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1 Introduction

Economists have long recognized that innovation, including the entry of new prod-
ucts and the exit of obsolete ones, is not only determined by science and luck, but
also responds to latent consumer demand (Hicks, 1932). Sometimes referred to as
demand-pull innovation (Schmookler, 1966; Scherer, 1982), the responsiveness of
innovation to demand generates an externality because the benefits an individual in-
directly confers upon all (other) future individuals through his effect on innovative
activity are not reflected in the price he pays for the product in the decentralized
economy (Jovanovic and MacDonald, 1994; Waldfogel, 2003; Finkelstein, 2004).

This paper develops a dynamic structural model of demand for medical treat-
ment that captures how product innovation is endogenous to patient choices. Agents
in the model can choose a treatment on the market, join a clinical trial to access an
experimental treatment, or refrain from consuming any treatment at all. Patient
choices reflect a tradeoff between multiple product attributes: efficacy, which im-
proves long-run health; and current-period side effects. To capture how innovation
affects patients, the model incorporates an evolving set of available treatments. In
each period, new products come available and older, low-quality products exit the
market. The resulting evolution of the choice set is governed by a stochastic process
that is a function of aggregate consumer behavior, including the share of patients
in clinical trials. When making private medication choices, individual consumers
do not take into account their impact on aggregate demand, which generates the
externality.

Incorporating an aggregate process to capture an endogenously evolving choice
set complicates an otherwise standard model of dynamic demand.1 Doing so has
two important benefits. First, it allows us to characterize a demand-driven exter-
nality in a structural model, which means we can evaluate counterfactual policies
that could mitigate resulting inefficiencies. Second, agents in the model form be-
liefs about future available treatments using this stochastic process. Thus, we are
able to model consumer beliefs in a market with uncertainty over future choice
sets without resorting to simplifying assumptions, such as perfect foresight or fully

1The key complication is that the problem is no longer stationary.
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unanticipated shocks, which can lead to potential biases in estimated parameters
and inaccurate policy conclusions.

We apply the model to investigate the demand for a rapidly evolving set of
treatments for HIV (human immunodeficiency virus). We identify the model using
a biennial panel from four American cities that tracks a replenished panel of indi-
viduals along with the path of innovations for over twenty years, from when the
market for HIV treatments emerged around 1984 until it matured. During this pe-
riod, frequent, incremental innovations in medication were punctuated by sporadic
breakthroughs. The data include an objective, continuous measure of health based
on immune system status obtained from blood tests administered with the survey
every six months. We use our estimates to quantify the magnitude of the demand
externality in the market for HIV drugs.

Using the estimated model, we perform counterfactuals focused on the external-
ity arising from endogenous innovation. Our results reveal that individuals’ pref-
erences tilt the path of innovation towards treatments with fewer side effects, away
from the invention of more efficacious treatments. Moreover, a strong distaste for
experimentation slows the diffusion of new, superior products as well as the devel-
opment of future treatments in clinical trials. As a measure of the externality acting
through demand for experimental products, we compute the marginal increase in
aggregate welfare generated by a social planner who assigns the marginal patient in
the decentralized economy to clinical trials at two different point in time (1991 and
1996). In year 1996 the marginal person (who does not want to join a trial) experi-
ences a loss of roughly $600 by participating. However, because trial participation
spurs innovation by increasing the expected quality and the expected number of
new products, the net social gain is about $2,000 per individual. We also consider a
more realistic policy in which the planner does not have enough information about
individuals’ preferences to assign the marginal participant to a trial. We show that
an optimal Pigouvian subsidy pays all trial participants $16,000 and leads to welfare
gains of roughly $5,000 for each individual in the economy. Broadly, our results in-
dicate that providing monetary incentives for trial participation can improve welfare
by accelerating the process of innovation.

This study contributes to a literature on dynamic demand under uncertainty. Fol-
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lowing Petrin (2002), each product in our model is a bundle of characteristics—in
our case, efficacy and side effects.2 Moreover, similar to Gowrisankaran and Rys-
man (2012), product characteristics have dynamic impacts on consumers. Our work
is more directly related to a set of studies that have augmented dynamic models
of demand to incorporate the realities of health-related choices, including learning
(Crawford and Shum (2005), Chan and Hamilton (2006), Fernandez (2013), Darden
(2017), Dickstein (2018)), the relationships between side effects, health and work
(Papageorge, 2016), risky behavior and equilibrium effects (Chan et al., 2016) and
consumer experimentation with new products (Fernandez (2013), Chan and Hamil-
ton (2006)). Similar to some of these studies, we consider uncertainty regarding
commercialized products. One important departure from earlier work is to explic-
itly incorporate uncertainty also over current experimental products and products
that may emerge in the future.

Another important departure from earlier work is to explicitly model the ex-
ternality arising when a rapidly evolving choice set is endogenous to consumer
demand. Several papers have investigated how demand affects innovation, e.g.,
through market size. For example, Finkelstein (2004) shows that policies promoting
vaccine use accelerate the development of vaccines and Acemoglu and Linn (2004)
relate market size to pharmaceutical innovation. Dranove et al. (2014) identify a
“social value” of pharmaceutical innovation, showing that Medicare Part D spurred
the development of some drugs. A common theme in this literature is that a demand
externality arises if consumer behavior drives innovation. Waldfogel (2003) uses
the term “preference externalities” to describe the mechanism through which mar-
ket shares can influence products, thus benefitting individuals with similar tastes.3

Bolton and Harris (1999) argue that a free-riding problem emerges if experimenta-
tion accelerates innovation. In our context, if consumer experimentation provides
social benefits by spurring innovation, rational individuals may choose to do so less

2Studies pioneering the ‘characteristics approach’ include Stigler (1945), Lancaster (1966) and
Rosen (1974).

3Demand externalities have been discussed in a variety of scenarios, including sorting into neigh-
borhoods (Bayer and McMillan, 2012) and the emergence of food deserts (Allcott et al., 2017). In
the context of obesity, Bhattacharya and Packalen (2012) provide evidence that individual efforts
to prevent obesity can shrink the market size for obesity treatments, which slows technological
progress.
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than is socially optimal. While earlier work has examined how changes in markets
or latent demand affect innovation, our approach structurally models this relation-
ship, which allows us to evaluate counterfactual policies that could mitigate the
resulting externality, such as paying individuals to participate in clinical trials.

While our focus in this study is on demand-driven innovation, we also relate
to a literature on supply-side determinants of innovation. We highlight two related
papers. Goettler and Gordon (2011) develop a model in which market structure
(monopoly versus duopoly) affects innovation in the market for microprocessors.4

Igami (2017) studies the market for hard disk drives as it transitions from one prod-
uct generation to the next (5.25- to 3.5-inch). In his model firms have perfect fore-
sight over exogenously evolving demand, and play a dynamic game in which in-
novation amounts to introducing the single new product generation. In both papers
the unidimensional state of the art becomes the starting point for future innovations.
Given their settings, the supply side is specified to allow for strategic interaction
among firms and the models are well-suited for examining counterfactual policies
related to firm behavior, such as market structure.

Our setting is different and thus requires a different approach. Roughly 11 firms
produced HIV medications, making it difficult to assume monopolistic or duopolis-
tic competition. Moreover, in our context, products are not uni-dimensional in
quality, the size of innovations does not remain constant and perfect foresight is
a poor approximation. Finally, we have rich data on demand and little information
on firms. Given our data and context, we treat the entry of new products as coming
from a process that is related to existing technology and to aggregate demand. How-
ever, our framework supports multidimensional products, multiple product entry,
variable changes in technology (both incremental innovations and breakthroughs)
and new products that are not necessarily technological improvements.5 All of these
factors play a critical role in determining demand by heterogeneous consumers. On
the consumer side we allow for substantial heterogeneity on observables (objective

4They find that the presence of a second firm can slow innovation because no firm expects to
capture all profits.

5This is a feature in our data and an equilibrium that emerges naturally in models where individ-
uals are not fully informed about new product characteristics (Miller, 1988).
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health status, race, age, education, previous consumption and labor participation).

While the stochastic process of innovation we specify captures many features of
our setting, it is important to note that it uses reduced-form objects to approximate a
complex innovation environment, thus limiting the types of counterfactuals we can
perform. For example, our model would be ill-suited for analyses of policies that
would affect the demand externality primarily through firm behavior (e.g., changes
to market structure as in Goettler and Gordon (2011) and Igami (2017)). Instead,
using a stochastic process allowing for broad variation in the kinds of innovations
that can occur and given a rich model of demand we focus on how changes to pa-
tient behavior (e.g., through remuneration for participation in a clinical trial) affect
consumer welfare through impacts on the speed and direction of innovation.

Finally, we contribute to research on structural estimation by providing a simulation-
based econometric method to estimate models of endogenous innovation. Method-
ologically, our empirical strategy builds on Hotz and Miller (1993), Hotz et al.
(1994) and Altuğ and Miller (1998) in using conditional choice probabilities (hence-
forth, CCPs) and forward simulation techniques to incorporate how individuals
form expectations about future innovations. In our context, the individual’s choice
set evolves stochastically as a function of endogenous product exit and entry. The
latter is determined by the innovation process which contains two components: un-
expected, aggregate supply shocks and a systematic component, endogenous to ag-
gregate demand, captured by a multi-dimensional reference point for innovation.

The remainder of this paper is organized as follows. Section 2 provides a brief
historical background, describes our data set, and motivates the model structure
with patterns in the data. Section 3 describes the model. Section 4 analyzes iden-
tification and describes the estimation strategy. Section 5 presents parameter esti-
mates. Section 6 provides model predictions about the likelihood of technological
progress. Section 7 introduces our counterfactual regimes. Section 8 concludes.

2 Data

Our empirical application focuses on the market for HIV treatments which came
into existence around 1984 with the beginning of the HIV pandemic, causing over
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613,000 deaths in the U.S. by 2008.6 HIV infection leads to a reduction in the
ability of the immune system to fight off routine infections, a condition known as
AIDS (acquired immunodeficiency syndrome). In developed countries, where ac-
cess to medication is widespread and often subsidized, technological advancement
has transformed HIV infection into a manageable condition with treatments whose
side effects are fairly mild. This was not always the case. In the early years of
the epidemic, available treatments were not only largely ineffective, but also had
uncomfortable, painful and even deadly side effects. Over time many innovations
appeared, most of them small, and some worse than existing technology—being
more toxic without being more effective. In the mid-nineties, a new set of treat-
ments collectively known as HAART (highly active anti-retroviral treatment) was
introduced, transforming HIV from a virtual death sentence into a chronic con-
dition.7 Within two years, mortality rates fell by over 80% among HIV infected
(HIV+) men (Bhaskaran et al., 2008). However, HAART also involved drugs that
were highly toxic, driving some people to refrain from using them to avoid often
intolerable side effects. Innovations occurring after the mid-nineties had fewer side
effects, but were generally no more effective than earlier versions of HAART.

2.1 The MACS Data Set

We use public data from the Multi-center AIDS Cohort Study (MACS). The MACS
is an ongoing longitudinal investigation (beginning in 1984) of HIV infection in
men who have sex with men (MSM) conducted at four sites: Baltimore, Chicago,
Pittsburgh and Los Angeles. At each semi-annual visit, survey data are collected on
HIV+ men’s treatment decisions, out-of-pocket treatment expenditures, and phys-
ical ailments (which can reflect drug side effects), along with sociodemographic

6For comparison, over the same period in the U.S., there were 508,000 homicides and U.S. deaths
in World War II were just under 420,000. Currently, there are roughly 50,000 new infections and
13,000 deaths per year in the U.S. that are attributed to HIV/AIDS. Globally, the number of deaths
due to HIV/AIDS stands at roughly 35,000,000.

7There is no vaccine or cure for HIV or AIDS, but HAART is the current standard treatment.
In general, 1996 is marked as the year when two crucial clinical guidelines that comprise HAART
came to be commonly acknowledged. First, protease inhibitors (made widely available towards
the end of 1995) would be an effective HIV treatment. Second, several anti-retroviral drugs taken
simultaneously could indefinitely delay the onset of AIDS.
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information, such as labor supply, income, race, and education. In addition, blood
tests are administered at each visit to objectively measure health status. Our mea-
sure of health, the CD4 count, is based on the immune system and is defined as the
number of white blood cells per cubic millimeter of blood. Absent HIV infection, a
normal count ranges between 500 and 1500. For HIV+ individuals, a count below
500 indicates that the immune system has begun to deteriorate. However, such indi-
viduals may remain asymptomatic. When the CD4 count drops below about 300, a
patient is said to suffer from AIDS and his immune system becomes unable to fight
off routine infections, which compromises his survival probability.8 Few data sets
contain such objective, continuous measures of health and detailed treatment data
along with economic information, making the MACS data set uniquely well-suited
for our analysis of demand-pull innovation in the market for medical treatments.
However, our data set is not ideal as it does not contain information on treatment
prices. In our empirical work we approximate the cost of market treatments using
out-of-pocket expenditures after controlling for objective health and other observ-
ables.

The full MACS data set we start with contains information on 6,972 subjects at
49 semi-annual visits for a total of 111,271 observations in the form of subject-visit
dyads. We limit our attention to HIV+ individuals, leaving us with 47,753 obser-
vations. Due to a lack of data on gross income and out-of-pocket expenditures at
earlier visits, we use two samples, a larger sample (20,142 observations) covering
visits 6 to 49 which only includes health status and product usage, and a smaller
sample (16,851 observations) that starts at visit 14 (roughly, late 1990) containing
all variables. The construction of both samples is described in Appendix A. The
smaller sample comprises 1,719 males, 68 percent white, 22 percent black and the
rest Hispanic; 86 percent received some secondary education or more, and 23 per-
cent attended graduate school.9 Underscoring the gravity of HIV infection, about
40 percent of the HIV+ subjects we observe at least once die prior to the end of the

8The CD4 cutoff below which AIDS occurs varies between 200 and 350.
9Participation in clinical trials for experimental treatments has been shown to be lower among

African-Americans, which may reflect different costs associated with treatments or differences in
expected health outcomes (Harris et al., 1996). It may also reflect distrust in the medical system due
to the Tuskegee experiment (Alsan and Wanamaker, 2018).
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sample period.

Table 1 shows that the share of observations with positive physical ailments is
0.43 and the average CD4 count is 475, in the smaller sample. The share of ob-
servations with positive labor supply is 0.63. There is substantial variation in labor
supply; 74 percent (68 percent) of unique individuals are observed working (not
working) at least once.10 The share of observations with positive market product
consumption and trial product consumption are 0.65 and 0.07, respectively. There
is also variation in treatment consumption; 83 percent of unique individuals are ob-
served using a market product at least once and 24 percent opt for early access by
participating in a clinical trial at least once during the sample period, suggesting a
willingness to experiment with products of uncertain quality.

TABLE 1: Summary Statistics: Subjects-Visits. Visits 14-47 (1990-2007)

Sample Pre Haart Post Haart
Obs 16851 6972 9879
Ailments 0.43 0.45 0.41
Market Product 0.65 0.49 0.76
Trial Product 0.07 0.09 0.05
Work 0.63 0.70 0.58
Age 44.48 40.89 47.01

(8.03) (6.99) (7.75)
CD4 475 407 524

(297) (298) (287)
Gross Income 17567 19036 16531

(8787) (8733) (8677)
Out-of-pocket Expenditures 266 179 327

(706) (598) (767)
Notes: Standard deviation in parentheses. Gross income and out-of-pocket expenditures are semestral and measured in real

dollars of 2000. Pre HAART era corresponds to visit ≤ 24 or roughly before 1996.

2.2 Key Empirical Patterns

Next, we discuss five key patterns in the data that we incorporate into our structural
model of demand under endogenous innovation.

Individuals respond to technological change. A distinguishing feature of the
market for HIV treatments is that innovations in product quality have life-saving

10This is consistent with results in Papageorge (2016) who studies labor supply and medication
usage with the MACS data.
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effects. Figure 1(a) shows that prior to the introduction of HAART, death rates
were much higher despite a multitude of new treatments becoming available. After
HAART, death rates plunge, and continue to fall until 2007, as smaller innovations
occurred that made drugs incrementally more effective and less toxic. Table 1 above
shows that improvements in survival coincide with improvements in immune sys-
tem health as measured by the CD4 count. Improvements in health and survival
occur as our sample ages and becomes less likely to participate in the labor market
(12 percentage points less after 1995), which is reflected in the reduction of uncon-
ditional average semestral gross income from about $19,036 in the pre-HAART era
to $16,531 after 1995.
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FIGURE 1: Survival and Consumer Demand over Time
Notes: Left panel shows the probability of dying between periods t and t +1 conditional on surviving until t. More than
1500 surveyed individuals died for AIDS-related causes during our analysis period. The middle and right panels show

consumption by health status.

Table 1 above also shows that improvements in product quality induce individu-
als to consume more HIV treatments. The share of individuals consuming a market
product went from 0.49 in the pre-HAART era to 0.76 after HAART was intro-
duced, and individuals’ out-of-pocket expenditures went from $179 to $327 per
semester. Figure 1(b) shows that consumption of market treatments differed across
health levels prior to the introduction of HAART. Individuals with low CD4 counts
were more likely to use available medications, which were relatively ineffective,
while healthier individuals often avoided treatment altogether. Demand for treat-
ment increased and converged across health levels in response to the introduction
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of more effective products after HAART.

Beyond market treatments, HIV+ individuals often have the option to consume
experimental products in clinical trials. The most dramatic feature of Figure 1(c)
is the spike in trial treatment around the time HAART was introduced. Early trial
participation is driven largely by individuals with low CD4 counts, suggesting that
less healthy individuals may be more willing to consume experimental products of
uncertain qualities.11 Once effective treatments are available, trial participation is
no longer driven by sick people willing to face uncertainty in exchange for early
access to a product of potentially higher quality.

Product characteristics are multidimensional. Treatment consumption was never
universal. While healthy patients often avoided treatment before the introduction of
life-saving innovations around 1995, some individuals at risk continued to go un-
treated thereafter. Figure 1(b) shows that treatment consumption climbs to roughly
80% after the introduction of HAART. In part, this happens because products are
costly, though out-of-pocket costs for medical care do not differ much across treat-
ment choices.

Another possibility is that patients avoid effective medications due to side ef-
fects. Figure 2(a) provides support for this view, showing that individuals who
consume a market product suffer more physical ailments (e.g., nausea or cramping)
and Figure 2(b) shows that this result holds even after controlling for underlying
immune system health. Moreover, as products become less toxic (causing fewer
side effects) over time, the gap in ailments between those who are treated and those
who are not decreases.

Consumption patterns are thus consistent with the idea that treatments are multi-
attribute products: drug effectiveness at improving underlying health and drug
propensity to cause side effects, which compromise quality of life. In the presence
of multiple attributes, it is often the case that products cannot be perfectly ranked
from best to worst. Rather, patients face a tradeoff between investing in their un-

11In the years just prior to HAART introduction the efficacy of products in the market had in-
creased, pushing up the reference point for innovation and thus attracting more individuals into
clinical trials. See Figure S1 in Appendix A.
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derlying health versus maintaining their quality of life by avoiding treatments with
harsh side effects.
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FIGURE 2: Physical Ailments by Treatment Usage and CD4
Notes: Figure contains mean of ailments indicator over time. “Mkt Takers” refers to individuals consuming a market

treatment. “High h” refers to individuals with CD4 counts of 250 and above.

The number of new treatments fluctuates over time. We define a product (or
treatment) as a combination of single-product components.12 (See Appendix A.)
This means that both AZT and the combination of AZT+3TC+Saquinavir are ex-
amples of products in our framework. This definition results from noting that the
interactions between components matter, and hence the sum of effects of consuming
each drug individually does not equal the effect of a treatment formed by the sum
of the drugs. Additionally, this definition corresponds to the nature of the market,
where large treatment innovations such as HAART are themselves combinations of
product components. By this definition 86 products were introduced to the market
over the sample period with substantial variation in the number of new treatments

12The number of firms introducing product components as well as the ownership of the firms
changes over time. For example, the first product component (AZT) was introduced by Burroughs-
Wellcome in 1987 which became Glaxo-Wellcome in 1995, GlaxoSmithKline in 2000, and trans-
ferred its HIV assets to the joint venture ViiV created with Pfizer in 2009. By the mid 1990’s at least
6 firms had introduced product components and had valid patents (Glaxo Wellcome, Bristol-Myers
Squibb, Hoffmann-La Roche, Abbott, Merck, and Boehringer Ingelheim). In total, there were at
least 11 firms that introduced product components during the period we study.
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introduced each period.13 Figure 3 shows that the unconditional probability of ob-
serving more than one product being introduced in a given period is more than 30%,
suggesting that product introduction has an intensive margin.
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FIGURE 3: Empirical Distribution of Number of New Treatments.

Market concentration shifts as innovation progresses and the market matures.
Substantial variation in the number of new products (Figure 3) along with consumer
preferences for multiple dimensions of drug quality is reflected in both innovation
and market concentration. Figure 4 shows innovation and diffusion of new products
over time using a heat map—dark colors corresponds to low (or zero) market share
and warmer colors indicate higher market shares. Early on there are a few products
with high shares. As time passes new products strip market share from incum-
bents and less popular products exit. Low market shares are common in the years
following HAART introduction around 1995, when many new treatments were in-
troduced, most of which were effective but with strong side effects. Consumers
often switched among options depending on their health in an attempt to balance
health accumulation with a preference for treatments without side effects. As the
market matured, effective treatments with fewer side effects entered the market,
removing the tradeoff between the two treatment qualities and increasing market
concentration once again.

13Table S1 in Appendix A presents our market products including the individual drugs they are
composed of as well as their entry and exit time as observed in our data.

12



1984 1987 1990 1993 1996 1999 2002 2005
Year

10

20

30

40

50

60

70

80

P
ro

du
ct

 ID

0

10

20

30

40

50

60

70

FIGURE 4: Diffusion of Products Over Time
Notes: HIV treatments from 1984 to 2008. Each ID—or row—represents a product. Color indicates the share of the market

that the product captures. Shares are conditional on individuals who consumed a product.

Innovation reflects current technology and demand. Empirical patterns until
now provide evidence that demand responds to technological innovation in a market
where consumers face a tradeoff between treatment effectiveness and side effects
that manifest as physical ailments. Healthy consumers respond to this tradeoff by
avoiding treatments with harsh side effects when treatments are not very effective.
Sicker patients are more willing to suffer side effects even when treatment effec-
tiveness is low and are willing to use experimental products in clinical trials when
available alternatives are of poor quality.

Next, we provide evidence that consumers not only respond to innovation, but
that innovation responds to consumer demand. We begin by illustrating the process
of innovation using snapshots of the evolution of the market in Figure 5.14 Each
snapshot plots treatment characteristics (effectiveness and lack of side effects) indi-
cating new, old, and withdrawn products as well as the lagged centroid, a summary
measure of current market technology defined as the share-weighted average of
product characteristics.15 New products are introduced around the centroid sug-

14The evolution of the market is best illustrated in our animated appendix:
https://www.dropbox.com/s/2icr4dxrpx9metk/treatmentevolutionNew.mp4?dl=0.

15We measure efficacy as the marginal contribution of a treatment to CD4 count and lack of side
effects as the marginal contribution of a treatment to the log odds ratio of not causing ailments versus
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gesting that future technologies are based on prevalent technologies today. Over
time, the path of technology advances on the efficacy dimension first and then on
the side effects dimension.16
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FIGURE 5: Treatment Evolution
Notes: Figure shows snapshots of the evolution of the state of the product market at the different stages. Products are

two-dimensional. On the x-axis is a measure of a treatments ability to not cause side effects. On the y-axis is a measure of
its contribution to underlying health. Dimensions are measured in different scales. Incumbent products are shown in black.

New products are shown in red. Withdrawn products are shown as x. The green square is a measure of the prevalent
technology in the previous period.

One possibility is that the observed path of technology is the result of supply-
side technological constraints (e.g., shifts in the marginal costs of increasing treat-
ment effectiveness relative to eliminating treatment side effects that make effec-
tiveness innovations unprofitable). Although without cost production data we are
unable to unequivocally rule out this possibility, we provide evidence against it.
After HAART was invented, products came available that were more effective than
earlier versions of HAART, but that had similar side effects profiles. Other prod-
ucts were less or equally effective compared to early versions of HAART, but had
fewer side effects. Consumers preferred the latter, i.e., they demanded drugs well
inside the frontier on the effectiveness dimension, choosing less effective treatments
with fewer side effects. The more effective drugs with worse side effects eventually
exited the market. In contrast, before HAART was invented, in an era when con-
sumers faced low survival rates, they chose drugs on the effectiveness frontier even

causing ailments. See Appendix C for more details.
16The centroid is formally defined in the following section where we specify the structural demand

model.
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though less effective drugs with fewer side effects were available.

We begin to see evidence of these patterns in Figure 5. Comparing the second
and third panels of the figure, notice that highly effective treatments exit the market
while some treatments that are less effective, but with fewer side effects, remain.
Figure S1 in Appendix A provides more direct empirical evidence that consumers
demanded drugs well inside the frontier on both dimensions of treatment quality.
This includes post-HAART usage of relatively ineffective treatments with fewer
side effects even though more effective drugs were available, albeit with harsher
side effects.17

These empirical patterns are not consistent with the idea that supply-side con-
straints alone can explain the process of technological innovation. For example, the
fact that firms developed increasingly effective products after HAART was intro-
duced means they were capable of innovating along the effectiveness dimension and
that—at least in some cases—they found it cost-effective and feasible to produce
such products. Consumer avoidance of these treatments, and the subsequent exit of
these treatments from the market, is consistent with a role for consumer demand in
driving technological innovation. The reasoning is that a profit motive drives firms
to develop products with characteristics consumers prefer, and to withdraw products
with characteristics that consumers avoid. The model we develop allows aggregate
consumer demand to influence product entry and exit and to thereby influence the
progression of technology.

3 A Model of Consumer Demand in a Market with Endogenous Innovation
and Experimental Products

Based on the key empirical patterns discussed in the previous section, we now spec-
ify a model of demand for medical treatment. Consumers enter each period facing
a new set of currently available treatments. They may also opt for an experimen-

17In particular, the figure depicts the average quality of treatments that were used versus the max-
imum quality available for each quality dimension (effectiveness and side effects). Before the mid
1990’s (when HAART was not yet available) average efficacy consumed increased while average
lack of side effects consumed remained flat, even though less toxic products were available. After
the mid 1990’s average lack of side effects consumed increased while average effectiveness con-
sumed remained flat, even though more effective products were available.
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tal treatment of unknown quality or to take no treatment at all. A tradeoff pa-
tients face is that medications can improve health, reduce symptoms and increase
the likelihood of survival, but can also have uncomfortable side effects that reduce
productivity and make work more difficult.18 Patients have preferences over both
effectiveness and side effects, which helps to explain increased willingness to suffer
side effects as more effective treatments enter the market.

An important feature of our model is motivated by the evolving choice set shown
in the previous section. We model new products as draws from a stochastic process,
which is a function both of existing technology and of aggregate consumer behavior.
Agents form beliefs over future available treatments using this stochastic process.
Incorporating the evolving choice set complicates both the model and estimation
because it introduces a non-stationary aggregate process into an otherwise fairly
standard model of dynamic demand. There are several important benefits to this
addition. First, it allows us to characterize consumer beliefs and capture consumer
behavior in a market with uncertainty over future innovation without resorting to
assuming perfect foresight or to viewing innovations as fully unanticipated shocks.
Making these types of simplifying assumptions could lead to biases in estimated
parameters and inaccurate conclusions from subsequent counterfactual policy anal-
ysis. Moreover, modeling beliefs over innovation helps to explain why patients are
often observed consuming treatments well within the technological frontier, again
without resorting to simplifying assumptions, such as lack of awareness that better
products exist. In our model, consumers may optimally choose to delay switching
to new and better treatments to avoid switching costs, in part because they anticipate
even better future innovations that would make switching worthwhile.

Another benefit of incorporating the evolving choice set into the model is that it
allows us to characterize a demand externality. We allow aggregate demand and the
total share of consumers participating in clinical trials to affect how many new prod-
ucts enter the market and their characteristics (Acemoglu and Linn, 2004; Finkel-
stein, 2004). Agents do not take aggregate effects into account when making their
individually rational choices. Hence, aggregate behavior can lead to innovation that

18Out-of-pocket payments, which we also incorporate, represent an additional cost, but they are
small and vary little across treatments.
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is socially sub-optimal in terms of speed or direction (i.e., which dimension of qual-
ity improves). By modeling how consumer behavior affects innovation, we are able
to examine the magnitude of this type of externality and the welfare implications of
policies that could help to address it.

3.1 Value Function

Formally, consumers inhabit a market that develops over a discrete number of pe-
riods t ∈ 0, ...,T . Let Pt be the set of existing commercialized market treatments
available at t and let k ∈ N denote a distinct market treatment. Consumer i chooses
between not purchasing a treatment, denoted k = 0, one of the market treatments
available at t, k ∈ Pt , and a treatment available in clinical trials (an experimental
treatment) denoted k = et . By choosing treatment k ∈ Pt ∪ {0,et} the consumer
effectively chooses a bundle of treatment characteristics θk ∈R2 (effectiveness and
side-effects). Let bit be an indicator for whether the consumer is alive at t and let zit

be the set of state variables, including the individual’s characteristics (e.g., current
health) along with aggregate variables summarizing the market, which we explain
below. His flow utility from choosing alternative k is the sum of a systematic com-
ponent uk (zit), which depends on state variables and the characteristics of treatment
k, and an idiosyncratic component contained in a vector εit of treatment-specific iid

Type-1 Extreme Value preference shocks. Individuals are forward-looking with
discount factor β ∈ (0,1). Letting de

it be the vector of optimal choices solving the
consumer’s maximization problem, the ex-ante value function for consumer i at
time t with state zit can written be as:

V (zit)≡ E

{
∞

∑
τ=t

∑
k∈Pτ∪{0,eτ}

β
τ−tde

kiτbiτ [uk (ziτ)+ εkiτ ]

∣∣∣∣∣zit

}
(1)

If we limit attention to individual-specific processes (e.g., preference shocks,
health and survival), the value function in equation (1) looks deceivingly standard.
However, embedded in equation (1) are consumer expectations over an aggregate
process governing the evolution of their choice set, which we describe next.
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3.2 Evolution of the Choice Set

Market Shares, Product Quality, Entry and Exit. Due to the complexity of
the market (at least 11 pharmaceutical firms interacting with numerous government
agencies and academic institutions) we do not explicitly model the suppliers’ prob-
lem (e.g., the dynamic game in which producers of treatments may be engaged).
Instead, we specify a stochastic process governing entry and exit of products. Entry
is a function of prevailing technology along with market shares and proportion of
consumers in clinical trials, which means it is endogenous to aggregate consumer
behavior. This setup captures how market size and consumer experimentation can
accelerate innovation. Our approach is in line with Acemoglu and Linn (2004), who
relate market size to innovation, and with Finkelstein (2004) who shows that poli-
cies increasing use of certain types of products can direct innovation towards similar
products. Our setup is also related to Bolton and Harris (1999), who link innovation
to consumer willingness to experiment with new products. Exit is also endogenous
to demand in that it occurs when few patients choose a treatment. Consumers form
expectations over the process of innovation, which affects their current-period treat-
ment choices.19 In what follows, we describe the three objects that characterize the
stochastic process: a distribution gθ of characteristics of new and experimental
treatments; a distribution gN of the number of new treatments arriving each period;
and an exit rule.

Starting with gθ , the characteristics of new and experimental treatments are
modeled as draws from a distribution around a centroid, which is a point in the
characteristics space that summarizes prevailing technology. The centroid is essen-
tially a weighted average of the characteristics of previously available treatments,
where weights are market shares:

ωt ≡ ∑
k∈Pt−1

s̃kt−1θk, s̃kt−1 ≡
skt−1

∑k′∈Pt−1 sk′t−1
. (2)

19As we explain below, an evolving consumer choice set can also lead to a large number of
products on the market. To make the problem more tractable, we reduce the size of the choice set
by relying on repeat consumption and using a clustering algorithm that essentially groups similar
products together. Appendix B.1 provides a more detailed explanation of the law of motion of the
set of available treatments.
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Here, skt denotes the market share of treatment k at t and set is the share of con-
sumers opting for an experimental treatment through a clinical trial.20 Newly avail-
able treatments in period t are innovations around the previous-period centroid
ωt−1. The experimental treatment available through clinical trial participation at t

is an innovation around the current-period centroid ωt , which includes newly avail-
able treatments. All treatments draw their characteristics θk from the distribution
gθ (θ |wk,set−1) described by the following two-dimensional process:

θk−wk = φ
ν
0 +φ

ν
1 · set−1 +νk, E[νk|set−1,wk] = 0 (3)

where wk ∈ {ωt−1,ωt} depending on whether the process describes a new treatment
or a current experimental treatment. The left-hand side of equation (3) denotes
new product characteristics relative to the centroid, i.e., both a magnitude and a
direction of innovation. Innovations are equal to a constant φ ν

0 plus the previous
share of individuals using the experimental treatment set−1 with coefficient φ ν

1 . This
captures how consumption of experimental treatments can affect the quality of new
treatments. Innovations also depend on an iid innovation vector νk drawn from the
bivariate non parametric distribution fν(ν).21

The number of new treatments Nt entering the market changes each period.
Similar to Acemoglu and Linn (2004), to capture this empirical pattern we allow
the number to follow a binomial negative process gN (Nt |κt−1,set−1 ) where:

E[Nt ] = exp(φ N
1 κt−1 +φ

N
2 set−1) (4)

and κt−1, the magnitude of previous innovations, is defined as:

κt−1 ≡
2

∑
r=1

δr

(
max

{k: k∈Pt−1,k/∈Pt−2}

{
θ

r
k −ω

r
t−2
})

(5)

20Hence, the share of individuals not consuming a treatment at t is 1− set −∑k∈Pt skt .
21Consistent with this setup, we test and cannot reject the hypothesis that the coefficient on the

centroid in equation (3) is equal to 1, i.e., that new product characteristics are drawn from a distribu-
tion centered on the centroid. We also find that conditioning on the centroid captures the relationship
between experimental treatments at t and the characteristics of new treatments entering the market
at t +1.
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given a vector {δ1,δ2} of scaling weights ensuring comparability among the multi-
ple characteristics of a treatment. This distribution captures two empirical patterns.
First, more experimentation by product makers can be conducted if a larger pro-
portion of the population consumes experimental treatments. Second, large break-
throughs tend to be followed by a relatively large number of new treatments; this
allows for the possibility that breakthroughs spur innovative activity as firms at-
tempt to capture market share.

Exit occurs following declining treatment usage. Decompose treatment k’s mar-
ket share into new skt and repeat skt consumers (skt + skt = skt). The exit rule is
described by the dyad {s,s}. When skt falls below the critical number s the treat-
ment is no longer available for new consumers, remaining available only for repeat
consumers. When skt falls below the critical number s the treatment is withdrawn
altogether.

Constructing a Tractable Choice Set. The number of products on the market
at any given time can make the choice problem computationally difficult. To ad-
dress this problem we constrain the set of consumer alternatives while retaining the
main features of the model. In any given period market treatments with similar
characteristics are grouped into J clusters using a rule denoted by c(Pt), which is
common knowledge and uniquely assigns every treatment on the market at t to a
period-specific cluster.22 Consumers choose a cluster and are randomly assigned to
a treatment within the cluster. Assignment is modeled as a probability calculated
using observed treatment probabilities conditional on choosing a treatment within
the cluster. Let P jt denote the treatments that rule c assigns to cluster j in period t

and let qk jt
(
k
∣∣P jt

)
be the probability that treatment k ∈ P jt is assigned when clus-

ter j is chosen at t. Hence, the distribution of characteristics induced onto the jth

cluster at t is:23

f j
(
θ
∣∣P jt

)
= ∑

k∈P jt

qk jt
(
k
∣∣P jt

)
I {θk = θ} (6)

22The clustering algorithm is described in greater detail in Appendix B.1.
23We specify the clustering rule c using an algorithm typically used in machine learning known

as k-means and qk jt using a flexible polynomial based on the the characteristics of treatments in the
cluster. For details see Appendix B.1.
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Using notation to accommodate clusters, consumer options include not pur-
chasing a treatment ( j = 0), one of the clusters of market treatments available at
t ( j ∈ {1, . . . ,J}), and the current experimental treatment ( j = J + 1). Let θ jit de-
note the treatment characteristics for individual i implied by choice j at t. If the
consumer chooses one of the clusters or the experimental treatment he is in fact
choosing to take a draw from one of the J period-specific within-cluster distribu-
tions f j or from gθ , respectively. Finally, we allow the agent to choose the same
market treatment as in the prior period ( j = J + 2), supposing it has not exited the
market. If so, the agent bypasses the probabilistic treatment assignment he faces
when choosing a cluster. Let rit be an indicator for whether individual i consumed
a market treatment at t−1 that is still available at t and let d jit , the jth component
of dit , be the indicator for individual i choosing alternative j at period t. Consumer
choices satisfy ∑

J+1+rit
j=0 d jit = 1.24

While the primary motivation to use the clustering algorithm is to reduce the
size of the choice set, doing so while adding the possibility of repeat consump-
tion has some attractive features for the context we study. First, clusters capture
how patients generally face intermediaries (e.g., doctors) that recommend specific
treatments based on patients’ stated preferences. Yet, patients who have already
used a specific treatment could presumably request to continue using it. Second,
random assignment within a cluster introduces uncertainty for patients switching
treatments, including the risk of assignment to a worse treatment. This uncertainty
can help to explain reluctance to switch from treatments that are inside the techno-
logical frontier.

3.3 Health, Outcomes, Survival and Preferences

We now provide more detail on additional components of the value function, in-
cluding stochastic processes for individual-specific state variables, outcomes such

24Using clusters instead of the full set of treatments yields a modified version of equation (1):

V (zit)≡ E

{
∞

∑
τ=t

J+1+riτ

∑
j=0

β
τ−tde

jiτ biτ [u j (ziτ)+ ε jiτ ]

∣∣∣∣∣zit

}
(7)

Further details on the modified value function are found in Appendix B.2.
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as ailments and the utility function. We continue to use notation reflecting the mod-
ified choice set that includes clusters and repeated consumption. The production
function for health hit (CD4 count) is:

hit+1 =
5

∑
s=0

γ
h
s hs

it +
J+1+rit

∑
j=0

d jitθ
1
jit + ε

h
t . (8)

The first term is a polynomial on prior-period health and captures non linearities
in the persistence of health over time. θ 1

jit is the effectiveness characteristic of the
treatment consumed and εh

t is drawn from a nonparametric distribution fεh(εh) with
E[εh

it |hit ,θ ] = 0.

Treatment consumption also affects a vector of additional outcomes and state
variables collected into a vector yit . The probability of not suffering physical ail-
ments depends on previous-period health and the side-effects characteristic of the
treatment consumed θ 2

jit :

Pr [y1it = 0|hit ,θ ] =

(
1+ exp

(
5

∑
s=0

γ
x
s hs

it +
J+1+rit

∑
j=0

d jitθ
2
jit

))−1

(9)

Labor supply y2it is a state variable that individuals learn at the beginning of each
period before making their treatment decision; its transition probability depends on
the vector xl

it = [1,hit , . . . ,h4
it ,ait ,y2it−1] as follows:

Pr[y2it = 1|xl
it ] =

(
1+ exp

(
xl

itγ
l
))−1

(10)

where the individual demographics vector ait contains age (in half year increments),
race/ethnicity (black, Hispanic, white), and education level (high school, some col-
lege, college or more than college). Gross income y3it is governed by the process

y3it = xm
it γ

m +ηi + ε
m
it (11)

where xm
it = [1,hit , . . . ,h7

it ,ait ,y1it ,y2it ], ηi captures individual-specific productivity
and εm

it are iid income shocks that the individual observes before making their treat-
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ment choice.25 Out-of-pocket expenditures for health care y4it are determined by

y4it = xo
itγ

o + ε
o
it (12)

where εm
it are iid Normal(0,σ2

o ) and xo
it = [1,hit , . . . ,h6

it ,at ,y1it ,y2it ,dit ].26 Expendi-
tures increase from purchasing a treatment but may also increase due to underlying
health and physical ailments. Since we do not directly observe prices, equation
(12) assumes two constant treatment costs, one for market treatments and one for
experimental treatments.27Finally, the probability of being alive during the current
period is determined by the vector xd

it = [1,hit , . . . ,h5
it ,ait ,y1it−1] as follows:

Pr(bit = 1|xd
it) =

(
1+ exp

(
xd

itγ
d
))−1

(13)

Turning to the utility function, the systematic part of flow utility is given by:

u j (hit ,yit) = αm(y3it− y4it)+αsy1itd0it +α jhhit +α
′
jaait (14)

Since y3it − y4it is net income, αm captures consumption utility. The utility cost
of ailments while using a treatment is normalized to zero; hence, αs captures how
distaste for ailments (y1it = 1) changes when individuals are not consuming a treat-
ment (d0it = 1). α jh and α ′ja capture choice-specific utility associated with health,
and demographics. Since the only relevant differences among clusters—both within
a period and over time—are given by the distributions of within-cluster treatment
characteristics f j

(
θ
∣∣P jt

)
, we assume that α jh and α ′ja do not vary across clusters.

Nevertheless, we allow for individuals to derive different utility from consuming
an experimental treatment or from repeating consumption of a market treatment.
Besides affecting lifetime utility indirectly (through its impact on future health,

25We do not need to make parametric assumptions on these shocks because they enter linearly in
the payoffs from choosing all alternatives and therefore do not affect choices.

26Out-of-pocket expenditures are censored at zero, which is why we model them separately from
gross income.

27End-users customarily pay a standardized deductible that is a fraction of the brochure price of
the drug paid by the insurance company. Median out-of-pocket drug costs are about $300 every six
months for a regime of drugs that would cost the insurance company between $5,000 and $15,000.
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survival, and outcomes) current health affects utility directly; in particular, α jh cap-
tures differences in the time and psychic costs of accessing an experimental treat-
ment by health (e.g., if doctors are more willing to suggest experimental treatments
to the sickest), and it also captures how individuals may be more willing to try a
new treatment from a cluster when in poor health.28 Physical ailments affect utility
directly and through earnings and survival.

4 Identification and Estimation

Our data span the period of time when the market began supplying treatments until
the time at which the market matured; that is, t ∈ {0, . . . ,T}. Over this period
the survey tracks a (replenished) panel of individuals, collecting their treatment
consumption dit (including experimental treatments in clinical trials), health hit ,
state and outcome variables yit , demographic background ait and survival bit . We
also observe the life cycle of each market treatment k including its within-sample
market share skt , decomposed by new skt and repeat skt consumers.

4.1 Identification

Treatments’ characteristics {θk}∀k are identified using observed patient health out-
comes for given treatment choices. Specifically, treatment effectiveness θ 1 and
(lack of) side effects θ 2 enter linearly in the processes for future health hit+1 and
physical ailments y1it , respectively, We do not consider individual-specific treat-
ment effects.29 However, bias arising from selection into treatment is often due to
unobserved or omitted time-varying factors such as underlying health. In estimating
treatment effects, a benefit of the MACS data set is that we can include a polyno-
mial in CD4 count, which is a continuous, objective measure of underlying health.
The transition function for health along with other state transitions and outcomes
and the survival probability are identified using analogous transitions and outcomes
from the data set.

28We normalize α0h and α ′0a to zero. Therefore, α jh measures utility relative to those who do not
use a treatment.

29Our sample is not large enough to back out treatment-specific distributions of treatment effects
for the 80 plus treatments we observe.
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The objects describing the entry and exit of available treatments include the dis-
tribution of characteristics of new and experimental treatments gθ , the distribution
of the number of new market treatments gN , the exit rule {s,s}, and the distribu-
tion of treatment characteristics of each period-specific market cluster f j

(
θ
∣∣P jt

)
.

Both gθ and gN are identified using the treatment panel. We observe the menu
of treatments introduced from the discovery of latent demand when the pandemic
starts (around 1984) to when the market has matured (around 2007). This provides
us with 43 observations from the equilibrium distribution of the number of new
treatments and 94 observations from the equilibrium distribution of treatment char-
acteristics. The thresholds in the exit rule are identified as the minimum observed
treatment shares for new and for all consumers prior to exit. Period-specific charac-
teristics distributions f j

(
θ
∣∣P jt

)
of all clusters are identified directly from observed

within-cluster shares.

Finally, following much of the literature in discrete choice, we assume the dis-
count factor β and parameterize the choice disturbance density as Type 1 Extreme
value.30 We also assume that individuals have rational expectations about the aggre-
gate processes generating treatments, treatment characteristics, clusters, and within-
cluster distributions. Hence, identification of the preference parameters in u j fol-
lows from the general arguments of Magnac and Thesmar (2002), more specifically
covered in the framework of Arcidiacono and Miller (Forthcoming).

4.2 Estimation

Our estimation procedure follows the steps below. More detailed explanations of
some of the steps below are found in Appendix C.

1. Treatments. We define a single experimental treatment per period as the one
used by those individuals joining a clinical trial. Treatment characteristics
are estimated together with the health and ailments processes in equations (8)
and (9).

30We estimated the model for values of β ∈ {0.8,0.9,0.95} and found that 0.95 delivered the
lowest value of the criterion function.
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2. Clusters. Based on treatment characteristics from step 1, treatments are clus-
tered at every period using the clustering rule c. Using the characteristics of
the treatments in each cluster and treatment shares, we obtain the distribution
of characteristics induced onto the jth cluster at t given by equation (6).

3. Innovation. We calculate centroids for innovation and the magnitude of pre-
vious innovations for each t using equations (2) and (5) and treatment charac-
teristics from step 1. Then we estimate equation (3) that governs innovation.
The residuals of this equation are used to non-parametrically estimate the
two-dimensional distribution of innovation shocks fν . Finally, we use the
number of new treatments per period to estimate gN .

4. Transitions, outcomes and survival. We estimate processes for labor supply
transitions, income, out-of-pocket expenditures, and survival using equations
(10), (11), (12), and (13).

5. Utility function. We estimate utility function parameters (equation (14)) using
a GMM estimator and a forward simulation procedure whereby moment con-
ditions equate the log odds ratio of current conditional choice probabilities
with an expression involving utility parameters and simulated future CCPs,
states and choices (Hotz et al., 1994; Altuğ and Miller, 1998).

The forward simulation procedure we implement is modified to accommodate
our context, in particular, consumer expectations over the evolving choice set.
First, we estimate flexible parametric CCPs that control for the aggregate state
as well as individual-specific state variables. (See Appendix C.5.) Then, for
every observation {i, t} we simulate a collection of aggregate paths describ-
ing treatment evolution using the stochastic entry and exit process; this entails
simulating all individuals’ behavior for each aggregate path because innova-
tion is endogenous to aggregate patient choices. Then, for every observation
{i, t} we simulate individual choices and transitions taking as given a group
of randomly selected aggregate simulated paths of innovations.

To understand how our procedure departs from standard forward simulation,
note that in other contexts where forward simulation is used there is not an
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aggregate process (Hotz et al., 1994), or the aggregate process is not endoge-
nous (Altuğ and Miller, 1998) to agent decisions. In our context, the evolution
of the aggregate state, including the choice set, is endogenous to consumer
choices and consumers are neither fully aware nor unaware of future choice
sets. Thus, we use flexible, parametric CCPs estimated from observed con-
sumer behavior under various aggregate states to predict treatment choices
given possible counterfactual future choice sets drawn from the endogenous
processes of entry and exit.

Figure 6 plots observed treatment choices over time along with those generated
by the model given the state at every point in time. The estimated model captures
the key trends, including the rise in repeated usage as treatments improve over time
and the decline in the share of individuals not consuming a treatment. The model
also captures shifts over time in the share of individuals trying something new—
either by consuming experimental treatments or by choosing a cluster that entails
assignment to a new treatment.
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FIGURE 6: Goodness of Fit
Notes: Simulated and empirical choice shares over time.

5 Parameter Estimates

5.1 Individual Processes
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Transitions and outcomes. Figure 7 depicts the estimated relationship between
current-period health and other state variables and outcomes.31 The relationship
between current and one-period-ahead health is nearly linear, if slightly concave,
reflecting that health deteriorates over time but is somewhat persistent. Persistence
in health is consistent with key observed behavioral patterns, including reluctance
to use medication or delays in switching to the most effective medications. Other
relationships are highly non-linear, which is consistent with the well-known fact
that declines in CD4 count caused by HIV infection have little-to-no impact on
observed health until very low levels are reached (AIDS), at which point physical
health rapidly deteriorates. In general, at CD4 counts below 250, changes in health
begin to generate large shifts in ailments, income, labor supply, expenditures and
survival.
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FIGURE 7: Effect of Current Health on Future Health and Outcomes
Notes: CD4 Count measured in hundreds of cells per microliter. LOR stands for log odds ratio. OOP stands for

out-of-pocket. Semestral income and expenditures measured in thousands of dollars of 2000.

Estimated equations for individual-level outcomes and transitions reveal addi-
tional patterns that accord with priors and are consistent with patterns found in
other data sets (see point estimates in Tables S2 to S6 in Appendix D.1). Survival
is higher for black men and for those not suffering physical ailments. Labor supply
increases with age until age 40 and then flattens; it also increases with education

31We relegate the point estimates of all individual processes to Tables S2 to S6 in Appendix D.1;
with very few exceptions, estimated coefficients are statistically significant at the 5% level.
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and past participation in the job market. Gross income decreases with ailments,
likely reflecting how poor physical health can reduce productivity, increases with
employment and education, and is concave in age. Racial minorities earn less on
average than white men, which is noteworthy since it means that racial inequal-
ity in labor outcomes, evident in many other data sets, extends to a population of
HIV+ MSM. We also find that out-of-pocket expenditures increase with age, educa-
tion, and ailments (controlling for treatment usage), perhaps due to expenditures on
other health conditions. On average, minorities spend less out-of-pocket, even con-
trolling for treatment usage. Employment increases expected expenditures, which
may reflect different pricing schemes for public versus private insurance. Finally,
estimates reveal that both treatments on the market and experimental treatments
accessed via clinical trial entail some out-of-pocket costs.

Preferences. Table 2 shows that utility increases with net income, capturing util-
ity from consumption. Utility decreases with physical ailments, reflecting consumer
distaste for the symptoms of illness along with side effects of treatment (Chan and
Hamilton, 2006; Papageorge, 2016).32 The positive estimate of αs implies that the
cost of ailments is larger when individuals are not consuming a treatment. This sug-
gests that the utility cost of ailments from treatment side effects is lower than the
utility cost of symptoms of illness. We also find that although all individuals face
utility costs from using a treatment, African Americans and Hispanics face higher
costs. In particular, African Americans have the highest utility cost for consum-
ing an experimental treatment, a finding that is consistent with a broad literature
investigating historical reasons why African Americans are reluctant to participate
in clinical trials (Harris et al., 1996; Alsan and Wanamaker, 2018). Age mitigates
the utility costs of new treatment (commercial and experimental) which may be
due to older agents becoming accustomed to trying new medications as they have
more contact with the medical community. Consuming new treatments (especially
experimental) is more costly for the healthy; this is consistent with less healthy indi-

32Table S7 in Appendix D.1 shows that taking the estimated ancillary parameters of the CCPs as
given, both net income and physical ailments remain significant. Our final specification in equation
(14) was determined by the statistical significance of results before the computationally intensive
correction of standard errors in the last stage of estimation.
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viduals having more frequent contact with doctors which may lower the utility cost
of new treatment.33 Finally, the utility of remaining on a treatment is positive, al-
though not significantly different from the no-treatment base, further underscoring
the individual’s reluctance to try new treatments.

TABLE 2: Utility Parameters, ut

u j (hit ,yit) = αm(y3it− y4it)+αsy1itd0it +α jhhit +α ′jaait

coef. variable est. se
αm NetIncomet (y3t− y4t) 0.057 (0.057)
αs NoAilmentst ·NoTreatmentt (y1td0t) 1.019 (1.767)

Cluster Experimental Repeat
j = 1, . . . ,J j = J+1 j = J+2

coef. variable est. se est. se est. se
α ja1 White -3.546 (0.744) -1.468 (0.280) 0.502 (0.567)
α ja2 Black -4.190 (0.762) -2.553 (0.334) 0.276 (0.613)
α ja3 Hispanic -3.967 (0.958) -1.585 (0.356) 0.707 (0.454)
α ja4 Aget 0.043 (0.011) 0.032 (0.005) 0.009 (0.007)
α jh ht/103 -2.021 (0.423) -2.461 (0.203)

Notes: Estimation of (14). Discount factor β = .95. J = 3. NoTreatmentit indicates whether he did not consume a
treatment. ht is defined as the number of white blood cells per cubic millimeter of blood. In parentheses, standard errors

computed using subsampling with 100 subsamples.

5.2 Product Entry and Exit

The first component of the innovation process is the distribution of characteristics
of new and experimental treatments gθ .34 Estimates of the systematic part of the
innovations equation (3), which partly determines gθ , are presented in Table 3. Pa-
rameters φ ν

11 and φ ν
12 indicate that the previous share of the experimental treatment

(i.e., participation in clinical trials) has a positive effect on average characteristics
of new treatments. According to Table 3, expected effectiveness innovations are
positive for lagged trial shares above 5.6 percent, and expected innovations on the
ailments dimension are positive for lagged trial shares above 7.7 percent.35

Figure 8 depicts the estimated distribution of innovation shocks fν(ν), which

33The model may also be capturing a stronger preference for sicker individuals in clinical trials.
34Estimates of treatment characteristics, which are obtained from the the health and ailments

processes, are included in Table S8 in Appendix D.1.
35Mean trial participation is 7 percent in our sample (Table 1). Hence, new treatments are on

average more effective than the prevalent technology but do not offer fewer side effects.
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determines the stochastic portion of the innovations equation (3). Conditional on
the previous trial share, the likelihood of innovation shocks decreases monotoni-
cally with their size, which is consistent with the fact that most innovations are
small improvements over existing technology. Thus, an innovation like HAART
is neither a fully anticipated shock nor a likely event, but instead a low probabil-
ity innovation. The distribution exhibits positive correlation (0.24) between the
two quality dimensions, suggesting that shocks that improve efficacy tend to be ac-
companied by fewer side effects. This modest correlation suggests that shocks can
lead to new drugs that are improvements on both dimensions of quality. Yet, there
remains a high likelihood that an innovation could mark an improvement on one
dimension of quality, but a step backwards on the other dimension. Importantly,
and consistent with the observed evolving set of treatments, this process can gener-
ate new products that are worse on both dimensions of quality, though endogenous
market shares mean such products tend to exit the market quickly.

TABLE 3: Innovation Components

θk−wk = φ ν
0 +φ ν

1 · set−1 +νk

Health Innovation Ailments Innovation
coef. est. se coef. est. se

set−1 φ ν
11 433.11 (19.95) φ ν

12 1.93 (0.34)
Constant φ ν

01 -24.14 (1.47) φ ν
02 -0.15 (0.03)

Notes: Estimates from (3). In parentheses, standard errors computed using subsampling with 100 subsamples.

The second component of the innovation process is the distribution of the num-
ber of new treatments gN .36 Table S9 in Appendix D.1 shows that both φ N

1 and
φ N

2 in equation (4) are significant and greater than zero. Therefore, the expected
number of new treatments increases with both the size of previous innovations and
the previous trial share. This is consistent with firms vying for market share follow-
ing breakthroughs by introducing similar treatments, and also with firms increas-
ing their experimental activity as more consumers select experimental treatments,
which may increase the quantity of viable new treatments that can be commercial-
ized. Figure S3 in Appendix D.1 shows that the estimated distribution fits the data
well.

36The third component of the law of motion of the set of available treatments are the exit rules.
Our estimates of the exit thresholds s and s are 0.0047 and 0.0012, respectively.
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FIGURE 8: The Distribution of Innovation Shocks, fν(ν).
Notes: fν (ν) is estimated non-parametrically off the residuals from (3).

Finally, as mentioned in Section 3.2, we ensure tractability using a clustering
rule that reduces the number of available alternatives. Whenever individuals decide
to try a different market treatment, they select one of J period-specific clusters
of treatments and are assigned a treatment from the chosen cluster according to
the assignment probabilities qk jt

(
k
∣∣P jt

)
in equation (6). Point estimates of the

assignment process, included in Table S10 in Appendix D.1, indicate that treatments
with relatively harsher side effects within their cluster are less likely to be assigned.
This makes sense as consumers dislike side effects and are thus less likely to ask for
treatments with harsher side effects if similarly effective options are available that
are less toxic, which would be the case within a cluster that groups together similar
treatments.

6 The Likelihood of Observed Technological Progress

Our model departs from standard models of dynamic demand in how we treat con-
sumer expectations over innovation and the resulting evolution of the choice set.
Consumers are modeled neither as fully informed (possessing perfect foresight) nor
as fully uninformed (viewing each innovation as an unexpected shock). Rather, we
specify a rich stochastic process governing the number of new products and their
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qualities, which is estimated using observed innovations and is used to model con-
sumer expectations. This is important as misspecification of consumer expectations
would lead to biased estimates.

In this section we using our estimated model to assess how consumer expec-
tations generated by the stochastic process describing innovation compare to the
observed path of technology. For example, how likely or unlikely did consumers
perceive a large innovation, such as HAART, to be? We simulate 100 paths of tech-
nological innovation spanning until the end of our sample (2008) and compare their
distribution against the realized path observed in the data. We start our simulations
at two initial states: 1991 (1st semester), prior to the introduction of breakthroughs
when individuals’ health was declining, and 1996 (2nd semester), shortly after the
introduction of HAART when the trend in average health was reversed.

The top three panels in Figure 9 show average population CD4 count, ailments
and survival as predicted by the process (grey lines) along with the realized path
(black line). The first panel on the top is informative regarding the discrepancy
between expectations and realized outcomes. While expectations are close to sim-
ulated paths until 1996, the introduction of HAART marks a clear, abrupt departure
after which expectations over aggregate health are nearly always lower than what
was observed. Two other patterns from the panel are noteworthy. First, while simu-
lated paths tend to lie below the realized path, they also cease their descent, in part
due to mortality below CD4 counts of 200 and also because the innovation process
would on average generate modest innovations that would eventually lead to health
improvements. Second, there are some paths that lie near or even above the real-
ized path. Thus, an innovation like HAART was not seen as an impossible event,
but instead as a low probability, large innovation. The second and third panels show
ailments and survival. While survival depicts similar patterns to aggregate health,
the process generates a disperse set of simulated paths that tend to lie below the
realized path. This means that on average consumers expect more ailments than we
observe, reflecting low expectations about aggregate health.

The bottom panels in Figure 9 repeat the exercise, but begin simulations in
1996. Shortly after HAART, consumers expected average health to continue to rise
modestly, which is not what occurred. Instead, average health remained roughly
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FIGURE 9: Distribution of Technology Paths: Individuals
Notes: 100 simulated paths conditional on the state of the world at 1991 and 1996.

constant, thus under-performing what the innovation process would have predicted.
Average simulated paths of ailments are close to the realized path. Finally, simu-
lated survival over time is concentrated near realized survival of nearly 100%. In
other words, post-HAART consumers expected nearly all HIV+ patients to survive
once HAART was invented, in part due to the view that further improvements would
encourage universal use of HAART. In contrast, beliefs prior to HAART are much
noisier and on average far below actual survival. These contrasts illustrate how ra-
tional expectations can both depart from or align with a realized path depending
on the size of realized shocks. In our case, expectations, especially those prior to
HAART, are not well-characterized by more standard assumptions, such as perfect
foresight or that any innovation is fully unexpected.

7 The Externality and Policy

Since the stochastic process governing product entry and exit depends on aggregate
market shares, an externality emerges because consumers do not take account of
their impact on the path of innovation when making individual choices. A social
planner’s optimal policy incorporating the externality is a mapping from consumer
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characteristics into treatment alternatives. However, solving for this mapping is
intractable given the size of the state space. Hence, in this section we study tem-
porary policy changes lasting only one period before reverting to the decentralized
economy. This approach allows us to compute continuation values using the CCPs
estimated in Section 4.2. As limited as these policies may appear, they have a long
term impact because they affect the state variables (both aggregate and individual-
specific) of the decentralized economy resuming next period.

Importantly, the validity of our counterfactual exercises requires the assumption
that the three objects determining entry and exit (gθ , gN , {s,s}) remain constant.37

This is straightforward in a centralized economy as the planner can ensure this to be
the case. However, in practice, these objects may not be immutable to counterfac-
tual policy changes, which would expose us to the Lucas critique. Thus, we choose
to investigate policies where this assumption is more likely to hold, relegating to
Appendix D.3 counterfactual policies that may be more exposed to the critique.38

Given that we approximate innovation in a reduced-form manner that does not take
explicit account of firm behavior, it would be a mistake to use our model to inves-
tigate policies whose main impact would work through changes in firm behavior.
Instead, we focus on one-period shifts to consumer behavior, whose main effects
should work through demand, which we model in much greater detail, rather than
through strategic interaction among firms.

7.1 Mandated Treatment

In our first policy counterfactual a planner assigns individuals to alternatives based
on health and previous treatment. The population is split into four groups with high
or low health and between those who are or are not potential repeat customers (i.e.,
those using a market treatment in the previous period or not). For each of the groups
the planner either assigns one of the alternatives in the choice set to all members
of the group, or assigns the individual-specific allocation from the decentralized

37Note that for distributions gθ and gN what we require is that the functions remain constant, not
the conditioning variables, which can respond to policy changes.

38Policies in Appendix D.3 explore how the set of available treatments would evolve over longer
periods of time if consumers had less influence over the process of innovation.
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economy. We solve the problem in the first semester of 1991 by computing average
simulated lifetime utility under all possible allocation rules.39

TABLE 4: Mandated Treatment

Groups, Group Shares and Assignment
% Gain/Loss High H High H Low H Low H

over CE No Repeat Repeat No Repeat Repeat
Average Welfare ($1000) High H Low H 0.50 0.26 0.05 0.19

Top Rules

351.61 2.3 -2.8 0 6 6 0
351.28 2.3 -3.2 0 6 0 0
350.84 2.1 -3.1 0 5 0 0
350.82 2.1 -2.9 0 5 6 0
350.63 1.0 1.2 0 6 0 6

...
Decentralized Allocation 346.11 - - 6 6 6 6

...

Bottom Rules

167.97 -54.2 -40.9 1 4 6 4
167.96 -53.3 -44.6 1 4 1 4
167.33 -53.5 -44.9 1 4 3 4
167.24 -53.5 -45.1 3 4 2 4
165.90 -54.4 -43.1 1 4 4 4

Notes: Planner’s problem solved at 1991. High H (Low H) individuals have CD4 > (≤)250. Repeat (No Repeat) costumers
can (cannot) repeat their prior period market treatment. Population shares shown below each group label. Numbers 1 to 3
correspond to clusters and numbers 0, 4, 5, and 6 stand for no treatment, experimental treatment, repeat consumption, and

the decentralized allocation, respectively.

Table 4 presents the top and bottom five assignment rules ordered by average
consumer welfare. In the worst rules the planner assigns the experimental treatment
to healthy patients who dislike it most and often assigns individuals to low quality
clusters, meaning they also incur switching costs. In the best rules, the planner
improves technology by relying on healthy potential repeat customers because their
previous choices incorporate treatment quality information. Since treatment quality
is low in 1991, few others are assigned treatment. The top rule increases average
welfare by 1.6% but decreases equality between health groups. Relative to the
decentralized allocation, healthy individuals (CD4 > 250) gain 2.3% in average
lifetime utility while the unhealthy lose 2.8%. However, the fifth top rule increases
average welfare by almost as much as the top rule, but both health groups gain.
Using this rule, a social planner aiming to reduce health inequality could do so
largely without sacrificing average health improvements.

39We simulate aggregate lifetime utility 200 times for each each of the 72 ∗ 62 = 1,764 possible
assignment rules.
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7.2 Optimal Consumption of Experimental Treatments

Consumers choosing trials draw a treatment from the stochastic innovation distri-
bution that is not yet available on the market. The benefit to the individual is a
potentially high draw, which could be particularly attractive to ill patients facing
low survival probabilities. The risk is drawing a new treatment that is not much
better (or even worse) than current market treatments. An externality arises be-
cause aggregate trial participation both accelerates and influences the direction of
innovation, which benefits all patients, though individuals do not take these aggre-
gate effects into account when making individual trial choices. Our second policy
counterfactual investigates this externality. This is an especially interesting policy
because, although consumption of experimental treatments benefits all patients, it
is the sicker individuals who tend to enter trials. Thus, we ask whether a social
planner can improve average welfare, but also increase equality, by re-distributing
the burden of experimentation so that it is not concentrated on the sickest patients.

As opposed to our mandated treatment exercise above, in which the planner
bases policy only on health and previous treatment, the planner here assigns alter-
natives based on all components of the individual state. However, the planner only
has two options to assign: the experimental treatment or the decentralized allocation
(excluding experimental treatment). Facing a tradeoff between innovation and indi-
vidual utility costs from consuming experimental treatments, the planner chooses a
cutoff for consumption of experimental treatments s∗et such that the gain in average
welfare from allocating an additional individual to the experimental treatment is no
longer positive. We solve the problem at the first semester of 1991 and again at the
second semester of 1996.40 Results are presented in Table 5.

In 1991 the planner’s optimal share of consumers using the experimental treat-
ment is approximately the same as the decentralized share (set). The utility costs
of increased consumption of experimental treatments outweigh the benefits of new
drugs in a time when individuals are very sick, no good treatments have been in-
vented and previous innovations have been small. By 1996, large innovations had

40We discretize the trial in increments of 0.005 units and simulate aggregate lifetime utility 1000
times for each value.
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TABLE 5: Optimal Demand for Experimental Treatments

Year
1991 1996

Experimental treatment’s share in planner’s solution s∗et 0.100 0.185
Experimental treatment’s share in decentralized economy set 0.102 0.092
Average lifetime utility in planner’s solution 346 360
Average lifetime utility in decentralized economy 346 354
Increment in share from marginal person assigned to experimental treatment at set 0.001 0.002
Individual loss for marginal person assigned to experimental treatment at set -0.178 -0.628
Social gain from marginal person assigned to experimental treatment at set -1133 1051
Flat subsidy (per consumer of experimental treatment) to attain s∗et - 16.0

Notes: Planner’s problem solved at the first semester of 1991 and the second semester of 1996. Monetary values in $1,000s.

occurred, further innovations were therefore more probable, and consumers’ health
was improving fast. At this point in time the planner’s optimal share of the experi-
mental treatment is twice as large as the decentralized share and yields an average
lifetime utility of $360,000, about 2% higher than in the decentralized economy.
Figure 10 illustrates the planner’s problem at 1996. The horizontal axis is trial
participation above the decentralized proportion. The vertical axis is the gain in
average welfare. According to the figure experimental treatment shares up to 9 per-
cent points above the decentralized share generate welfare gains that outweigh indi-
vidual losses due to consumption of experimental treatments (see the solid line).41

Average lifetime utility drops precipitously for shares beyond the planner’s opti-
mal share s∗et because the new individuals assigned to the experimental treatment
face larger losses relative to their optimal choice, and the innovation benefits to
additional demand for experimental treatments are not large enough to offset these
losses.

To measure the magnitude of the externality we also obtain the derivative of
average lifetime utility with respect to the experimental treatment’s share, evalu-
ated at the decentralized share set . The benefit of measuring changes at the margin
is that the Lucas critique is less of a concern. We assess the net social benefit of
assigning the marginal consumer to the experimental treatment. Focusing on year
1996, we find that the marginal consumer loses roughly $600 (Table 5). However,

41The solid line in Figure 10 applies a fifth degree local smoothing polynomial over the original
less smooth line shown in Figure S7 in Appendix D. We use this smoothed version to evaluate
marginal gains.
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because demand for experimental treatments spurs innovation by raising the ex-
pected quality and the expected number of new treatments, the net social gain is
over $2,000 per person. In our sample of 445 individuals in 1996, this means that a
$600 loss from raising demand for experimental treatments by 1 person (about 0.22
percentage points) leads to a lifetime utility gain of roughly $1,000,000.

Although these results suggest a substantial externality associated with demand
for experimental treatments, implementing this type of policy may not be feasible
since it requires that the planner have a lot of information about consumer pref-
erences. Furthermore, even with sufficient information governments with the au-
thority to assign individuals to clinical experimentation may not do so according
to who would suffer the least. For example, they might instead choose vulnerable
populations to incur the costs of experimentation that benefit others. The infamous
Tuskegee experiment is an example of this (Harris et al., 1996; Alsan and Wana-
maker, 2018). Thus, we explore whether a flat Pigouvian subsidy could improve
welfare. Figure 10 plots the flat Pigouvian subsidy necessary to attain a given share
of the experimental treatment (see the dashed line) in 1996. The subsidy that at-
tains the planner’s optimal share s∗et is about $16,000 per participant. The size of
the subsidy must be large enough to induce the marginal individual into consuming
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an experimental treatment. Moreover, the subsidy represents a large reallocation of
resources as it must be paid to all consumers of experimental treatments, includ-
ing those who would have entered a trial absent subsidy. As we saw earlier, the
planner’s optimal share s∗et yields an average lifetime utility about 2% higher than
in the decentralized economy. It also increases equality. As opposed to most of
the mandated treatment policies described in Table 4, the subsidy decreases the gap
in lifetime utility between the sickest individuals (ht < 200) and everyone else by
about ten percent. Additionally, equality does not increase at the expense of health-
ier individuals as the lump sum tax (about $3,000) to pay for the subsidy is below
their lifetime utility gains under s∗et . Equity increases because the sickest individ-
uals benefit the most from faster innovation and because they are more likely to
consume experimental treatments. In other words, the subsidy reduces technologi-
cal free-riding undertaken by healthy individuals.

8 Conclusion

We provide a framework to assess how consumer choices affect technological progress.
In our case, aggregate consumer demand affects not only the speed of innova-
tion, but also the direction of innovation in cases where product quality is multi-
dimensional. We apply our framework to study consumer behavior and innova-
tion in the market for HIV drugs. We capture several mechanisms through which
consumer demand affects innovation, including experimentation with new drugs
by participating in clinical trials, which accelerates the entry of new treatments.
We show that individually optimal consumer behavior can slow the process of in-
novation due to a distaste for experimentation, and bend it towards less effective
treatments that lower survival probabilities due to preferences for lower side ef-
fects. Moreover, individuals do not internalize the consequences of their treatment
choices on other consumers’ welfare, implying an externality that arises through
the impact on technological progress. Our estimates show that a constrained plan-
ner can increase average welfare by at least two percent (approximately $6,000 per
individual), and that providing incentives for trial participation can improve social
welfare.
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Future research could incorporate a more structural model of supply into the
type of framework we construct here. The aim would be to evaluate a richer set
of counterfactual policies affecting both firm interaction and consumer behavior.
For example, consider FDA policies legislating which types of medical treatments
are allowed to be tested or approved. Such policies could affect innovation not
only through their impact on consumer choices, but also through their impact on
the behavior of strategically interacting firms responding to consumer preferences.
However, incorporating supply is not a straightforward prospect and would likely
require a simpler setting, e.g., one with fewer firms, less heterogeneity in consumer
preferences, unidimensional product quality and less variation in the size of inno-
vations.
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For Online Publication Supplement to

“Innovation and Diffusion of Medical Treatment”

A Data Appendix

Data collection for the Multi-Center AIDS Cohort Study started in 1984 with 4,954
men enrolled.42 Two more enrollments have taken place: one in 1987-1991 (668
additional men) and another in 2001-2003 (1,350 additional men). We only use data
from the first two enrollments. Since data is semi-annual each period t corresponds
to 6 months. Below we describe the main variables we use in our study:

Health (hit): at every visit individuals undertake a physical examination that
includes a blood sample which provides a measure of underlying health status: the
individual’s CD4 count. We denote as hit the CD4 count of the individual at the
start of period t. According to the official U.S. government’s website for HIV:43

The CD4 count is [...] a snapshot of how well your immune system
is functioning. CD4 cells (also known as CD4+ T cells) are white blood
cells that fight infection. [...] These are the cells that the HIV virus kills.
As HIV infection progresses, the number of these cells declines. When
the CD4 count drops below 200 [cells per microliter] due to advanced
HIV disease, a person is diagnosed with AIDS. A normal range for
CD4 cells is about 500-1,500.

Ailments (y1it): starting at visit 4, individuals are asked about physical symp-
toms. We focus on unusual bruises lasting at least two weeks, unintentional weight

42Data in this manuscript were collected by the Multi-Center AIDS Cohort Study with centers
(Principal Investigators) at The Johns Hopkins Bloomberg School of Public Health (Joseph B. Mar-
golick, Lisa P. Jacobson), Howard Brown Health Center, Feinberg School of Medicine, Northwest-
ern University, and Cook County Bureau of Health Services (John P. Phair, Steven M. Wolinsky),
University of California, Los Angeles (Roger Detels), and University of Pittsburgh (Charles R. Ri-
naldo). The MACS is funded by the National Institute of Allergy and Infectious Diseases, with
additional supplemental funding from the National Cancer Institute. UO1-AI-35042, 5-MO1-RR-
00052 (GCRC), UO1-AI-35043, UO1-AI-35039, UO1-AI-35040, UO1-AI-35041. Website located
at http://www.statepi.jhsph.edu/macs/macs.html.

43See https://www.hiv.va.gov/patient/diagnosis/labs-CD4-count.asp
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loss of at least 10 pounds, fatigue, diarrhea, fever, night sweats, and tender/enlarged
glands. The last 5 ailments must be felt for at least 3 days during the period. Al-
though individuals are asked explicitly about side effects starting at visit 13, we
choose not to use this part of the data because it lacks consistency over time and
more importantly, because individuals are most likely unable to correctly distin-
guish between side effects and symptoms. Thus, in our model y1it takes the value
of 1 if an individual reports having any of the problems mentioned above.

Labor supply (y2it): whether the individual worked full time (35 hours or more
per week) during period t.

Income (y3it): starting at visit 14, individuals answer the question “Which of the

following categories describes your annual individual gross income before taxes?”
For visit 14, categories are brackets that increase every $10,000, the last category
being censored at “$70,000 or more.” For visits 15 to 35 the brackets are censored
at $50,000 and for visits 36 to 41 the brackets are censored at $60,000. We censor
at $50,000 to obtain a uniform question over time. Then we assign the middle
point to individuals in the bracket. For the highest bracket we assign the upper
limit ($50,000). We divide gross income by two since our periods are half-years.
Gross income as well as out-of-pocket expenditures (below) are in constant dollars
of 2000.

Out-of-pocket expenditures (y4it): starting at visit 14, individuals are asked a
version of the following question “Please, estimate the TOTAL out-of-pocket ex-

penses that you or other personal sources (your lover, family or friends) paid for

prescription medications since your last visit.” This question is open so values are
not categorized.

Demographics (ait): individuals are either white, black or Hispanic, and their
age increases by half a year every period.

A.1 Products and Product Components

Starting at visit 6 individuals are asked about their medication. From visit 13 for-
ward, as the number of treatments available increases, they answer separate survey
modules for antiretroviral drugs (ARVs) and non antiretroviral drugs (NARVs). We
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focus on ARVs since these are the drugs used to treat HIV infection. Below we pro-
vide the empirical definition of trial and market products that we use in the paper.

Trial Products. Individuals are asked to name specifically which drugs they
took as well as whether or not they took the drug as part of a research study. In the
original data, some of the reported drugs are themselves coded as trials. We regard
these instances as individuals participating in trials. If an individual consumes one
of his drugs as part of a trial we regard the individual as consuming a trial product
in that period.

Market Products. We define a market product as a combination of components
where no component is consumed in trial. This definition generates 1,835 products.
We reduce the number of market products using the following algorithm:

1. We start with the set of treatments that have more than 40 observations in the
sample and denote this the set of “core market products.”44 Our core market
products are listed in Table S1 which shows that there are 70 core market
products overall with at most five components. Out of 20,142 subject-visit
observations of individuals taking market products, 13,767 are covered by
treatments classified as core market products.

2. We code the remaining 6,375 observations of non-core market products as
core market products using the steps below. Each step sequentially assigns
the remaining observations that were not assigned in previous steps.

(a) Non-core market product k is assigned to core market product k′ if k′

is the core market product with the highest number of components that
is contained by k. Of the remaining 6,375 observations of non-core
market products, this rule assigns 2,963 uniquely and leaves 3,412 with
unassigned (1,647 that were assigned to multiple core market products
plus 1,765 that were not assigned to any core market product).

(b) If assigned to multiple core market products in step (a):
44We tried different criteria for the minimum number of observations and product classification

did not change substantially. Since our definition of core market products can miss treatments ap-
pearing near the end of the time period studied, we select the core products using all periods but
exclude the last 4 periods from estimation.
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i. First, we use the past history of the individual. If at period t the
individual is consuming non-core market product k′′ that was as-
signed to both core market products k and k′ in step (a), and he was
observed consuming core market product k in period t−1, then his
treatment at t is recoded as k. We repeat this procedure until no
further gains are obtained. Out of the remaining 1,647 observa-
tions assigned to multiple core market products, 428 are assigned
uniquely in this step.

ii. Second, we use the future history of the individual. If at period t

the individual is consuming non-core market product k′′ that was
assigned to both core market products k and k′ in step (a), and he
was observed consuming core market product k′ in period t + 1,
then his treatment at t is recoded as k′. We repeat this procedure
until no further gains are obtained. Out of the remaining 1,219
observations assigned to multiple core market products, 274 are
assigned uniquely in this step.

iii. Third, we use the core market product with the highest share at t.
If at period t the individual is consuming non-core market product
k′′ that was assigned to both core market products k and k′ in step
(a), and skt > sk′t , then his treatment at t is recoded as k. This final
step assigns uniquely the remaining 945 observations assigned to
multiple core market products.

(c) If not assigned to a core market product in step (a): we regard all 1,765
observations as “fringe treatments” since they do not contain any core
market product. We aggregate all fringe treatments that appear at pe-
riod t into one single “fringe mix,” and assign to it all users consum-
ing this product over time. We only consider fringe mixes that have at
least 40 users. This reduces the number of observations by 345 (which
represents 1.6% of the number of observations of individuals using a
treatment). This aggregation leads to 16 fringe mixes that we pool with
the set of core market products, which amounts to a total of 86 market
products overall. (See Table S1.)
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3. In the paper we specified that a treatment gets withdrawn from the market
altogether when its share falls below s for 2 consecutive periods. However, in
the data, a treatment may have a share below s for more than 2 consecutive
periods and then reappear again. 78 out of 86 core market products have
unique spells without “reappearance.” We regard the remaining treatments
with multiple spells as measurement error and follow the next procedure to
ensure that treatments have unique spells without reappearance. For every
core market product k with reappearance:

(a) We identify all spells that treatment k has in the data. This is, we identify
the first spell and all reappearances.

(b) From those spells we select the one that contains the period t ′ in which
skt was the highest. We drop all observations of individuals consuming
market product k in other spells.

Out of 19,797 (20,142 minus 345 from step 2(c)) observations of individu-
als taking market products, this smoothing procedure drops 42 observations
leaving 19,755 observations of individuals taking market products. Support-
ing the importance of the spells selected by this procedure, the maximum
share in the selected spell is on average about 24 times larger than the max-
imum share in other spells of the same market product.45 Table S1 includes
entry and exit dates implied by this spell smoothing procedure.

45In addition to this procedure we tried (i) selecting the spell with the highest average share and
(ii) selecting the spell with the highest sum of shares. All criteria result in very similar entry and exit
dates.

A-5



APPENDIX TABLE S1: Market Products

Market Product Entry Exit Market Product Entry Exit
AZT 1987 S1 - ddI , d4T, Nevirapine 1997 S2 -

Interferons (α and/or β ), AZT 1987 S2 1995 S2 ddI , 3TC, Nelfinavir 1997 S2 -
AL-721 egg lecithin 1987 S2 1991 S2 ddI , d4T, Efavirenz 1998 S2 2008 S1

AZT, Acyclovir 1989 S2 2000 S1 3TC, Abacavir, Efavirenz 1998 S2 -
Acyclovir 1989 S2 2000 S1 AZT, Nevirapine, 3TC, Abacavir 1999 S1 -

AZT, Acyclovir, ddI 1990 S1 1997 S1 AZT, 3TC, Abacavir, Efavirenz 1999 S1 -
Acyclovir, ddI 1990 S1 2000 S1 AZT, 3TC, Efavirenz 1999 S1 -

AZT, ddC 1990 S1 2001 S2 AZT, 3TC, Abacavir 1999 S1 -
AZT, ddI 1990 S1 2004 S2 d4T, 3TC, Efavirenz 1999 S1 2006 S1

ddI 1990 S1 - Nevirapine, 3TC, Abacavir 1999 S2 -
AZT, ddC, Acyclovir, ddI 1991 S1 1997 S1 d4T, 3TC, Kaletra 2001 S1 2006 S1

AZT, ddC, Acyclovir 1991 S1 1999 S2 3TC, Kaletra, Abacavir 2001 S2 -
AZT, ddC, ddI 1991 S1 1995 S2 AZT, 3TC, Kaletra 2001 S2 -
ddC, Acyclovir 1991 S1 1997 S2 AZT, 3TC, Kaletra, Abacavir 2002 S1 -

ddC 1991 S1 1999 S1 3TC, Abacavir, Efavirenz, Tenofovir 2002 S1 -
d4T 1993 S1 - AZT, 3TC, Abacavir, Tenofovir 2002 S1 -

AZT, Acyclovir, 3TC 1994 S2 2000 S1 AZT, 3TC, Kaletra, Tenofovir 2002 S1 -
AZT, 3TC 1995 S1 - Nevirapine, 3TC, Tenofovir 2002 S1 2007 S1

Acyclovir, d4T, 3TC 1995 S2 2000 S1 3TC, Kaletra, Tenofovir 2002 S1 -
AZT, 3TC, Saquinavir 1996 S1 2005 S1 Kaletra, Efavirenz, Tenofovir 2002 S1 -

d4T, 3TC 1996 S1 - 3TC, Efavirenz, Tenofovir 2002 S1 -
AZT, 3TC, Saquinavir, Ritonavir 1996 S2 - AZT, 3TC, Kaletra, Abacavir, Tenofovir 2002 S2 -
AZT, Acyclovir, 3TC, Indinavir 1996 S2 2000 S1 ddI , Kaletra, Tenofovir 2002 S2 -
Acyclovir, d4T, 3TC, Indinavir 1996 S2 2000 S1 ddI , Efavirenz, Tenofovir 2002 S2 -
AZT, 3TC, Ritonavir, Indinavir 1996 S2 2006 S2 Abacavir, Efavirenz, Tenofovir 2002 S2 -
d4T, 3TC, Ritonavir, Indinavir 1996 S2 2006 S2 Kaletra, Abacavir, Tenofovir 2002 S2 -

d4T, 3TC, Saquinavir, Ritonavir 1996 S2 2004 S2 3TC, Ritonavir, Abacavir, Atazanavir 2003 S2 -
ddI , d4T, Indinavir 1996 S2 2004 S2 Efavirenz, Tenofovir, Emtricitabine 2003 S2 -

d4T, 3TC, Indinavir 1996 S2 2008 S1
Ritonavir, Efavirenz, Tenofovir,

Emtricitabine, Atazanavir 2004 S1 -

AZT, 3TC, Indinavir 1996 S2 -
3TC, Ritonavir, Abacavir, Tenofovir,

Atazanavir 2004 S1 -

d4T, Nevirapine, 3TC 1997 S1 - ddI , Ritonavir, Tenofovir, Atazanavir 2004 S1 -

AZT, Nevirapine, 3TC 1997 S1 -
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir 2004 S1 -

AZT, 3TC, Nelfinavir 1997 S1 - Nevirapine, Tenofovir, Emtricitabine 2004 S1 -
ddI , d4T, Nelfinavir 1997 S1 2005 S2 Kaletra, Tenofovir, Emtricitabine 2004 S2 -

d4T, 3TC, Nelfinavir 1997 S2 -
Ritonavir, Tenofovir, Emtricitabine,

Lexiva 2005 S1 -

Fringe Mixes

Isoprinosine, Ribavirin, Interferons (α
and/or β ) 1987 S1 1992 S1

Nevirapine, 3TC, Ritonavir, Kaletra,
Tenofovir 2003 S1 -

Interferons (α and/or β ), 3TC,
Saquinavir, Indinavir, Efavirenz 1997 S1 2007 S1

3TC, Ritonavir, Kaletra, Abacavir,
Tenofovir, Atazanavir 2004 S1 -

Nevirapine, 3TC, Saquinavir, Ritonavir,
Indinavir 1997 S2 2006 S2

Ritonavir, Tenofovir, Emtricitabine,
Atazanavir, Lexiva 2004 S2 -

Nevirapine, 3TC, Saquinavir, Ritonavir,
Nelfinavir 1998 S1 2006 S2

Saquinavir, Ritonavir, Tenofovir,
Emtricitabine, Atazanavir 2005 S1 -

Nevirapine, Saquinavir, Ritonavir,
Abacavir, Efavirenz 1999 S1 2005 S2

3TC, Ritonavir, Abacavir, Tenofovir,
Atazanavir, Lexiva 2005 S2 -

Nevirapine, Ritonavir, Nelfinavir,
Abacavir, Efavirenz 1999 S2 -

Saquinavir, Ritonavir, Abacavir,
Tenofovir, Emtricitabine 2007 S1 -

Nevirapine, Ritonavir, Kaletra, Abacavir,
Efavirenz 2001 S2 2008 S2

3TC, Ritonavir, Tenofovir, Emtricitabine,
Raltegravir 2008 S1 -

Nevirapine, 3TC, Nelfinavir, Abacavir,
Tenofovir 2002 S2 -

Ritonavir, Tenofovir, Emtricitabine,
Darunavir, Raltegravir 2008 S2 -

Notes: Entry and exit dates implied by the smoothing of spells in Step 3 of the algorithm used to reduce market products in
Section A.1. S1 and S2 indicate the semester within a year. Many products had not exited by the end of the sample. For

“fringe mixes” we only include the 5 or 6 most used products in the mix.
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A.2 Available and Prevalent Technology

Our animated appendix (alternatively, see Figure 5) shows that the path of technol-
ogy advances mostly on the efficacy dimension first and then on the side effects
dimension; it also shows that new products tend to appear around the centroid. Fig-
ure S1 summarizes some of the information contained in our animated appendix. It
depicts the average quality demanded and the maximum quality available for each
quality dimension (effectiveness and side effects). Before the mid 1990s, when
people were concerned about survival, average efficacy consumed increased while
average lack of side effects remained flat, even though less toxic products were
available. After the mid 1990s, when people had attained higher immune system
health, average lack of side effects consumed increased while average effectiveness
remained flat, even though more effective products were available. Both figures
reveal the supply side technological capability to develop and introduce products
in both dimensions of quality over time. Thus, we argue that firms’ profit motives
likely led innovation to occur around what consumers were buying, generating a
demand externality.
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B Model Appendix

B.1 Evolution of the Choice Set

In this section we provide further details of the law of motion of the set of available
treatments as well as its empirical implementation.

The distribution of the number of new treatments. gN (Nt |κt−1,set−1 ) is a neg-
ative binomial that permits dispersion in the mean:

Nt ∼ Poisson
(
µ
∗
t−1
)

; µ
∗
t−1 ∼ Gamma

(
1/α

N
t−1,α

N
t−1µt−1

)
µt−1 = exp(φ N

1 κt−1 +φ
N
2 set−1); α

N
t−1 = exp(φ N

3 +φ
N
4 κt−1) (S1)

where the magnitude of previous innovations κt−1 is defined in (5) and the scaling
weights, which account for the fact that different characteristics may be measured
in different scales, are given by the maximum innovations observed in the data:

δ
−1
r ≡ max

k: k∈Pτ−1,k/∈Pτ−2, ∀τ>1

{
θ

r
k −ω

r
τ−2
}
, for r ∈ {1,2} (S2)

The end of a treatment’s life cycle. In the empirical implementation we relax
the exit rule {s,s} defined in Section 3.2 as follows. Recall that the market share of
treatment k can be decomposed by new skt and repeat skt consumers (skt +skt = skt).
Define the conditional share for new consumers as:

s̃kt−1 ≡
skt−1

∑k′∈Pt−1 sk′t−1
(S3)

No new consumers can access treatment k if s̃kt−1 falls below the critical number
s for three consecutive periods. Treatment k reaches the end of its life cycle when
s̃kt−1, defined in (2), falls below the critical number s for two consecutive periods.
The number of consecutive periods for each exit rule are chosen to match the data,
where a single period of low demand does not always signal the end of a treatment’s
life cycle. This relaxation of the exit rule adds two state variables to the aggregate
state of the problem, E 1

t−1 and E 2
t−1, which are indicators of to what extent the
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conditions for exit are binding:

E 1
kt = I

{
s̃kt−1 < s

}(
E 1

kt−1 + I
{

s̃kt−1 < s
})

(S4)

E 2
kt = I{s̃kt−1 < s}

(
E 2

kt−1 + I{s̃kt−1 < s}
)

(S5)

where E 1
ktk

= E 2
ktk
≡ 0. Exit for new consumers binds when E 1

kt = 3 and exit for all
consumers binds when E 2

kt = 2.

A Tractable Choice Set The clustering rule c(Pt), which allows us to reduce
the size of the choice set, is characterized as the solution to a k-means clustering
algorithm. At every period t the clusters j = 1, . . . ,J are chosen to minimize:46

c(Pt) =
J

∑
j=1

∑
k∈Pt

I{k ∈ j}
∥∥θk−θ

c
j
∥∥2

, θ
c
j ≡

∑k∈Pt I{k ∈ j}θk

∑k∈Pt I{k ∈ j}
(S6)

where ∑
J
j=1 I{k ∈ j}= 1 for all k ∈ Pt .

The within-cluster assignment probability is given by:

qk jt
(
k
∣∣P jt

)
=

exp
(
xw

ktγ
w)

∑k∈ j exp
(
xw

ktγ
w
) (S7)

where xw
kt includes a constant term, the ranking (within its cluster) of the character-

istics of the treatment, the number of members in the cluster, whether the treatment
is new, and several interactions. The vector of parameters γw is obtained from a
nonlinear regression of within cluster shares skt| j such that:

E
[
skt| j|xw

kt
]
= exp(xw

ktγ
w) , skt| j ≡

skt

∑k′∈P jt sk′t
(S8)

46See Duda and Hart (1973) and Andrew W. Moore’s K-means and Hierarchical Clustering tuto-
rial at http://www.cs.cmu.edu/∼awm/tutorials.html. (See Appendix C.3 for implementation details.)
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B.2 The Modified Value Function

At the beginning of t the realization of treatment assignment for those who selected
a cluster in the previous period is drawn using the within-clusters probabilities qk jt ,
the realization of last period’s experimental treatment characteristics is drawn from
gθ ; health hit , ailments y1it−1, income y3it−1, out-of-pocket payments y4it−1, sur-
vival bit , and current labor supply y2it are realized. The number of new treatments
is drawn from gN and their characteristics drawn independently from gθ ; market
treatments finish their life cycle following the {s,s} rule. Clusters of treatments
are formed according to the clustering rule c. Under the law of motion specified
in Section 3.2 the aggregate state zt includes the treatments remaining on the mar-
ket Pt , the centroid for innovation ωt , the magnitude of previous innovations κt ,
the previous share of the experimental treatment set−1, and the joint distribution
of consumer demographics (including previous consumption) Ft . The individual
state is formed by idiosyncratic preference-shocks εit , and zit , which includes the
aggregate state zt together with a collection of individual-specific variables: health
hit , labor supply y2it , recent usage θJ+2,it−1, demographics ait and productivity ηi.
Individuals have rational expectations and zero measure in the population. They ob-
serve their current state and choose j ∈ {0,1, . . . ,J+1+ rit}. Aggregate choices at
t determine market shares. The individual’s ex-ante value function in the modified
decentralized problem is:

V (zit)≡ E

{
∞

∑
τ=t

J+1+rit

∑
j=0

β
τ−tde

jiτbiτ
[
u j (hiτ ,yiτ)+ ε jiτ

]∣∣∣∣∣zit

}
(S9)

Because individuals in the decentralized economy do not take into account the
consequences of their actions (e.g., their consumption of experimental treatments or
their adoption of treatments with certain characteristics) on treatment development
and hence on other individuals’ future payoffs, the aggregate process generates an
externality.
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C Estimation Appendix

C.1 Treatment Characteristics

We estimate treatment characteristics using the larger sample (visits 6 to 49) thereby
using all data available on previous health, individual treatment usage, and subse-
quent health and ailments. Estimation equations follow from (8) and (9):

ht+1 =
5

∑
s=0

γ
h
s hs

t + ∑
k∈Pt

d̃ktθ
1
k +dJ+1,tθ

1
et + ε

h
t (S10)

Pr [y1t = 0|ht ,θ ] =

(
1+ exp

(
5

∑
s=0

γ
x
s hs

t ++ ∑
k∈Pt

d̃ktθ
2
k +dJ+1,tθ

2
et

))−1

(S11)

Along with estimates of treatment characteristics, (S10) and (S11) provide param-
eter vectors γh and γx that describe the health transition in (8) and the process for
physical ailments in (9).

C.2 Exit Rule

Recall the definitions of s̃kt in (S3) and s̃kt in (2). We set the values of the exit rule
using the aggregate data on new skt and repeat skt consumers for each treatment:

s = min
k,t
{s̃kt} and s = min

k,t
{s̃kt} (S12)

C.3 Clusters

In our empirical implementation we assume there are J clusters every period. We
implement the following version of the k-means algorithm. At every period t:

1. Select the treatments for which the s rule has not been applied. In other words,
select treatments that are still available for new consumers at t. Denote this
set of treatments At .

2. In order to keep comparability, re-scale the characteristics of all treatments

A-11



available for clustering at t by computing:

θ̃
r
k =

θ r
k

maxk∈At

∣∣θ r
k

∣∣ , for r = 1,2 (S13)

Thus, by construction θ̃ ∈ [−1,1]× [−1,1].

3. Select the first J centroids using the scaled characteristics θ̃ of J randomly
selected treatments from At .

4. Allocate all remaining treatments k ∈At to clusters sequentially. At each step
select for allocation the treatment whose scaled characteristics θ̃k are closest
to one of the existing clusters. Assign treatment k to the closest cluster and
update the centroid of the cluster. Repeat this process until all treatments in
At are assigned to a cluster.

5. Taken the centroids as given, reallocate all treatments to their closest centroid.

6. Calculate the value of the clustering rule c(Pt) in (S6) for the current alloca-
tion.

7. Repeat 200 times steps 3 to 6 using the scaled characteristics θ̃ of differ-
ent groups of J randomly selected treatments in At as initial centroids. The
allocation with the lowest value of c(Pt) is chosen.47

C.4 Innovation

According to (3), the characteristics of new and experimental treatments are dis-
placed innovations about the centroid (current or previous), and depend on previous
trial participation and a draw from the distribution of innovation shocks fν(ν). To
estimate (3) and fν(ν) we use all periods in the MACS data with relevant infor-
mation on treatment consumed, health and ailments (1986 to 2008). Over the time
span in our data, and given our definition of treatments, we observe 86 realized
innovations from newly introduced market treatments and 22 realized innovations

47In estimation, whenever we simulate clusters we only repeat the process 50 times.
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from experimental treatments. Consistent with our definition of market treatments,
we only consider experimental treatments that have at least 40 users. We do not
impose that innovations vectors cannot be strictly negative. In other words, relative
to the centroid, inferior treatments with lower quality in both dimensions (health
and ailments) may be introduced.48

C.5 Utility Parameters

We estimate the utility parameters in (14) using a GMM estimator and moment
conditions that equate the log odds ratio of current conditional choice probabilities
with a representation of the differences in conditional value functions in terms of
utility parameters and future CCPs, states and choices (Hotz et al., 1994; Altuğ and
Miller, 1998). Below we explain this step of the estimation process in more detail.

C.5.1 Moment Condition

Our moment conditions appeal to well-known results following from our assump-
tion that the taste shocks ε jit are iid Extreme Value Type I distributed (Hotz and
Miller, 1993). They rely on differences between the log odds ratio and an alterna-
tive representation of differences in conditional value functions (v j(zit)−v0(zit)) in
terms of future conditional choice probabilities, choices, states and utility param-
eters. Recalling the definition of V (zit) in (S9), the conditional value function of
choosing alternative j at period t is:

v j (zit) = E
{

u j (hit ,yit)+βV (zit+1)
∣∣zit ,d jit = 1

}
(S14)

Let p jit (zit) be the probability that individual i chooses option j at time t conditional
on his state zit . Let ψ jit (zit) be the expected value of the jth taste shock conditional
on alternative j being optimal, and let γ be the Euler constant. Since the joint
distribution of εt is Extreme Value Type-I:

ψ j (zit)≡ Eε

[
ε jit |zit ,de

jit = 1
]
= γ− ln

(
p jit (zit)

)
(S15)

48This is consistent with what we observe in the data, and theoretical reasons why this may happen
have been provided in the literature (Miller, 1988).
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Define E j{·} as the expectation conditional on d jit = 1. Dropping the individual
subindex i for simplicity, using (S15), we can write the conditional value function in
(S14) in terms of future utility flows induced by all available alternatives, weighted
by the future probabilities of those alternatives being chosen and corrected by the
fact that the alternative may not be optimal. Notably, the weighted average of cor-
rected flow payoffs of a given period must be discounted by the probability of sur-
vival up to that period conditional on today’s state and choice. Letting T ∗ be an
arbitrary period with t < T ∗ ≤ T , the alternative representation of the conditional
value function is given by:

v jt(zt) = E j
{

u j (ht ,yt) |zt
}
+βE j {V (zt+1,εt+1) |zt}

= E j
{

u j (ht ,yt) |zt
}
+βE j

{
bt+1Eε

{
J+1+rt+1

∑
j′=0

de
j′t+1

[
u j′ (ht+1,yt+1)+ψ j′ (zt+1)

]}∣∣∣∣∣zt

}
+β

2E j {bt+2V (zt+2,εt+2) |zt}

= E j
{

u j (ht ,yt) |zt
}
+βE j

{
bt+1

J+1+rt+1

∑
j′=0

p j′t+1 (zt+1)
[
u j′ (ht+1,yt+1)+ψ j′ (zt+1)

]∣∣∣∣∣zt

}
+β

2E j {bt+2V (zt+2,εt+2) |zt}

= E j
{

u j (ht ,yt) |zt
}
+βE j

{
bt+1

J+1+rt+1

∑
j′=0

p j′t+1 (zt+1)
[
u j′ (ht+1,yt+1)+ψ j′ (zt+1)

]∣∣∣∣∣zt

}

+β
2E j

{
bt+1bt+2

J+1+rt+2

∑
j′=0

p j′t+2 (zt+2)
[
u j′ (ht+2,yt+2)+ψ j′ (zt+2)

]∣∣∣∣∣zt

}
+β

3E j {bt+1bt+2V (zt+3,εt+3) |zt}

= E j
{

u j (ht ,yt) |zt
}
+

T ∗

∑
τ=1

β
τ E j

{(
τ

∏
r=1

fb (hit+r)

)
J+1+rt+τ

∑
j′=0

p j′t+τ (zt+τ )
[
u j′ (ht+τ ,yt+τ )+ψ j′ (zt+τ )

]∣∣∣∣∣zt

}

+β
T ∗+1E j

{(
T ∗+1

∏
r=1

fb (hit+r)

)
V (zt+T ∗+1,εt+T ∗+1)

∣∣∣∣∣zt

}
(S16)

Let w(zit) be a vector of instruments orthogonal to the difference between the
log odds ratio and the alternative representation. Hence, we can form the following
moment conditions:

E

w(zit)⊗


ln
(

p0it(zit)
p1it(zit)

)
+ v1it(zit)− v0it(zit)

...

ln
(

p0it(zit)
pJ+1+rit ,it(zit)

)
+ vJ+1+rit ,it(zit)− v0it(zit)


= 0. (S17)
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C.5.2 Conditional Choice Probabilities

The individual’s choice set {0,1, . . . ,J+1+rit} includes the following alternatives:
no treatment, one of J clusters, an experimental treatment, and last-period’s prod-
uct (if rit = 1). The probability that an individual chooses one of the alternatives
depends on the individual and aggregate elements of his state, where the aggregate
state is given by zt = {{θk}k∈Pt

,ωt ,κt ,set−1,Ft}. In estimation we include ωt , κt

and set−1 directly in the CCPs and characterize other components of zt as follows.
The set of treatments available {θk}k∈Pt

is characterized by the distribution of treat-
ment characteristics of all clusters. We use the first two moments of these distri-
butions in estimation. The distribution of consumer characteristics Ft is controlled
for using a set of non parametric moments denoted F̃t .49 Let m jit be the moments
describing the distribution of characteristics induced by alternative j for individual
i at period t, including the mean vector and the variance matrix. Effectively, m jit

is heterogeneous across individuals only when j = J + 2, i.e., when the individual
decides to purchase the same treatment he consumed last period. Let m jitm jit de-
note a vector of interactions between the elements of m jit . Let x̃it and z̃it be subsets
of the individual-specific components of the state.50 Let ωtm jit denote a vector of
interactions between the centroid and the elements of m jit . Similarly, let m jit z̃it be a
vector of interactions between the components of m jit and individual-specific state
components and let ωtm jit z̃it be defined in a similar fashion. Our flexible CCPs are
given by:

p jit =
exp(I jit)

∑
J+1+rit
j′=0 exp

(
I j′it
) (S18)

where

I0it ≡ 0 (S19)

I jit ≡ γJ x̃it +β0m jt +β1m jt m jt +β2ωt m jt +β3m jt z̃it +β4ωt m jt z̃it +β5m jtF̃t +β6κt +β7set−1, j = 1, . . . ,J (S20)

IJ+1,it ≡ γJ+1x̃it +β0mJ+1,t +β1mJ+1,t mJ+1,t +β3mJ+1,t z̃it +β5mJ+1,tF̃t +β6κt +β7set−1 (S21)

IJ+2,it ≡ γJ+2x̃it +β0mJ+2,it +β1mJ+2,it mJ+2,it +β2ωt mJ+2,it +β3mJ+2,it z̃it +β4ωt mJ+2,it z̃it +β5mJ+2,itF̃t +β6κt +β7set−1(S22)

Although the characteristics of the choice sets are non stationary due to treatment
entry and exit, by interacting our time-varying regressors z̃it with the characteristics

49We specify these moments as shares of people with different sets of characteristics.
50z̃it includes hit−1, ait−1, bi, y2it while x̃it includes a constant, ait−1, bi.
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of the choice for individual i, m jit , we are able to control for the state of the world
inside the CCPs.51 This procedure gives us CCPs for any simulated world as long as
our observed worlds cover the space of possible worlds. Additionally, we include in
the CCPs ancillary coefficients that are unrelated to the state of technology, denoted
γ in (S20) to (S22), which capture stationary taste differences between alternatives.
Because, conditional on cluster characteristics, all clusters are equivalent to “trying
a new market treatment,” we impose γ j = γJ = for any j = 1, . . . ,J.

Figure S2 displays the mean predicted conditional choice probability using
(S18) over time against the corresponding share of the population who chose the
alternative.52
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APPENDIX FIGURE S2: Average CCPs
Notes: The figure shows the average estimated conditional choice probability against the share of people choosing the

alternative. Dashed lines represent 95% confidence intervals around the predicted CCPs. Three periods of special relevance
are highlighted in the Figure: two periods during which enrollment into the sample was undertaken and the period in which

treatments belonging to the HAART class were introduced.

C.5.3 Simulation

In order to form the sample analog of the moment condition in (S17) we obtain
a simulated version of the conditional value function in (S16) truncated at T ∗ for

51Because some of the components of mJ+1t are linear functions of ωt−1 (see (3)) we avoid
collinearity by not including terms ωtmJ+1,t and ωtmJ+1,t z̃it in (S21).

52We also explore the fit of our CCP estimates by comparing the relative shares that clusters
received in reality against the predictions from our estimated CCPs. We ranked the three clusters at
every period by the share they received and compare this ranking against the ranking obtained from
our estimated CCPs. Predicted ranks match observed ranks in about 80% of the periods.
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every observation {i, t} and alternative j ∈ {0,1, . . . ,J+1+rit}. We select T ∗ = 10
so that the treatment β T ∗+1

∏
T ∗+1
r=1 fb (hit+r) approaches zero, eliminating further

differences in conditional value functions beyond T ∗. Let S denote the number of
simulated paths for each { j, i, t} and let the superscript s indicate that a quantity
is simulated. For individual i and alternative j at period t we write the simulated
counterpart of the truncated value function as

v̄ jit (zit)≡
1
S

S

∑
s=1

{
u j (hit ,ys

it)+
T ∗

∑
τ=1

β
τ

(
τ

∏
r=1

fb
(
hs

it+r
)) J+1+rt+τ

∑
j′=0

ds
j′it+τ

[
u j′
(
hs

it+τ ,y
s
it+τ

)
+ψ j′

(
zs

it+τ

)]}
(S23)

Each future path depends on the current individual state zit , and hence on the cur-
rent aggregate state zt , and the current choice j. We first simulate as many aggregate
paths at t as there are individuals at period t. Overall this yields IT paths of tech-
nological innovation. Then, because individuals are atomistic, for each observation
{i, t} and alternative j we generate sequences of future choices and payoffs taking
as given S = 20 artificial technological paths chosen at random from the set of I

simulated technological paths that start at date t.53 This serves two purposes. It
maintains the assumption, needed for consistency of the estimator, that the sample
draws from the moment conditions—the contribution from each observation—are
independent from each other, and it prevents simulation errors in technology paths
from propagating across all observations.

Simulation of Aggregate State. Taking as given the current aggregate state zt we
create as many simulated aggregate state paths {zs

t+τ}T ∗
τ=1 as there are individuals

at every t. In other words, we repeat the algorithm below to generate I simulated
aggregate paths for every period t:

1. Let τ = 1.

2. Entry and Exit of Treatments. Simulate a number of new treatments at t + τ ,
News

t+τ , using the entry process in (S1). If News
t+τ > 0, for each simulated

new treatment draw simulated characteristics using (3). Simulate the charac-

53Notice that we could rely on Hotz et al. (1994) and set S = 1 and obtain consistency of our
estimator. However, we choose S = 20 after trying different values for robustness.
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teristics of the experimental treatment using (3). Obtain κs
t+τ using (5) and

(S2). For all incumbent treatments, apply the exit rule {s,s} taking into ac-
count the extent to which it binds according to (S5). From the simulated set
of treatments in Ps

t+τ that have not yet satisfied the s exit rule, form clusters
following the clustering rule in (S6). Obtain the distribution of characteristics
of each cluster using (S7) and (S8). For τ > 1 compute the simulated centroid
ωs

t+τ using (2).

3. Demand. For all individuals i′ at t: If τ = 1, define hs
i′t+1 ≡ hi′t+1 and

ds
i′t ≡ di′t , otherwise, simulate hs

i′t+τ
using (8). Draw a simulated labor state

ys
2i′t+τ

using (10). Compute deterministic transitions (e.g., age). Using zs
i′t+τ

,
and hence zs

t+τ , and (S18) to (S22) compute simulated CCPs ps
ji′t+τ

(
zs

i′t+τ

)
for every alternative j ∈ {0,1, . . . ,J + 1+ rs

it+τ
} and draw a decision ds

i′t+τ
.

Obtain the simulated share of trial participation ss
e,t+τ and the nonparametric

representation of the simulated distribution of consumer characteristics F̃ s
t+τ .

4. Cycle back. If τ = T ∗ end the loop. Otherwise, let τ = τ +1 and go back to
step 2.

Simulation of Individual Paths. For every observation {i, t} and every alterna-
tive j ∈ {0,1, . . . ,J+1+ rit} we generate S sequences of future states, choices and
outcomes {zs

it+τ
,ds

it+τ
,ys

it+τ
}T ∗

τ=1 taking as given a subset of S simulated aggregate
paths—that start at t—chosen at random without replacement. We follow the steps
below:

1. Let τ = 1.

2. Demand. Same as above but only for individual i. When j is not equal to the
observed choice for {i, t}, we also simulate health at the beginning of period
t + 1. For this we back out the realized health residual using (S10) and use
(8) to simulate health hs

it+1 under counterfactual choice j. Additionally, we
compute the simulated one-period-ahead survival probability fb

(
hs

it+τ

)
.

3. Outcomes. Only for individual i: Simulate (lack of) ailments using (9) and
the relevant distribution of treatment characteristics implied by the simulated
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choice ds
it+τ

. Simulate income using (11) and out-of-pocket expenditures
using (12).54

4. Cycle back. If τ = T ∗ end the loop. Otherwise, let τ = τ +1 and go back to
step 2.

When simulating a path following an alternative j that is not the observed choice
for {i, t}, we obtain current-period simulated payoffs u j (hs

it ,y
s
it) by simulating cur-

rent income, out-of-pocket expenditures and ailments conditional on the counter-
factual choice j at t.

C.5.4 Estimator

Let j = 0 be the base alternative, and let δit be an indicator of whether individual i

is in the data at period t. The simulated sample analog of the moment condition in
(S17) is

1
∑i ∑t δit

I

∑
i=1

T

∑
t=1

δitw(zit)⊗


ln
(

p0it(zit)
p1it(zit)

)
+ v̄1it(zit)− v̄0it(zit)

...

ln
(

p0it(zit)
pJ+1+rit ,it(zit)

)
+ v̄J+1+rit ,it(zit)− v̄0it(zit)

= 0

(S24)

Denote Λ as the M−dimensional vector of parameters of the utility function.
Following Hotz et al. (1994) we estimate Λ as the vector that minimizes the follow-
ing objective function:

(
(IT )−1

I

∑
i=1

T

∑
t=1

δitw(zit)⊗Ait(zit ,Λ)

)′
Wn

(
(IT )−1

I

∑
i=1

T

∑
t=1

δitw(zit)⊗Ait(zit ,Λ)

)
(S25)

54Even though individuals know their idiosyncratic income shocks εm
it we do not need to simulate

these shocks as they are iid, have mean zero, and enter linearly in the flow utility, which results in
them averaging out to zero in the moment condition.
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Ait(zit ,Λ)≡


ln
(

p0it(zit)
p1it(zit)

)
+ v̄1it(zit)− v̄0it(zit)

...

ln
(

p0it(zit)
pJ+2it(zit)

)
+ v̄J+2it(zit)− v̄0it(zit)

 (S26)

where Wn is a square weighting matrix. Using the linear structure of the utility
function in (14) we collect and factor terms in order to write the jth component of
the vector Ait(zit ,Λ) as the linear form

ỹ jit− x̃′jitΛ (S27)

Define Y as a vector with (J+2)IT rows that stacks all ỹ jit , and X as a (J+2)IT×M

matrix that stacks all x̃ jit . Define Z as the IT ×R matrix whose columns contain
the R instruments orthogonal to the difference between the log odds ratio of current
conditional choice probabilities and the alternative representation of the differences
in conditional value functions.55 Thus

Y =



ỹ1,1,1

ỹ1,1,2
...

ỹ1,I,T−1

ỹ1,I,T
...

ỹJ+2,1,1

ỹJ+2,1,2
...

ỹJ+2,I,T−1

ỹJ+2,I,T



, X =



x̃1,1,1,1 . . . x̃1,1,1,M

x̃1,1,2,1 . . . x̃1,1,2,M
...

...
x̃1,I,T−1,1 . . . x̃1,I,T−1,M

x̃1,I,T,1 . . . x̃1,I,T,M
...

...
x̃J+2,1,1,1 . . . x̃J+2,1,1,M

x̃J+2,1,2,1 . . . x̃J+2,1,2,M
...

...
x̃J+2,I,T−1,1 . . . x̃J+2,I,T−1,M

x̃J+2,I,T,1 . . . x̃J+2,I,T,M



, Z =


w(z11)1 . . . w(z11)R

w(z12)1 . . . w(z12)R
...

...
w(zIT )1 . . . w(zIT )R



(S28)

Finally, let I[J+2] be a (J+2)-dimensional identity matrix and define Z̃≡ I[J+2]⊗Z.
Then we can write the objective function in (S25) as(

(IT )−1 Z̃′ (Y −XΛ)
)′

Wn

(
(IT )−1 Z̃′ (Y −XΛ)

)
(S29)

55Hence Wn is a (J+2)R-dimensional square matrix.
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Equation (S29) is a linear arrangement so we can obtain a closed form solution for
Λ̂ as the optimal GMM estimator. It entails first and second stage estimators given
by

Λ̂
1S =

(
X ′Z̃Z̃′X

)−1 (X ′Z̃Z̃′Y
)
, Λ̂

2S =
(
X ′Z̃Ŝ−1Z̃′X

)−1 (
X ′Z̃Ŝ−1Z̃′Y

)
(S30)

where

Ŝ =
1
I∗

Z̃′DZ̃, I∗ = IT (J+1)+
I

∑
i=1

T

∑
t=1

rit (S31)

accounts for the fact that some individuals cannot repeat their previous consumption
(for instance, if the treatment was withdrawn), and D is the I (J+2) square diago-

nal matrix with diagonal elements û2
jit =

(
y jit− x′jitΛ̂

1S
)2

. As instruments we use
initial health hit , lagged labor state y2it−1, income fixed effect ηi, race, education in-
dicators, and age ait , the centroid ωt and the lagged share of trial participation set−1,
as well as interactions between these variables. The variance-covariance matrix of
the second stage estimator is

V̂ 2S = I∗
(
X ′Z̃Ŝ−1Z̃′X

)−1
(S32)

C.6 Standard Errors

The uncorrected standard errors for our utility parameters yield from the variance-
covariance matrix in (S32). In order to obtain corrected standard errors we un-
dertake subsampling taking as given the following objects obtained from the full
sample: the definition of treatments (i.e., what their components are, for instance,
AZT or AZT + ddI), their corresponding entry and exit dates, and the exit thresholds
{s,s} specified in Section 3.2. We draw R = 100 subsamples containing a propor-
tion p̃ = 0.9 of the individuals in the sample drawn without replacement, and esti-
mate all parameters in the model using each subsample. This includes estimating
treatment characteristics, parameters governing transition and outcome processes,
and simulating forward paths of technology to obtain utility parameters. For any pa-
rameter γ with estimated value γ̂r from the rth subsample, the subsampling standard
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errors are obtained as
se(γ̂)≈ se(γ̂r) ·

√
p̃ (S33)

where se(γ̂r) is estimated as the standard deviation of the R quantities γ̂r.
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D Results Appendix

D.1 Estimates

APPENDIX TABLE S2: Health Effects on Future Health and Ailments

Ailments, γx Health, γh

Variables coef. se coef. se
ht 0.008 (0.0004) 1.152 (0.013)

h2
t /103 -0.013 (0.001) -0.519 (0.043)

h3
t /107 0.109 (0.017) 4.375 (0.546)

h4
t /1010 -0.040 (0.010) -2.016 (0.298)

h5
t /1014 0.054 (0.021) 2.803 (0.546)

Constant -0.929 (0.038) -5.874 (1.350)

Notes: Parameters estimated using (S10) and (S11). In parentheses, standard errors computed using subsampling with 100
subsamples.

APPENDIX TABLE S3: Labor Supply, y2t

variable coef. (γ l) se
ht 0.009 (0.0003)

h2
t /103 -0.013 (0.001)

h3
t /107 0.075 (0.005)

h4
t /1010 -0.013 (0.002)
aget 0.102 (0.009)
age2

t -0.001 (0.0001)
black -0.168 (0.025)

hispanic -0.040 (0.044)
some college 0.312 (0.031)

college 0.537 (0.029)
more than college 0.613 (0.033)

labor participationt−1, y2t−1 4.458 (0.028)
constant -5.914 (0.190)

Notes: Estimates of the Logit model in (10). Health is given by the CD4 count measured in hundreds of cells per microliter.
In parentheses, standard errors computed using subsampling with 100 subsamples.
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APPENDIX TABLE S4: Gross Income, y3t

variable coef. (γm) se
ht 0.018 (0.001)

h2
t /103 -0.064 (0.007)

h3
t /107 1.138 (0.171)

h4
t /1010 -1.030 (0.213)

h5
t /1014 4.854 (1.414)

h6
t /1018 -11.270 (4.712)

h7
t /1020 0.101 (0.062)
aget 0.482 (0.034)
age2

t -0.006 (0.0004)
black -5.534 (0.115)

hispanic -4.167 (0.222)
some college 2.497 (0.141)

college 5.812 (0.157)
more than college 8.203 (0.151)

labor participationt , y2t 5.738 (0.074)
lack o f ailmentst , y1t 0.207 (0.024)

constant -2.095 (0.801)
Notes: Estimates of (11). Random effects regression of gross income on covariates. y3t is measured in thousands of real
dollars of 2000. Health is given by the CD4 count measured in hundreds of cells per microliter. In parentheses, standard

errors computed using subsampling with 100 subsamples.

APPENDIX TABLE S5: Out-of-pocket Expenditures, y4t

variable coef. (γo) se
ht -0.002 (0.0004)

h2
t /103 0.009 (0.002)

h3
t /107 -0.133 (0.032)

h4
t /1010 0.090 (0.029)

h5
t /1014 -0.266 (0.118)

h6
t /1018 0.279 (0.181)
aget 0.037 (0.004)
age2

t -0.0002 (0.0001)
black -0.240 (0.014)

hispanic -0.119 (0.016)
some college 0.169 (0.016)

college 0.318 (0.018)
more than college 0.336 (0.018)
market productt 0.429 (0.016)
trial productt 0.313 (0.021)

labor participationt , y2t 0.105 (0.009)
lack o f ailmentst , y1t -0.122 (0.008)

constant -1.459 (0.099)

σo 0.862 (0.027)
Notes: Estimates of (12) using a Tobit Model for data censored at 0. market treatmentt = dJ+2,t +∑

J
k=1 dkt . Out-of-pocket

expenditures y4t are measured in thousands of real dollars of 2000. Health is given by the CD4 count measured in hundreds
of cells per microliter. In parentheses, standard errors computed using subsampling with 100 subsamples.
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APPENDIX TABLE S6: Death, 1−bt

variable coef. (γd) se
ht -0.028 (0.001)

h2
t /103 0.079 (0.005)

h3
t /107 -1.104 (0.102)

h4
t /1010 0.704 (0.088)

h5
t /1014 -1.610 (0.285)
aget -0.116 (0.021)
age2

t 0.002 (0.0002)
black -0.509 (0.069)

hispanic 0.034 (0.076)
some college 0.060 (0.057)

college -0.353 (0.053)
more than college -0.512 (0.060)

lack o f ailmentst−1, y1t−1 -1.140 (0.050)
constant 1.682 (0.474)

Notes: Estimates of the Logit model in (13). Health is given by the CD4 count measured in hundreds of cells per microliter.
In parentheses, standard errors computed using subsampling with 100 subsamples.

APPENDIX TABLE S7: Utility Parameters, yit

coef. variable est. se unc. se
αm NetIncomet (y3t− y4t) 0.057 (0.057) (0.010)
αs NoAilmentst ·NoTreatmentt (y1td0t) 1.019 (1.767) (0.260)

Cluster Experimental Repeat
j = 1, . . . ,J j = J+1 j = J+2

coef. variable est. se unc. se est. se unc. se est. se unc. se
α jw White -3.546 (0.744) (0.179) -1.468 (0.280) (0.136) 0.502 (0.567) (0.130)
α jb Black -4.190 (0.762) (0.190) -2.553 (0.334) (0.142) 0.276 (0.613) (0.145)
α jl Hispanic -3.967 (0.958) (0.647) -1.585 (0.356) (0.300) 0.707 (0.454) (0.354)
α ja Aget 0.043 (0.011) (0.004) 0.032 (0.005) (0.003) 0.009 (0.007) (0.002)
α jh ht/103 -2.021 (0.423) (0.104) -2.461 (0.203) (0.078)

Notes: Estimates of (14). Discount factor β = .95. J = 3. NoTreatmentit indicates whether he did not consume a treatment.
ht is defined as the number of white blood cells per cubic millimeter of blood. In parentheses, uncorrected standard errors

(unc. se) computed using (S32), and corrected standard errors (se) computed using subsampling with 100 subsamples.
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APPENDIX TABLE S8: Treatment Characteristics

Ailments, θ 2 Health, θ 1 Ailments, θ 2 Health, θ 1

Market Product coeff se coeff se Market Product coeff se coeff se
AZT -0.500 (0.020) -12.004 (0.736) ddI , d4T, Nevirapine 0.753 (0.175) 44.240 (3.781)

Interferons (α and/or β ), AZT -0.600 (0.061) -55.796 (3.102) ddI , 3TC, Nelfinavir -0.810 (0.083) 47.816 (6.848)
AL-721 egg lecithin -0.433 (0.087) -19.655 (3.917) ddI , d4T, Efavirenz -0.626 (0.078) 41.280 (2.772)

AZT, Acyclovir -0.539 (0.050) -12.752 (1.670) 3TC, Abacavir, Efavirenz 0.108 (0.047) 53.341 (1.501)
Acyclovir -0.783 (0.047) -0.017 (2.678) AZT, Nevirapine, 3TC, Abacavir 0.038 (0.131) 39.379 (3.369)

AZT, Acyclovir, ddI -0.851 (0.037) -16.474 (1.497) AZT, 3TC, Abacavir, Efavirenz 0.348 (0.080) 78.914 (3.549)
Acyclovir, ddI -0.348 (0.043) -4.159 (2.479) AZT, 3TC, Efavirenz 0.342 (0.079) 43.526 (3.073)

AZT, ddC -0.439 (0.029) -5.155 (1.309) AZT, 3TC, Abacavir -0.442 (0.078) 54.824 (3.175)
AZT, ddI -0.571 (0.061) -16.615 (2.488) d4T, 3TC, Efavirenz -0.346 (0.069) 47.978 (3.876)

ddI -0.375 (0.071) 15.263 (2.587) Nevirapine, 3TC, Abacavir -0.470 (0.099) 17.866 (12.148)
AZT, ddC, Acyclovir, ddI -0.789 (0.115) -13.351 (7.73) d4T, 3TC, Kaletra -0.310 (0.123) 35.611 (5.199)

AZT, ddC, Acyclovir -0.514 (0.086) -13.186 (2.168) 3TC, Kaletra, Abacavir -0.934 (0.124) 51.570 (5.325)
AZT, ddC, ddI -1.440 (0.047) -32.700 (1.801) AZT, 3TC, Kaletra -0.655 (0.140) 49.838 (3.967)
ddC, Acyclovir -0.310 (0.093) 2.415 (4.370) AZT, 3TC, Kaletra, Abacavir 0.298 (0.234) 9.855 (9.404)

ddC -0.358 (0.084) -18.630 (3.389) 3TC, Abacavir, Efavirenz, Tenofovir -0.308 (0.070) 31.845 (3.848)
d4T -0.717 (0.054) 39.776 (2.210) AZT, 3TC, Abacavir, Tenofovir -0.652 (0.074) 19.273 (5.651)

AZT, Acyclovir, 3TC -0.527 (0.096) 42.267 (3.394) AZT, 3TC, Kaletra, Tenofovir -0.552 (0.067) 32.227 (2.681)
AZT, 3TC 0.064 (0.051) 34.398 (1.875) Nevirapine, 3TC, Tenofovir -0.258 (0.163) 27.246 (4.619)

Acyclovir, d4T, 3TC -0.509 (0.100) 33.792 (4.664) 3TC, Kaletra, Tenofovir -0.092 (0.082) 51.672 (2.709)
AZT, 3TC, Saquinavir -0.271 (0.052) 38.283 (1.992) Kaletra, Efavirenz, Tenofovir -0.966 (0.100) 47.617 (2.684)

d4T, 3TC -0.104 (0.112) 37.173 (4.070) 3TC, Efavirenz, Tenofovir -0.011 (0.108) 47.790 (5.468)

AZT, 3TC, Saquinavir, Ritonavir -0.591 (0.085) 57.776 (10.571)
AZT, 3TC, Kaletra, Abacavir,

Tenofovir -0.738 (0.141) 19.980 (4.226)

AZT, Acyclovir, 3TC, Indinavir -0.479 (0.056) 63.734 (2.201) ddI , Kaletra, Tenofovir -0.276 (0.112) 18.396 (4.015)
Acyclovir, d4T, 3TC, Indinavir -0.295 (0.108) 78.559 (3.665) ddI , Efavirenz, Tenofovir -0.420 (0.117) 2.381 (2.505)
AZT, 3TC, Ritonavir, Indinavir -0.567 (0.102) 35.032 (6.629) Abacavir, Efavirenz, Tenofovir -0.762 (0.140) 39.457 (3.150)
d4T, 3TC, Ritonavir, Indinavir -0.767 (0.049) 33.510 (3.321) Kaletra, Abacavir, Tenofovir -0.820 (0.198) 14.891 (2.601)

d4T, 3TC, Saquinavir, Ritonavir -0.444 (0.085) 42.631 (5.409) 3TC, Ritonavir, Abacavir, Atazanavir -0.061 (0.039) 26.850 (1.181)
ddI , d4T, Indinavir -0.048 (0.137) 32.286 (3.981) Efavirenz, Tenofovir, Emtricitabine 0.118 (0.082) 54.798 (2.464)

d4T, 3TC, Indinavir -0.395 (0.096) 53.128 (4.546)
Ritonavir, Efavirenz, Tenofovir,

Emtricitabine, Atazanavir 0.306 (0.053) 83.823 (1.706)

AZT, 3TC, Indinavir -0.075 (0.066) 65.041 (2.809)
3TC, Ritonavir, Abacavir, Tenofovir,

Atazanavir -0.403 (0.163) 38.313 (10.521)

d4T, Nevirapine, 3TC -0.386 (0.052) 46.846 (2.962) ddI , Ritonavir, Tenofovir, Atazanavir 0.049 (0.108) 47.800 (2.837)

AZT, Nevirapine, 3TC 0.109 (0.087) 46.275 (4.061)
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir 0.138 (0.104) 53.028 (3.940)

AZT, 3TC, Nelfinavir -0.432 (0.072) 50.776 (3.924) Nevirapine, Tenofovir, Emtricitabine -0.205 (0.079) 37.227 (2.303)
ddI , d4T, Nelfinavir -1.049 (0.060) 57.227 (3.672) Kaletra, Tenofovir, Emtricitabine -0.183 (0.093) 46.723 (5.990)

d4T, 3TC, Nelfinavir -0.881 (0.134) 48.018 (9.588)
Ritonavir, Tenofovir, Emtricitabine,

Lexiva -0.372 (0.116) 30.226 (3.328)

Fringe Mixes

Isoprinosine, Ribavirin, Interferons (α
and/or β ) -1.017 (0.110) -21.950 (6.644)

Nevirapine, 3TC, Ritonavir, Kaletra,
Tenofovir -1.265 (0.113) 45.683 (4.934)

Interferons (α and/or β ), 3TC,
Saquinavir, Indinavir, Efavirenz -0.054 (0.243) 65.353 (5.179)

3TC, Ritonavir, Kaletra, Abacavir,
Tenofovir, Atazanavir -0.465 (0.077) 28.440 (2.687)

Nevirapine, 3TC, Saquinavir,
Ritonavir, Indinavir 0.068 (0.134) 6.457 (7.335)

Ritonavir, Tenofovir, Emtricitabine,
Atazanavir, Lexiva -0.612 (0.142) 42.050 (3.579)

Nevirapine, 3TC, Saquinavir,
Ritonavir, Nelfinavir -0.689 (0.156) 30.293 (7.841)

Saquinavir, Ritonavir, Tenofovir,
Emtricitabine, Atazanavir -0.665 (0.120) 31.824 (3.879)

Nevirapine, Saquinavir, Ritonavir,
Abacavir, Efavirenz -1.121 (0.161) 19.278 (4.112)

3TC, Ritonavir, Abacavir, Tenofovir,
Atazanavir, Lexiva -0.210 (0.078) 26.678 (5.890)

Nevirapine, Ritonavir, Nelfinavir,
Abacavir, Efavirenz -0.697 (0.099) 31.044 (4.027)

Saquinavir, Ritonavir, Abacavir,
Tenofovir, Emtricitabine 0.072 (0.142) 32.865 (4.856)

Nevirapine, Ritonavir, Kaletra,
Abacavir, Efavirenz -0.410 (0.174) 43.495 (5.757)

3TC, Ritonavir, Tenofovir,
Emtricitabine, Raltegravir 0.032 (0.094) 33.352 (2.728)

Nevirapine, 3TC, Nelfinavir,
Abacavir, Tenofovir -0.467 (0.109) 27.893 (3.250)

Ritonavir, Tenofovir, Emtricitabine,
Darunavir, Raltegravir -0.221 (0.067) 47.736 (2.929)

Notes: Treatment characteristics are estimated as indicators for treatment usage in (S10) and (S11). In parentheses, standard
errors computed using subsampling with 100 subsamples. For “fringe Mixes” we only include the 5 or 6 most used

treatments in the mix.
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APPENDIX TABLE S9: Distribution of Number of New Treatments, FN

E[Nt ] = µt−1 ≡ exp(φ N
1 κt−1 +φ N

2 set−1)

ln µ lnα

variable coef. est. se variable coef. est. se
κt−1 φ N

1 0.432 (0.246) Constant φ N
3 -0.206 (0.451)

set−1 φ N
2 6.177 (2.462) κt−1 φ N

4 -1.019 (0.626)
Notes: Model is specified in (S1). κt−1 measures the magnitude of previous innovations. E[Nt ] = µt−1 and

Var[Nt ] = µt−1(1+αN
t−1µt−1). In parentheses, standard errors computed using subsampling with 100 subsamples.
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APPENDIX FIGURE S3: Distribution of Number of New Treatments
Notes: Model is specified in (S1). Figure shows the empirical distribution of the number of new treatments and the average

over time of the predicted probabilities using the estimated parameters in Table S9.

APPENDIX TABLE S10: Within Cluster Share Function

variable coef. (γw) se
Ailments Rk -0.427 (0.124)

Ailments Rk × Health Rk 0.074 (0.020)
Health Rk2 -0.029 (0.008)

Ailments Rk2 -0.019 (0.006)
NP -0.509 (0.048)

Health Rk × NP 0.046 (0.009)
Ailments Rk × NP 0.063 (0.010)

Ailments Rk × Health Rk × NP -0.007 (0.002)
New -0.352 (0.508)

New × NP 0.027 (0.404)
Constant 0.786 (0.121)

Notes: Parameters estimates from (S7) and (S8). Rk stands for the rank of the characteristic compared to other treatments
within a cluster. NP is the cluster size. New indicates whether the treatment just entered the market. In parentheses, standard

errors computed using subsampling with 100 subsamples.
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D.2 The Likelihood of Observed Technological Progress
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APPENDIX FIGURE S4: Distribution of Technology Paths: Technology and Consumption
Notes: 100 simulated paths conditional on the state of the world in 1991 and 1996.

D.3 Demand Pull: How Consumer Choices Affect Technology

The evolution of technology, and ultimately consumer welfare, is affected by de-
mand externalities arising in the innovation process. We quantify the importance of
these externalities by describing how the set of available treatments would evolve
if consumers had less influence over the process of innovation, restricting the role
of demand pull. However, since we do not explicitly model the primitives of the
supply process (i.e., how product makers make their decisions), our first counter-
factual here imposes the strong assumption that the objects describing the evolution
of the set of available treatments (gθ , gN , {s,s}) remain unchanged. We investigate
two ways in which the process of innovation is detached from demand. The first
counterfactual assumes a scientific body determines exit exclusively on the basis of
treatment quality, and at the entry margin innovation is based equally on the char-
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acteristics of all available treatments, with no special weight on the characteristics
of popular treatments. The second counterfactual eliminates the effect of repeat
purchase on innovation. For each experiment we present results averaging over 500
simulated paths starting at the first semester of 1991.

Exogenous scientific intervention. In the first counterfactual regime innovation
is independent of consumer demand. Thus, new treatments characteristics are no
longer dependent on demand. At the entry margin we transform the centroid to be
simply the average of the characteristics of treatments currently available on the
market, as opposed to the share weighted average in the baseline model in Section
3, and take the estimates from the law of motion of the set of available treatments
in Section 5.2 as given. Since gN (Nt |κt−1,set−1 ) depends on set−1, we use the
path for the experimental treatment share resulting from averaging the simulated
experimental treatment share paths from the baseline model. By following this ap-
proach we keep that part of the comparison constant relative to the baseline. At the
exit margin we also separate treatment exit from demand by adopting two alterna-
tive exogenous exit rules designed to resemble the actions of scientific authorities
tasked with keeping only the best treatments on the market:

↪→ Frontier. Any treatments that is not in the technological frontier is dropped
from the market. This rule provides an upper bound for how fast innovation
can move.

↪→ Inverse frontier. We use the exit rate path resulting from averaging the sim-
ulated exit rate paths from the baseline model. This exit rate determines the
number of treatments nt to be dropped. We define the inverse qualities of
treatment k as −θk and the inverse frontier as the technological frontier con-
structed using the inverse qualities. Then we drop nt treatments at random
from the inverse frontier. If nt is larger than the amount of treatments in the
inverse frontier, we construct the new inverse frontier and repeat the process
until nt treatments are dropped from the market. This exit rule captures expert
intervention in a less draconian way.
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APPENDIX FIGURE S5: Alternative Regimes: Exogenous Scientific Intervention
Notes: Evolution of the average treatment quality in the market under alternative regimes (500 simulations per regime)
conditional on the state of the world at the first semester of 1991. The baseline is the estimated model of demand-pull
innovation in Section 3. In both the frontier and inverse frontier regimes the centroid is not driven by demand as it is a

simple average of the characteristics of treatments available on the market. In the frontier regime all treatments inside the
quality frontier are exogenously withdrawn. In the inverse frontier regime the exit rate of treatments equals the average exit

rate in the baseline simulations but the treatments that are withdrawn are the worst, independent of their demand.

Figure S5 shows that under the frontier regime innovation is more rapid, lead-
ing to much better treatments on both dimensions of quality. In contrast, the path
of treatment quality is not as different from the baseline under the inverse fron-

tier regime. Since individuals already avoid using the very worst treatments in the
decentralized economy, an intervention that removes these treatments exogenously
has little impact on the centroid, and hence on subsequent innovations. Neverthe-
less, our estimates imply that the inverse frontier regime does lead to somewhat
higher average health quality.

Eliminating the effect of repeat purchase. Since consumers dislike changing
treatment, they face a tradeoff between old and new technologies, and are more
likely to repeat purchase if prior treatment offers better bundles of qualities than
current clusters. In this regime we study the evolution of treatment quality when
the process of innovation remains responsive to demand but demand by repeat con-
sumers is not guided by their preferences and individual characteristics. Concretely,
we assign individuals to alternatives in the choice set in the same proportions as the
baseline (including the experimental treatment and no treatment), but make repeat
consumption of old technologies random. By setting the unconditional shares of
this counterfactual regime to match the unconditional shares in the baseline we
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avoid spurious effects on the process of innovation yielding from arbitrary aggre-
gate shares (e.g., 1/G for a choice set of size G). This regime neutralizes the de-
pendence of the technological path on the preferences and characteristics of repeat
consumers without changing the nature of the law of motion of available treatments.

Figure S6 shows that in the counterfactual regime the path of innovation is tilted
towards more effective treatments with greater side effects. In other words, elim-
inating the effects of repeat consumption improves health and survival, but leads
to more physical ailments. The reason is that individuals prefer medical treatments
with fewer side effects despite the detrimental impact on their survival.
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APPENDIX FIGURE S6: Alternative Regimes: Eliminating the Effect of Repeat Purchase.
Notes: Average paths computed over 500 simulations that are conditional on the state of the world at 1991. The baseline is
the estimated model of demand-pull innovation in Section 3. The baseline solid lines in Figure S6 are the averages of the
grey lines in Figure 9 and Figure S4 in Appendix D.2. Individuals in the alternative regime are assigned alternatives using

the unconditional shares from the baseline model as assignment probabilities.

D.4 Further Details of Policy Counterfactuals

Mandated treatment. The first planner can only assign alternatives based on
whether a person’s health is high or low and whether the person decided to consume
a market treatment last period (either by repeating his previous market treatment or
by choosing a cluster). Hence, the planner’s policy rules can be based only on four
different categories. The planner can send all individuals in each of the four groups
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to any of the J + 2+ rit alternatives available. We nest the baseline decentralized
allocation by adding this allocation as an alternative in the planner’s action set.
Hence, there are J + 3+ rit alternatives in the planners action set and he can base
his assignment on 4 categories. Since only two of the four categories can repeat
their previous market treatment (when rit = 1), this amounts to 72× 62 = 1,764
policy rules. An example of a policy rule is presented in Table S11. We precom-
pute a set of continuation values and match them to allocation rules to avoid forward
simulation for each rule. We further explain these procedures below.

APPENDIX TABLE S11: Example of an Action-Constrained Planner’s Policy Rule

Category Alternatives
Health status Treatment t−1 Cluster 1 Cluster 2 Cluster 3 Trial Repeat No treatment DA

high yes x
high no x
low yes x
low no x

Notes: Treatment t−1 column indicates whether individuals in this category consumed a market treatment in t−1. DA
column indicates that the planner assigns the decentralized allocation.

Optimal Consumption of Experimental Treatments. The second planner we
consider can base his policy on the entirety of the individual state but his action set
has only two elements: he can give the person the experimental treatment or he can
allocate the decentralized allocation (excluding the experimental treatment). Policy
rules for this planner are experimental treatment shares and his problem also nests
the decentralized allocation. For policy rules below the decentralized trial share
set the planner incurs a welfare cost by preventing people from rationally consum-
ing an experimental treatment. For policy rules above set he incurs a welfare cost
by assigning people to consume an experimental treatment against their rational
preferences. Welfare gains, if any, come from the externality via demand for exper-
imental treatments, which pushes innovation. We evaluate policies in increments
of 0.5 percent points, which amounts to 202 policy rules. Here we also use the
set of precomputed continuation values and match them to allocation rules to avoid
forward simulation for each rule.
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D.4.1 Continuation Values and Smoothing

We obtain continuation values for every planner rule by implementing the following
algorithm:

1. Create a collection, denoted A , of 500 continuation value vectors computed
for all t + 1 states. Each row in a value vector is an individual. Each value
vector v ∈A corresponds to a t +1 aggregate state zv

t+1.

2. For each rule n in a given planner problem, we compute each individual’s
current payoff and their future state, as well as the implied t + 1 aggregate
state zn

t+1.

3. We match rule n to the continuation value vector v∗ ∈A corresponding to the
t+1 aggregate state that is closest to the aggregate state induced by rule n. In
other words, we match rule n to the continuation value vector v∗ that solves:

v∗ = arg min
v∈A
||zn

t+1− zv
t+1|| (S34)

We use a measure of Euclidean distance that yields from discretizing the ag-
gregate states zn

t+1 and zv
t+1 into vectors with 196 components. We scale each

component of the discretized aggregate state vectors to be between zero and
one by dividing over its largest value.

4. We repeat steps 2 and 3 one thousand times for every rule n and average over
repetitions.

As Figure S7 shows, our method of matching continuation values generates
noise around the mapping from planner rules into average consumer lifetime utility
for the planner who chooses the optimal experimental treatment share s∗t . Hence,
we use a local polynomial to smooth the mapping in an interval starting at the
decentralized share set and going 15 percent points above it (from 0.09 to 0.24).
This produces Figure 10 and the results associated with it in Table 5.
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APPENDIX FIGURE S7: Optimal Assignment to Experimental Treatments
Notes: The solid line represents average lifetime utility. The dashed line indicates the planner’s optimal share s∗et . The

dotted line represents the decentralized share set . Year is 1996.
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