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Abstract

We study a family of nonparametric tests of density ratio ordering between two continuous
probability distributions on the real line. Density ratio ordering is satisfied when the two
distributions admit a nonincreasing density ratio. Equivalently, density ratio ordering
is satisfied when the ordinal dominance curve associated with the two distributions is
concave. To test this property, we consider statistics based on the Lp-distance between
an empirical ordinal dominance curve and its least concave majorant. We derive the
limit distribution of these statistics when density ratio ordering is satisfied. Further, we
establish that, when 1 ≤ p ≤ 2, the limit distribution is stochastically largest when the
two distributions are equal. When 2 < p ≤ ∞, this is not the case, and in fact the
limit distribution diverges to infinity along a suitably chosen sequence of concave ordinal
dominance curves. Our results serve to clarify, extend and amend assertions appearing
previously in the literature for the cases p = 1 and p =∞. We provide numerical evidence
confirming their relevance in finite samples.
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1 Introduction

Statistical analyses in economics and other fields often involve comparing the shape of

two probability distributions on the real line. In particular, there is a large literature

on the construction of statistical tests of stochastic dominance between two distribu-

tions, and their application to various questions of empirical interest. Maasoumi (2001)

provided a review of the state of this literature at the turn of the millennium. Subse-

quent contributions of importance include Barrett and Donald (2003), Linton et al. (2005,

2010), Schechtman et al. (2008), Delgado and Escanciano (2013) and Davidson and Duc-

los (2013). Recent work by Bera et al. (2013) on testing the equality of distributions is

also relevant. Econometric applications of stochastic dominance testing include studies

of income distributions (Anderson, 1996; Davidson and Duclos, 2000, 2013) and efficient

portfolio choice (Scaillet and Topaloglou, 2010), among many others.

Stochastic dominance provides one way of ordering two probability distributions on the

real line. A stronger notion of stochastic ordering is the density ratio ordering, more

commonly known as the likelihood ratio ordering ; we favor the former term. If F and

G are two cdfs on R that admit a nonincreasing density ratio dF/dG, we say that G

density ratio dominates F . Density ratio ordering is a stronger property than first-order

stochastic dominance: if G density ratio dominates F , then G first-order stochastically

dominates F . Further discussion of density ratio ordering may be found in Shaked and

Shanthikumar (1994) and Thas (2009).

Density ratio ordering appears frequently as an assumption or implication of various

models in economics, finance, and other fields. Roosen and Hennessy (2004) discussed

a range of applications, including portfolio choice, crop insurance, mechanism design,

and auction theory. Our primary motivation for studying this topic comes from a recent

literature in empirical finance on the so-called pricing kernel puzzle. In this literature, the

pricing kernel is defined as the ratio of risk neutral and physical densities for the payoff

distribution of a market index at a future date. Classical financial theory dictates that

this ratio should be nonincreasing; if not, there are perverse implications for the behavior

of contingent claims, as discussed by Beare (2011). In the early 2000’s, three influential

papers by Aı̈t-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002)

reported nonparametric pricing kernel estimates that exhibited an increasing region in
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the center of the return distribution, while decreasing elsewhere. This phenomenon has

become known as the pricing kernel puzzle, though the statistical significance of departures

from monotonicity remains an open question. See Hens and Reichlin (2013) for a recent

discussion of the literature in this area.

Compared to the literature on testing stochastic dominance, the literature on testing den-

sity ratio ordering is at a much earlier stage of development. Dykstra et al. (1995) and

Roosen and Hennessy (2004) proposed tests of density ratio ordering that are applicable to

discrete distributions, or to continuous distributions that we first discretize by classifying

observations into a finite number of bins. Such discretization has the effect of concen-

trating the power of the test on a finite dimensional subset of the alternative hypothesis.

More recently, Carolan and Tebbs (2005, hereafter CT) proposed a test of density ratio

ordering between continuous distributions that avoids unnecessary discretization and is

consistent against arbitrary violations of density ratio ordering. In the present paper

we build on the contribution of CT by generalizing their approach to a broader class of

statistics, providing a rigorous foundation for their results, and clarifying some statements

made regarding the asymptotic behavior of their tests.

The testing procedure proposed by CT relies on the insight that, if F and G are continuous

cdfs admitting a well-defined density ratio, then G density ratio dominates F if and only

if the composition R = F ◦ G−1 is concave. Here, G−1(u) = inf{y : G(y) ≥ u} is the

quantile function corresponding to G. The function R : [0, 1]→ [0, 1] is referred to as the

ordinal dominance curve (odc) for F and G. CT propose to compare Rm,n, an empirical

analogue to R constructed from independent samples of size m and n drawn from F and

G, to its least concave majorant (lcm) – the smallest concave function lying above Rm,n.

Their test statistic is calculated as the area or maximal distance between Rm,n and its

lcm, suitably scaled by m and n. CT argue that a conservative test may be obtained by

comparing their statistics to the limit distribution they would achieve if in fact R(u) = u;

this is taken to be the least favorable point in the null.

In this paper we generalize the approach of CT by considering test statistics based on

the Lp-distance between Rm,n and its lcm. We derive the limit distribution of these test

statistics when R is concave and satisfies suitable smoothness conditions. This turns out

to be a rather delicate matter. The main technical issue is that the lcm operator fails

3



to satisfy the usual definition of Hadamard differentiability. It does, however, satisfy a

weaker property dubbed Hadamard directional differentiability by Shapiro (1990, 1991),

which suffices for the application of the functional delta method. We obtain the explicit

form of the Hadamard directional derivative of the lcm operator. In addition to enabling

a rigorous study of the asymptotic behavior of our test statistics, this contribution may be

of broader relevance in other contexts. For instance, the tests of stochastic monotonicity

and conditional stochastic dominance proposed by Delgado and Escanciano (2012, 2013)

are constructed using the lcm operator; our results may conceivably lead to a better

understanding of their asymptotic behavior.

Having established the limit distribution of our test statistics at each point in the null

hypothesis, we next seek to identify a least favorable point at which to determine critical

values. We show that R(u) = u is indeed least favorable when our statistic is constructed

using an Lp-distance with p ∈ [1, 2]. This means that the limit distribution of our test

statistic when R(u) = u first-order stochastically dominates the limit distribution under

any other concave choice of R. Perhaps more surprisingly, we show that this is not the

case when p ∈ (2,∞]. In fact, the limit distribution of our test statistic diverges to infinity

along a suitably chosen sequence of concave odcs. This result amends a claim made by

CT, who asserted that R(u) = u was least favorable when p = 1 and p =∞. The practical

implication is that we should require p ∈ [1, 2] in applications.

The remainder of our paper is organized as follows. In Section 2 we formally describe our

statistical framework and the construction of our test. Section 3 contains our derivation

of the limit distribution of our test statistics when R is an arbitrary concave odc satisfying

suitable smoothness conditions. Our results concerning the differential properties of the

lcm operator are given here. In Section 4 we demonstrate that R(u) = u is least favorable

when p ∈ [1, 2], but not when p ∈ (2,∞]. Section 5 contains a short discussion of local

power. Simulation results pertaining to the finite sample relevance of our asymptotic

results are provided in Section 6, and we conclude in Section 7. Mathematical proofs are

gathered together in the Appendix.
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2 Statistical framework and test construction

Let F and G be two continuous cdfs on R with common support, and let R = F ◦ G−1.
Let Θ denote the collection of nondecreasing, continuously differentiable maps θ : [0, 1]→
[0, 1] with θ(0) = 0 and θ(1) = 1. We maintain throughout that our odc R ∈ Θ, and let

R′ denote its first derivative. Our null hypothesis is the set Θ0 = {θ ∈ Θ : θ is concave},
and our alternative hypothesis is the set Θ1 = Θ \Θ0.

Our test is constructed from two samples of real valued random variables (X1, . . . , Xm) and

(Y1, . . . , Yn). Each sample is iid, with the Xi’s having common cdf F and the Yj’s having

common cdf G. The two samples are independent of one another. These basic sampling

assumptions are taken from CT, and were also maintained by Barrett and Donald (2003) in

the context of stochastic dominance testing. In that same context, much weaker sampling

assumptions were adopted by Linton et al. (2005, 2010), who allowed for weak dependence

within a given sample, and dependence between samples. Such generality appears difficult

to accommodate in the present setting. Though it is relatively simple to generalize Lemma

3.1 below to accommodate weak dependence and dependence between samples, and thus

proceed to a version of (3.3) involving a more general limit process TR, further progress

in the direction taken by this paper seems difficult. In particular, it is not clear to us

how a version of Theorem 4.1, which identifies the least favorable point in the null when

p ∈ [1, 2], might be proved under more general dependence conditions.

The construction of our test statistics involves the lcm operatorM, which we now formally

define. We also take the opportunity to define the restricted lcm operator M[a,b], which

plays no role in the construction of our test statistics, but will prove useful when we

describe their limiting behavior in Section 3. In what follows, we let `∞ ([a, b]) denote the

collection of uniformly bounded real valued functions on [a, b] equipped with the uniform

metric, and let `∞co ([a, b]) = {f ∈ `∞ ([a, b]) : f is concave}.

Definition 2.1. Given a closed interval [a, b] ⊆ [0, 1], the lcm over [a, b] is the operator

M[a,b] : `∞ ([0, 1])→ `∞ ([a, b]) that maps each f ∈ `∞ ([0, 1]) to the function

M[a,b]f(u) = inf{g(u) : g ∈ `∞co ([a, b]) and f ≤ g on [a, b]}, u ∈ [a, b].

That is, M[a,b]f is the pointwise infimum of those functions g ∈ `∞co ([a, b]) that majorize
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the restriction of f to [a, b]. We write M as shorthand for M[0,1], and refer to M as the

lcm operator.

Let Fm(x) = m−1
∑m

i=1 1{Xi ≤ x}, Gn(y) = n−1
∑n

j=1 1{Yj ≤ y}, and Rm,n(u) =

Fm(G−1n (u)), where G−1n (u) = inf{y : Gn(y) ≥ u}. To test the null hypothesis Θ0 we

consider statistics of the form

Mp
m,n = cm,n‖MRm,n −Rm,n‖p. (2.1)

Here, cm,n = (mn/(m + n))1/2, ‖ · ‖p is the Lp-norm with respect to Lebesgue measure,

and p ∈ [1,∞]. When p = 1 or p = ∞, we obtain the two statistics proposed by CT

for testing the null of density ratio ordering against its negation; they write M
∗(12)
m,n for

M1
m,n and D

∗(12)
m,n for M∞

m,n. More accurately, M
∗(12)
m,n in CT is a computationally convenient

approximation to M1
m,n constructed using isotonic regression. The approximation error is

asymptotically negligible, as they note on p. 168.

Note that the empirical odc Rm,n is invariant to any strictly increasing transformation

of the data. That is, if we replace the samples {Xi}mi=1 and {Yj}nj=1 with {φ(Xi)}mi=1

and {φ(Yj)}nj=1, where φ is strictly increasing on the support of F and G, then Mp
m,n

is unaffected, with probability one. It follows that the sampling distribution of Mp
m,n is

uniquely determined by R. It is for this reason that we define our null and alternative

hypotheses as subsets of a space of odcs, and not as subsets of a space of pairs of cdfs.

3 Limit distribution of test statistics

In this section we establish the limit distributions of the test statistics Mp
m,n defined in

(2.1), with p ∈ [1,∞], at each point R ∈ Θ0. We first state a well-understood result

concerning the weak convergence of the normalized empirical odc cm,n(Rm,n − R). In

what follows,  denotes weak convergence in `∞([0, 1]).

Lemma 3.1. Suppose R ∈ Θ. Then as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we

have cm,n(Rm,n −R) TR, where TR is a random element of `∞ ([0, 1]) satisfying

TR(u) = λ1/2B1(R(u)) + (1− λ)1/2R′(u)B2(u), u ∈ [0, 1],
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and B1 and B2 are independent standard Brownian bridges on [0, 1].

Lemma 3.1 is a consequence of Thas (2009, Theorem 7.6), and results cited therein. Hsieh

and Turnbull (1996, Theorem 2.2) establish a strong approximation for cm,n(Rm,n − R),

but weak convergence is sufficient for our purposes.

Suppose R ∈ Θ0. Since in this case MR = R, we may write

Mp
m,n = ‖cm,n (DRm,n −DR) ‖p, (3.1)

where D =M−I, and I is the identity operator on `∞([0, 1]). In view of (3.1) and Lemma

3.1, an obvious approach to establishing the limit distribution of Mp
m,n when R ∈ Θ0 is to

apply the functional delta method to obtain weak convergence of the quantity inside the

‖·‖p in (3.1), and then invoke the continuous mapping theorem. Such an approach requires

consideration of the differential properties of the lcm operator. The following definition

is adapted from Shapiro (1990, 1991) and Bonnans and Shapiro (2000, Definition 2.45).

Definition 3.1. Let X and Y be topological vector spaces over the field of real numbers.

A map φ : X → Y is said to be Hadamard directionally differentiable at x ∈ X

tangentially to X0 ⊆X if there exists a map φ′x : X0 → Y such that

φ′x(z) = lim
n→∞

φ(x+ tnzn)− φ(x)

tn

for any sequences zn ∈X and tn ∈ R+ with zn → z ∈X0 and tn ↓ 0. φ′x(z) is referred to

as the Hadamard directional derivative of φ at x in direction z.

Hadamard directional differentiability is a weaker property than Hadamard differentia-

bility because in the latter case we require φ′x(z) to be a continuous, linear function

of z. Continuity in z follows automatically from Hadamard directional differentiability

(Bonnans and Shapiro, 2000, Proposition 2.46), but linearity does not.

In what follows, C ([0, 1]) denotes the set of continuous real valued functions on [0, 1].

Lemma 3.2. If R ∈ Θ0 thenM is Hadamard directionally differentiable at R tangentially

to C ([0, 1]). Given h ∈ C ([0, 1]), if R is affine in a neighborhood of u ∈ (0, 1), then we
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have M′
Rh(u) =M[aR,u,bR,u]h(u), where

aR,u = sup{u′ ∈ (0, u] : R is not affine in a neighborhood of u′},

bR,u = inf{u′ ∈ [u, 1) : R is not affine in a neighborhood of u′},

and we define inf ∅ = 1 and sup∅ = 0. If R is not affine in a neighborhood of u ∈ (0, 1),

or if u ∈ {0, 1}, then M′
Rh(u) = h(u).

Lemma 3.2 establishes the existence and explicit form of the Hadamard directional deriva-

tiveM′
Rh when R ∈ Θ0 and h ∈ C ([0, 1]). The proof may be found in the Appendix. It is

not difficult to see that our directional derivativeM′
Rh is not in general a linear function

of h. For instance, let R(u) = u, h1(u) = u2 and h2(u) = −u2. Then M′
Rh1(u) = u,

M′
Rh2(u) = −u2 andM′

R(h1 +h2)(u) = 0, implying thatM′
R(h1 +h2) 6=M′

Rh1 +M′
Rh2.

In fact, M′
Rh is linear in h if and only if R is strictly concave. We will see shortly that

our test statistic Mp
m,n has a nondegenerate limit distribution only when R is concave

but not strictly concave. For this reason, it is critical to establish Hadamard directional

differentiability of M at points R ∈ Θ0 that are not strictly concave, rather than merely

relying on the Hadamard differentiability ofM at points R ∈ Θ0 that are strictly concave.

Standard versions of the functional delta method (see e.g. van der Vaart and Wellner, 1996,

Theorem 3.9.4) require the operator under consideration to be Hadamard differentiable.

However, Shapiro (1991, Theorem 2.1) established that, with no compensating loss in

generality, the functional delta method applies more broadly under Hadamard directional

differentiability. Applying Shapiro’s result in conjunction with Lemma 3.1 and Lemma

3.2, we deduce that, when R ∈ Θ0, as m ∧ n→∞ with n/(m+ n)→ λ ∈ (0, 1) we have

cm,n (DRm,n −DR) M′
RTR − TR. (3.2)

Here we have used the fact that D is Hadamard directionally differentiable at R tan-

gentially to C ([0, 1]), with D′R = M′
R − I. This is immediate from Lemma 3.2. The

random process TR, defined in Lemma 3.1, lies in C ([0, 1]) with probability one since R

is continuously differentiable and the Brownian bridges B1 and B2 are continuous with

probability one. Thus M′
RTR is well-defined.
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In view of (3.1), an application of the continuous mapping theorem to (3.2) delivers us

Mp
m,n →d ‖M′

RTR − TR‖p (3.3)

as m∧n→∞ with n/(m+n)→ λ ∈ (0, 1), whenever R ∈ Θ0. Our next result establishes

an alternative, more easily interpretable representation for the limit distribution ‖M′
RTR−

TR‖p. Its statement requires some additional notation. Given an odc R ∈ Θ0 that is not

strictly concave, there is a unique way to construct a finite or countable union of disjoint

closed intervals [ak, bk], k ∈ K, such that the restriction of R to each [ak, bk] is affine,

and such that R is strictly concave over any convex subset of [0, 1] \ ∪k∈K [ak, bk]. In fact,

recalling Lemma 3.2, these intervals are precisely the intervals [aR,u, bR,u] obtained as we

allow u to vary over all points in (0, 1) at which R is locally affine. For each k ∈ K, let

dk = bk − ak, and let hk = R(bk) − R(ak). We suppress the dependence of ak, bk, dk, hk

and K on R in our notation.

Theorem 3.1. As m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), if R ∈ Θ0 is not strictly

concave then we have

Mp
m,n →d

(∑
k∈K

(
λhkd

2/p
k + (1− λ)h2kd

(2−p)/p
k

)p/2
‖DBk‖pp

)1/p

if p ∈ [1,∞), and

M∞
m,n →d sup

k∈K

(
λhk + (1− λ)h2kd

−1
k

)1/2 ‖DBk‖∞,

where {Bk : k ∈ K} is a mutually independent collection of standard Brownian bridges

on [0, 1]. If instead R ∈ Θ0 is strictly concave, we have Mp
m,n →p 0.

The proof of Theorem 3.1 may be found in the Appendix. We close this section with an

enumeration of some of the key ways in which Theorem 3.1 serves to extend and amend

certain results of CT.

1. Setting R(u) = u in Theorem 3.1, we find that Mp
m,n →d ‖DB‖p for p ∈ [1,∞].

Theorem 2 of CT asserts this result for the special case p ∈ {1,∞}.
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2. Lemma A1 of CT asserts that Mp
m,n →p 0 when R is strictly concave and p ∈ {1,∞},

consistent with the more general statement for p ∈ [1,∞] given in Theorem 3.1.

3. Lemma A2 of CT states the limit distribution of M1
m,n when R is concave and

piecewise linear. Here we do not allow for piecewise linear R, except in the trivial

case where R is the 45◦ line, because we require that R be continuously differentiable.

CT skirt technical issues relating to the smoothness of R in their arguments. If we

could drop the requirement that R is continuously differentiable in Theorem 3.1, we

would obtain the limit distribution of M1
m,n asserted by CT.

4. Lemma A2 of CT also asserts a limit distribution for M∞
m,n when R is concave

and piecewise linear. This limit distribution is not consistent with what we would

obtain in Theorem 3.1 if we could relax the assumption that R is continuously

differentiable, and appears to be incorrect. CT do not provide a proof for the

claimed limit distribution of M1
m,n.

5. Theorem 2 of CT asserts that the limit distribution of M∞
m,n when R is the 45◦

line first-order stochastically dominates the limit distributions achieved at other

concave odcs. This assertion is contradicted by Theorem 4.2 in Section 4, which

follows easily from Theorem 3.1. The source of the inconsistency appears to be the

incorrect limit distribution given for M∞
m,n in Lemma A2 of CT.

4 When is the 45-degree line least favorable?

In Theorem 3.1 we established the limit distribution of Mp
m,n at each point R ∈ Θ0. To

obtain a valid critical value for testing Θ0 against Θ1, we would like to be able to say that

the limit distribution of Mp
m,n is stochastically largest at one particular point in Θ0, in

the sense of being first-order stochastically dominant over the limit distribution of Mp
m,n

at any other point in Θ0. In this case, the point in Θ0 at which the limit distribution of

Mp
m,n is stochastically largest is said to be least favorable. If we set our critical value c

equal to the 1− α quantile of the limit distribution of Mp
m,n at this least favorable point,

and reject Θ0 when Mp
m,n > c, then our limiting rejection probability is no greater than

α at any point in Θ0.
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When our odc is the 45◦ line R(u) = u, Theorem 3.1 implies that Mp
m,n →d ‖DB‖p. The

following result states that, when p ∈ [1, 2], this odc is least favorable.

Theorem 4.1. Suppose p ∈ [1, 2] and R ∈ Θ0. The limit distribution of Mp
m,n given

in Theorem 3.1 is first-order stochastically dominated by ‖DB‖p, where B is a standard

Brownian bridge on [0, 1].

The proof of Theorem 4.1 may be found in the Appendix. Theorem 2 of CT established

this result for p = 1. Our proof extends their arguments to allow p ∈ [1, 2].

Our next result is perhaps more surprising. It implies that, for Mp
m,n with p ∈ (2,∞],

the 45◦ line R(u) = u is not least favorable. In fact, the limit distribution of Mp
m,n can

be made arbitrarily large with an appropriate choice of R ∈ Θ0. This means that there

cannot be any point in Θ0 that is least favorable.

Theorem 4.2. Suppose p ∈ (2,∞]. For any c ∈ (0,∞) and ε ∈ (0, 1), we may choose

R ∈ Θ0 such that the limit distribution of Mp
m,n given in Theorem 3.1 assigns probability

of at least 1− ε to the region (c,∞).

Theorem 4.2 contradicts Theorem 2 of CT, which states that R(u) = u is least favorable

when p = ∞. The proof may be found in the Appendix. The practical implication of

Theorem 4.2 is that Mp
m,n should not be used for testing Θ0 against Θ1 when p > 2,

because there is no finite critical value that will control asymptotic size everywhere in Θ0.

The proof of Theorem 4.2 involves showing that the limit distribution of Mp
m,n diverges to

infinity as we move along a sequence of odcs in Θ0 which, in a neighbourhood of the origin,

are affine and become successively steeper. Along this sequence, the terms h21d
(2−p)/p
1

and h21d
−1
1 appearing in the limit distributions in Theorem 3.1 diverge to infinity when

p > 2, delivering the conclusion of Theorem 4.2. Additional regularity conditions may be

imposed on Θ so as to rule out such sequences. For instance, we may assume the existence

of a c ∈ [1,∞) such that R′ ≤ c for all R ∈ Θ. Such a condition rules out sequences of

odcs along which the limit distribution of Mp
m,n diverges, but does not ensure that the

45◦ line R(u) = u is least favorable when p > 2. In simulations reported below (see in

particular Figures 4.2(c) and 4.3(c)) we find that odcs exhibiting only a modest degree of

steepness at the origin generate limit distributions that are not first-order stochastically

dominated by the limit distribution at the 45◦ line.
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At an intuitive level, the anomalous behavior of Mp
m,n when p > 2 and R is steep near

the origin may perhaps be understood in terms of the behavior of n1/2(G−1n − G−1), the

empirical quantile process for G. Since Mp
m,n is unaffected if we apply a strictly increasing

transformation to the data Xi and Yj, we may assume without loss of generality that F

is uniform on [0, 1]. In this case, G = R−1, and n1/2(G−1n − G−1)  R′B2 in `∞([0, 1]),

contributing the second component of the limit process TR appearing in Lemma 3.1.

Weak convergence of n1/2(G−1n −G−1) in `∞([0, 1]) is sensitive to the behavior of the pdf

G′: we typically require G′ to be bounded away from zero on its support, so that the

inverse operator is Hadamard differentiable at G (see e.g. van der Vaart and Wellner,

1996, Lemma 3.9.23). But when R is steep near the origin, G′ is close to zero near the

left endpoint of its support. We therefore cannot expect the weak convergence given in

Lemma 3.1 to hold uniformly over the space Θ.

To illustrate the content of Theorem 4.1 and Theorem 4.2, we computed the quartiles of

the limit distribution of Mp
m,n for p = 1, 2,∞ over a particular family of concave odcs.

For δ ∈ [0, 1), we let Rδ be the odc given by

Rδ(u) =


ru if u ∈ [0, a]

(1− t(u))2ra+ 2(1− t(u))t(u)rm+ t(u)2(b/r + c) if u ∈ (a, b)
1
r
u+ c if u ∈ [b, 1] ,

(4.1)

where

r =
1 + δ

1− δ
, c =

2δ

1 + δ
, m =

1− δ
2

, a =
4

5r + 4
, b =

(5− 4c)r

5r + 4
,

and

t(u) =
1

a+ b− 2m

(
a−m+

√
m2 − ab+ (a+ b− 2m)u

)
, u ∈ [0, 1].

This seemingly mysterious construction is in fact very simple: Rδ is affine to the left of a

and to the right of b, and between a and b is given by a quadratic Bézier curve (or conic

arc) chosen to make the whole curve continuously differentiable. In Figure 4.1 we graph

Rδ for δ = 0, 0.2, 0.4, 0.6, 0.8. When δ = 0, Rδ is the 45◦ line. When δ > 0, Rδ has two

affine segments connected by a rightward bend. As δ increases to one, the location of the

bend moves toward the upper left corner of the unit square.
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Figure 4.1: Ordinal dominance curves used to compute limiting quartiles in Figure 4.2,
as defined in (4.1). We plot the curves corresponding to δ = 0, 0.2, 0.4, 0.6, 0.8. The curves
shift upward as δ increases.

The quartiles of the limit distribution of Mp
m,n under each odc Rδ, δ ∈ [0, 1), are displayed

in Figure 4.2. Each panel corresponds to a different value of p. The horizontal axes

track the odc parameter δ. In each panel, the three quartile curves were computed over

a grid of 200 evenly spaced values of δ ∈ [0, 1). At each value of δ, the quartiles were

calculated from 106 random draws from the limit distribution of Mp
m,n given in Theorem

3.1. We used an evenly spaced grid of 103 points to obtain a discrete approximation to

the Brownian bridges appearing in that limit distribution.

The first thing to notice in Figure 4.2 is that the quartile curves are discontinuous at

δ = 0. In each panel, the three quartiles at δ = 0 exceed their limits from the right.

The discontinuity occurs because the bend introduced to Rδ when δ > 0 fundamentally

alters the limit distribution of Mp
m,n given in Theorem 3.1: it is determined by a single

Brownian bridge when δ = 0, and by two independent Brownian bridges when δ > 0.

At a deeper level, the discontinuity of quartile curves is driven by the fact that the

Hadamard directional derivative M′
Rh of the lcm operator M is, for a fixed direction

h ∈ C([0, 1]), not generally a continuous function of R ∈ Θ0. This means that different

concave odcs that are close in the uniform metric may correspond to radically different

limit distributions for Mp
m,n.

In panels (a) and (b) of Figure 4.2 we see that the limit distributions of M1
m,n and M2

m,n
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Figure 4.2: Quartiles of the limit distribution of Mp
m,n, with p = 1, 2,∞. The horizontal

axes track the parameter δ indexing the family of concave odcs defined in (4.1). Note
that the quartile curves are discontinuous at δ = 0.

do indeed appear to be stochastically largest at δ = 0, as predicted by Theorem 4.1. As δ

approaches one, the quartiles of the limit distribution shrink toward zero in panel (a), and

gently decrease in panel (b). In panel (c) we see that the quartiles of the limit distribution

of M∞
m,n diverge toward infinity as δ approaches one, consistent with Theorem 4.2.

In Figure 4.3 we focus on just two of the odcs plotted in Figure 4.1 – R0 and R0.8 – and

plot the entire limit distribution of Mp
m,n for p = 1, 2,∞. The limit distributions were

computed by applying a kernel smoother to 104 draws from the relevant limit distributions,

once again approximating the Brownian bridges using an evenly spaced grid of 103 points.

Consistent with the first-order stochastic dominance predicted by Theorem 4.1, we see in

panels (a) and (b) that the limit distribution of Mp
m,n at R0, the 45◦ line, is indeed mostly

to the right of the limit distribution at R0.8 if p = 1 or p = 2. In panel (c), where p =∞,

this is no longer true. In fact, not only is it clearly not the case in panel (c) that the limit

distribution at R0 first-order stochastically dominates the limit distribution at R0.8, but

the reverse may be true: the limit distribution at R0.8 appears to first-order stochastically

dominate the limit distribution at R0.

14



 

0

4

8

12

16

0 0.2 0.4 0.6 0.8 1

(a)  p = 1

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

(b)  p = 2

0

0.5

1

1.5

2

0 1 2 3 4 5

(c) p = ∞

Figure 4.3: Limit distribution of Mp
m,n, with p = 1, 2,∞. The solid line plots the limit

distribution when R is the 45◦ line, while the dashed line plots the limit distribution when
R = R0.8, as defined in (4.1) and plotted in Figure 4.1.

5 Local power

In this section we present two closely related results concerning the local power of the

testing procedure discussed above. These results apply for any p ∈ [1,∞], though it is

clear from the results in the previous section that size control is problematic when p > 2.

For simplicity, we assume here that the two sample sizes are equal: m = n. Proofs may

be found in the Appendix.

Consider a sequence of odcs R(1), R(2), . . . ∈ Θ1 with common lcm R ∈ Θ0. For each n, we

observe independent iid samples (X
(n)
1 , . . . , X

(n)
n ) and (Y1, . . . , Yn). Each X

(n)
i is drawn

from the cdf F (n) = R(n), and each Yj is drawn from the cdf G, which we assume without

loss of generality to be uniform on [0, 1]. From these samples we compute the empirical

cdfs F
(n)
n (x) = n−1

∑n
i=1 1(X

(n)
i ≤ x) and Gn(y) = n−1

∑n
j=1 1(Yj ≤ y) and the empirical

odc R
(n)
n (u) = F

(n)
n (G−1n (u)). We reject the null hypothesis Θ0 when our test statistic

cn‖DR(n)
n ‖p, where cn = (n/2)1/2, exceeds some critical value τ ∈ (0,∞).

We are interested in the limiting power of our test against sequences of alternatives R(n)

that draw closer to Θ0, in some sense, as n → ∞. Loosely following the approach

of Delgado and Escanciano (2012), we characterize the proximity of R(n) to Θ0 by the

quantity ‖DR(n)‖p, the Lp-distance between R(n) and its lcm. The following result states
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that, under a uniform boundedness condition on the first derivatives of the odcs R(n),

the power of our test converges to one whenever the sequence of odcs approaches their

common lcm R ∈ Θ0 at a rate slower than n1/2.

Theorem 5.1. Suppose the sequence of odcs R(1), R(2), . . . ∈ Θ1 has uniformly bounded

first derivatives and satisfies limn→∞ n
1/2‖DR(n)‖p =∞. Then

lim
n→∞

P
(
cn‖DR(n)

n ‖p > τ
)

= 1.

Theorem 5.1 implies that our testing procedure is consistent against any fixed alternative

R ∈ Θ1: merely set R(n) = R for all n.

Our next result implies that, loosely speaking, our testing procedure has high power

against certain sequences of odcs in Θ1 that approach Θ0 at the rate n1/2. Its statement

is reminiscent of a result of Delgado and Escanciano (2012, Theorem 2).

Theorem 5.2. Let β ∈ (0, 1). There exists η < ∞ such that, if the sequence

of odcs R(1), R(2), . . . ∈ Θ1 has uniformly bounded first derivatives and satisfies

lim infn→∞ n
1/2‖DR(n)‖p ≥ η, we have

lim inf
n→∞

P
(
cn‖DR(n)

n ‖p > τ
)
≥ β.

Theorem 5.2 provides an optimistic perspective on the local power of our testing proce-

dure: we have nontrivial power against many sequences in Θ1 that approach Θ0 at the

rate n1/2. Of course, since the limit distribution of our test statistic is zero at all strictly

concave members of Θ0, and since those members constitute boundary points of Θ0, it is

easy to find examples of other sequences in Θ1 converging to Θ0 at the rate n1/2 for which

our limiting power is arbitrarily close to zero.

6 Finite sample simulations

Here we report numerical evidence pertaining to the finite sample relevance of the asymp-

totic results given in Sections 3, 4 and 5. We calculated the finite sample rejection rates
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Figure 6.1: Odcs used to produce finite sample rejection rates given in Tables 6.1, 6.2
and 6.3. Odcs #1,2,3,5 are given by (4.1) with δ = 0, 0.4, 0.8,−0.4 respectively. Odc #4
is given by R(u) = u1/2. Odc #6 is given by R(u) = u2. Odc #7 is given by R(u) = 2−1 +
2−1 arctan ((2u− 1) tan(1)). Odc #8 is given by R(u) = 2−1 + (2 tan(1))−1 tan(2u− 1).

of the statistics M1
m,n, M2

m,n and M∞
m,n under eight different choices of R. These eight

odcs are plotted in Figure 6.1. The first four odcs are concave, while the second four

are nonconcave. We report numerical rejection rates for sample sizes (m,n) = (20, 20),

(20, 50), (50, 50), (200, 500), (500, 500). The nominal size of all tests was 5%. Rejection

rates were based on 104 experimental replications.

In implementing the tests, we compared each of the statistics Mp
m,n to two different critical

values (cvs). The first cv is the 0.95 quantile of ‖DB‖p, the limit distribution ofMp
m,n when

R(u) = u. The second cv is the 0.95 quantile of the exact finite sample distribution of

Mp
m,n whenR(u) = u; recall from our discussion in Section 2 that the sampling distribution

of Mp
m,n is uniquely determined by R. Though we lack a closed form expression for the

finite sample distribution of Mp
m,n, it may be obtained by numerical simulation.

The observed rejection rates of Mp
m,n when p = 1 and p = 2 are reported in Table 6.1 and

Table 6.2. The results for p = 1 and p = 2 are mostly similar. As expected, the rejection

rates for odc #1, the 45◦ line, are very close to 0.05 when we use exact cvs. If the exact

cvs are correct, our rejection rates should lie within 0.0043 of 0.05 with approximately

95% probability; and indeed, we see that 9 of the 10 rejection frequencies for odc #1
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Asymptotic cvs Exact cvs
m 20 20 50 200 500 20 20 50 200 500

odc # n 20 50 50 500 500 20 50 50 500 500

1 .030 .032 .032 .046 .044 .053 .051 .046 .052 .049
2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .000 .000 .000 .000 .000 .001 .001 .000 .000 .000
5 .629 .808 .961 1.00 1.00 .730 .864 .973 1.00 1.00
6 .465 .612 .849 1.00 1.00 .581 .698 .881 1.00 1.00
7 .046 .049 .077 .590 .870 .084 .078 .111 .612 .883
8 .034 .060 .071 .576 .878 .066 .093 .102 .596 .890

Table 6.1: Finite sample rejection rates for M1
m,n. Odcs #1–8 are plotted in Figure 6.1.

Nominal size is 0.05. Odcs #1-4 are concave; odcs #5-8 are nonconcave.

Asymptotic cvs Exact cvs
m 20 20 50 200 500 20 20 50 200 500

odc # n 20 50 50 500 500 20 50 50 500 500

1 .030 .035 .035 .047 .045 .058 .052 .048 .052 .047
2 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .000 .001 .000 .000 .000 .001 .001 .000 .000 .000
5 .649 .824 .968 1.00 1.00 .749 .866 .977 1.00 1.00
6 .451 .600 .836 1.00 1.00 .569 .668 .869 1.00 1.00
7 .064 .080 .129 .751 .946 .109 .114 .165 .765 .949
8 .039 .068 .083 .648 .925 .074 .094 .113 .667 .928

Table 6.2: Finite sample rejection rates for M2
m,n. Odcs #1–8 are plotted in Figure 6.1.

Nominal size is 0.05. Odcs #1-4 are concave; odcs #5-8 are nonconcave.

using exact cvs fall in this region. With asymptotic cvs the rejection rates are close to

0.05 at the larger sample sizes we consider, but close to 0.03 with smaller samples. The

rejection rates for odcs #2–4 are effectively zero using asymptotic or exact cvs. This

reflects the fact that our cvs are chosen to control size at odc #1, the least favorable

case, and should be conservative at other concave odcs. Turning to odcs #5–8, which are

nonconcave, we see that rejection rates increase to one as the sample sizes increase, using

18



Asymptotic cvs Exact cvs
m 20 20 50 200 500 20 20 50 200 500

odc # n 20 50 50 500 500 20 50 50 500 500

1 .013 .027 .025 .045 .042 .054 .051 .048 .050 .047
2 .007 .011 .018 .020 .043 .022 .022 .037 .023 .048
3 .024 .065 .146 .328 .588 .070 .102 .189 .344 .601
4 .000 .001 .000 .000 .000 .002 .002 .001 .000 .000
5 .470 .770 .948 1.00 1.00 .729 .841 .970 1.00 1.00
6 .219 .450 .686 1.00 1.00 .495 .575 .774 1.00 1.00
7 .052 .010 .153 .833 .970 .137 .165 .232 .848 .973
8 .017 .048 .057 .646 .920 .062 .077 .103 .668 .927

Table 6.3: Finite sample rejection rates for M∞
m,n. Odcs #1–8 are plotted in Figure 6.1.

Nominal size is 0.05. Odcs #1-4 are concave; odcs #5-8 are nonconcave.

either asymptotic or exact cvs. The rejection rates for odcs #7–8 are much lower than

the rejection rates for odcs #5–6 at smaller sample sizes. Power is greater using the exact

cvs at smaller sample sizes. Comparing the rejection rates for M1
m,n and M2

m,n against

the nonconcave odcs, we find that the two tests deliver similar power against odcs #5–6,

while M2
m,n outperforms M1

m,n against odcs #7–8.

Rejection rates obtained using the statistic M∞
m,n are reported in Table 6.3. The main

feature to observe here is the excessive rejection rate obtained for odc #3, which is con-

cave. Overrejection is not excessive at smaller sample sizes – indeed, with m = n = 20

and asymptotic cvs, the test is conservative – but the rejection rate is well in excess of

nominal size at larger sample sizes, rising to over 0.5 when m = n = 500. This phe-

nomenon illustrates the content of Theorem 4.2, which asserts that when p > 2, the limit

distribution of Mp
m,n diverges to infinity along a suitably chosen sequence of concave odcs.

The proof of Theorem 4.2, located in the Appendix, involves showing that the limit dis-

tribution of Mp
m,n can be made large by choosing a concave odc that is affine and steep

near the origin. We see in Figure 6.1 that odc #3 fits this description.
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7 Final remarks

In this paper, building on work by Carolan and Tebbs (2005), we studied a family of

nonparametric tests of density ratio ordering between two cdfs F and G. We showed

that, when p ∈ [1, 2], pointwise asymptotic size control may be achieved by extracting

critical values from the distribution of Mp
m,n at F = G, the least favorable case. When

p ∈ (2,∞], this approach breaks down, and the tests have asymptotic size one.

We have assumed throughout that the two samples used to construct the test statistic

are iid and independent of one another. This assumption may be implausible in many

applications, and its relaxation remains a priority for further research in this area. A

second priority is the construction of more powerful tests of density ratio ordering, with

critical values chosen to achieve correct asymptotic size at a wider range of points in the

null, and not merely at the single point where F = G. It is conceivable that some version

of the modified bootstrap technique used by Linton et al. (2010) to test for stochastic

dominance may be adapted to apply in the present context. We leave the investigation

of this possibility to future research.

A Proofs

Proof of Lemma 3.2. Our task is to show that t−1n (M(R + tnhn) − R) → M′
Rh for any

sequences tn ↓ 0 and hn → h ∈ C[0, 1]. It is known (see e.g. Durot and Tocquet,

2003, Lemma 2.2) that sup |Mf − Mg| ≤ sup |f − g| for any f, g. Consequently,

t−1n sup |M(R + tnhn) −M(R + tnh)| ≤ sup |hn − h|, and so it suffices for us to show

that, for any h ∈ C[0, 1], t−1n (M(R + tnh) − R) → M′
Rh. We will do this by estab-

lishing pointwise monotone convergence t−1n (M(R + tnh)(u) − R(u)) ↓ M′
Rh(u) at each

u ∈ [0, 1], which implies uniform convergence by Dini’s theorem. In what follows, let

M′
R,nh = t−1n (M(R + tnh)−R), and let u be a fixed point in [0, 1].

Since R is concave, the supporting hyperplane theorem ensures the existence of an affine

function ξu ∈ C([0, 1]) such that ξu(u) = R(u) and ξu ≥ R. It is known (see e.g. Durot

and Tocquet, 2003, Lemma 2.1) thatM(f + g) =Mf + g for any f, g with g affine, and
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that M is positive homogeneous of degree one. We therefore have

M′
R,nh(u) = t−1n M(R + tnh− ξu)(u) =M

(
h+ t−1n (R− ξu)

)
(u). (A.1)

Since ξu ≥ R, it is clear from (A.1) thatM′
R,nh(u) is decreasing in n, and so it remains only

to show the pointwise convergence M′
R,nh(u) →M′

Rh(u). Let hR,n,u = h + t−1n (R − ξu).
We will show that, for any fixed δ > 0,

MhR,n,u(u) =M[(aR,u−δ)∨0,(bR,u+δ)∧1]hR,n,u(u) (A.2)

for all n sufficiently large. A representation of the lcm in terms of a supremum of secant

segments (Carolan, 2002, Lemma 1) allows us to write

MhR,n,u(u) = sup
u′∈[0,u]

sup
u′′∈[u,1]

(u′′ − u)hR,n,u(u
′) + (u− u′)hR,n,u(u′′)
u′′ − u′

, (A.3)

with the ratio 0/0 defined as hR,n,u(u) = h(u) if u′ = u′′ = u. Since ξu is affine with

ξu(u) = R(u), when u′ 6= u′′ the ratio in (A.3) is bounded from above by

Mh(u) + t−1n

[
(u′′ − u)R(u′) + (u− u′)R(u′′)

u′′ − u′
−R(u)

]
. (A.4)

Now, since R is concave and there does not exist a left-neighborhood of aR,u or a right-

neighborhood of bR,u in which R is affine, the term in square brackets in (A.4) is negative

and bounded away from zero as (u′, u′′) ranges over the complement of [(aR,u− δ)∨0, u]×
[u, (bR,u + δ)∧ 1]. By choosing n sufficiently large, we may therefore restrict the suprema

in (A.3) to u′ ∈ [(aR,u − δ) ∨ 0, u] and u′′ ∈ [u, (bR,u + δ) ∧ 1]. But the right-hand side

of (A.3) is then simply M[(aR,u−δ)∨0,(bR,u+δ)∧1]hR,n,u(u) by the representation of Carolan

(2002, Lemma 1), and so we have proved that (A.2) holds for all n sufficiently large.

If aR,u = bR,u = u, defineM[aR,u,bR,u]h(u) = h(u). Then the claimed directional derivative

M′
Rh(u) is equal to M[aR,u,bR,u]h(u) regardless of whether R is affine in a neighborhood

of u, and in view of (A.1) we now need only show that MhR,n,u(u) → M[aR,u,bR,u]h(u).
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Since (A.2) holds for all n sufficiently large, we have

lim sup
n→∞

∣∣MhR,n,u(u)−M[aR,u,bR,u]h(u)
∣∣

≤ lim sup
n→∞

∣∣M[(aR,u−δ)∨0,(bR,u+δ)∧1]hR,n,u(u)−M[aR,u,bR,u]h(u)
∣∣ . (A.5)

And since hR,n,u(u
′) ≤ h(u′) for all u′, with equality when aR,u ≤ u′ ≤ bRu , we have

M[aR,u,bR,u]h(u) ≤M[(aR,u−δ)∨0,(bR,u+δ)∧1]hR,n,u(u) ≤M[(aR,u−δ)∨0,(bR,u+δ)∧1]h(u). (A.6)

The lower and upper bound in (A.6) do not depend on n, thereby allowing us to bound

the right-hand side of (A.5) by their difference. We thus arrive at the inequality

lim sup
n→∞

∣∣MhR,n,u(u)−M[aR,u,bR,u]h(u)
∣∣ ≤ ∣∣M[(aR,u−δ)∨0,(bR,u+δ)∧1]h(u)−M[aR,u,bR,u]h(u)

∣∣ .
(A.7)

The right-hand side of (A.7) depends on δ, which was arbitrary. Letting δ ↓ 0, the

right-hand side of (A.7) vanishes by virtue of the continuity of h, and we are done.

Proof of Theorem 3.1. When R is strictly concave, Lemma 3.2 implies thatM′
RTR = TR,

and so from (3.3) we have Mp
m,n →p 0, as claimed. Suppose instead that R is concave but

not strictly concave. For u ∈ [ak, bk], we know that R(u) = R(ak) + hkd
−1
k (u − ak) and

R′(u) = hkd
−1
k . Therefore, recalling the definition of TR in Lemma 3.1, we have

TR(u) = λ1/2B̄1

(
R(ak) + hkd

−1
k (u− ak)

)
+ (1− λ)1/2hkd

−1
k B̄2(u) ∀u ∈ [ak, bk],

where B̄1 and B̄2 are independent standard Brownian bridges on [0, 1]. Let W̄1 and

W̄2 be independent Wiener processes on [0, 1] such that B̄1(u) = W̄1(u) − uW̄1(1) and

B̄2(u) = W̄2(u)− uW̄2(1). We define T ∗R, T
+
R ∈ `∞([0, 1]) as follows. For u ∈ [ak, bk], let

T ∗R(u) = λ1/2W̄1

(
R(ak) + hkd

−1
k (u− ak)

)
+ (1− λ)1/2hkd

−1
k W̄2(u)

T+
R (u) = λ1/2

(
R(ak) + hkd

−1
k (u− ak)

)
W̄1(1) + (1− λ)1/2hkd

−1
k uW̄2(1).

For u /∈ ∪k∈K [ak, bk], let T ∗R(u) = TR(u) and T+
R (u) = 0. By construction, TR(u) = T ∗R(u)−

T+
R (u) for all u ∈ [0, 1]. Note that T+

R is affine over each interval [ak, bk]. Consequently,
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for u ∈ [ak, bk] we have M[ak,bk]TR(u) =M[ak,bk]T
∗
R(u)− T+

R (u), and so

M[ak,bk]TR(u)− TR(u) =M[ak,bk]T
∗
R(u)− T ∗R(u) ∀u ∈ [ak, bk]. (A.8)

For k ∈ K and u ∈ [0, 1], define

W̄1,k(u) = h
−1/2
k

(
W̄1 (R(ak) + hku)− W̄1 (R(ak))

)
W̄2,k(u) = d

−1/2
k

(
W̄2 (ak + dku)− W̄2 (ak)

)
.

The self-similarity property of Wiener processes implies that W̄1,k and W̄2,k are themselves

Wiener processes. Moreover, the collection of Wiener processes {W̄j,k : j ∈ {1, 2}, k ∈ K}
is mutually independent. It follows that the random functions Wk, k ∈ K, defined by

Wk(u) =
λ1/2h

1/2
k W̄1,k(u) + (1− λ)1/2hkd

−1/2
k W̄2,k(u)√

λhk + (1− λ)h2kd
−1
k

∀u ∈ [0, 1],

also form a mutually independent collection of Wiener processes. We may now write

T ∗R(u) =
(
λhk + (1− λ)h2kd

−1
k

)1/2
Wk

(
d−1k (u− ak)

)
+ γR,k ∀u ∈ [ak, bk],

where γR,k = λ1/2W̄1(R(ak)) + (1 − λ)1/2hkd
−1
k W̄2(ak). Since γR,k does not depend on u,

and M[ak,bk] is positive homogeneous of degree one, we conclude that

M[ak,bk]T
∗
R(u)− T ∗R(u) =

(
λhk + (1− λ)h2kd

−1
k

)1/2DWk

(
d−1k (u− ak)

)
(A.9)

for all k ∈ K and u ∈ [ak, bk].

In view of (3.3), it suffices for us to show that ‖M′
RTR−TR‖p has the distribution stated

in Theorem 3.1. Suppose first that p ∈ [1,∞). From the form of the directional derivative

M′
R given in Lemma 3.2, we see that

‖M′
RTR − TR‖p =

(∑
k∈K

∫ bk

ak

(
M[ak,bk]TR(u)− TR(u)

)p
du

)1/p

.
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(A.8), (A.9), and a simple change of variables may be used to show that∫ bk

ak

(
M[ak,bk]TR(u)− TR(u)

)p
du =

(
λhkd

2/p
k + (1− λ)h2kd

(2−p)/p
k

)p/2 ∫ 1

0

DWk (u)p du

for each k ∈ K. Let Bk(u) = Wk(u) − uWk(1), a standard Brownian bridge. Since

DWk = DBk, this completes our proof for the case p ∈ [1,∞). Suppose next that p =∞.

Lemma 3.2 implies that

‖M′
RTR − TR‖∞ = sup

k∈K
sup

u∈[ak,bk]

(
M[ak,bk]TR(u)− TR(u)

)
.

It is immediate from (A.8) and (A.9) that

sup
u∈[ak,bk]

(
M[ak,bk]TR(u)− TR(u)

)
=
(
λhk + (1− λ)h2kd

−1
k

)1/2 ‖DWk‖∞.

for each k ∈ K. Since DWk = DBk, our proof is complete for the case p =∞ also.

Proof of Theorem 4.1. If R is strictly concave then Mp
mn →p 0 by Theorem 3.1, and we

are done. Suppose R is concave but not strictly concave. For k ∈ K, define

lk =
(
λhkd

2/p
k + (1− λ)h2kd

(2−p)/p
k

)p/(p+2)

.

We need to show that ‖DB‖pp first-order stochastically dominates
∑

k∈K l
(p+2)/2
k ‖DBk‖pp.

Begin by observing that

lk = h
p/(p+2)
k · d(2−p)/(p+2)

k · (λdk + (1− λ)hk)
p/(p+2) .

The three exponents on the right-hand side of this equality satisfy

p

p+ 2
+

2− p
p+ 2

+
p

p+ 2
= 1.

Therefore, since p ≤ 2, the well-known inequality between weighted geometric and arith-
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metic means implies that

lk ≤
p

p+ 2
hk +

2− p
p+ 2

dk +
p

p+ 2
(λdk + (1− λ)hk) .

Consequently, we have

∑
k∈K

lk ≤
∑
k∈K

(
p

p+ 2
hk +

2− p
p+ 2

dk +
p

p+ 2
(λdk + (1− λ)hk)

)
=

p(2− λ)

p+ 2

∑
k∈K

hk +
2− p+ λp

p+ 2

∑
k∈K

dk

≤ 1, (A.10)

since
∑

k∈K hk ≤ 1 and
∑

k∈K dk ≤ 1. The inequality (A.10) ensures the existence of a

collection of closed intervals [a∗k, b
∗
k] ⊆ [0, 1], k ∈ K, such that the intersection of any two

intervals contains at most one point, and such that b∗k − a∗k = lk for each k ∈ K. Let W

be a Wiener process with B(u) = W (u)− uW (1). Recalling that DB = DW , we have

‖DB‖pp =

∫ 1

0

(MW (u)−W (u))p du ≥
∑
k∈K

∫ b∗k

a∗k

(
M[a∗k,b

∗
k]
W (u)−W (u)

)p
du.

Since W is self-similar with independent increments, we may define a mutually indepen-

dent collection of Wiener processes {Wk : k ∈ K} such that∫ b∗k

a∗k

(
M[a∗k,b

∗
k]
W (u)−W (u)

)p
du = l

(p+2)/2
k

∫ 1

0

(MWk(u)−Wk(u))p du = l
(p+2)/2
k ‖DWk‖pp

for each k ∈ K. Consequently, we have ‖DB‖pp ≥
∑

k∈K l
(p+2)/2
k ‖DWk‖pp. Letting Bk(u) =

Wk(u)− uWk(1), we obtain the desired first-order stochastic dominance.

Proof of Theorem 4.2. Suppose p ∈ (2,∞). In view of Theorem 3.1, it is clear that the

limit distribution of Mp
m,n may be made to assign arbitrarily small probability to [0, c] if we

can choose R ∈ Θ0 to make h21d
(2−p)/p
1 sufficiently large. But since p > 2, this can always

be achieved by making R linear and sufficiently steep near the origin. For instance, if we

set R = Rδ, the odc defined in (4.1), then d1 = (4− 4δ)/(9 + δ) and h1 = (4 + 4δ)/(9 + δ).

As δ → 1, we have d1 → 0 and h1 → 0.8, and hence h21d
(2−p)/p
1 → ∞ when p ∈ (2,∞).
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We can therefore make h21d
(2−p)/p
1 arbitrarily large by choosing δ sufficiently close to one.

Similarly, we can make the limit distribution of M∞
m,n assign arbitrarily small probability

to [0, c] by choosing R ∈ Θ0 to make h21d
−1
1 sufficiently large, and this too is always

possible by choosing δ sufficiently close to one in (4.1).

Proof of Theorem 5.1. Begin by writing

cn‖DR(n)
n ‖p ≥ cn‖DR(n)‖p − cn‖

(
MR(n)

n −MR(n)
)
−
(
R(n)
n −R(n)

)
‖p. (A.11)

Since the first term on the right-hand side of (A.11) diverges to infinity, it suffices for us

to show that the second term is Op(1). By Durot and Tocquet (2003, Lemma 2.2) we have

‖MR
(n)
n −MR(n)‖∞ ≤ ‖R(n)

n −R(n)‖∞, so if we can show that cn‖R(n)
n −R(n)‖∞ = Op(1)

we are done.

Let F = R, the common lcm of the R(n)’s, and let X1, . . . , Xn be an iid sample drawn from

F , independent of Y1, . . . , Yn. Let Fn denote the empirical cdf of that sample. Note that

Xi
d
= F−1(F (n)(X

(n)
i )) for each i, where

d
= signifies equality of distribution. Consequently,

as random elements of `∞([0, 1]), we have F
(n)
n (·) d

= Fn(F−1(F (n)(·))). We may therefore

write

cn
(
R(n)
n (·)−R(n)(·)

) d
= cn

(
Fn(F−1(F (n)(G−1n (·))))− F (n)(G−1(·))

)
= cn

(
Fn(F−1(F (n)(G−1n (·))))− F (n)(G−1n (·))

)
+cn

(
F (n)(G−1n (·))− F (n)(G−1(·))

)
(A.12)

The first term on the right-hand side of (A.12) is uniformly Op(1) since n1/2(Fn(F−1(·))−
(·)) B in `∞([0, 1]). The second term on the right-hand side of (A.12) is uniformly Op(1)

since the first derivatives of the F (n)’s are uniformly bounded and n1/2(G−1n −G−1) B

in `∞([0, 1]). Thus cn(R
(n)
n (·)−R(n)(·)) is uniformly Op(1), and the proof is complete.

Proof of Theorem 5.2. The argument here is nearly the same as that used in the proof of

Theorem 5.1. Let Zn denote the second term on the right-hand side of (A.11), so that

cn‖DR(n)
n ‖p ≥ cn‖DR(n)‖p − Zn. Then P (cn‖DR(n)

n ‖p > τ) ≥ P (Zn < cn‖DR(n)‖p − τ).

Since Zn = Op(1) and lim infn→∞ n
1/2‖DR(n)‖p ≥ η, for large enough η we will have

P (Zn < cn‖DR(n)‖p − τ) ≥ β for all n sufficiently large.
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