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1 Introduction

The decline of the labor share has been globally observed, and many economists and
policymakers have paid attention to this phenomenon. An enormous number of stud-
ies have investigated this issue and proposed possible explanations and hypotheses for
why the labor sharehas declinedover time, such as factor-biased technical changes (e.g.,
Karabarbounis and Neiman, 2014; Acemoglu and Restrepo, 2020; Autor et al., 2020), in-
creased exercise of product market power by large firms (e.g., Barkai, 2020; De Loecker
et al., 2020), declining worker power in labor relations (e.g., Stansbury and Summers,
2020; Drautzburg et al., 2021), globalization and the rise of China (e.g., Abdih and Dan-
ninger, 2017; Sun, 2020), and changes in the composition of the workforce (e.g., Glover
and Short, 2020; Acemoglu and Restrepo, 2020).1

However, a large fraction of the existing studies take a macroeconomic approach to
quantify the economy-wide effect, and the most detailed data available to researchers
would be establishment-level census data. A limitation of empirical research using such
datasets is thatwedonot observe the technological differences across plants. As a result,
weneed to assume that there is an industry-wideproduction function common to all the
plants, or researchersneed to infer the state of technological progress fromauxiliarydata
indirectly.2 Furthermore, these studieshavehad to relyondeflatedmonetaryvariablesof
salesasanoutputmeasurebecauseof theabsenceofquantitydata. Thismayobscure the
differencebetweenmarket power variation andproduction efficiency changes as drivers
of labor share decline.

Among these hypotheses, technology plays an important role; Needless to say, the
first setofhypotheses (considerbetterphrase) capture technical changesas factor-biased
productivity changes of a production function. Moreover, other hypotheses, such as
product market power and monopsony power, also hinge on technology, as markups

1See Grossman and Oberfield (2021) for a more detailed summary of the literature.
2For example, Acemoglu and Restrepo (2020) constructs an industry-level exposure to robots, and

Aghion,Antonin,Bunel and Jaravel (2020)uses thebalance sheet valuesof industrial equipmentandplant-
level records of the usage of electro-motive force to proxy the degree of automation.
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andmarginal products of labor often require the estimates of production function.3 De-
spite the importance of technology, most existing studies that take a macroeconomic
approach—using establishment-level census data to quantify economy-wide effects—
cannot directly observe technology which may differ across plants due to technology
adoption. As a consequence, they must assume that there is an industry-wide produc-
tion function common to all the plants or infer the state of technological progress from
auxiliarydata indirectly. Thismayobscure thedifferencebetween technological changes
andmarket power variation as drivers of labor share decline.

This paper precisely addresses this issue by taking a distinct and complementary ap-
proach to the existing studies. Our empirical strategy is to focus on a specific industry
and collect exact plant-level technology information, including the timing of new tech-
nology adoption. We show that “technology diffusion" is the primary driver of labor
share decline by directly controlling for technology in our analysis. We also show the-
oretically and empirically that the plant-level technology information is key to reject-
ing (or avoiding overemphasizing?? ) other market-power-driven hypotheses. Without
the technology information, wemay conclude that themarkups andmonopsony power
have increased.

Our analysis focuses on the cement industry and the diffusion of different genera-
tions of kilns, specifically from Suspension Preheater (SP) Kiln to New Suspension Pre-
heater (NSP) Kiln. This industry provides us with an ideal environment because we can
observe the types of kilns that each plant uses for production. In addition, the quantity
andpriceofphysical units of (homogeneous)output areobservable so thatwecandiffer-
entiate themarketpowervariation fromproductionefficiencychangesasdriversof labor
share decline. Admittedly, no such detailed dataset is available that covers all industries,
but as documented in Kehrig and Vincent (2021), the decline of the labor share is driven
by within-industry effects. Therefore, we believe that unraveling the mechanism of the
phenomena in a specific industry would help us drawmacroeconomic implications. To

3There are some recent papers that use an IO approach–demand estimation of differentiated products,
instead of production approach, to estimate markups or monopsony power, e.g., Grieco et al. Miller et al.
() Azar Berry...
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ensure the generalizability of our analysis, we first confirm that we can replicate the pat-
terns observed in existing studies: the decline of the labor share, an increase in industry-
wide markups paired with the decline of the labor share, and an increased discrepancy
between labor productivity growth and wage growth.

We find that the industry-level labor share declines over time, but the labor share
slightly increaseswithin theplantswith thesameold technology. Therefore, the industry-
level labor share decline is largely explained by the fact thatmore andmore plants adopt
a new andmore capital-intensive production technology.

To confirm that technology diffusion explains this trend, we employ an event study
design using observed variation in the timing of technology adoption. (DO WE NEED
THIS SENTENCE?? Specifically, we use Difference-in-Differences with leads and lags of
the treatment variable.) We examine how labor share and employment respond to tech-
nology adoption, and we find that they both start to fall at the time of adoption, which
confirms that the diffusion of new technology drives the phenomena. We also examine
the evolution of the plant-level capital-labor ratio, andwe find that right after the instal-
lationofNSP kilns, the capital-labor ratio discretely jumpsup. (DOWENEEDTHIS SEN-
TENCE??Wedonot findany statistically significant pre-trend in the variables, suggesting
that our research design is valid for making causal inferences.)

These findings suggest that the introduction of NSP kilns embodies the explicit tech-
nological changewithadifferent shapeofproduction functionsacrossplants rather than
a simple increase in total factor productivity (TFP). We confirm this by estimating the
production function for each technology by using the control function approach con-
solidated by Ackerberg et al. (2015). We find that the new technology is indeed more
capital-intensive.

We then use our production function estimates to evaluate other hypotheses for la-
bor share decline and illustrate that our conclusionwould be qualitatively different if we
lacked data on production technology. (OR "if we did not take the heterogeneity in pro-
duction technology into account" ?) Weestimateplant-levelmarkupsusing themethod-
ology from De Loecker and Warzynski (2012) and marginal products of labor (MPL) for
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each plant, and we find that without considering the differences in production tech-
nology, (i) the labor share decline is paired with an increase in the markup and (ii) the
growth rate of themarginal products of labor (MPL) andwage becomes increasingly dis-
connected. The former finding has recently attracted many researchers’ attention and
has been documented in existing studies, such as De Loecker et al. (2020) and Autor et
al. (2020). We observe a similar pattern exists when the technology information is miss-
ing. However, we theoretically demonstrate that the decline of the labor share and the
increase in the industry-level markup happen simultaneously when production shifts
from plants with relatively labor-intensive technology to plants with relatively capital-
intensive technology. To confirm this prediction, we control for the plant-level technol-
ogy in our analysis and show that a large part of the negative correlation between labor
share and markups disappears. The latter pattern is well documented in the literature
(for example, inStansburyandSummers (2018)), and researchersandpolicymakershave
debatedwhether it is a technology-drivenphenomenonor causedby someother factors,
such as decreased worker power. We find that this seemingly disconnected relationship
results from production technology heterogeneity, and the discrepancy vanishes once
we control for plant-level technology.

This paper aims to contribute to a large literature on labor share decline and tech-
nological change. The decline of the labor share has been observed in many countries
(Karabarbounis and Neiman, 2014) and in many industries (Kehrig and Vincent, 2021),
and many researchers ascribe it to some sort of technological changes, especially com-
puters and industrial robots (AcemogluandRestrepo (2020), Autor et al. (2020),Humlum
(2021)). Our focus on the advancement of kilns in the cement industry during the 1970s
can address the gap between the rise in automation and ICT in the 1990s and the labor
share decline observed since the 1980s.

Secondly, our paper contributes to the macro market power literature that relies on
the "production approach." (see Syverson (2019)) Drawing on De Loecker and Warzyn-
ski (2012) and production function estimation from the IO literature( Olley and Pakes
(1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015)), De Loecker et al. (2020) es-
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timate markups during the period 1955-2016 for the U.S. economy and find that it has
risen steadily. Similarly, Yeh et al. (2022) developed a new way to characterize aggregate
markdowns from production function estimation and quantify the long-term trends of
monopsony powers in the US manufacturing sector. Our contribution to this literature
is that we document the importance of estimation bias in market power due to the lack
of production technology information.

Finally, our paper relates to the burgeoning literature on technological change and
production function estimation. A common approach to production function estima-
tion assumes productivity as a Hicks-neutral shifter. Several authors have recently con-
sidereddepartures fromthis standardassumption.(Doraszelski and Jaumandreu (2018),
Raval (2022), Zhang (2019), Demirer (2022) ) These recent papers highlighted the im-
portance of labor-augmenting productivity and developed ways to estimate production
functions with factor-augmenting productivity change. In contrast, our paper instead
assumes that producers have an explicitly different production function according to
theiruseof theoldornew typeof kilns, aside fromanyproductivitydifferences. Thereare
few works with this approach. Examples are van Biesebroeck (2003), which models the
choice between lean or mass production in the car industry, and Rubens (2022), which
features the introduction ofmechanical coal cutters in the 19th-century coal mining in-
dustry.

This paper is organized as follows. Section 2 describes the industry and provides the
historical background of the Japanese cement industry as well as the data used in our
empirical analysis. We propose (PROPOSE?) technology diffusion to explain the decline
in the labor share in Section 3. We further examine other hypotheses proposed in the
literature in Section 4. Section 6 concludes.

2 Industry Backgrounds and Data

Though the majority of the studies in the literature take a “macroeconomics” approach
which uses census data to quantify economy-wide effects, production technology is still
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unobserved in such census data. To overcome the problems associated with the unob-
servability of technology, we take a distinct approach, focusing on one specific industry,
namely the Japanese cement industry. There are three important advantages to study-
ing thecement industry: (i) theobservability ofproduction technology,which is typically
unobserved in the standard census data, (ii) the homogeneity of the product, which en-
ables us to estimate markups accurately; and (iii) a simple production process, which
enables us to estimate productivity easily through production function estimation. Of
course, onemightworry about the generalizability of our results, aswe use only one par-
ticular industry from themanufacturing sector. This concern is discussed in Section 5.

In the following subsections, we first explain the industry backgrounds, elaborate on
the aforementioned features and advantages of the industry, and describe the two data
sources that we use in this paper. We then show some key statistics.

2.1 Industry Backgrounds: Cement and Its Production Technology

Cement is one of themost important constructionmaterials, as concrete andmortar are
made from cement. There are several types of cement. For example, Portland cement
is the most common type of cement, accounting for about 75% of cement products, ac-
cording to JapanCement Association. (WOULDNTWENEEDTOCITEADOCUMENT ?)
Though there are several different types of cement, each of them is standardized by the
Japanese Industrial Standards and thus can be treated as a homogeneous product. To
produce cement, crushed limestone, clay, and other minerals are mixed and put into a
kiln to be heated. This process yields clinker, which is an intermediate cement product
and the focus of this paper. The final procedure of mixing ground clinker with gypsum
produces cement. As demonstrated, the production process of cement is simple.

Cement kilns are the heart of this simple production process, and it is important for
us to understand some technical aspects of cement kilns in Japan. Prior to our sample
period, in the1960s, the suspensionpreheater (SP)processwas imported fromGermany,
and due to its high energy efficiency, SP kilns gained in popularity and took a dominant
position. Mostof thenewlybuilt kilns in the1960swereSPkilns, and in the1970s, contin-
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uing improvements were made by Japanese companies, and new suspension preheater
(hereinafter NSP) kilns were developed. The main innovation of NSP kilns is attaching
pre-calciner to the SP kilns, which breaks down CaCO3 in limestone into CaO and CO2
in an efficient way, and this feature enabled further mass production. In our data, after
1970, almost all newly built kilns were NSP kilns, and this homogeneity of investment
simplifies our analysis, as well.

(To be added) TBA: Market definition - we divide the markets into eight areas. (BUT
WEDIDNT EXPLOIT ANYMARKET VARIATIONS!)

(To be added) Import and export? (Brazil, US) Japan is geographically isolated from
other countries, and we only import and export from/to Korea, Taiwan, and HK?

(Tobeadded)Thereare some importantno followingOkazaki,Onishi, andWakamori,
2022 Is this different fromNishiwaki? 201x?

Note that import and export in
Unlike AAA or BBB, which study Brazil andUS cement industries, Japan is geograph-

ically isolated from other countries in recent years. up to 15%?

2.2 Data Sources

For this study, we combine two complementary plant-level data: (i) Cement Yearbook
(Cement Nenkan), published by the Cement Press Co. Ltd. (Cement Shinbunsha), and
(ii) Census of Manufacture, collected by the Japanese Ministry of Economy, Trade, and
Industry. The yearbook mainly provides plant-level information on monthly produc-
tion capacity (in tons), production output (in tons), number of workers, and ownership
and geographical location of the plants. In addition to these basic characteristics of the
plants, the data also contains the types and the number of kilns that each plant owns,
which makes this dataset special. Although the technology each plant employs is typi-
cally unobserved, this Yearbook data provides such kiln-level information. On the other
hand, the Census ofManufacture provides a similar but slightly different set of informa-
tionon theplants, i.e., the total shipment value (in JPY),material inputs (in JPY), number
of employees, total wage (in JPY), investment (in JPY), and asset values (in JPY).
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Note that the sample periods for these two data sources are slightly different. We ob-
tain the former data from 1970 to 2010, whereas we obtain the latter data from 1980 to
2010 because the data from 1970 to 1979 for the latter data are unavailable. We com-
bine these two data sources via location and plant name information, asmost plants are
located in a different municipality with very few exceptions.

2.3 Summary Statistics and Key Features

Summary statistics of our data are given in Table 1. Panel (a) presents plant-level sum-
mary statistics pooling all years, whereas Panels (b1), (b2), and (b3) present plant-level
statistics for some selected years, namely 1970, 1990, and 2010, respectively. There are
some important trends that can be found by comparing Panels (b1), (b2), and (b3).

First, the number of observations in 1970 is 53, whereas it is 30 in 2010, implying that
thenumberof plants decreasedbyabout 40%over 40 years. On theother hand, thenum-
ber of firms in 1970 and 2010 was 22 and 18, respectively, implying that most firms con-
centrate their production on a single plant or a small number of plants, on average, in
2010. Although the number of plants decreased sharply, monthly capacity, defined as
how much clinker a plant can produce when operating for 600 hours per month, and
annual clinker production per plant have increased over 40 years so that industry-level
capacity and production have decreased only slightly.

Second, the fraction of the number of NSP kilns has increased considerably. There
were no NSP kilns in 1970, whereas the old kilns were mostly replaced by NSP kilns over
40years. To further see thechange incementproduction technology, Figure1graphically
shows the absolute number of kilns and share, depending on technology, i.e., types of
kilns, over time. In 1970, the initial year of our sample period, therewere about 220 kilns,
though the majority of them were old types and SP kilns accounted for less than 20%.
Note, again, that there were no NSP kilns in 1970. During the 70s, however, NSP kilns
dramatically increased their popularity, maintaining their dominant position after the
1980s. In our main analysis, we explore the labor share with and without controlling for
this technology information.
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Table 1: Summary Statistics
Num. of Obs. Mean Std. Dev. Min. Max.

Panel (a): Plant-Level Statistics (All)
Monthly Capacity (tons) 1,748 188,716 124,935 18,180 696,250
Annual Clinker Production (tons) 1,748 1,742,626 1,293,791 0 8,082,269
Average Cement Price (JPY/ton) 1,748 10,375 2,580 5,800 17,075
# of Workers (person) 1,672 193 140 16 1303
AverageWage perWorker (JPY) 1,748 4.34 1.43 .928 13.77
Share of NSP Kilns 1,738 .549 .429 0 1
Panel (b1): Plant-Level Statistics in 1970
Monthly Capacity (tons) 53 128,396 80,840 25,000 350,000
Annual Clinker Production (tons) 53 1,025,507 621,417 48,000 2,684,197
Average Cement Price (JPY/ton) 53 5,965 202.0 5,800 6,900
# of Workers (person) 53 318 175 114 1,205
AverageWage perWorker (JPY) 53 2.32 .527 .928 3.62
Share of NSP Kilns 53 0 0 0 0
Panel (b2): Plant-Level Statistics in 1990
Monthly Capacity (tons) 41 178,472 111,121 30,000 553,417
Annual Clinker Production (tons) 41 1,836,281 1,160,588 255,000 5,428,197
Average Cement Price (JPY/ton) 41 11,550 1,375 9,600 13,200
# of Workers (person) 41 169 94.4 57 560
AverageWage perWorker (JPY) 41 4.47 .571 2.83 5.41
Share of NSP Kilns 41 .750 .379 0 1
Panel (b3): Plant-Level Statistics in 2010
Monthly Capacity (tons) 30 165,567 127,285 36,167 557,083
Annual Clinker Production (tons) 30 1,561,800 1,321,220 276,000 6,169,000
Average Cement Price (JPY/ton) 30 10,076 471.0 9,000 10,900
# of Workers (person) 30 104 65.5 34 371
AverageWage perWorker (JPY) 30 5.98 .842 4.32 7.91
Share of NSP Kilns 30 .861 .300 0 1

Note: The number of observations for the number of workers is 1,672 in Panel (a), because Cement
Yearbook in 1976 does not provide the number of workers.

Third, the number of workers has decreased sharply; the average number of work-
ers in 1970 was 318, whereas it was 104 in 2010. Figure 2 plots the plant-level number of
employees over time together with linear fitted values. Though we observe substantial
heterogeneity in plant size, all plants decrease the number ofworkers over time. This de-
crease in the number ofworkersmeans that the labor productivity—measured in output
per worker—also increased over 40 years, as we see that the plant-level clinker produc-
tionhas increased. On theotherhand, though theaveragewagealso increasedover time,
the change in the average wage is not as large as the change in labor productivity. These
facts raise some questions; whether this reduction in the number of workers is driven by
the adoption of new technology and whether the gap between growth in labor produc-
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Figure 1: Diffusion of Technology

tivity and in wage is due to increasedmonopsony power.

Figure 2: Number of Workers per Plant over Time

Note: This figure plots the plant-level number of employees over time
together with a linear fitted value.
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3 Decline of Labor Share and Technology Adoption

In this section, we first present the labor share patterns in the data, which exhibit similar
features as the existing studies have documented. Then we argue that the new technol-
ogyadoption is themaindriver for thedeclineof labor shareandoffer evidenceby imple-
menting the event-studydesign analysis. Finally, we show that new technology adoption
comes with a change in the shape of production function by estimating the production
function with information on plant technology. More specifically, we show that cement
production becomesmore capital-intensive when plants adopt new technology.

3.1 The Decline of Labor Share and New Technology Adoption

Wefirst plot the industry-level labor share, defining the labor share as the totalwagepay-
ment divided by themonetary value of total output.4 In Figure 3, each dot represents the
labor share for each year and the gray line represents the smoothed-nonparametric fit.
The industry-level labor share falls over our sample period with a sharper decline when
the new technology diffuses between 1973 and the early 1980s, as we see in Figure 1.

At the firm level, the output shifts from high-labor share plants to low-labor share
plants. Figure 4 plots the histogram of the share of output on the vertical axis and the
plant-level labor share on the horizontal axis for some selected years, i.e., in 1975, 1985,
1995, and 2005. From 1975 to 2005, the distribution shifted from the right to the left,
which implies that the production shifted from plants with a high labor share to plants
with a low labor share.

The virtue of our approach is that we observe the exact technology used at the plants.
Toquantifyhowmuchthediffusionofnewtechnologycontributes,we replicate theanal-
ysis in Figure 3 conditional on the plant-level technology. In Figure 5, we plot the aver-
age labor sharewithin theplantswithnew technology (the dotted line), within theplants
with old technology (the dashed line), and the industry-level labor share (the solid line).

4As the Census data is available only after 1980, we compute the labor share using the data in Cement
Yearbook. More specifically, the total wage payment is computed as the number of employees multiplied
by the average wage and the monetary value of total output is computed as the output multiplied by the
average cement price in that region.
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Figure 3: Industry-level Labor Share

Figure 4: Plant-level Production Share and Labor Share

1975 1985

1995 2005

The last line, the industry-level labor share, corresponds to the solid line in Figure 3. In-
terestingly, the labor share does not fall within the same technology plants as the dashed
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line anddotted lines stay relatively flat. However, the industry-level labor share, the solid
line, falls rapidly as new technology diffuses because the new technology plants have a
lower level of labor share. Figure 5 clearly shows that the decline of labor share is associ-
ated with the new technology diffusion.

Figure 5: Labor Share Conditional on the Plant-level Technology

To assess the argumentmore quantitatively in a descriptivemanner, we estimate the
following equations using the plant-level labor share by Ordinary Least Squares (OLS);

LaborShareit = β0 + β1t+ β21{NSP Kilnsit} + Fi + εit,

where i is a plant index, t denotes year, 1{NSP Kilnsit} is a dummy variable taking one if a
plant owns at least one NSP kiln in year t and zero otherwise, Fi is a plant fixed effects,
βs are the parameters to be estimated, and εit is an independent error term. Here, we are
interested in the estimated coefficient on t, i.e., β1. We expect that β1would be estimated
as negative whenwe do not control for the plant-level technology because the industry-
level labor share declines over time. In contrast, we expect that β1 would be estimated
near zero or positive when we control for the plant-level technology. Table 2 summa-
rizes the estimation results and confirms our expectations. The first column presents
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Table 2: Time Trend of Labor Share

(i) (ii) (iii) (iv)
Dependent Var. Labor Share Labor Share Labor Share log(Labor Share)
Year (β1) -1.13×10−3 ∗∗∗ -2.42×10−4 0.371×10−3 ∗∗∗ 0.006∗∗∗

(0.0157×10−3) (0.0176×10−3) (0.0880×10−3) (0.001)

NSP Kiln dummy (β2) -0.0474∗∗∗ -0.0244∗∗∗ -0.389∗∗∗
(0.00469) (0.00302) (0.0301)

Constant √ √ √ √

Plant fixed effects √ √

N 1,673 1,673 1,673 1,673
Standard errors in parentheses
Other Controls includes a constant term.
* (p < 0.10), ** (p < 0.05), *** (p < 0.01)

the results without controls for technology, and the coefficient on year is estimated as
negative and statistically significant. In the second column, oncewe control for the tech-
nology, the significance of β1 disappears. However, we now find that the coefficient on
an NSP kiln dummy, β2, is estimated as negative and statistically significant, implying
that a plant introducing NSP kilns has a lower labor share. When we further control for
the plant fixed effects, the estimates become positive and statistically significant. These
results are consistent with Figure 5. To quantify the economic significance of the results
in the third column, we replace the left-hand-side variable with the logarithm of labor
share, which allows us to quantify the percentage change easily. The result is presented
in the fourth column, suggesting that the labor share increases at the plant level by 0.6%
every year. Themagnitude is not very large but not negligibly small.

Note that the labor share here is computed using the data from Cement Yearbook.
Even when we use the value-added variables in the Census data, we obtain the qualita-
tively same results. See Appendix XXX for these results.

3.2 Evidence from Event Study Design

We further zoom into the plant-level changes in variables to confirm that our findings in
the previous sections are driven by technology diffusion. To this end, we take advantage
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of the richness of our data, i.e., we can observe the timing of new technology adoption.
Using the variation in the timing of technology adoption, we employ an event study de-
sign, i.e., difference-in-differences with leads and lags of treatment variable. Formally,
we adopt a method proposed by Callaway and Sant’Anna (2021). Here, the adoption
of NSP kilns is the “treatment,” we estimate the average treatment effect on the treated
(ATT) for each treatment cohort. ATT from τ years from the treatment for the plants who
adopted NSP kilns in year t is identified as:

ATT(t, τ) = E

 Git

E[Git]
−

pt(Xi,t−1)Cit
1−pt(Xi,t−1)

E
[
pt(Xi,t−1)Cit
1−pt(Xi,t−1)

]
 (yi,t+τ − yi,t−1)

 , (1)

whereGit is one if plant i adopts NSP kilns in year t and zero otherwise,Cit is one if firm i

never adopts or has not yet adopted NSP kilns and zero otherwise, pt(Xi,t−1) is the prob-
ability that plant i adopt NSP kilns in year t conditional on Git = 1 or Cit = 1, and yiu is
the outcome variable of plant i in year u.5 We define ATT τ years from the treatment as
the weighted average of ATT(t, τ) as:

ATT(τ) =
∑
t

wtATT(t, τ),

where wt denotes the weight, which is the number of plants treated in year t divided by
the total number of treated firms.

We estimate ATT(t, τ) by replacing the expectation with the empirical average, and
pt(Xi,t−1), the propensity score, by estimating a probitmodel. ForXi,t−1, we use the loga-
rithmof plant i’s total capacity, production quantity, andmonetary value of total output,
and we estimate a separate probit model for each year.

First, Figure 6 plots the evolution of plant-level labor share relative to the timing of
new technology adoption. The estimated coefficient for the year before the adoption
(t = −1) is normalized to be zero by construction. The x-axis shows the years relative

5In Callaway and Sant’Anna (2021), the authors propose to use never treated individuals as the control
group. However, it is not feasible inour context because thenumberof plants that never adoptedNSPkilns
is too small to derive anymeaningful inference. Also, the authors provide computer codes for Stata and R
to implement the estimation, and the authors provide the option to use never-treated and not-yet-treated
individuals as the control group.
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Figure 6: The Effects of Adoption of New Technology on Plant-Level Labor Share

to the year of NSP adoption and the y-axis shows the estimated ATT. Here, the year of
NSP adoption is identified by the year the plant installed its first NSP kiln.6 The solid
line presents the estimated ATT and the gray dotted lines represent a 90% confidence
interval. The confidence interval is constructed by the bootstrapmethodwith 200 repli-
cations. When we look at the solid line, the labor share starts to decline after the tech-
nology adoption. However, the decline is not immediate. Rather, it takes several years.
After four years of adoption, the labor share remains below the pre-adoption level with
statistical significance.

To decompose the effects into the changes in the numerator and denominator of la-
bor share calculation, we first look at employment and wages. Panel (a) of Figure 7 plots
the evolution of plant-level (log) employment relative to the timing of new technology
adoption. In contrast to the labor share, the number of employees decreases evenmore
gradually than the labor share and the estimated effect becomes statistically significant
after 9 years of the new technology adoption. In the long run the number of workers de-
creases by 15% implying that the change in the number ofworkers is one of the drivers of

6A plant typically has multiple kilns and the adoption of NSP kilns are typically gradual, i.e., each plan
replace one or two of its kiln first and then replace the remaining kilns over time.
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the decline in the labor share. On the other hand, there are no clear differences between
the treated group and the control group in terms of wage growth as in Panel (b) of Figure
7.

Figure 7: The Effects of Adoption of New Technology on Plant-Level Outcomes

(a) NumWorkers (b) Wage Growth

(c) Total Output Value (d) Output

(e) Capacity (f) Capital-Labor Ratio

Another driver of the labor share decline is the total output, the denominator of labor
share calculation. Panel (c) of Figure 7 plots the evolution of plant-level (log) total out-
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put value relative to the timing of new technology adoption. Unlike the number of work-
ers, the output responds to the adoption relatively quickly and increases substantially.
It also grows gradually over time. The growth of the output together with the decline in
the number of workers implies that labor productivity has increased. As the NSP adop-
tion has no effect on wage growth, such an increase in labor productivity translates into
the labor share decline. One may worry that the change is driven by the change in the
cement price. If a new technology produces higher-quality output, this may be a valid
concern. However, in the cement industry, the output quality is homogeneous and it
is hard to believe the cement price varies based on the technology. To confirm that the
change is attributed to output quantity rather thanprice, we estimate the same equation
with output quantity in Panel (d). The estimates in Panel (c) andPanel (d) is almost iden-
tical, suggesting that the denominator of labor share calculation increases due to higher
real labor productivity.

Whydoes laborproductivity, definedasoutputperworker, increasewithoutanychange
in wage growth? To answer this question, we plot the evolution of plant-level (log) ca-
pacity relative to the timing of new technology adoption in Panel (e) of Figure 7. Capac-
ity jumps up right after the adoption and stays at a higher level compared to the pre-
adoption period. Similarly, Panel (f) of Figure 7 plots the evolution of plant-level capital-
labor ratio relative to the timing of new technology adoption. As implied by the results
in Panel (b) and Panel (e), the capital-labor ratio increases, which suggests that the pro-
duction technology and optimal capital-labor ratio are different between non-NSP kilns
and NSP kilns.

Overall, all the results are consistent with the hypothesis that the adoption of NSP
kilns causes a decline in labor share. They also suggest the mechanism behind the de-
cline. The production technology of NSP kilns is different from the old-type kilns and
it is more capital-intensive. More capital-intensive production technology increases la-
bor productivity without affectingwage growth, and, as a result, a plant hasmore output
with fewer wage bills, which translates into a lower labor share.
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3.3 Technology Adoption and the Shape of the Production Function

Our findings in the previous subsection—the decline of labor share in tandem with the
increase in capital-labor ratio after new technology adoption—are very difficult to ratio-
nalize if the new technology simply brings an increase in TFP. Then, what are the im-
plications of these findings for production function? The recent literature on factor-
augmenting technical changes, suchasDoraszelski and Jaumandreu (2018), Zhang (2019),
Raval (2022), and Demirer (2022), suggest that our findings may be explained by incor-
porating labor-augmenting technical changes. Although we could employ such an ap-
proach, taking advantage of the data where we can directly observe technology for each
plant,weadoptamore straightforwardapproach—estimatingproduction functions sep-
arately for each technology, as it ismorenatural to assume that the shapes of theproduc-
tion function for each technology are different.

Here, we assume that the production function takes a Cobb-Douglas form:

Yit = AitK
βτk
it L

βτl
it ,

where Yit is the quantity of the output,Ait is the TFP,Kit is the physical capacity,Lit is the
total wage payment, and (βτk , β

τ
l ) is a set of parameters to be estimated for technology τ ,

τ ∈ {old, new}. We estimate the value-added production function which is considered
in De Loecker and Scott (2016), Ackerberg et al. (2015), and Gandhi, Navarro and Rivers
(2020). This usage of the value-added production function can avoid potential identifi-
cation problems regarding intermediate inputs.

The specification is written as

yit = βτkkit + βτl lit + ωit + εit

where each lowercase variable is in the formof a logarithmandωit is an unobserved pro-
ductivity shock and εit is the unanticipated shock to output. We control the unobserved
productivity shockwith a control functionwith the value of investment iit as inOlley and
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Pakes (1996) and Ackerberg et al. (2015):

ωit = hτ (kit, iit)

The estimation procedure consists of two stages. First, we non-parametrically estimate

yit = φτ (kit, lit, iit) + εit,

whereφτ (kit, lit, iit) = βτkkit+β
τ
l lit+h(kit, iit). Given theproductivityprocessωit = g(ωit−1)+

ξit andωit = φτ (kit, lit, iit)−βτkkit−βτl lit fromthefirst stage,weestimate a set ofparameters
θ including βτk and βτl by using the followingmoment condition:

E[ξit(θ)(iit−1, kit, lit−1)
′] = 0.

Table 3 summarizes the estimation results. Column (i) demonstrates the resultswhen
we estimate the labor and capital coefficients by pooling all plants regardless of their
technology:

yit = βkkit + βllit + ωit + εit,

whereasColumn(ii)demonstrates the resultswhenweestimate themseparately foreach
technology via introducing kiln-type dummies and their interaction terms with other
variables in order to get output elasticities by kiln types:

yit = βoldk kit + βoldl lit + 1{NSP Kilnsit}(β0 + βnewk kit + βnewl lit) + ωit + εit. (2)

Standard errors are calculated ...
Whenwe estimate themodel by pooling all plants, βk is close to 1 and βl is about 0.18,

implying that technology exhibits economies of scale. On the other hand, when we esti-
mate themodel separately for each technology as in Column (ii), capital and labor coef-
ficients are 0.778 and 0.259 for old technology and 0.907 and 0.099 for new technology,
implying that both technology no longer exhibits economies of scale. One of the reasons
why technology exhibits economies of scale when estimating themodel by pooling both
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Table 3: Production Function Estimates with and without Technology Information

(i) (ii) (iii)
Pooling Separately Pooling

Both Technology Old Tech New Tech Both Technology
βk 0.971 0.778 0.907 0.872

(0.110) (0.110) (0.085) (0.071)
βl 0.184 0.259 0.099 0.237

(0.140) (0.103) (0.096) (0.094)
β0 (TFP Gain) - - 0.106 0.060

- - (0.710) (0.103 )
N 1,408 1,408 1,408

technologies is omitted variable bias. As mentioned in Section 2, NSP kilns tend to be
larger in size and have higher TFP (more efficient) than the older types of kilns. Thus,
if we do not control for the TFP gain of new technology, 1{NSP Kilnsit}β0 in Equation (2), we
would have an upward bias for capital and labor coefficients, as there are positive cor-
relations between the TFP gain and labor input and between the TFP gain and capital
input.

Coming back to the results in Column (ii), as we expect, the new technology is more
capital intensive, whereas the old technology is more labor intensive. We indeed test
a hypothesis thatH0 : βkold = βknew and reject the null hypothesis at the 10% significance
level. Therefore, profit-maximizingplantswouldneed less labor, which results in a lower
level of labor share. When more plants adopt new technology, as a result, the industry-
level labor share falls.

One natural concern is that we may reach the same conclusion by just including the
technology dummy in the production function. To address this concern, we check how
the estimated production function would change by including technology-fixed effects
and the the estimated results are presented in Column (iii). First, note that the scale pa-
rameter, i.e., βk + βl, is about 1.15 in Column (i), whereas the scale parameter is close to
1 in Column (ii) of Table 3 . Because new technology plants are more efficient (higher
TFP) and have a larger capacity, ignoring the technology information creates upward
bias in the scale parameter as the plant size is seemingly correlated with efficiency. With
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technology-fixed effects but with a single input elasticity for capital and labor (Column
(iii)), the scale parameter is in between these, about 1.1, suggesting that the bias is partly
mitigated but not completely. Interestingly, both the estimated capital coefficient and
labor coefficient also fall between the estimated coefficients for old and new technol-
ogy reported in Column (ii), suggesting that the Argue that it is still different from our
specification. These results indicate that technology-fixed effects alone are not enough
to capture the difference in technology.

4 Alternative Hypotheses and the Role of Technology In-
formation

As the decline of the labor share has attracted huge attention from both researchers and
policymakers,manyalternativeexplanationshavebeenproposed in the literature. Gross-
man andOberfield (2021) classifies the existing hypotheses into five types: factor-biased
technical changes, the increasedexercise of productmarket powerby largefirms, declin-
ing worker power in labor relations, globalization and the rise of China, and changes in
the compositionof theworkforce. In this section,we examine these alternative hypothe-
ses in the presence of technology information.

4.1 The Increase inMarkups

There is a growing interest inhowconcentration affectsmacroeconomic conditions, and
there are a number of studies that document the increase in markups is paired with the
declineof labor share. The literature follows themethodproposedDeLoeckerandWarzyn-
ski (2012) and De Loecker et al. (2020) and estimates themarkups by a production func-
tionapproach, using theoptimality of variable inputs. Recently, a fewstudies (e.g., Raval,
2022; Doraszelski and Jaumandreu, 2019) have questionedwhether themarkup implied
fromcostminimizationwell captures theactualproduct-levelmarkups. In thispaper,we
findanotherpotential factor thatmaybias theestimatedmarkup: the lackof information
on the plant- or firm-level technology. We find that, in the absence of technology infor-
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mation, the adoption of more capital-intensive technology at some plants would lead
to an overestimation of their plant-level markups implied by cost minimization. Thus,
as more and more plants switch to the new production technology, the industry-level
markupwould be overestimated, as if the labor share decline is caused by the increasing
markups.

4.1.1 The Role of Technology Information

Let us first provide an example to highlight themechanismbywhich the lack of informa-
tion on the technology would lead to a bias in the industry-level markup. Consider an
environment where firm i has production technology characterized by Yi = AiK

βk
i L

βl
i .

Also suppose firm i faces a demand curve characterized by Pi(Qi) = ξiQ
−ε
i where ε < 1.

The labor market is competitive with the wage level of w and each firm maximizes its
profit by choosing its optimal level of labor input. Namely, firm i solves the following
maximization problem:

max
Li

Pi(Qi)Qi − wLi subject to Qi ≤ AiK
βk
i L

βl
i .

In this environment, we can analytically solve for the markup firm i charges. The corre-
sponding cost minimization problem to the above profit maximization is

min
Li

wLi subject to Yi ≥ Q.

Thefirst-order conditionof this problemgivesus ananalytical expressionof themarkup,
which is given by

Markupi = βl
PiYi
wLi

=
1

1− ε
.

Note that this markup is constant and solely depends on the demand elasticity ε. In this
environment, researchers can easily estimate themarkupwhen βl is estimable. As Pi, Yi,
Li, and w are in the data, firm i’s markup can be estimated with an estimate of βl, β̂l, by

Markupi
∧

= β̂l
PiYi
wLi

.
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Also, the industry-level markup can be estimated by the weighted average of the firm-
level markups by

Markup
∧

=
∑

ωiMarkupi
∧

,

where ωi is an appropriate weight (such as the share of sales).
Now, further, consider a casewhere there are two different types of firms. One type of

firmhas labor(material) intensiveproduction technologycharacterizedbyYi = AiK
βNk
i L

βNl
i

and theother typeoffirmhascapital intensive technologycharacterizedbyYi = AiK
βOk
i L

βOl
i ,

where βNk > βOk and βOl > βNl . Even in this case of heterogeneous technology, themarkup
is constant, 1/(1− ε), regardless of production technology at each plant. Suppose the re-
searchers do not have direct information on the production technology each firm uses
and estimate a single production function, a single value for βk and βl, by pooling all the
observations. Let β̃l be an estimate from such a misspecified model. When β̃l is used to
estimate the firm-level markup, the estimated firm-level markups would be biased be-
cause

Markupti
∼

= β̃l
PiYi
wLi

= β̃l
βtl
βtl

PiYi
wLi

=
β̃l
βtl

1

1− ε
,

where t ∈ {N,O} denotes the type of firms. As βOl > βNl , the estimated markups for
each technology under this misspecification would be different and have the relation-
ship,MarkupOi
∼

<MarkupNi
∼

, even though themarkups in this environmentmust be iden-
tical and only depends on the demand elasticity, ε. In addition, if β̃l ∈ (βNl , β

O
l ), then

themarkup is downward biased for labor-intensive firms and upward biased for capital-
intensive firms.

Inanenvironmentwithheterogeneous technology, as thefirm-levelmarkupsarecon-
stant across the firms, the industry-levelmarkupwould also be constant. When the pro-
duction shifts from the plantswith labor-intensive technology to the plantswith capital-
intensive technology, themisspecifiedmodel would lead to an increase in the estimated
industry-level markup because the estimated industry-level markup is a weighted aver-
age of the estimated firm-level markups and MarkupOi

∼
< MarkupNi
∼

. If researchers had
thefirm-level (or plant-level) technology information, such an issuewouldnot arise, i.e.,
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if the model is correctly specified and a production function is separately estimated for
each technology, the estimatedmarkups for both firm-level and industry-level would be
constant.

This example matches the data pattern observed in the Japanese cement industry
well; there are labor-intensive (old types of kilns) and capital-intensive (NSP kilns) tech-
nologies, and theproductionhas shifted toplantswithNSPkilnsbecausemoreandmore
plants adopt NSP kilns. Therefore, a natural concern arises that we would reach a qual-
itatively different conclusion as to whether a rise in markups is the main driver of labor
share decline when we have or do not have plant-level technology information.

4.1.2 The Estimation of Markup

Given the aforementioned potential concern, we examine how the estimated markups
change over time with and without controlling for the plant-level technology. For this
purpose, we first hypothetically assume that we do not observe plant-level technology
and follow De Loecker et al. (2020) to estimate the industry-level markups. Then, we
use the estimation results in Section 3 and estimate the markups taking into account
the plant-level technology. The difference between these two tells us how the estimated
markups are affected by the technology information.

For the casewithout technology information, again, we assume aCobb-Douglas pro-
duction function as

Yit = AitK
βkt
it L

βlt
it , (3)

whereweallowtheshapeof theproduction function tochangeover timeas inDeLoecker
et al. (2020), i.e., βk and βl now depend on time t as well. The corresponding cost mini-
mization problem is written as

min
K,L

rtKit + wtLit subject to Yit ≥ Q,

and the impliedmarkup is
Markupit = βlt

PtYit
WtLit

. (4)
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Further following De Loecker et al. (2020), we modify the production function in Equa-
tion (3) and take the material input into the production process as a fixed-proportion
(Leontief) technology. Formally, we consider the following production technology:

Yit = min{βmtMit, AitK
βkt
it L

βlt
it },

where βmtMit captures thematerial contribution to the final output. This specification is
used commonly in the literature and is employed by not onlyDe Loecker et al. (2020) but
also other studies, including Ackerberg et al. (2015) and Gandhi et al. (2020). Under this
specification, themarkup that takes into account thematerial input can be expressed as

MarkupMit =
1

Markup−1it + PMMit

PtYit

, (5)

whereMarkupit is themarkup estimates from Equation (4) and PMMit is the total mate-
rial spending. For the case with technology information, we follow the same steps and
use the estimates in Table 3.

Figure 8 plots the industry-level markups with and without controlling for the plant-
level technology. Whenwe do not control for the technology as in the solid line, the esti-
matedmarkup increases by 60 percentage points, from 1.6 in 1973 to 2.2 in 2000, during
the period when the new technology diffuses and productions shift to plants with new
technology. In contrast, the estimatedmarkup after controlling for the plant-level tech-
nology stays around 1.6 for the corresponding period. These contrasting plots, again,
highlight that availability of information on technology could change the result and its
implication qualitatively. Note that allowing the production function to depend on time
does not help control the technology difference. 7

7We may expect that estimating a time-dependent production function captures the “average” tech-
nology in a given moment of time. When we compute the industry-level markups, we weight each ob-
servation based on output weights. For markup calculation with a single production function, the pro-
duction function needs to capture the “weighted” average technology (weighted by the same weight as in
themarkup calculation). However, with amoment-based estimationmethod, each observation has equal
weightwhencomputing themoment condition. Therefore, the estimatedproduction functionwould cap-
ture the average technologybasedona simple average (basedon thenumberof plantswithold technology
and the number of plants with new technology). This discrepancy results in the discrepancy in the esti-
matedmarkups with and without technology information.
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Figure 8: Markups with and without Technology Information
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Our results are consistent with the recent findings by Demirer (2022), Raval (2022),
and Jaumandreu (2022); Though they do not directly observe technology information,
theyaccount for technologicaldifferencesacrossfirms indirectly through labor-augmenting
productivity and find relatively stable markups over time. In particular, we have similar
quantitative results with Demirer (2022); Using the manufacturing industries in the US,
he finds that the aggregatemarkup has risen from 1.3 in 1960 to 1.45 in 2012, though the
aggregate markup has increased further without controlling for labor-augmenting pro-
ductivity.

These studies and our study complement each other. Our results give support for
their findings by highlighting the importance of technological changes in production,
and their studies provide ways to reconcile these technological changes whenwe do not
haveaccess to technology information toderive implicationsonmarkups. Analternative
way to take explicitly into account heterogeneity as a latent variable and incorporate it
into a structural model is considered by Kasahara, Schrimpf and Suzuki (2022).

4.2 Growing Dispersion between Labor Productivity andWage

As documented in Stansbury and Summers (2018), several studies find that wedges be-
tween the growth rate of wage and the growth rate of marginal products of labor have
been increasing. The literature proposes a few explanations, e.g., a technology-driven
explanation and an explanation related to worker power, such as increasedmonopsony
power and decreased bargaining power of workers. Although our findings so far are con-
sistentwith the technology-drivenexplanation, this subsectionexamineswhethermonop-
sony power exists in the industry.

We first present a series of descriptive evidence following Kehrig and Vincent (2021),
which claims that monopsony power is not likely to exist by examining the relation-
ship among labor share, labor productivity, and wage. On the one hand, if our main
hypothesis—technological diffusion drives the changes in the labor share—is true, then
the labor share should be explained by technology. As new technology is more capital
intensive, labor productivity is higher for the new technology firms, and thus, labor pro-
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ductivity should be negatively correlated with labor share, whereas the wage and labor
share should have no correlation. On the other hand, if monopsony power exists, firms
suppresswages,which results inanegative correlationbetween thewageand labor share
and no correlation between labor productivity and labor share.

Figure 9 provides direct evidence to test these hypotheses. The left panel of Figure
9 plots plant-level labor productivity (defined as total output value divided by the total
wage payment) on the vertical axis and plant-level labor share on the horizontal axis to-
gether with a nonparametric fitted line. There exists a clear and negative relationship
between labor productivity and labor share, suggesting that the low-labor share plants
benefit from higher labor productivity. The right Panel of Figure 9 plots plant-level aver-
age wage on the vertical axis and plant-level labor share on the horizontal axis together
with a nonparametric fitted line. In contrast to the left Panel, the fitted line ismostly flat,
and there is no clear relationship between these two variables. The “no-relationship”
indicates that the low-labor share plants do not suppress the wages of their employees.
Both panels together, the data do not support the view that the decline of labor share is
caused by suppressed wages due to monopsony power or decreased bargaining power
of employees.

Figure 9: Plant-level Labor Share, Labor Productivity and AverageWage

Labor Productivity Wage

The analysis above is largely based on a simple measure of labor productivity, which
is affectedbyvarious factors. Since thewageequalsmarginal products of labor(MPL) in a
competitive environment, amore appropriate and economic theory-oriented approach
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is to estimateMPL froman economicmodel and compare it to thewage. In the following
analysis, we take this approach; we estimate the production function and quantify the
evolution of MPL over time and compare it to the evolution of wage growth.

Here, the technology information is key. Asdiscussed inSection4.1, production func-
tion estimation without technology information may cause bias. With a similar mecha-
nismas in themarkupdiscussion, suchbiasmay further result in a qualitatively different
conclusion on MPL. To address such concerns, it is crucial to examine the relationship
betweenMPL and wage with and without technology information.

Formally, we again consider the following production function;

Yit = AitK
βkt
it L

βlt
it ,

where Yit is the physical unit of the output, Ait is the TFP,Kit is the physical capacity, Lit
is the total number of employees, and βkt and βlt are the parameters to be estimated. The
profit-maximizing plant solves the following problem;

max
Lit

PtYit −WtLit,

where we assume the labor input is the only variable input. The FOC of the problem
induces

Wt = βlt
PtYit
Lit

= MPLit.

Here, researcherscanestimateMPLbysubstitutingβltwithanestimate, β̂lt. The industry-
level MPL is then estimated by the weighted average of the firm-level MPL as

MPLt =
∑
i

ωitMPLit.

In this environment, as long as the labor market is competitive, theMPL, both at the
firm level and the industry level, and the wage should grow at the same rate. However,
as in the example in Section 4.1, the estimated MPL would be biased if different tech-
nologies co-exist and researchers do not have direct information on the firm-level tech-
nology. As production reallocation occurs, the industry-levelMPLwould fluctuate inde-
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pendently from the wage growth.
Figure 10 plots the growth of industry-level real wage and MPL. On the one hand, In

Panel (a), we plot them using all the data pooled and not controlling for the technology
at each plant. As is clear from the plot, the growth rate of the real wage and MPL be-
comes apart during the period when the new technology diffuses in the industry. In a
typical dataset where we do not observe the exact technology, we would reach the same
observation as in the literature and find the dispersion between wage andMPL.

On the other hand, Panel (b) plots the same variables, but the production function is
estimated using plants with the same technology. The plots well contrast that of Panel
(a); After controlling for the plant-level technology, the wage growth and MPL growth
align much closer. When production shifts from plants with labor-intensive plants to
plants with capital-intensive plants, if we do not control for the technology of the plants,
the growth of MPL is overestimated, which leads to a seemingly disconnected relation-
ship. In contrast, in Panel (b), there is still some dispersion between the two variables,
but these two variables grow together at a similar rate overall. These results highlight
the importance of controlling for the technology to draw implications fromdata and the
usefulness of our complementary approach.

Figure 10: Growth of Real Wage andMPL

(a) with Pooled Data (b) with Technology Controlled
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4.3 Labor Share Decomposition

Thus far, we test two main alternative hypotheses on labor share decline proposed in
the literature and show that, in the presence of technology information, these hypothe-
ses can be rejected. To examine our hypothesis—the labor share decline is caused by
technology diffusion— from a different angle, we now quantify the impact of technol-
ogy adoption on the labor share by decomposing the change in the labor share into a
technology-related component and a market-power-related component that includes
market power in theproductmarket andmonopsonypower (market power in labormar-
kets).

The labor share can be expressed as

LS ≡ wL

PQ
=

wL

wL+ rK + π
=

wL
wL+rK

1 + π
wL+rK

=
βl

1 + π
wL+rK

,

where π is total profit, defined as π = PQ − (wL + rK), and βl is a labor coefficient of
production function, Then, the change in labor share is given as

LS ′ − LS =
(wL)′

(wL)′ + (rk)′ + π′
− wL

wL+ rK + π
,

=

(wL)′

(wL)′+(rk)′

1 + π′

(wL)′+(rk)′

−
wL

wL+rK

1 + π
wL+rK

,

=
β′l

1 + π′

(wL)′+(rK)′

− βl
1 + π

wL+rK

,

=

(
β′l

1 + π′

(wL)′+(rK)′

− βl

1 + π′

(wL)′+(rK)′

)
+

(
βl

1 + π′

(wL)′+(rK)′

− βl
1 + π

wL+rK

)
.

The first term corresponds to the change in labor share due to the change in technology
(the change in labor coefficient in production function), whereas the second term cor-
responds to the change in labor share due to the change in market power. Moreover, βl
corresponds to the labor share for old technology in our production function estimation,
whereas β′l corresponds to the labor share for new technology.

Figure 11 demonstrates the result of labor share decomposition. The solid line plots
the actual evolution of the labor share which coincides with Figure 3. The dashed line

33



plots thecontributionof the technologyadoption to thechange in the labor share,whereas
the dotted line plots the contribution of the change in profit. First, as discussed in Sec-
tion 2 and demonstrated in Figure 11, the labor share was about 7% in the early 1970s
and about 3% in the 2010s. This decomposition indicates that the labor share could have
beeneven smaller if therewerenoother factors affecting the labor share. Second,wefind
that the other factors, includingmonopsony power ormarket power in the productmar-
ket, contribute to an increase in the labor share.

These observations are also consistent with our descriptive analysis in Table 2 in two
ways. First, the results in Columns (ii) and (iii) of Table 2 indicate that the labor share
decreased by 2 to 4 percentage points due to technological adoption. This magnitude is
identical to our findings in Figure 11. Second, when controlling for other factors through
plant-fixed effects in Table 2, we find a statistically significant time trend of labor share
in Columns (iii) and (iv). Themagnitude is again identical to our findings in Figure 11.

Figure 11: Labor Share Decomposition
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5 Discussions

In the previous sections, we highlight the importance of technology information. We
show the technological change as the main driver of labor share decline, and only with
the technology information do we reject two major alternative hypotheses proposed in
the literature, such as increasing market power in the product or labor market. Accord-
ing to Grossman and Oberfield (2021), there are still two remaining hypotheses in the
literature: (i) globalization and the rise of China, and (ii) changes in the composition of
the workforce. In this section, we first discuss these hypotheses and then discuss the
generalizability and robustness of our results.

5.1 Other Hypotheses: Worker Composition and Globalization

Among the hypotheses listed in the introduction of this paper, two of them are still not
yet discussed; the change in worker composition and globalization. For the former,

Table 4: Employment and Payment Shares of Blue-Collar Workers

Non-NSP Plants NSP Plants
Mean Std. Dev. Mean Std. Dev.

Panel (a): Employment Share of blue-collar workers
1981 .714 .103 .681 .140
1984 .717 .100 .656 .128
1987 .697 .093 .683 .113
1990 .647 .107 .649 .121
Panel (b): Payment Share of blue-collar workers
1981 .731 .118 .666 .125
1984 .695 .082 .646 .137
1987 .671 .101 .677 .122
1990 .592 .170 .673 .113

5.2 Generalizability

One might worry about how generalizable our analysis and results are. There are two
aspects of generalizability: (1) the general applicability of our analysis and methodol-
ogy, and (2) the generalizability of our insights to other industries and/or macroeco-
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nomic analysis. For the first aspect, our analysis andmethodology can be easily applied
and extended to other industries as long as we can observe the technology employed by
each plant or firm. Even when such technology information is not available, the recent
methodological development, such as Raval (2022) and Kasahara, Schrimpf and Suzuki
(2022), would still allow researchers to conduct a similar analysis.

For the second aspect, we believe that our results have generalizable insights out-
side the Japanese cement industry. Kehrig and Vincent (2021) notes that the macroe-
conomic patterns in data are largely coming fromwithin industry rather than across in-
dustry,which suggests that accumulating industry-level insightshelpsusderivemacroe-
conomic insights. In fact, such industry-level research has attracted attention from re-
searchers recently such as (Automobil, Trade paper, and Cement paper (Nate and Glo-
ria)). Though the insights from this paper might be limited, our results add one piece of
solid evidence to this strand of literature, which further helps us understandmacroeco-
nomic phenomena.

6 Conclusion

We study the mechanism that causes the decline of labor share by investigating unusu-
ally detailed plant-level data in the cement industry in Japan. Using the exact infor-
mation on the plant-level technology, we find that most of the labor share decline can
be explained by the new technology diffusion: the labor share stays constant or even
slightly increases over time within the same technology plants, whereas the aggregate
labor share declines because the production shifts to plants with new and more capital
intensive technology. We also find that the information on the plant-level technology is
key to rejecting other potential hypotheses, and we would reach a qualitatively different
conclusion without the information.
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Appendix: Event Study Design with Two Way Fixed Effects
Estimator

We further zoom into the plant-level changes in variables to confirm that our findings in
the previous sections are driven by technology diffusion. To this end, we take advantage
of the richness of our data, i.e., we can observe the timing of new technology adoption.
Using the variation in the timing of technology adoption, we employ an event study de-
sign, i.e., difference-in-differences with leads and lags of treatment variable. Formally,
we estimate the following regression estimation:

yjt =
τmax∑

τ=τmin

1[t = t∗j + τ ]βτ + ξj + ξt + εjt, (6)

where j is an index for plant, t is an index for year, t∗j is the year plant j adopt the new
technology, ξj is a plant fixed effect, ξt is a year fixed effect, and εjt is an independent error
term. Estimating anevent studydesign is often called aTwo-WayFixedEffect (TWFE) es-
timator. For the estimator to have meaningful interpretation, the treatment effect must
behomogeneous across different cohorts basedon the treatment timing. SeeGoodman-
Bacon (2021) for a more detailed discussion.

Here, our data structure is a typical situation of “staggered treatment timing.” One
difficulty we have in our data structure is that we do not observe the timing of new tech-
nology adoption for plants that already have the new technology at the beginning of
our sample period. To avoid potential bias caused by this missing data issue, we drop
plants that already adopt the new technology at the beginning of our data period. Also,
to balance the pre-treatment period, we drop observation more than τmin years before
the treatment.

First, Figure 12 plots the evolution of plant-level labor share relative to the timing of
new technology adoption. The estimated coefficient for the year before the adoption is
normalized to be zero. The labor share starts to decline after the technology adoption.
However, the decline is not immediate. Rather, it takes several years.

To decompose the effects into the changes in employment and wages, we now look
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Figure 12: Evolution of Labor Share

at the change in employment. To this end, Figure 13 plots the evolution of plant-level
employment relative to the timing of new technology adoption. In contrast to the labor
share, employment decreases immediately in the year of adoption, implying that the de-
cline in the labor share is mainly driven by the change in the number of workers.
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Figure 13: Evolution of Number of Workers

Finally, Figure 14 plots the evolution of plant-level capital-labor ratio relative to the
timing of new technology adoption. As we see in the production function estimation
results, the new technology is more capital-intensive. Therefore, we expect the capital-
labor ratio to increaseasplants adoptnewtechnology. Asweexpect, right after the instal-
lation of NSP kilns, the capital-labor ratio jumps up by about 10% and increases slowly
afterward.
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Figure 14: Evolution of Capital-Labor Ratio

43


	Introduction
	Industry Backgrounds and Data
	Industry Backgrounds: Cement and Its Production Technology
	Data Sources
	Summary Statistics and Key Features

	Decline of Labor Share and Technology Adoption
	The Decline of Labor Share and New Technology Adoption
	Evidence from Event Study Design
	Technology Adoption and the Shape of the Production Function

	Alternative Hypotheses and the Role of Technology Information
	The Increase in Markups
	The Role of Technology Information
	The Estimation of Markup

	Growing Dispersion between Labor Productivity and Wage
	Labor Share Decomposition

	Discussions
	Other Hypotheses: Worker Composition and Globalization
	Generalizability

	Conclusion

