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In regression discontinuity (RD), a running variable (or �score�) crossing a cuto¤ de-

termines a treatment that a¤ects the mean regression function. This paper generalizes

this usual �one-score mean RD� three ways: (i) considering multiple scores, (ii) ac-

commodating quantile/mode regressions, and (iii) allowing �partial e¤ects�due to each

score crossing its own cuto¤, not just the full e¤ect with all scores crossing all cuto¤s.

This generalization is motivated by (i) many multiple-score RD cases, (ii) informa-

tive quantile/mode regression functions, and (iii) the full-e¤ect identi�cation needing

the partial e¤ects to be separated. We establish identi�cation for �multiple-score RD

(MRD)�, and propose simple estimators that become �local di¤erence in di¤erences

(DD)�in case of double score. We also provide an empirical illustration with German

data where partial e¤ects exist for quantile regressions.
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1 Introduction

Regression discontinuity (RD), originated by Thistlethwaite and Campbell (1960),

has been gaining popularity in many disciplines of social sciences. Just to name a new,

Rao et al. (2011) and Bernardi (2014) in sociology; Henry et al. (2010) and Lipsey et

al. (2015) in education; Chen and Shapiro (2007) and Berk et al. (2010) in criminology;

Broockman (2009), Caughey and Sekhon (2011), and Eggers et al. (2015) in political

science; and many studies in economics as can be seen in the references of Imbens and

Lemieux (2008) and Lee and Lemieux (2010).

In a typical RD with a treatment D, an individual is assigned to the treatment

(D = 1) or control group (D = 0), depending on a single running/forcing/assignment

variable S crossing a cuto¤ or not. There are, however, many RD cases where multiple

running variables determine a single treatment. One example is multiple test scores

crossing cuto¤s for school graduation or grade advancement (Jacob and Lefgren 2004).

Another example is spatial/geographical RD where longitude and latitude are two

running variables (Dell 2010 and Keele and Titiunik 2015), although often the scalar

shortest distance to a boundary is used as a running variable in the literature (Black

1999, Bayer et al. 2007, and Michalopoulos and Papaioannou 2014). More examples

with multiple running variables will be seen later. Since the word �running variable�

will appear often in this paper, we will call it simply �score�(S for Score).

When there are multiple scores, two cases arise: �OR case�where any score can

cross a cuto¤ to get treated (Jacob and Lefgren 2004, Matsudaira 2008, and Wong et

al. 2013), and �AND case�where all scores should cross all cuto¤s to get treated as in

the above spatial RD examples. For simpli�cation, we will examine only AND cases in

this paper, because an OR case can be converted to the AND case by ��ipping�the

treatment, i.e., by relabeling the treatment and control groups.

�Multiple-score RD for a single treatment (MRD)�that is the focus of this paper

di¤ers from �RD with multiple cuto¤s for a single score�as in Van der Klaauw (2002)

and Angrist and Lavy (1999), which is easily handled by looking at each cuto¤ one at a

2



time. Multiple-score RD for a single treatment also di¤ers from �multiple-score RD for

multiple treatments�as in Leuven et al. (2007), Papay et al. (2011) and Abdulkadiroglu

et al. (2014) where each score dictates one treatment, which is a special case of multiple

treatments (see, e.g., Lee 2005).

The goal of this paper is to generalize the usual �single-score mean-regression

RD� in three ways. First, we consider multiple scores for a single treatment D, as

was just mentioned. Second, instead of the usual mean regression function, we will

look at a general regression function, say g(S), that includes S-conditional quantiles

and mean; g(S) can be even mode (Lee 1989, Kemp and Santos-Silva 2012, and Yao

and Li 2014). Allowing quantiles and mode is convenient, because quantile regression

(Koenker 2005) can deal with censored responses semiparametrically (Powell 1986)

and mode regression can handle truncated responses (Lee 1989) whereas mean cannot.

Third, we allow �partial e¤ects�due to each score crossing its own cuto¤ in addition to

the (full) treatment e¤ect due to D = 1 with all scores crossing all cuto¤s.

Certainly, we are not the �rst to deal with MRD theoretically. Wong et al. (2013)

examined �OR-case MRD�, and Keele and Titiunik (2015) �AND-case MRD�; there are

also other papers to be examined later. The critical di¤erence between these studies

and this paper is that we allow partial e¤ects while they do not. To see the point,

consider two-dimensional score S = (S1; S2)0 and

g(S) = �0 + �1�1 + �2�2 + �dD, �j � 1[cj � Sj], j = 1; 2 & D = �1�2 (1.1)

where c � (c1; c2)0 are known cuto¤s, and 1[A] = 1 if A holds and 0 otherwise. Since

D is the interaction of �1 and �2, it is a common practice to allow partial e¤ects �1

and �2 of �1 and �2 in the model. For instance, in the school graduation e¤ect example

(on lifetime income Y ) by passing both math (�1 = 1) and English (�2 = 1) exams,

even if one fails to have D = 1, still passing/failing the math exam may a¤ect Y

by encouraging/stigmatizing the person. Ruling out such partial e¤ects, Wong et al.

(2013) and Keele and Titiunik (2015) found �boundary-speci�c�e¤ects (which are then

to be weighted-averaged), in comparison to our simple e¤ect at S = c (under a weak
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continuity condition only at S = c). We will explain this point in detail later.

Yet another di¤erence between this paper and the papers in the multiple-score

RD literature is that we allow quantile/mode e¤ects, whereas almost all those papers

considered only mean e¤ects. Generalizing mean e¤ects into quantile/mode e¤ects is

not easy, as mean is a linear operator while quantiles/mode are not. This level of

generality, however, comes only under �sharp RD�where D is fully determined by the

scores; hence, we stick to sharp MRD in this paper, as Wong et al. (2013) and Keele

and Titiunik (2015) also did. For simpli�cation, we will examine only two scores S =

(S1; S2)
0, as generalizations to more than two scores are conceptually straightforward.

Without loss of generality, we will set the cuto¤s at zero unless otherwise noted, as

(S1; S2) can be always centered as (S1 � c1; S2 � c2).

In short, we examine AND-case two-score sharp MRD allowing partial e¤ects

for a regression function g(S) that can be the S-conditional mean, quantile or mode.

Since the treatment D takes the interaction form �1�2 as in (1.1), the e¤ect is found

essentially by �local di¤erence in di¤erences (DD)�where both partial e¤ects are removed

in DD with only the desired interaction surviving.

The rest of this paper is organized as follows. Section 2 studies one-score RD for

g(S) to set the stage. Section 3 examines the identi�cation and estimation for two-

score MRD for g(S)� this is the main section of this paper. Section 4 compares our

identi�cation conditions and estimators with those in the literature. Section 5 provides

an empirical illustration for the e¤ects of unemployment insurance bene�t (UIB) on

unemployment duration using German data. Finally, Section 6 concludes.

2 RD with One Score for General Regression

Suppose we have a sharp treatment D that equals

� � 1[0 � S]:
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Denoting a value that S can take as s and writing g(Y jS = s) just as g(Y js), de�ne

g(Y j0+) � lim
s#0
g(Y js) and g(Y j0�) � lim

s"0
g(Y js):

Let (Y 0; Y 1) denote the potential responses corresponding to D = � = f0; 1g, and

let the observed response be Y = (1�D)Y 0 +DY . Rewrite g(Y jS) as

g(Y jS) = g(Y 0jS)(1�D) + g(Y 1jS)D = g(Y 0jS) + fg(Y 1jS)� g(Y 0jS)gD

= g(Y 0jS) + �(S)D where �(S) � g(Y 1jS)� g(Y 0jS): (2.1)

Assume that g(Y 0js) is continuous at 0 and g(Y 1j0+) exists; the latter is hardly

an assumption. Taking the upper/right and lower/left limits at 0 on (2.1) gives

g(Y j0+) = g(Y 0j0+) + �(0+) and g(Y j0�) = g(Y 0j0�):

Subtract the latter from the former, and invoke g(Y 0j0+) = g(Y 0j0�) to obtain

�d � �(0+) = g(Y j0+)� g(Y j0�) (2.2)

f = g(Y 1j0+)� g(Y 0j0�) = g(Y 1j0+)� g(Y 0j0+) as g(Y 0js) is continuous at 0g:

The (local at s = 0) treatment e¤ect �d is identi�ed by g(Y j0+) � g(Y j0�), and �d
is characterized by g(Y 1j0+) � g(Y 0j0+) that becomes E(Y 1 � Y 0j0+) when g(�jS) =

E(�jS)� the mean e¤ect on the �just treated�.

Di¤erently from the usual mean RD, if g(�) is a quantile function, then

�d = g(Y
1j0+)� g(Y 0j0+) 6= g(Y 1 � Y 0j0+) in general; (2.3)

g(Y 1 � Y 0j0+) that is the more appropriate quantile e¤ect than g(Y 1j0+) � g(Y 0j0+)

was examined in Lee (2000), but rarely so in the RD literature. In this paper, we will

also adopt the quantile e¤ect in the form g(Y 1j0+) � g(Y 0j0+), rather than the more

di¢ cult g(Y 1 � Y 0j0+). The problem (2.3) also occurs for mode.

Equation (2.2) shows how to estimate �d: obtain sample versions ĝ(Y jS = h) and

ĝ(Y jS = �h) for a small bandwidth h > 0, and then use

�̂d � ĝ(Y jS = h)� ĝ(Y jS = �h): (2,4)
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Instead of this, however, a much simpler implementation is replacing �(S) in (2.1) with

�d and g(Y
0jS) with a linear spline of S to get

g(Y jS) = �0 + ��S(1� �) + �+S� + �dD (2.5)

where ��s are parameters, and then applying quantile/mode regression to this.

Equation (2.5) follows the usual mean-RD implementation: although g(Y 0jS) is a

constant at S = 0, within the local neighborhood �h of 0 on which estimation is done

in practice, it is better to allow g(Y 0jS) to change at least �linear-splinely�; see Hahn

et al. (2001). Instead of a linear spline, a polynomial function may be used such as

a quadratic or cubic function of S. How to choose h is still a vexing problem in the

usual mean RD, despite theoretical advances as in Imbens and Kalyanaraman (2012)

and Calonico et al. (2014).

Finally in this section for a scalar S, we note that Frandsen et al. (2012) examined

quantile e¤ects for fuzzy RD and proposed �complier quantile e¤ects�. It is not clear,

however, how their approach could be generalized to MRD. Instead of this, as can be

seen in the next section, our approach generalizes (2.1) that holds only for sharp RD.

3 MRD with Two Scores

Turning to two-score MRD, let

S = (S1; S2)
0 and D = �1�2 where �j � 1[0 � Sj], j = 1; 2:

First, we introduce four potential responses corresponding to �1 = 0; 1 and �2 = 0; 1,

and examine partial e¤ects� an issue that does not arise for a scalar S. Second, we

impose a continuity condition analogous to the continuity of g(Y 0jS) at 0 in (2.1),

and present the identi�ed e¤ect analogous to g(Y 1j0+)� g(Y 0j0+) in (2.2). Third, we

propose estimators that di¤er in how a baseline function analogous to g(Y 0jS) in (2.1)

is speci�ed.
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3.1 Four Potential Responses and Partial E¤ects

De�ne potential responses (Y 00; Y 10; Y 01; Y 11) corresponding to (�1; �2) being (0; 0),

(1; 0), (0; 1), (1; 1), respectively. Although our treatment of interest is the interaction

D = �1�2, it is possible that �1 and �2 separately a¤ect Y . For instance, to graduate

high school, one has to pass both math (�1) and English (�2) exams, but failing the

math test may stigmatize the student (�I cannot do math�) to a¤ect his/her lifetime

income Y ; in this case, Y is a¤ected by �1 as well as by D. More generally, when an

interaction term appears in a regression function, it is natural to allow the individual

terms in the regression function. Call the separate e¤ects of �1 and �2 �partial e¤ects�.

At a glance, the individual treatment e¤ect of interest may look like Y 11 � Y 00

because D = �1�2, but this is not the case. To see why, think of the high school

graduation example. Y 11 is the lifetime income when both exams are passed, and as

such, Y 11 includes the high school graduation e¤ect on lifetime income and the partial

e¤ect of passing the math exam (�I can do math�), as well as the possible partial e¤ect

of passing the English exam (�I can do English�?). Hence the �net� e¤ect of high

school graduation should be

Y 11 � Y 00 � (Y 10 � Y 00)� (Y 01 � Y 00) = Y 11 � Y 10 � Y 01 + Y 00

where the two partial e¤ects relative to Y 00 are subtracted from Y 11 � Y 00.

Recalling (2.1), rewrite g(Y jS) as

g(Y jS) = g(Y 00jS)(1��1)(1��2)+g(Y 10jS)�1(1��2)+g(Y 01jS)(1��1)�2+g(Y 11jS)�1�2:

(3.1)

Further rewrite this so that �1 and �2 and D = �1�2 appear separately:

g(Y jS) = g(Y 00jS) + fg(Y 10jS)� g(Y 00jS)g�1 + fg(Y 01jS)� g(Y 00jS)g�2

+fg(Y 11jS)� g(Y 10jS)� g(Y 01jS) + g(Y 00jS)gD (3.2)

which will play the main role for MRD. This equation does not hold for fuzzy RD as

is the case for (2.1), because D would then depend on random variables other than S
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on the right-hand side while the left-hand side g(Y jS) is a function of only S. This is

why we stick to sharp RD.

The slope of D = �1�2 in (3.2) is reminiscent of the above Y 11 � Y 10 � Y 01 + Y 00,

and it is a DD with g(Y 11jS) � g(Y 10jS) as the �treatment group di¤erence� and

g(Y 01jS)� g(Y 00jS) as the �control group di¤erence�. Since D is an interaction, it is

only natural that DD is used to �nd the treatment e¤ect, as DD is known to isolate

the interaction e¤ect by removing the partial e¤ects.

If

no partial e¤ects : g(Y 10jS) = g(Y 01jS) = g(Y 00jS);

then (3.2) becomes

g(Y jS) = g(Y 00jS) + �00(S)D where �00(S) � g(Y 11jS)� g(Y 00jS) (3.3)

that is analogous to the single-score equation (2.1); �00�in �00(S) refers to the baseline

superscript in Y 00.

It helps to see when the no partial-e¤ect assumption is violated: recall (1.1) with

�1 6= 0 or �2 6= 0, where

g(Y 11js) = �0 + �1 + �2 + �d; g(Y 10js) = �0 + �1;

g(Y 01js) = �0 + �2; g(Y 00js) = �0 (3.4)

=) g(Y 11js)� g(Y 10js)� g(Y 01js) + g(Y 00js) = �d;

g(Y 11js)� g(Y 00js) = �1 + �2 + �d:

Examine squares 1�4 in Figure 1, where (h1; h2) are the localizing bandwidths.

There is one treatment group (square 1) and three control groups (squares 2, 3 and 4).

Under no partial e¤ect, the treatment e¤ect can be found by comparing squares 1 and

2, squares 1 and 4, or squares 1 and 3. With partial e¤ects present, however, this is no

longer the case: squares 1 and 2 give the treatment e¤ect plus the partial e¤ect due to

S1 crossing 0; squares 1 and 4 give the treatment e¤ect plus the partial e¤ect due to

S2 crossing 0; squares 1 and 3 gives the treatment e¤ect plus the two partial e¤ects. It

is only when we take DD as in (3.2) that the desired treatment e¤ect is identi�ed.
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Figure 1: Two Score RD in �AND�Case

3.2 Identi�cation

To simplify notation, denote

lim
s1#0;s2#0

as lim
+;+
, lim

s1"0;s2#0
as lim

�;+
, lim

s1#0;s2"0
as lim

+;�
, lim

s1"0;s2"0
as lim

�;�
:

With little loss of generality, assume that these double limits of g(�jS) exist at 0 for

the potential responses, and denote them using 0� and 0+; e.g.

g(Y 00j0�; 0+) � lim
�;+
g(Y 00js1; s2):

Take the double limits on (3.1) to get

g(Y j0+; 0+) = g(Y 11j0+; 0+); g(Y j0+; 0�) = g(Y 10j0+; 0�);

g(Y j0�; 0+) = g(Y 01j0�; 0+); g(Y j0�; 0�) = g(Y 00j0�; 0�):

These give a limiting version of the slope of D = �1�2 in (3.2) at (0; 0):

g(Y j0+; 0+)� g(Y j0+; 0�)� g(Y j0�; 0+) + g(Y j0�; 0�)

= g(Y 11j0+; 0+)� g(Y 10j0+; 0�)� g(Y 01j0�; 0+) + g(Y 00j0�; 0�): (3.5)
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Assume the continuity condition (note that all right-hand side terms have (0+; 0+))

(i) : g(Y 01j0�; 0+) = g(Y 01j0+; 0+);

(ii) : g(Y 10j0+; 0�) = g(Y 10j0+; 0+); (3.6)

(iii) : g(Y 00j0�; 0�) = g(Y 00j0+; 0+):

In (3.6), (i) is plausible because Y 01 is untreated along s1, (ii) because Y 10 is untreated

along s2, and (iii) because Y 00 is untreated along both s1 and s2. Under (3.6), (3.5)

becomes

g(Y j0+; 0+)� g(Y j0+; 0�)� g(Y j0�; 0+) + g(Y j0�; 0�) (3.7)

= �d � g(Y 11j0+; 0+)� g(Y 10j0+; 0+)� g(Y 01j0+; 0+) + g(Y 00j0+; 0+) (3.8)

that is the correct two-score MRD analog of g(Y 1j0+)� g(Y 0j0+) in (2.2).

The expression (3.7) is the identi�ed entity that is characterized by (3.8). When

g(�jS) = E(�jS), (3.8) is the e¤ect on the just treated E(Y 11�Y 10�Y 01+Y 00j0+; 0+).

Since each limit exists in (3.8), (3.8) can be written also as

�d = lim
+;+
fg(Y 11js)� g(Y 10js)� g(Y 01js) + g(Y 00js)g:

We summarize this main �nding (as well as (3.3) under no partial e¤ect) as a theorem.

THEOREM 1: Suppose the double limits of g(�jS) exist at 0 for the potential responses,

the continuity condition (3.6) holds, and the density function fS(s) of S is strictly

positive on an neighborhood of (0; 0). Then the e¤ect

�d = g(Y
11j0+; 0+)� g(Y 10j0+; 0+)� g(Y 01j0+; 0+) + g(Y 00j0+; 0+)

is identi�ed by two-score MRD (3.7). If no partial-e¤ect condition holds locally at

S = 0 in the sense g(Y 10j0+; 0+) = g(Y 01j0+; 0+) = g(Y 00j0+; 0+), then �d becomes

g(Y 11j0+; 0+)� g(Y 00j0+; 0+).
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3.3 Estimation

De�ne

��j � 1[�hj < Sj < 0]; �+j � 1[0 � Sj < hj]; j = 1; 2:

Although (3.7) shows that �d can be estimated by replacing the four identi�ed elements

in (3.7) with their sample versions, in practice, it is easier to implement MRD with

(3.2), using only the local observations satisfying S1 2 (�h1; h1) and S2 2 (�h2; h2).

Speci�cally, replace g(Y 00jS) in (3.2) with a (piecewise-) continuous function of

S, and replace the slopes of �1, �2 and D with parameters �1, �2 and �d to obtain

g(Y jS) = g(Y 00jS) + �1�1 + �2�2 + �dD (3.9)

where g(Y 00jS) is speci�ed as

linear : m1(S) � linear function of S1; S2; (3.10)

quadratic : m2(S) � m1(S) + linear function of S21 ; S
2
2 ; S1S2;

cubic : m3(S) � m2(S) + linear function of S31 ; S
3
2 ; S

2
1S2; S1S

2
2 :

Then quantile/mode regression can be applied to (3.9). For the mean e¤ect, least

squares estimator (LSE) is enough.

Yet another way to specify g(Y 00jS) in (3.9) is a piecewise-linear function contin-

uous at 0 as in (2.5):

g(Y 00jS) = �0 + �11��1 ��2 S1 + �12��1 ��2 S2 + �21��1 �+2 S1 + �22��1 �+2 S2

+�31�
+
1 �

�
2 S1 + �32�

+
1 �

�
2 S2 + �41�

+
1 �

+
2 S1 + �42�

+
1 �

+
2 S2: (3.11)

This function linear in S allows di¤erent slopes across the four quadrants determined

by (��1 ; �
+
1 ; �

�
2 ; �

+
2 ); it is continuous at 0 because lims!0 g(Y

00js) = �0 for any sequence

of s approaching 0.
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4 Other Approaches in the Literature

Having presented our proposals, now we turn to the other approaches in the MRD

literature. First, two scores are collapsed into a single score so that the familiar single-

score RD arsenal can be mobilized. Second, two-dimensional localization is avoided by

doing, e.g., one-dimensional localization for S1 given S2 � 0 (i.e., given �2 = 1) to get

the �e¤ects on the boundary S2 � 0�; here as well, the familiar single-score RD methods

can be utilized. Third, those e¤ects on the boundary can be combined using weights

as in Wong et al. (2013) and Keele and Titiunik (2015).

4.1 Minimum of Normalized Scores

Battistin et al. (2009) and Clark and Martorell (2014) de�ned, for some scale

constants �1 and �2,

Sm � min(
S1
�1
;
S2
�2
) =) D = 1[0 � Sm]

to set up

g(Y jSm) = �0 + ��Sm(1�D) + �+SmD + �mD

where �m is the treatment e¤ect of interest. Recalling (3.9) with �1 = �2 = 0, we can

see that g(Y 00jS1; S2) in (3.9) is speci�ed just as �0 + ��Sm(1�D) + �+SmD.

This approach has a couple of problems. First, Sm looks like reducing the local-

ization dimension to one, but that is not the case, as there are two actual bandwidths

h1 = �1hm and h2 = �2hm where hm is a bandwidth for Sm. Second, the linear spline

�0 + ��Sm(1�D) + �+SmD is inadequate, as it approximates g(Y 00jS) only with S1
when S1=�1 < S2=�2 and only with S2 when S2=�2 < S1=�2: there is no reason to vol-

untarily �handcu¤�oneself this way, and better approximations can be seen in (3.10)

and (3.11). Third, the most important is that, as in the other approaches, partial

e¤ects are ruled out, because �0 + ��Sm(1�D) + �+SmD is continuous in Sm that is

in turn continuous in S: no break along S1 only (or S2 only) is allowed.
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A couple of remarks is in order. First, Wong et al. (2013) called this way of

dealing with MRD �centering approach�, but �normalizing approach�(in the sense of

location and scale normalization) or �min approach�would be more �tting. Second,

Battistin et al. (2009) and Clark and Martorell (2014) dealt with fuzzy mean-based

MRD�s, not sharp MRD. Third, using the minimum of the two normalized scores can

be easily generalized to more than two scores, as in Clark and Martorell (2014) who

had three scores (e.g., three tests to pass) and thus Sm = min(S1=�1; S2=�2; S3=�3).

4.2 One-Dimensional Localization

The dominant approach in the MRD literature has been looking at a subpopulation

with one score already greater than its cuto¤ (Jacob and Lefgren 2004, Lalive 2008,

Matsudaira 2008, Schmieder et al. 2012, and Caliendo et al. 2013). For instance, on

the subpopulation with �1 = 1, �2 equals D, and squares 1 and 1�in Figure 1 become

the treatment group whereas squares 4 and 4�become the control group. This will

raise estimation e¢ ciency as only one-dimensional localization is done with the larger

control and treatment groups, but a bias will appear if there is a partial e¤ect.

To formalize the idea, set �1 = 1 (() S1 � 0) in (3.2) to have

g(Y jS) = g(Y 10jS) + fg(Y 11jS)� g(Y 10jS)g�2; (4.1)

g(Y 10jS) is the baseline now. Take the upper and lower limits only for s2, with s1 � 0:

g(Y js1; 0+) = g(Y 10js1; 0+) + lim
s2#0
fg(Y 11js1; s2)� g(Y 10js1; s2)g;

g(Y js1; 0�) = g(Y 10js1; 0�):

Assume the continuity condition

g(Y 10js1; 0+) = g(Y 10js1; 0�) 8s1 � 0; (4.2)

whereas this has �8s1 � 0�, (ii) of (3.6) is only for s1 = 0+ that is weaker than (4.2).

Using (4.2), the di¤erence between the upper and lower limits is

�10(s1; 0
+) � lim

s2#0
fg(Y 11js1; s2)� g(Y 10js1; s2)g = g(Y js1; 0+)� g(Y js1; 0�);
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�10� in �10(s1; 0+) refers to the baseline superscript in Y 10. For (1.1), �
10(s1; 0

+) =

�2 + �d, not �d.

Proceeding analogously, set �2 = 1 (() S2 � 0) in (3.2) to have

g(Y jS) = g(Y 01jS) + fg(Y 11jS)� g(Y 01jS)g�1; (4.3)

g(Y 01jS) is the baseline. Take the upper and lower limits only for s1, with s2 � 0:

g(Y j0+; s2) = g(Y 01j0+; s2) + lim
s1#0
fg(Y 11js1; s2)� g(Y 01js1; s2)g;

g(Y j0�; s2) = g(Y 01j0�; s2):

Assume the continuity condition

g(Y 01j0+; s2) = g(Y 01j0�; s2) 8s2 � 0; (4.4)

whereas this has �8s2 � 0�, (i) of (3.6) is only for s2 = 0+. Using (4.4), the di¤erence

between the upper and lower limits is

�01(0+; s2) � lim
s1#0
fg(Y 11js1; s2)� g(Y 01js1; s2)g = g(Y j0+; s2)� g(Y j0�; s2):

For (1.1), �01(0+; s2) = �1 + �d, not �d.

Estimation with one-dimensional localization is simple because there is only one

score. Analogously to (3.9), consider for (4.1):

g(Y jS) = g(Y 10jS) + �10�2 (4.5)

where g(Y 10jS) can be speci�ed as in (3.10) or more generally as in

g(Y 10jS) = �0 + �2�S2(1� �2) + �2+S2�2 + �1S1;

no slope di¤erence for S1 as S1 � 0. Quantile or mode regression can be applied to this

using only the subsample with (��2 + �
+
2 )�1 = 1 (i.e., only S2 is localized given S1 � 0).

We omit the opposite case of smoothing with S1 given S2 � 0; the analog for

(4.5) is g(Y jS) = g(Y 01jS) + �01�1, and only the subsample with (��1 + �+1 )�2 = 1 is

to be used for estimation. Other than for the bias due to partial e¤ects, estimators for

this and (4.5) with one-dimensional localization should be more e¢ cient than those for

(3.9) with two-dimensional localization.
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4.3 Weighted Average of Boundary E¤ects

Although many papers dealt with MRD, as far as we are aware of, only Wong

et al. (2013) and Keele and Titiunik (2015) examined identi�cation conditions and

estimation theoretically. Here we examine the two papers one by one. Since Keele

and Titiunik (2015; �KT�in this section) addressed AND-case two-score sharp MRD

whereas Wong et al. (2013) did OR-case two-score sharp MRD, we discuss the former

�rst. We will denote the two cuto¤s as (c1; c2) in this subsection.

Consider the two boundary lines B stemming from (c1; c2) rightward and upward

in Figure 1. KT assumed away partial e¤ects so that the treatment gets administered

as B is crossed to the �treatment quadrant� (c1 � S1; c2 � S2) from any direction.

Denoting a point in B as b, KT (p. 131) assumed the continuity at all points in B for

the potential untreated and treated responses Y0 and Y1:

lim
s!b

E(Y0jS = s) = E(Y0jS = b) and lim
s!b

E(Y1jS = s) = E(Y1jS = b)

where Y0 = (Y 00; Y 01; Y 10) and Y1 = Y 11 in our notation.

Denoting a point in the treatment quadrant as st and in the control quadrants as

sc, this continuity condition identi�es the e¤ect �(b) at b 2 B:

lim
st!b

E(Y jS = st)� lim
sc!b

E(Y jS = sc) = lim
st!b

E(Y1jS = st)� lim
sc!b

E(Y0jS = sc)

= E(Y1jS = b)� E(Y0jS = b) = E(Y0 � Y0jS = b) � �(b): (4.6)

A marginal e¤ect can be found by integrating out b: with fSjB and fS denoting the

density of SjB and S, respectively,

� �
Z
B

�(s)fSjB(s)@s =

R
B
�(s) � fS(s)@sR
B
fS(s)@s

:

KT (2015) proposed a local polynomial regression estimator for �(b) using a dis-

tance from b, say the Euclidean distance �b(S) � jjS � bjj, as a single �regressor�.

This is to be done on the treatment and control quadrants separately to obtain sample

analogs for the �rst term of (4.6). The di¤erence of the intercept estimators is then an

estimator for �(b).
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Although ruling out partial e¤ects seems to be minor, this resulted in major dif-

ferences. First, whereas we looked at the e¤ect at the single point (c1; c2), KT looked

as the e¤ect on the entire boundary, as the same treatment is administered regardless

of the �source�position when the boundary is crossed. Second, whereas our estimator

is a simple generalization of the single-score RD estimator as in Hahn et al. (2001), the

estimators of KT for �(b) and � are involved. Third, whereas we need two-dimensional

smoothing, KT need one-dimensional smoothing as was the case for (4.1) and (4.3);

this will enable more e¢ cient estimation if indeed there is no partial e¤ect.

Turning to Wong et al. (2013; �WSC� from Wong, Steiner and Cook in this

section), WSC dealt with OR-case two-score sharp MRD where D = 1 if S1 < c1 or

S2 < c1. In Figure 1, the treatment quadrant in KT is now the control quadrant of

WSC, and the control quadrants in KT are the treatment quadrants of WSC. As KT

did, WSC also ruled out partial e¤ects: �we partition the treatment space into three

subspaces, we assume that all cases receive exactly the same treatment (otherwise, more

than one potential treatment outcome needs to be considered)�in WSC (p. 111).

The continuity assumption of WSC is analogous to (4.2) and (4.4): for Y0,

lim
s1#c1

E(Y0jS1 = s1; S2 > c2) = lim
s1"c1

E(Y0jS1 = s1; S2 > c2);

lim
s2#c2

E(Y0jS1 > c1; S2 = s2) = lim
s2"c2

E(Y0jS1 > c1; S2 = s2);

the same continuity should hold also for Y1.

WSC laid out four approaches, among which we explain three (the last one does

not seem tenable, and WSC did not recommend it either). The �rst is the minimum

of normalized scores, which was examined already. The second is essentially the one-

dimensional localization approach along the horizontal boundary (say B1) of B, and

then along the vertical boundary (say B2)�WSC called this �univariate approach�;

the di¤erence from KT is, however, that WSC obtained � 1 � E(Y1 � Y0jS 2 B1) and

� 2 � E(Y1 � Y0jS 2 B2) instead of KT�s E(Y1 � Y0jS = b) for all b 2 B. The third is

getting an weighted average of � 1 and � 2�WSC called this �frontier approach�to dub

the weighted average �frontier average treatment e¤ect�.
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Although disallowing partial e¤ects may look simplifying, to the contrary, it re-

sulted in considering the boundary lines B1 and B2 instead of the single boundary point

(c1; c2). The possibly heterogeneous e¤ects along the boundary lines may be informa-

tive and possibly e¢ ciency-enhancing, but it also raises the question of �nding a single

marginal e¤ect as an weighted average of those boundary e¤ects. Such a weighting

requires estimating densities for the boundary lines� a complicating scenario.

Of course, in reality, whether partial e¤ects exist or not is an empirical question.

The logical thing to do is thus to allow non-zero partial e¤ects �rst with our approach,

and then test for zero partial e¤ects; if accepted, one may adopt the approaches in

KT and WSC. This should be preferred than simply ruling out partial e¤ects from the

beginning, unless there is a strong prior justi�cation to do so.

5 Empirical Example: Unemployment Duration

This section provides an empirical illustration for e¤ects of unemployment insur-

ance bene�t (UIB) on unemployment duration using German data. Our data set was

drawn from the Sample of Integrated Labour Market Biographies 1975-2010 that is

a 2% sample from the Integrated Employment Biographies (IEB) of the Institute for

Employment Research in Germany. IEB contains daily information on individual em-

ployment and UIB. IEB was used also by Schmieder et al. (2012) and Caliendo et al.

(2013).

For simplicity, we restrict our sample to the in�ow individuals into unemployment

for years 2001-2003. The individual employment outcomes are observed up to 3 years

after entering unemployment, which resulted in the right-censoring problem at 3 years.

Our Y is ln(unemployment duration in months).

UIB duration is determined by age S1 and the number of working months S2 in

the last seven years as follows� age is observed only in integer years, unfortunately:

1. For S1 < 45, 6 months if 12 � S2 < 16, 8 months if 16 � S2 < 20, 10 months
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if 20 � S2 < 24, and 12 months if 24 � S2; see the second and third quadrants

in Figure 2, where the same color above the S2 = 24 line means the same UIB

duration regardless of S2.

2. For 45 � S1 < 47, 6 months if 12 � S2 < 16, 8 months if 16 � S2 < 20, 10

months if 20 � S2 < 24, 12 months if 24 � S2 < 28, 14 months if 28 � S2 < 32,

16 months if 32 � S2 < 36, and 18 months if 36 � S2; see also Figure 2.

3. For 47 � S1 < 52, there are multiple cuto¤s for S2 at 16, 20, 24, 28, 32, 36,

40, and 44 as can be in Figure 2; there are also multiple cuto¤s for S1 beyond

S1 � 52, although not visible in Figure 2.

Figure 2: UIB Duration by Age and Working Months

In our empirical analysis, as there are too many treatments depending on di¤erent

cuto¤s, we focus on two cuto¤s. The �rst cuto¤ (c1; c2) = (45; 28) is the �center�

in Figure 2, and we use the subsample with ages 45 � 5 and working months 28 � 4
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(the lower-left yellow box). In the box, the darker quadrant is the treatment group

with 14 months of UIB corresponding to square 1 in Figure 1, and the three lighter

quadrants are the control group with 12 months of UIB corresponding to squares 2-4.

Hence, the treatment is receiving additional 2 months of UIB. The second cuto¤ is

(c1; c2) = (52; 48), and we use the subsample with ages 52 � 5 and working months

48 � 4 (the upper-right yellow box in Figure 2). In the box, the darker quadrant is

the treatment group with 24 months of UIB, and the three lighter quadrants are the

control group with 22 months of UIB. Here again, the treatment is receiving additional

2 months of UIB.

Table 1: Data Description

(45� 5; 28� 4); N = 2145

Total Non-censored (78%)

Variable Mean Med SD Mean Med SD

Unemp. dur. in months exp(Y ) 17.3 13 13.1 11.9 9 9.45

Age in years (S1) 43.9 44 2.80 43.9 44 2.80

Working months (S2) 27.1 27 2.50 27.2 27 2.50

Female 0.47 0.50

(52� 5; 48� 4); N = 619

Total Non-censored (86%)

Variable Mean Med SD Mean Med SD

Unemp. dur. in months exp(Y ) 13.7 9 12.2 10.0 7 8.85

Age in years (S1) 50.8 51 2.75 50.9 51 2.79

Working months (S2) 47.2 47 2.26 47.2 47 2.23

Female 0.38 0.35

Table 1 compares the whole sample with the non-censored subsample for (c1; c2) =

(45; 28) and (52; 48). The local sample size N = 2145 for (c1; c2) = (45; 28) is much

greater than N = 619 for (c1; c2) = (52; 48). In the �rst panel for (45� 5; 28� 4), the

average age and working months are the same across the two groups, and the proportion
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of females is only 3% higher in the non-censored group. Hence, although the recorded

unemployment duration is shorter for the obvious reason for the non-censored group,

there is little systematic di¤erence between the whole sample and the non-censored

subsample locally around (c1; c2) = (45; 28). In the second panel for (52 � 5; 48 � 4),

the mean and median unemployment durations are shorter than those in the �rst panel

by 2 � 4 months, and the proportion of the non-censored observations is higher by 8%.

As in the �rst panel, there is little systematic di¤erence between the whole sample and

the non-censored subsample, except that the proportion of females is 3% lower in the

non-censored group.

Table 2: Unemployment Duration with (45� 5; 28� 4)

Males Females

Quantile % Q1 (Treated) Q2 Q3 Q4 Q1 (Treated) Q2 Q3 Q4

5% 1 1 1 1 1 1 1 1

25% 3 3 3 4 6 3 4 5

50% 8 7 9 11 13 7 10 11

75% 14 17 18 20 20 20 18 19

95% 30 30 31 30 29 31 31 30

Table 3: Unemployment Durations with (52� 5; 48� 4)

Males Females

Quantile % Q1 (Treated) Q2 Q3 Q4 Q1 (Treated) Q2 Q3 Q4

5% 1 1 1 1 1 1 1 1

25% 4 3 3 2 6 5 3 2

50% 9 7 5 4 9 10 8 4

75% 15 16 14 15 21 17 18 9

95% 28 32 28 26 26 29 30 26

Tables 2 and 3 present quantiles of unemployment durations (exp(Y ))) for males

and females using only the non-censored observations, where Q1-Q4 denote the four
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squares in Figure 1. Since only the non-censored observations are used, Tables 2 and

3 are not exactly informative for the population. Nevertheless, Table 2 suggests that

the quantile e¤ects at (45; 28) may be di¤erent: near zero e¤ects for extreme quantiles,

and some e¤ects in �middle�quantiles. Table 3 suggests that the three control groups

are heterogeneous to result in partial e¤ects at (52; 48). For instance, for females, Q3

and Q4 di¤er by 4 at the median and by 9 at the upper quartile. The magnitude 9 is

not small, being about one standard deviation (SD) as can be seen in Table 1.

Turning to quantile regression, due to the right-censoring problem, we applied

the censored least absolute deviation estimator (CLAD) of Powell (1986) to (3.9) with

q(Y 00jS) = m2(S) in (3.10). CLAD does not impose parametric assumptions on the

model error term and allows heteroskedasticity of an unknown form. Figure 3 is for

(c1; c2) = (45; 28), and Figure 4 is for (52; 48). In the �gures, the �rst row is for �d, the

second row for �1, and the third for �2. Also, the �rst column is for the full sample

(i.e. the local sample with both males and females), the second for the males only, and

the third for the females only. The solid lines are the estimates, and the dashed lines

are 90% point-wise con�dence intervals calculated by a bias-corrected nonparametric

bootstrap with 300 bootstrap pseudo estimates.

Examining Figure 3, for the full sample, the treatment e¤ects are about 0:35 � 0:69

for most quantiles. Since the median duration is about 9 � 13 in Table 1, this translates

into about 5 � 7 month increase in unemployment duration. For males, the e¤ects are

positive but smaller than those of the full sample and most estimates are insigni�cant.

For females, the e¤ects are signi�cantly positive (0:69 � 0:84) over � = 0:2 � 0:6.

Thus the signi�cant e¤ects in the full sample are driven by the females.

Regarding the partial e¤ects, the second row shows that the partial e¤ect �1 of

age is insigni�cant and close to zero for males. For females, however, some negative

e¤ects (�0:35 � �0:4) are seen around 0:6 quantile that are nearly signi�cant, which

results in smaller negative e¤ects for the full sample. As for the partial e¤ect �2 of

working months, all quantile e¤ects are near zero and insigni�cant.
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Figure 3: Quantile E¤ects of UIB at (c1; c2) = (45; 28)
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Figure 4: Quantile E¤ects of UIB at (c1; c2) = (52; 48)

Turning to Figure 4 for (c1; c2) = (52; 48), the results di¤er much from Figure 3 for

(45; 28), because signi�cant positive e¤ects are seen for the full and males only samples

while almost no e¤ect for females; the males drive the signi�cant result this time.

More speci�cally, the second column shows that the e¤ects for males are signi�cant

over � = 0:15 � 0:4 with the e¤ect magnitude 1 � 1:6. Since the 0:15 � 0:4 quantile

unemployment durations are 2 � 4 months for males, this e¤ect magnitude means that

two month additional UIB increases unemployment durations by 2 � 6 months.

As for the partial e¤ects, the partial e¤ect �1 for males are strongly negative

(�0:4 � �1:1) and signi�cant over � = 0:13 � 0:55. If this partial e¤ect is ignored,

then the treatment e¤ect would be underestimated for males. On the other hand,

the partial e¤ects are insigni�cant for females. The partial e¤ect �2 is not signi�cant
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except for some positive e¤ects for females around the median.

In sum, additional two months of UIB increase unemployment duration di¤erently

by cuto¤ and gender. At the cuto¤ (c1; c2) = (45; 28), mostly females are a¤ected by

the treatment; females�unemployment increases by 6 � 7 months. In contrast, mostly

males are a¤ected at the cuto¤ (c1; c2) = (52; 48); the e¤ect magnitude is 2 � 8months.

At the age cuto¤ 52, there are signi�cantly negative partial e¤ects of age for males,

which might be related to �pre-retirement�. Börsch-Supan andWilke (2003) mentioned

that an uno¢ cial pre-retirement at age 56 was frequent in West Germany because UIB

was paid up to three year for those elderly workers. To be eligible for the UIB, they

might have avoided unemployment after age 52.

6 Conclusions

In this paper, we generalized the usual mean-based RD with a single running

variable (�score�) in three ways by allowing for (i) more than one scores, (ii) regression

functions other than mean, and (iii) partial e¤ects due to part of the scores crossing

cuto¤, in addition to the full e¤ect with all scores crossing all cuto¤s. The critical

di¤erence between our and existing approaches in the literature for multiple-score RD

turned out to be partial e¤ects: allowed in this paper, but ruled out in the other papers.

We imposed weak continuity assumptions, presented the identi�ed parameters, and

proposed simple local di¤erence-in-di¤erences-type estimators for the parameters.

We applied our estimators to German data to �nd the e¤ects of unemployment

insurance bene�t (UIB) on ln(unemployment-duration), where UIB requires age and

previous working months to cross cuto¤s. We found that, at age 45 and working

months 28, the �-quantile e¤ects for females are signi�cantly positive (0:69 � 0:84)

over � = 0:2 � 0:6, and close to zero or insigni�cant for males. In contrast, at age

52 and working months 48, the e¤ects for males are signi�cantly positive (1 � 1:6)

over � = 0:15 � 0:4, and close to zero and insigni�cant for females. When turned into
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monthly �gures, the e¤ect magnitudes mean that two month UIB increase leads to an

unemployment duration increase of about 2 � 8 month. We also found substantial

partial e¤ects at the latter cuto¤, which seems related to an early retirement scheme

in Germany.
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