit Regression for R&D Collaboration

Variable or Parameter (1) (2) (3)

Constant −7.3459*** -13.8774 -13.8516
(0.2724) (2.4210) ( 2.3732)

Time trend 0.0722*** 0.0699***
(0.0265) (0.0262)

Similarity of production process 0.8693*** 0.8567*** 0.8605***
(0.1623) (0.1620) (0.1625)

Similarity of research activity 3.7343*** 3.7139*** 3.7868***
(0.2391) (0.2377) (0.2374)

Similarity of sale size −1.1538*** −1.1774*** −1.1292***
(0.3669) (0.3677) (0.3575)

Similarity of R&D size −2.4467*** −2.3904*** −2.2932***
(0.3921) (0.3926) (0.3466)

Same state 0.696*** 0.6717*** 0.6744***
(0.2121) (0.2124) (0.2126)

Same county 0.4726* 0.4713* 0.5206**
(0.2486) (0.2487) (0.2479)

Sale size −0.0246*** −0.0255***
(0.0091) (0.0090)

R&D size 0.3123** 0.3479**
(0.1502) (0.1509)

R&D intensity 0.0489
(0.1378)

Number of current collaborations 0.0470*** 0.0418*** 0.0391***
(0.0068) (0.0070) (0.0058)

ρ3 2.5436*** 2.4268*** 2.4946***
(0.1811) (0.1843) (0.1829)

ρ4 1.6534*** 1.5224*** 1.5533***
(0.2234) (0.2271) (0.2267)

ρ5 1.5355*** 1.4009*** 1.4059***
(0.2693) (0.2724) (0.2725)

ρ6 1.1188*** 0.9964** 1.0236**
(0.4206) (0.4222) (0.4219)

χ2 1335.71 1343.34 1333.19
log − likelihood −1692.4 −1688.58 −1693.65
Pseudo R2 0.283 0.285 0.282
N 425084 425084 425084

Notes: Standard errors are in parentheses.
∗ Significant at the 10-percent level.
∗∗ Significant at the 5-percent level.
∗ ∗ ∗ Significant at the 1-percent level.
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Different results, however, are reported for firm size similarities. The estimated

coefficients of similarities in sale size and R&D size are both negative at the 1 percent

significance level. These results indicate that the firms that are asymmetric in size

have strong incentive to participate in R&D cooperation.

We also found that geographical proximities matter for forming new R&D col-

laborations between innovating IT firms. The result suggests that the firms that are

located in the same county and same state are more likely to collaborate with each

other than those that are not.

An interesting difference emerges between the effects of firm’s sizes, measured in

terms of sales and R&D expenditures, on R&D collaboration formation. The estima-

tion result indicates that R&D expenditure has significantly positive impact on R&D

cooperation.11 On the contrary, the estimated effect of sales on R&D cooperation is

negative and statistically significant. Yet, as indicated by the estimates, the R&D size

has far larger impact on joint R&D participation than the sale size does. All these

results seem to suggest that the R&D expenditures is critical in building absorptive

capacity.

It should be noted that the alternative specification (3) presents that R&D inten-

sity, which is widely used in the previous literature (e.g., Colombo and Garrrone 1996)

as a proxy for absorptive capacity, is insignificant. This suggests that the absolute

level of R&D expenditure level, rather than relative level of R&D expenditure, might

be relevant to a firm’s absorptive capacity.

The estimated coefficient of the number of current collaborations is positive and

statistically significant. It should be noted that this is after controlling for firm’s

absorptive capacity by R&D size or R&D intensity. Therefore, we can attribute this

result to the existence of “preferential attachment bias” (Barabási and Albert 1999),

that is, firms try to collaborate with others that currently have many collaborating

11As discussed in Section IV, the estimated coefficients are average effect of own and other’s
characteristics.
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partners in order to gain access, although indirectly, to the novel information and

technology pooled therein to increase incoming spillovers as much as possible. This

bias explains why we observe a few “star” companies emerging in the R&D network.

The estimates of the closure biases are reported in the bottom rows of Table 5.

The cyclic closure biases are all positive and statistically significant. This implies that

innovating IT firms are willing to form new R&D collaboration with firms that are

inside the circle of their current partners, i.e., within a chain of few intermediaries.

It should be noted that the strength of the cyclic closure bias decrease monotonically

with distance between firms. Hence, two innovating firms with shorter chain of in-

termediates are more likely to cooperate in R&D research activities. This provides a

reason why the R&D network clusters locally.

The results on cyclic closure bias shed light on how firms are managing the pat-

tern of spillovers “to maximize the incoming spillovers from partners and nonpart-

ners, while at the same time minimizing spillovers to nonpartners” (Cassiman and

Veugelers 2002) in addition to the preferential attachment bias discussed above. Cole-

man (1988a) argues that the closing the local cycles promotes the cooperative behav-

ior, in our context, lowers the possibility of outgoing spillovers, because such closure

raises reputation costs of inappropriate behavior and creates a possibility of collec-

tive sanctioning. Ohta and Sekiguchi (2006) analyzes such mechanisms in sustaining

cooperative behavior in the context of repeated game where behaviors of a player in

one relation is not directly observable in other relationships with the player. The

finding that estimated coefficients become smaller as the distance between two firms

increases shows that firms try to collaborate locally and reduce the possibility of out-

going spillovers by relying on the possible reputation or sanction mechanisms that

dense local interactions create.
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B. Estimation Result Controlling Unobserved Common Factors

While there are evidences of strong cyclic closure biases in firms’ R&D collaborations,

there is a possible source of omitted variables problem. If there is unobserved com-

mon factors that affect the collaboration decisions of a group of firms in the R&D

network, the effect of those omitted factors might not be separately identified from

the cyclic closure bias. As illustration, suppose that research managers of companies

were former collegues at a company or former classmates at a business school and

were in close promixity. Then their companies may be more likely to cooperate in

R&D activities due to their parsonal association (see Saxenian 1994). If we cannot

observe such common predisposition of research managers that leads their companies

to collaborate, we may mistakenly attribute the effect to a cyclic closure bias.

To examine the possibility of omitted variables problem described above, we added

to the model dummy variables that explicitly accounts for unobserved factors that are

common to all companies in proximity in the R&D network. Two types of dummy

variables are considered. First we include a dummy variable that takes value one for

a pair of innovating firms that belong to the same connected subnetwork. Second we

include a dummy variable that takes value one for a pair of innovating firms that

belong to the same community subnetwork.

The primary assumption of the empirical strategy is that a common factor, which

is unobservable to researchers, affects all firms in the same connected or community

subnetwork. Thus the latent utility model of R&D collaboration formation is modified

as follows:

uij = α + βownXi(t) + βotherXj(t) + γZij(t) +
∑

k

ρkd
k−1
ij (t) + δgij + εij(t). (7)

where gij is either a connected subnetwork dummy variable or community subnetwork

dummy variable, which takes value one if i and j belong to the same connected or
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community subnetwork. We expect that δ ≥ 0 and thus the unobserved common

factor facilitates R&D collaborations between firms that belong to the same connected

or community subnetwork. The factor gij yields correlation in the neighborhood of

the network if it is not taken into account. In that case, the unobserved error term,

(δgij +εij(t)), is correlated between inovating firms that belong to the same connected

or community subnetwork due to the common factor gij.

To find community structure, we use a network partition method proposed by

Girvan and Newman (2004). Roughly speaking, a community is a subset of nodes

within the network (i.e., subnetwork) such that connections among them are denser

than connections with the rest of the nodes in the network. Their community detec-

tion algorithm is based on the idea of “betweenness” of links in the network, where

betweenness of a link is a measure that favors links that lie between communities.12

Thus, if the links with high betweenness scores are removed, the community subnet-

works are left behind out of the entire network.13

Given that the utility is specified by Equation (7), we can employ the same es-

timation method as we did for the baseline empirical model. We assumed the new

R&D collaboration is formed between firm i and j only when both firms agree to do

so. Thus the conditional likelihood is represented by Equation (5) with different uij

that is specified above.

Table 6 reports the estimation results. We used the best-fit-specification (the

specification (2) in the previous table) for selecting the independent variables. We

12The betweenness of a link, or “edge betweenness” is measured by counting, among the shortest-
path between all the pairs of nodes that are connected, the number of shortest-path going through
the edge under consideration. Since a path between two nodes that belong to different communities
must go through edges that lies between these communities, the edge betweenness of such edges will
be higher.

13How many communities should we expect in a network? This is a difficult question to answer
without some prior knowledge about how the network is formed. Girvan and Newman (2004)
proposes the use of modularity measure, and defines the community when the measure is the highest.
The modularity measures the difference between the fraction of the edges in the network that connect
nodes within the same community and the expected value of the same quantity with the same
community division but connections between the nodes are random. They demonstrate that this
procedure works very well for the network with a priori known community structure.
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Table 6. Results of Logit Regression for R&D Collaboration; Including Subnetwork Dummies

Variable or Parameter (4) (5) (6)

Constant −13.4373*** −13.3891*** −13.6332***
(2.4382) (2.4469) (2.4379)

Time trend 0.0667** 0.0662** 0.0688**
(0.0267) (0.0268) (0.0267)

Similarity of production process 0.8285*** 0.8278*** 0.8368***
(0.1625) (0.1626) (0.1626)

Similarity of research activity 3.6939*** 3.6947*** 3.6887***
(0.2386) (0.2387) (0.2384)

Similarity of Sale size −1.1560*** −1.1569*** −1.1656***
(0.3692) (0.3692) (0.3701)

Similarity of R&D size −2.3758*** −2.3732*** −2.3637***
(0.3941) (0.3942) (0.3955)

Same state 0.6830*** 0.6836*** 0.7076***
(0.2126) (0.2126) (0.2126)

Same county 0.4524* 0.4514* 0.4001
(0.2488) (0.2488) (0.2501)

Sale size −0.0249*** −0.0249*** −0.0246***
(0.0091) (0.0091) (0.0091)

R&D size 0.3358** 0.3356** 0.3304***
(0.1513) (0.1514) (0.1517)

Number of current collaborations 0.0425*** 0.0423*** 0.043***
(0.0070) (0.0070) (0.0070)

Connected subnetwork dummy 1.7151*** 1.7159*** 1.7084***
(0.3064) (0.3064) (0.3065)

Community subnetwork dummy −0.0768 0.4797**
(0.3114) (0.2372)

ρ3 0.78600** 0.8036** 0.6114*
(0.3359) (0.3432) (0.3490)

ρ4 −0.1174 −0.1092 −0.2041
(0.3607) (0.3622) (0.3643)

ρ5 −0.2392 −0.2343 −0.2739
(0.3909) (0.3914) (0.3915)

ρ6 −0.6467 −0.6452 −0.6748
(0.5073) (0.5073) (0.5078)

χ2 1363.82 1363.89 1367.75
log − likelihood −1678.3363 −1678.3055 −1676.3755
Pseudo R2 0.2889 0.2889 0.2897
N 425084 425084 425084

Notes: Standard errors are in parentheses.
∗ Significant at the 10-percent level.
∗∗ Significant at the 5-percent level.
∗ ∗ ∗ Significant at the 1-percent level.
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include the connected subnetwork dummy variable to control for the unobserved group

heterogeneity, which is presented by the specification (4).

In addition, we also included the community subnetwork dummy variable, which

is presented by the specifications (5) and (6). To determine the community structure

of the R&D network, we employed both the unweighted adjacency matrix G, which

represents collaboration links as binary variables, and the weighted adjacency matrix

Γ, where its collaboration links are weighted by the number of common researchers

between firms. In other words, we took into account of the “strength” of the collabo-

ration for identifying distinct communities in the R&D network.14 The specification

(5) and (6) present the estimation results for unweighted and weighted community

structure respectively.

We found that the connected subnetwork dummy variable is positive and statis-

tically significant for all the specifications. On the other hand, the community sub-

network dummy variable is not significant for the specification using the unweighted

adjacency matrix (specification (5)), while it is positive and statistically significant

for the specification using the network structure weighted by the number of common

researchers (specification (6)). This result may reflect the fact that the more accu-

rate community structure can be identified by using the information of the strength

of R&D collaborations. We expect that the stronger the R&D collaboration between

firms, or, equivalently saying, the more researcher are involved in the R&D projects

between firms, the closer the connection becomes between them. Thus, those firms

having closer connections with each other are more likely to belong to the same com-

munity subnetwork.

As far as the firms’ individual and common background characteristics are con-

cerned, the point estimates in Table 6 are very similar to those in Table 5. All signs

14For the weighted network, the “edge betweenness” is calculated reflecting the weight on edges.
Namely, the distance between two directly connected nodes are defined to be 1/Γij , and shortest-path
are calculated based on this weighted distance.
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of the estimates are as before, and the variables that are significant in Table 5 are

also significant in Table 6.

Interestingly, all the estimates of cyclic closure biases become significantly smaller

if the unobserved subnetwork factors are controlled for. For example, the estimate of

the triadic closure bias ρ3 decreases from 2.4268 for the specification (2) in Table 5

to 0.6114 for the specification (6) in Table 6. Yet, it is important to keep in mind

that the estimates the triadic closure bias is still positive and statistically significant

at least at the 10 percent significance level. On the other hand, the cyclic closure

biases with more than the third degrees become negative but statistically insignifi-

cant once the subnetwork dummy variables are included. These results suggest that

at least some closure bias is not mainly driven by unobserved group factors. The

evidence can be interpreted in favor of positive triadic closure bias in forming new

R&D collaboration as its effect on limiting the outgoing spillover through reputation

and sanction mechanisms is the greatest.

VI. Conclusion

In this paper we have studied the evolution of successful R&D collaboration in the U.S.

IT industry between 1985 and 1995 using the information contained in the granted

patent in the U.S. The descriptive statistics of collaboration network suggest that

the collaboration patterns have become more extensive, more locally clustered, and

more unequal in the sense stars have emerged in the network. The regression analysis

reveals that there is significant triadic closure bias and preferential attachment bias in

the choice of collaboration partners even after controlling for characteristics of firms as

much as possible, including some unobserved similarities between firms that we infer

from the community structure of the network. The triadic closure and preferential

attachment biases can be seen as firms trying to maximize incoming spillovers from

partners and non-partners while minimizing out-going spillovers to non-partners in
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their search of collaborating partners.

While focusing on the evolution of the structure of collaboration networks, we

have not addressed other interesting questions such as: How are such dynamics of

collaboration network related with the dynamic patterns of knowledge flows among

firms? What is the relationship between a firm’s position in collaboration network

with its R&D productivity? We await for future research to answer these questions.
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