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Abstract
Consider a Gaussian random field with finite Karhunen-Loéve expansion of the
form Z(u) = Y.~ u;z;, where z;, ¢ = 1,...,n, are independent standard normal
variables and » = (uy,...,u,)’ ranges over an index set M, which is a subset of the

unit sphere S”~! in R*. Under a very general assumption that M is a manifold
with piecewise smooth boundary, we prove the validity and the equivalence of two
currently available methods for obtaining the asymptotic expansion of tail proba-
bility of the maximum of Z(u). One is the tube method, where the volume of tube
around the index set M is evaluated. The other is the Euler characteristic method,
where the expectation for the Euler characteristic of excursion set is evaluated. In
order to show this equivalence we prove a version of the Morse’s theorem for a man-
ifold with piecewise smooth boundary. These results on the tail probabilities are
generalizations of those of Takemura and Kuriki (1997), where M was assumed to
be convex.

Key words: chi-bar-squared distribution, Gauss-Bonnet theorem, Karhunen-Loéve
expansion, kinematic fundamental formula, manifold with boundary, Morse func-
tion.



1 Introduction

Let M be a closed subset of the unit sphere S® ! in R*. We consider a random field
{Z(u), u= (uy,...,u,) € M} defined by

n
Z(u) =w'z = uz, (1.1)
i=1
where z = (21, ..., 2,)" is distributed according to the n-dimensional standard multivariate
normal distribution N, (0, I,). The covariance function is given by

r(u,v) = E[Z(u)Z(v)] = u'v.

The variance of Z(u) is r(u,u) = ||u]|* = 1 since u € S"7!. (1.1) is the canonical form of
Gaussian random field with finite Karhunen-Loeve expansion and constant variance. In
this paper we study the asymptotic behavior of the upper tail probability
>
P(r&z}&(Z(u) _x) (1.2)

as z goes to infinity.
As a related random field to (1.1) we define

Y(u) = 'y = 3w (13)
=1
where y = (y1,...,Yn) = z/||z|| is distributed according to the uniform distribution
Unif(5™7') on the unit sphere S"~!. We also study the upper tail probability
> ). .
P(%%(Y(u) > ) (1.4)
Once formulated in the canonical form (1.1), the upper tail probabilities (1.2) and (1.4)
depend on the geometry of the index set M. Although in our setting we are restricted
to random fields with finite Karhunen-Loéve expansion, we want to consider a class of
index sets M which is as general as possible. This class should include polyhedral regions,
(geodesically) convex regions, and manifolds with or without boundaries. In our previous
works we studied convex regions in Takemura and Kuriki (1997) and manifolds without

boundary in Kuriki and Takemura (1998). Unifying these cases we make the following
assumption on M:

Assumption 1.1 M is a compact m-dimensional C?*-manifold with piecewise smooth
boundary in the sense of Definition A.1.

A manifold M with piecewise smooth boundary can be approximated locally by the
support cone (tangent cone) S, (M) at any point u € M. See Appendix A.1 for the precise
definition of support cone. In addition to Assumption 1.1 we make another assumption:
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Assumption 1.2 At each point u € M, the support cone S,(M) of M is convexz.

Roughly speaking Assumption 1.2 means that M is locally convex. This assumption
is essential for the validity of asymptotic expansion of the upper tail probability (1.2). In
our subsequent work we will discuss in detail that the tube method as well as the Euler
characteristic method leads to incorrect asymptotic expansion when Assumption 1.2 fails.

In order to derive asymptotic expansion of the upper tail probability (1.2) for Z(u), two
methods are currently available. One is the “tube method” developed by Sun (1993). She
showed that given an expression for the upper probability (1.4) for Y (u) valid for z € [z, 1]
(z. < 1is a constant), the asymptotic expansion of the upper probability (1.2) for Z(u) is
obtained automatically from the expression for (1.4). As will be explained in Section 2, the
upper probability for Y'(u) is exactly the ratio of volume of tube (tubular neighborhood)
around M to the volume of the unit sphere S™"~!. Therefore the problem is reduced to
obtaining the formula for volume of tube (tube formula). The tube formula for a manifold
of general dimension without boundary was obtained by Weyl (1939). For a manifold with
piecewise smooth boundary, the tube formula for dim M = 1 was given in Hotelling (1939)
and for dim M = 2 it was given in Knowles and Siegmund (1989). When M is a geodesi-
cally convex domain with piecewise smooth boundary, Takemura and Kuriki (1997) gave
a formula which is essentially equivalent to the tube formula. In this paper we present
the tube formula for a manifold with piecewise smooth boundary of general dimension
under Assumption 1.2 of local convexity.

The other method for obtaining the asymptotic expansion of the tail probability (1.2)
is the “Euler characteristic method” developed by Adler (1981) and Worsley (1995a,b).
As we will see in Section 3, the Euler characteristic method is applicable in principle to
any random fields. However, differently from the tube method, the Euler characteristic
method is a heuristic approach and its validity in general setting has not been proved.
Recently, Adler (1998) showed that the Euler characteristic method for isotropic Gaussian
random fields on piecewise smooth domain gives the valid asymptotic expansion using the
results by Piterbarg (1996). In this paper in the case where the Gaussian field is of the
form (1.1) but not assumed isotropic, we give a proof that the Euler characteristic method
is equivalent to the tube method and hence gives a valid asymptotic expansion. In order to
show this equivalence we prepare a generalized version of the Morse’s theorem for manifold
with piecewise smooth boundary. Moreover our geometric consideration gives us an alter-
native proof of Naiman’s inequality (Naiman (1986), Johnstone and Siegmund (1989)).

The outline of this paper is as follows. In Section 2 we define the tube on the sphere,
and give a tube formula for manifold with piecewise smooth boundary. We also discuss
how to calculate the critical radius of tube, which is essential for determining the order
of the remainder term of the asymptotic expansion. In Section 3 we explain the Euler
characteristic method for the Gaussian random field (1.1). Then the equivalence of the
tube method and the Euler characteristic method is proved using a generalized version of
the Morse’s theorem. Furthermore we will give an alternative simplified proof of Naiman’s
inequality. In Section 4 as an example we discuss the distribution of the maximum of co-
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sine field treated in Piterbarg (1996). In Appendix we summarize geometric preliminaries
about manifold with piecewise smooth boundary. A generalized version of the Morse’s
theorem is also given there.

2 Tube method

In this section we derive tube formula for the tube around piecewise smooth M C S"~!
and derive asymptotic expansion of probabilities (1.2) and (1.4) based on the tube formula.

2.1 Tube and its critical radius

Let
Mg ={ye 5" |uy>cosh, Juec M}.
Since y in (1.4) is distributed uniformly on S™!, the probability (1.4) for z = cos# is

written as

1
P(Iunei}\;[( Y (u) > cos 0) = o Vol(M,),

where Vol(-) denotes the spherical volume on S"~! and

/2
['(n/2)

0, = Vol(5"!) =

is the total volume of S™~1.
Let

dist(u,v) = cos™!(u'v) € [0,7], wu,v € S™7,

be the distance on the unit sphere S~ !, and let

dist(u, M) = min dist(u, v).

Then the set My can be written as
My = {y € 5"~ | dist(y, M) < 6},

i.e., My is the set of points whose distance from M are less than or equal to . We call M,
spherical tube around M with radius f. Therefore the evaluation of the tail probability
(1.4) is reduced to the evaluation of the volume of tube M.

Since M is closed, for each y € S™~! there exists a closest point yas in M such that

dist(y,yar) = dist(y, M).

Although yar might not be unique, the distance dist(y, M) is uniquely determined.
Define a subset of S"~! by

Cu(0) = My N (u+ N, (M), uwe M,
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where N, (M) is the normal cone at u, which is the dual cone of S, (M) in R*. C,(0) is
the cross section of My crossing M at u € M and consists of points y € M such that
u = yym € M. Since each y € M belongs to Cy,,(6), My can be written as the union of
cross sections:
Mg = | C.(0).
uEM

By the Assumption 1.2 at each point © € M, M is locally approximated by the convex
support cone S,(M). Because of this, for each y sufficiently close to M the point yas is
uniquely defined. From the compactness of M it can be shown that there exists § > 0

such that for every y € My the point yy; is unique. The supremum 8, of such 8 is called
critical radius of M:

6. = 0.(M) = sup{0 > 0 | yas unique for all y € My}.
It is easily shown that 6, can also be defined by
6. = sup{6 > 0| C,(9), u € M, are disjoint}.

Let
K=KM)=JM
>0
denote the smallest cone containing M. The critical radius can be computed using the
following formula.

Lemma 2.1 ” ||2 6. (6 /2)
u—v tan &, e <m/2

: B | e | 2.1

ity BTP I = o] { o (6.>7/2), 1)

where P is the orthogonal projection in R™ onto the normal cone N,(K) of K at v.

For the case of one-dimensional smooth manifold this result is given in Proposition 4.3
of Johansen and Johnstone (1990). Extension to smooth manifolds of higher dimension
is stated in Lemma A.l of Kuriki and Takemura (1998). We omit the proof of Lemma
2.1, since it is essentially the same as the proof given by Johansen and Johnstone (1990).

It can be proved that 8. > 7/2 if and only if K (# R"™) is convex. If M is a geodesically
convex region on S™, then the critical radius .(M) may be greater than /2. In this case
the denominator of the left hand side of (2.1) is 0 and (2.1) does not give the critical
radius.

2.2 Tubal coordinates and Jacobian

Fix a relative interior point y of My, N M®. We introduce here the tubal coordinates of
Mg, around y.



Suppose that yy is a relative interior point of a component of d-dimensional boundary
OMy of M. Let u = yu, 0 = cos™(u'y). If § < 7/2, then ucos@ is the orthogonal
projection in R™ of y onto K = K(M). Put

y — ucosf y —ucosf

= = Sn_l‘
Y ly — wcos 8| snf ©

Considering the two-dimensional plane spanned by y and u we see that y is uniquely
written as

y=ucosf+vsind, 0<0<b, uedM;, ve N, (K)ns L

We call the coordinates (6, u,v) tubal coordinates.

The Jacobian of the transformation y < (6,u,v) is given as follows. The second
fundamental form H(u,v) of M at u in the direction v is defined as in Section 2.3 of
Takemura and Kuriki (1997).

Lemma 2.2 Let dy be the volume element of My, (or S™ ') at y, du be the volume
element of OMy at uw = ypr, dv be the volume element of S*~4~% = N,(K(M))N S™! at
v. Then

dy = det(cos 01, + sin O H (u,v)) sin" %20 df du dv. (2.2)

Proof. Introduce a parameter ¢ > 0. Let z = ty € R" and put r = tcosf, s = tsinb.
Then z = ru+ sv, which gives a one-to-one correspondence between z and (r, s, u,v). The
Jacobian of this transformation is essentially given by Weyl (1939) as

dz = det(rl; + sH(u,v)) s" %2 dr ds du dov. (2.3)

See Appendix A of Kuriki and Takemura (1997) for a proof. Here note that the Lebesgue
measure dz at z is decomposed as

dz = t"'dt dy, (2.4)
where dy is the volume element of S"~! at y = 2/||z||. Note also that
drds = tdt dé. (2.5)

Substituting (2.4) and (2.5) into (2.3), and comparing the coefficients of "~'d¢, we have

the lemma. I

Note that for < 8, the determinant in (2.2) is nonnegative.



2.3 Tube formula and tail probabilities

Here we present the tube formula for the spherical volume of tube around M. The tube
formula of this section unifies the tube formula in the sense of Weyl (1939) and the Steiner
formula for the convex sets discussed in Takemura and Kuriki (1997).

Let u € OM, and let v € N,(K(M)), ||v]| = 1. The [-th symmetric function of the
principal curvatures of M, i.e., the eigenvalues of the second fundamental form H (u,v),
is denoted by tr;H (u,v). The tube formula Vol(M;) for My is given as follows.

Proposition 2.1 Fore=0,...,m, let

1 m
m+l—e — d / d t —m EH s R 2.6
v + Qm+l—eQn—m—1+e d:%:_e /3Md u u(]\"(M))nSn_l virg + (u U) ( )

where for each 0 < d < m, du and dv are the volume elements defined in Lemma 2.2.
Then for 0 < 0.(M) the spherical volume of My is given by

2, Z wm+1—6(1 - B%(m-%l—-e),%(n—m—1+e)(cos2 9)) (0<0<7/2)
Vol(My) = e=0

Q0 Y wnp1e (14 (=1 By 1) tnomo14e)(c0s?0)) (7/2 < 8 <6,),
e=0

(2.7)
where B, y(-) denotes the cumulative distribution function of beta distribution with param-
eter (a,b).

Proof. By virtue of the Jacobian given in Lemma 2.2, the spherical volume of My for
¢’ < 6. is given by

m 6[
Vol(My) = Z/ dg du/ dv det(cos 1, + sin O H (u,v)) sin® 42 6.
d=070 oMy W (K)nSn—1

Using the expansion formula for the determinant det(I; + A) = 3, tr; A, we obtain the
result by straightforward integration. [

Corollary 2.1 For z > cos6.(M),

P ( max Y (u) > :v)

ueEM

Zowmﬂ—e(l - B%(mﬂ_e),%(n-m—1+e)($2)) (0<z<1)

Z Wm41-—e (]. + (_1)m—eB%(m-{-l—e),%(n—m—l-{-e)(x2)) (COS 96 <z < 0),
e=0

(2.8)

where wy, 1. s given in (2.6).



Note that in (2.7) and (2.8) the second cases are needed only when 8, > 7 /2.
Now consider the maximum of Z(u). Let Gx(-) and gi(-) denote the cumulative dis-
tribution function and the density function of x? distribution with k degrees of freedom,

respectively. Using the techniques of Sun (1993) and Kuriki and Takemura (1998), we
obtain the following result by the tube method:

Proposition 2.2 If6. < 7/2, then as x — oo

P(%}c Z(u) > z) = i Winpi—e(] = Gmp1—e(2?)) + O(gn(z?(1 + tan?6.))).  (2.9)

e=0

If 6. > /2, then for each z > 0

P(max Z(u) > :1:) = iwmﬂ_e(l — Grii1—e(2?))- (2.10)

uEM =0
Here wpyy1-. is given in (2.6).

Note that the remainder term in (2.9) is of the order of o(1 — G(z?)).

Remark 2.1 When 0.(M) > /2, all of the coefficients wy,11—. in (2.10) are nonneg-
ative since K (M) is convex and hence the second fundamental form H(u,v) in (2.6) is
nonnegative definite. This distribution is a finite mizture of x* distributions referred to
as x*-distribution (e.g., Shapiro (1988)).

3 Euler characteristic method

In order to approximate tail probabilities of random fields such as (1.2) or (1.4), Adler
(1981) and Worsley (1995a,b) have developed a technique based on the Euler character-
istic of excursion set. In this paper we call their method Euler characteristic method. We
begin by a brief elucidation of the idea of their method in the case of Z(u) in (1.1).

3.1 Excursion set and its expectation

The excursion set is a subset of the index set M consisting of u for which (a realization
of) the random field Z(u) = u'z is greater than or equal to a threshold. That is,

A(z,z) ={ue M |v'z > z}
is the excursion set for Z(u) = «'z. It holds by definition that

P(max Z(u) > z) = P(A(z,z) # 0).

ueM



Let x(A(z,z)) denote the Euler characteristic (Euler-Poincaré characteristic) of the ex-
cursion set A(z,z). The Euler characteristic method approximates the tail probability
(1.2) for large = by

P(max Z(u) > o) ~ E[x(A(z,2))]. (3.1)

A rationale for the approximation (3.1) is as follows. The Euler characteristic is an
integer-valued topological invariant. In particular it takes the values

|1 (A(z,z) is homotopy equivalent to a point)
X(A(z,2)) = {0 (A(z, ) is empty).

Suppose that the threshold z is large. If max,ep v’z < z, then A(z,z) = 0. Now consider
the case max,epr v’z > . Note that the maximizing point u*, i.e., max,cp v’z = (u*)'z,
is uniquely determined with probability one. Therefore given max,cp u'z > z, with a
conditional probability nearly equal to 1, A(z,z) will be some neighborhood of u*, which
is homotopic to a point set {u*}.

Summarizing the discussions above, it is expected that for large

I(A(z,z) # 0) = x(A(z,z)) (with a probability nearly equal to 1), (3.2)

where [(-) is the indicator function. By taking the expectation for (3.2), we have
P(A(z,z) # 0) = E[x(A(z,x))], and (3.1) follows.

Differently from the tube method in Section 2, the Euler characteristic method is
applicable to any random field. However this method as described above is heuristic;
The meaning of the symbol “~” in (3.1) has to be examined in each case. Recently,
Adler (1998), Theorem 4.5.2, showed that in the case of isotropic Gaussian random field
the Euler characteristic method gives the valid asymptotic expansion for (1.2) as x goes
to infinity under mild regularity conditions. Adler (1998) proved this by checking that
all terms of expansions are the same as a formula obtained earlier by Piterbarg (1996),
Theorem 5.1. (See §2.5 of Adler (1981) for the definition of isotropic field.) In the
following subsection we will prove that the Euler characteristic method for the Gaussian
random field Z(u) in (1.1) is reduced to the tube method of Section 2. This implies that
the Euler characteristic method is valid for the case of Z(u) in (1.1).

3.2 Equivalence to the tube method

We prove the equivalence of the tube method and the Euler characteristic method first
for Y(u) in (1.3) and then for Z(u) in (1.1). Let

Aly,z) = {ue §"' [uy >} M

be the excursion set of the random field Y (u) = u'y, y ~ Unif(5™!). In order to evaluate
the expectation of the Euler characteristic of A(y,z) we need a version of the Morse
theorem, which is given in Appendix A.3. The following result together with Proposition
2.1 establishes the equivalence of two methods for Y'(u) in (1.3).
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Proposition 3.1 Let y be distributed uniformly on S™~'. Then
Elx(A(y,z))]
= [ Ay, 2)dy/9,

Z wm+1—e(1 - B%(m-{-l—e),%(n—m—l+e)(w2)) (0<z<1)
e=0

Z U)m+1—e(1 + (‘—1)m_eB%(m+1_e),%(n_m_l+e)(CC2)) (—]. S T < 0),

e=0

(3.3)
where dy denotes the volume element of S™™' and wy,11-. is given in (2.6).

Proof. Let y € S*~'. The key idea of the proof is to consider

fy(u) = —u'y
as a Morse function. Using the same line of argument as Theorem 6.6 of Milnor (1963),
we see that f,ar is @ Morse function on M in the sense of Appendix A.3 for almost all y.
Since the gradient of f,(u), u € R", is —y, the gradient of fya is given by the T,,(M)
component of —y. Using this fact it is easily shown that u € M is an extended inward
critical point of fyar if and only if y € N, (M).

We now consider x(A(y, z)) using fyja(yz)- If v is on the relative boundary of A(y,z),
then either —u'y = —z or v € M. Suppose that uy with —uly = —z is a critical point
of fyla@,z). Because ugp is an inner point of some relative neighborhood M of M and
—u'y is increasing as we leave A(y,z) outward at ug, the gradient of fylAy,z) 18 directed
outward on ug. Hence ug is not counted in the Euler characteristic x(A(y,z)). On the
other hand suppose that up € M, —u'y < —z, is a critical point of fy (- This ug
is counted in x(A(y,z)) exactly as it is counted in x(M). Also note that if ug € MO,
—ugy < —z, is a critical point of fy|4(y.z), it is counted in x(A(y, z)) exactly as it is counted
in x(M). We see that the Euler characteristic x(A(y, z)) is written as Proposition A.4,
where augmented type numbers are obtained by counting critical points u of fy with
—u'y < —uz.

Consider the index of fyan, at the critical point u € OMy, y € N,(M). Let H(u,y)
denote the second fundamental form of 9M, at u with respect to the vector y. Then by
the same line of argument as stated on page 36 of Milnor (1963), the Hessian matrix of
fylom, at u is given by (u'y)I; + H(u,y) and hence the index of the critical point u is the
number of negative characteristic roots of (u'y)l;+ H(u,y). In the tubal coordinates, this

matrix i1s written as
cos 01y + H(u,ucos@ + vsin@) = cos 01, + sin 0 H (u,v),

where § = cos™!(u'y) and v = (y — u cos @)/ sin . It follows that u is counted in x(M) or
X(A(y,x)) with the sign sgn det(cos01; + sin @ H(u,v)). That is, we have

X(A(y,z)) = > I(cosf > z)sgndet(cos 0, + sin 0H(u,v)) a.s.
u:YyENy (M)
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By Lemma 2.2 the Jacobian of the correspondence between the volume element of
S57~! and tubal coordinates (in the sense of unsigned measures) is written as

dy = | det(cos @1, + sin 0 H (u,v))| sin”"*"2 6 df du dv,

where | - | is the absolute value. (Although Lemma 2.2 treats only the case y € My, and
u = ym, it can be extended to the case y € S™! and u € M such that y € N, (M) by
taking the absolute value of determinant.) Since

sgn det(cos 01, +sin 0 H (u,v)) x | det(cos 01, +sin 0 H (u,v))| = det(cos 01, + sin § H (u, v)),

we have

Sy (AL, ) dy
m cos~1(z) . . 42
= Z/ dé du/ dv det(cos 81 + sin 6 H (u,v)) sin® ™% 4.
—~Jo oMy JINJ(K(M))nsn—1

As in the proof of Proposition 2.1 this yields (3.3). [

Remark 3.1 As stated in the proof of Proposition 3.1, x(A(y,cos®)) is the degree of
many-valued map y € My — u € M such thaty € N, (M) and the orientation of N,(M) is
taken into account. In this sense the integral of the Euler characteristic [gn-1 A(y,cos 8)dy
for 8 greater than the critical radius 6.(M) can be regarded as the signed volume of tube.

Remark 3.2 Let Dy and D; be a pair of domains of S™~1. Suppose Dy fired and D,
moving. Let dK; denote the kinematic density of Dy, i.e., an invariant measure for the
group of motion in S"~'. The integral of this type

/ X(Don Dl)dl(l
DoﬁDl?ﬁ@

is called kinematic fundamental formula. The formula when both 8Dy and 8D, are smooth
(of class C?) is given in IV.18.3 of Santalé (1976). Our Proposition 3.1 is a version of
kinematic fundamental formula for Do = M, D; = {u € S™™! | v’y > z} but 9Dy = IM
is not necessarily smooth.

It is now easy to translate the above equivalence of two methods for Y(u) to the
equivalence for Z(u). The expectation of the Euler characteristic for the excursion set

A(z,z)={ue 8" |uz>z}nNM

of Z(u) = u'z is given in the following proposition.
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Proposition 3.2 Let z be distributed according to the standard multivariate normal dis-
tribution N,(0,1,). Then

f:waH-l—e(l - Gm+1—e($2)) (l‘ 2 0)
Ex(A(z,2))] = { =
Z_%wm+1—e (1 + (_l)m_eGm+1—e($2)) (37 < 0).

Proof. Note that A(z,z) = A(y,z/||z||) with y = 2/]|z||. Since y and ||z|| are indepen-
dent, the expectation E[A(z,z)] can be calculated by substituting 2% := 2?/||z||? in (3.3)
and taking expectation with respect to ||z]|* ~ x%(n). 1

The above proposition and Proposition 2.2 show that the asymptotic expansion ob-
tained by the tube method and the Euler characteristic method are the same.

Now consider the special case of z = —1 in (3.3). Noting that A(y, —1) = M we have
the following corollary.

Corollary 3.1

m 2(wy +wz 4+ wpy) (M even)
M — 2 m e = 3.4

m—e:ieven

where wy, +1_. s given in (2.6).

Remark 3.3 For piecewise smooth M C S™' it can be shown that (3.4) is equivalent
to Proposition A.3. (See Remark A.1.) This is a version of Gauss-Bonnet theorem for a
positive-reach manifold with boundary by Federer (1959), Theorem 5.19. See also Section
IV.17.2 of Santals (1976).

Remark 3.4 Suppose that K(M) is a convezx proper cone, which is the case considered
in Takemura and Kuriki (1997). Then x(M) =1 and Corollary 3.1 yields

1 _ Jwitws+- - +wny (m: even)
2 |lwitws+--- 4wy, (m: odd).

This is exactly the Shapiro’s conjecture (Shapiro (1987)) on the weights of x* distribution.
Therefore Corollary 3.1 is a generalization of Shapiro’s conjecture.

3.3 Alternative proof of Naiman’s inequality

In this subsection we give an alternative proof of Naiman’s inequality. It is based on the
following characterization of the critical radius 8,(M).

Lemma 3.1

0.(M) = sup{6 > 0 | I(A(y,cos8) # 0) = x(A(y,cos 8)) for all y}. (3.5)
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Proof. If § < 0.(M) each y € M, has a unique nearest point ypy € M. As in the
proof of Proposition 3.1 let f,(u) = —u'y and let f,j» denote its restriction on M. The
index of f,ar at yar is 1 and this is the only index counted in x(A(y, cos#)). Therefore
X(A(y,cos8)) = I(A(y, cos ) # ). On the other hand if § > 8.(M) it is easy to see that
there exists an open set U such that to y € U correspond two u’s such that v’y > cos 8
and y € N,(M). Then x(A(y,cos6)) is either 0 or 2. This proves (3.5). 1

From this lemma we have
I{A(y,cos0) # 0) = x(A(y,cos b)), 6 <8..

On the other hand, when 6 > 6., there is no general relation between x(A(y, cos)) and
I(A(y,cos 8) # (). However in the particular case where M C S™~! is one-dimensional and
homotopic to the line segment [0, 1], then x(A(y,cos #)) equals the number of connected
components of A(y, cos §), and therefore the inequality

I(A(y,cos0) #0) < x(A(y,cos b)) (3.6)

always holds.
By taking the expectations of the both sides of (3.6) with respect to y ~ Unif(S"~1),

we have for 0 < # < 7 that
VOI(Mg) < 1
Qn B Q2(171—2

Vol(M) Vol(SU=271)(1 = By 1 g (cos” )
Vol(5(*=1-1)

+ Vol(OM)

2
QIQn—l (1 + B%,%(n—l)(cos 0))

1 1
= —2; Vol(M)(l - Blyé(n_Q)(COSZ 9)) + 5(1 F B%%(n_l)(cos? 0)) (37)
by Proposition 3.1. Noting that

1— Bl,%(n—Z)('rz) = (1 - x?)(n—?)/'?’

( 2) _ 2 F(n/2)
e T AT 1)/2)
we see that (3.7) is the same as the inequality (3.4) of Johnstone and Siegmund (1989).

Naiman’s inequality states that the inequality (3.7) holds even when M is a piecewise

1B

/1(1 _ 1,2)(71—3)/2 da:,

C'-curve. We can show this by taking a sequence of C?-curves {M*};—1 ... such that

Vol(M*) — Vol(M),  Vol((M%)g) = Vol(Mp).

4 Maximum of cosine field: An example

In this section we study the cosine field in some length, because it is the building block
for isotropic random fields in the sense of §2.5 of Adler (1998) and of basic importance.
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4.1 Cosine field
The cosine field is defined as

1 m
Z(t) = —\/ﬁ Z(Z%—1 cost; + zy;sint;)

=1

with the index
t=(t1,...,tm) € [0,T1] x --- x 0,T.], 0<T;<2m,

where z = (21,...,2,)" ~ Ny(0,1,), n = 2m. Piterbarg (1996), Lemmas 5.1, 5.2, derived
an asymptotic expansion for the tail probability of the maximum of Z(¢). In this section
we show that our tube formula gives another derivation of the asymptotic expansion. In
addition we evaluate the remainder term of asymptotic expansion more precisely than
Piterbarg (1996) by explicitly evaluating the critical radius.

Z(t) is written as Z(t) = ¢(t)'z, where

¢ = ¢(t) = (costy,sinty,...,costy,,sint,y,) /v/m € S,

#(t) is injective and the index set M on 5?™~1is ¢([0,Ty] x - -+ x [0, Tp,])-
Denote the partial differential of ¢ with respect to ¢; by the subscript i, e.g.,

0
¢i = 8_t :(0,...,0,—sinti,cost,-,0,...,0)'/\/m,
5
¢Z’]‘ = M¢:5i'(0,...,0,—COSti,-Sth2‘,0,...,0),/\/m,

where 4;; is Kronecker’s delta.

4.2 Distribution of maximum

The d-dimensional boundary M, consists of 2™~¢ disjoint components. Note that the
phase 1; of (z3,_1, 29;) = (r;cos ¥, r;sine;), r? = 22._, + 22 is uniformly distributed on

[0,27). Therefore without loss of generality, we may consider a component

{¢(t) |tayr =+ =t = 0},

and fix u = ¢(t) as a relative interior point of the component. The metric of IMy at u is
given by
9i;(t) = ¢16; = (1/m)éy;.
The support cone S,(M) at u is the convex cone spanned by the lines span{¢;},
1 = 1,...,d, and the rays cone{¢;} = {c¢; | ¢ > 0}, i = d+1,...,m. Note that for
i=d+1,...,m, ¢ =€y =(0,...,0,1,0,...,0), where 1 is the 2i-th element.

14



The normal cone N,(K(M)) is the dual cone of S,(K(M)) = span{u} @ S,(M). It is
easily seen that
N (K(M)) = {v = (aycosty,a;sinty,...,azcosty,agsinty,agyr, bip, ... am, b,)
|a1+---+am:0, bd+1,...,bm§0}. (41)
The squared length of v in (4.1) is |[v]|* = a} +--- 4+ a2, + b2,; +--- + b2,.

The second fundamental form of 9M, at u with respect v in (4.1) is given by H (u,v);; =
—U’(j),-j(u) xXm = \/77_’1,612'5,']' or

H(u,v) = Vm diag(ai,. .., aq).

Now we proceed to evaluate the weights w,,41-. of (2.6) for the cosine field. Write

()
Wimtl-e = D gem_e Wpy1_e, Where

@ = ! [ d ) dv trg_pmyH 4.2
Pmt1-e Qm-{-l—eQn—m—1+e oMy ! w(K(M))nsn—1 o Md-me (u’v)‘ ( )

For convenience write | = d — m + e and

Jy = / dv tr H (u, v).
Ny (K(M))nsn-1

Let R? ~ x*(2m — d — 1), and consider the expectation

El(0Gn-00)"?)
QZm—d——l

Jy = E| /N oy @ UH (0 B0 Qg =y (4.3)

Since the degrees of freedom of R? is the dimension of the normal cone dim N, (K(M)) =
n—1—d=2m—d—1, J; can be calculated by taking the expectation

Jo = E[I(biy1,. .., by < 0)tr)(v/m diag(ay, ..., aq))],

where
(a1,...,an) ~ Np(0,1, — (1/m)1,,1" ), l,=(1,...,1) € R™,
bd+la s >bm ~ N(Oa 1)7

and (ay,...,amn),b441,...,b, are mutually independent.

Since Ela;a;] = —1/m (i # j), we have

(k— 1) (=1/m)*¥/? (for k even)

[a1a2 ak] {O (fOI‘ k Odd)7

where (k — 1)!! = (k —1)(k—3)---3-1. Therefore J, for [ even is

_1)Vi/2
Jo = (1/2)™¢ x (‘;) (I =D (=1/m)"? x m!/? = 2m—d+:ﬁ((d1—)z)!(z/2)! (4.4)
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and J; = 0 for [ odd. Combining (4.2), (4.3), and (4.4), and noting that Jor, du =
2m-4 3%, where

Ed: Z T;l...]';d’ (45)
i1<“'<id
we get for [ even
@ _.@ _dEDPI(d+1-0/2) dl (—1)/?

e T T GRTER (= D1(1/2)! T PR (d 4 2~ D)/2) (1)
and w?,_, =0 for [ odd.
Let

d* _xz g2
Hy(z) = (— l)kd p /2/6 /2

be the Hermitian polynomial of degree k. Denote the coefficient of z*~! in Hy(z) by
h(k;l). It is well known that

2 k 2 k"
h(k; /)= { (—l)l/ (l)(l -l = (—1)1/ = 1)12’/2 02 (for I even)
0 (for [ odd).

Using this we have

2E+1=0/2D((d +1 - 1)/2)
2(2m) (/2

W, = h(d;1) x 2,

Multiplying this by 1 — G441_i(2?), and taking a summation over [ = 0,...,d for fixed d
we have

PR .
de-q-l l 1—Gd+1—1(;c2)) — 2(2—71-)d+1—)/22h dé / y(d+1 0/2— 1 y/zdy

dHWZh (d; 5)/ L=l =2/2g,

Ed

_22
B W/ Ha(z)e™ 1*dz
24

_ ~:1:2[2
T (2m)@+D/2 Ha-r(@)e =

By summing this up over d = 0,...,m, the asymptotic expansion for the tail probability

of max, Z(t) is obtained. We will summarize the result at the end of this section as
Proposition 4.1.

By Corollary 3.1 we have

m d

d
x(M) = 23 Z w¢(1+)1-z
4=0 d—ll':e?/en
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m d ) d/2
- Z:: Z 2d+17rd/2 @2 b (zm)z

deenlv

o1
:225d0:1,
=

which was expected since M is homotopic to a point ¢(0) = (1,0,...,1,0)".

4.3 critical radius

We here evaluate the critical radius 6, by Lemma 2.1. We make the following additional
assumption on the index set as is done in Piterbarg (1996):

0<T;<m, 1=1,...,m. (4.6)
The orthogonal projection matrix onto the space span{¢, ¢;,..., ¢4} is written as
d
Q¢ = ¢ +m Y i
=1

Fix v in the relative interior of {¢(¢) | 441 = -+ = t,, = 0}. The orthogonal projection
onto the normal cone N,(K(M)) is give by

PH(w) = (L — Qw+ 3" €5 min(0, wsy),

1=d+1
where w = (wy,...,wy,) € R™.
By Lemma 2.1,
— 4 1 — 1,,\2
tan?6, = inf lu — vl = inf ( wo)

wveM 4| Py (u —v)||? - wveM [|(Lm — Qu)(u — v)||? + X gyy min(0, up — vai)?

In the expression above we assumed that the infimum is attained when v = ¢(¢) with

tgpr = -+ =t, = 0 for a particular value of d. Put u = ¢(s), s = (s1,...,8m).

Note that for e = d+1,...,m, vy; = 0, uy; = sins; > 0, and hence min(0, ug; —vy;) = 0
by the assumption (4.6).

Put

u'v = ¢(s)'(t) = L ixi, x; = (cos 8;,sin s;) (Cf)s ti) _

m = sin t;

Noting

d
I(f2m = Qu)(u = v)|* =1 —w'Quu =1~ (¢(s)'6(t))* — m Z:(qﬁ(S)'@(t))?»

and

1 —sint; 1
" = — .. 81 . ¢ = —4/1 — 2
#(s) ¢i(1) (cos s;,sin ;) ( cost; ) +—/1— 2z

17



the argument of the infimum is written as

(1_i ;n1$)2 _ ( ?;191')2
- (pE2z)?—2Y0,(1-22) myi, v +2mSr v — (50, vi)?

where we put y; = 1 — z;. Note that 0 < y; < 2. By virtue of the inequality

Yl < (3o w)

(the equality holds iff y; = 0 except for at most one index i), we see

(2 yz)z > (7, yi)2
m Z =1 yz +2m 3yt =d+1Yi — (lel yi)2 B m(Zz—l yz) +2m Z?;aH-l Yi — (221 yi)2
( i:l yZ)Z 1

m(C v — (D, w2 m—1

where the equality of the second inequality holds iff Y7 ., y; = 0.
This infimum 1/(m — 1) is attained in the case where

1 =40, o= =y =yap1 = =y, = 0.

This is possible when at least 7} is positive. Since the infimum 1/(m — 1) is independent
of d, we conclude that

1
tan?f, = ——
m—1

when 0 < T; <7and 3¢, T; >0. Thecase T} = --- = T,, = 0 is trivial.

Proposition 4.1 Assume that 0 <T;<m,i=1,...,m. Then

P(mtax Z(t) > :c) = g:l (QE)dd/z Hyq(z)p(z / z)dx + O(gz,n(mm :cQ))

as x — 0o, where p(z) = e~ 12/\/21 and ¥, is given in (4.5).

This gives the same asymptotic expansion as Piterbarg (1996). In addition we have
made the remainder term more precise.

A Appendix

A.1 Manifold with piecewise smooth boundary

We summarize our definition of manifold M of dimension m with piecewise smooth bound-
ary. A cone is called proper if K N (—K) = {0}.
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Definition A.1 Let M be a topological m-dimensional manifold with boundary. M is
called a manifold with piecewise smooth boundary of class C™ if each x € M has a neigh-
borhood W (z) which is C”-diffeomorphic to the following set W in R™:

W = (—e¢ €)% x (K NeB°), (A.1)

where 0 < d <m, € >0, K is a closed proper cone in R™~%, B® = {z | ||z|| <1} c R™¢
is the open ball in R™™%, and “x” denotes the direct product.

K need not be a polyhedral cone. We studied one important example of non-polyhedral
cone in Kuriki and Takemura (1999).

For each 0 < d < m, let My denote the set of points z having a neighborhood W (z)
which is C”-diffeomorphic to W of the form (A.1). By standard argument it can be
shown that M, forms a d-dimensional manifold of class C". M = Jj=! M, forms the
boundary of M. For convenience and notational consistency we also write dM,, = MO,
the interior of M, although 0 symbol here might be somewhat confusing.

Definition A.l is an intrinsic definition and M is not necessarily a submanifold of
a Euclidean space. However for our purposes it suffices to consider submanifolds of a
Euclidean space and we assume that all manifolds are submanifolds of R” endowed with
the standard inner product (z,y) = z'y, where z, y are considered as n-dimensional
column vector. As a submanifold of R™ the topology on M coincides with the relative
topology induced from R". Therefore M© denotes the relative interior of M and OM
denotes the relative boundary of M in R".

Let x € OMy; C R", 0 < d < m. Take a local coordinate system (wy,...,w,,) and

write 2(wy,...,w,,) for points in a neighborhood of z = z(0,...,0). We can take this
local coordinate system in accordance with (A.1), i.e., for all jw;| <€, 1 =1,...,d,
Oz Oz
— = —(w,...,wy,0,...,0) € R*, 7=1,....,d,
8wj aw]' (wl W ) J
form a basis for the tangent space of T,(0My) of My at z = z(wy,...,wy,0,...,0).
Furthermore we may assume that at every z = z(wy,...,wq,0,...,0),
d .
N; = —x(wl,...,wd,O,...,O), j=d+1,....n,
8wj

form an orthonormal basis of T,,(M) N T;}:(dM,), which is the orthogonal complement of
T.(0My) in T,(M). Define the support cone S,(M) of M at z = z(0,...,0) by

Se(M) = To(0Ma) & {war1Nag1 + -+ + W N | (a1, - - -y wm) € K}, (A.2)

where “@” is the orthogonal sum and N; = N;(z), j =d+1,...,m. Furthermore define
the normal cone N (M) of M at z as the dual cone of S, (M):

No(M)={ye R"|y'2<0, Vz € S,(M)}.
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Using the above local coordinates N (M) can be written as
NI(M) = Tx(M)-L @ {wd+1Nd+1 + s + mem | (wtg+1, e ,wm) € I(*}, (A3)

where K* denotes the dual cone of K in R™™%. The support cone S (M) is a cone
approximating M at x. For the case where M is a convex set the notions of support cone
and normal cone given here coincide with the those in Section 2.2 of Schneider (1993).
See also Section 2.3 of Takemura and Kuriki (1997).

A.2 Tube formula and integral of Euler characteristic:
Euclidean case

In Sections 2 and 3 we have considered geometry of submanifolds of S™"~!. We summarize
here corresponding results on tube formula and integral of the Euler characteristic in
the case of Euclidean space R*. Concepts and results for the Euclidean spaces are more
transparent than those for the unit sphere S™71.

Let M be a compact m-dimensional submanifold of R” with piecewise smooth bound-
ary of class C? satisfying Assumptions 1.1 and 1.2. Let z € R". Since M is closed there
exists a closest point )y € M from z. The tube M, around M with radius r is defined
by

M, ={z €R" ||z —zm| <r}.

M, can be alternatively written as
M, =M+rB,

where B = {z | ||z|| £ 1} C R" is a closed unit ball and “+” denotes the vector sum.
The cross section C,(r) of M, at € M is defined by

Ce(r) =2+ (N(M)NrB),

which is the set of points y such that ||y — z|| < r and y — z € N,(M). We see that M,
can be written as the union of cross sections:

M, = | Cu(r).

TeM

From the compactness and the local convexity of M it can be shown that there exists
r > 0 such that every x € M, has unique projection point zas;. The critical radius r, of
M is the supremum of such r:

re = r.(M) = sup{r > 0| zps unique for all z € M, }.
r. can also be defined by
r. = sup{r > 0| C.(r), z € M, are disjoint}.
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In integral geometry literature critical radius of M is called reach of M (e.g., Federer

(1959), Stoyan, et al. (1995)). The critical radius can be computed using the following
formula.

Lemma A.1 The critical radius r. of M is given by

gzl
sweM 2| P}z — y)||’

where P;- is the orthogonal projection onto the normal cone Ny(M) of M at y.

As in the case of S”~!, the positiveness of critical radius is assured by Assumption 1.2.
From this reason the property of local convexity of Assumption 1.2 is called positive-reach
in integral geometry literature.

Let
V) =35 d d H A4
n r) = t —m+e I ’ *
(M= e ¥ Lo 89 [ s 0 i H3,0) (A.4)

where for each 0 < d < m dy denotes the volume element of M, and dv denotes the

volume element of S"~%~1 = N, (M) N S™!. Then the following result holds.

Proposition A.1 Forr <r. (M), V,(M,) in (A.4) is equal to the n-dimensional volume
Vol(M,) of M,.

For z € R™ let
A(z,r)=Mn(z+rB)
denote the intersection of M and the closed ball around z of radius r. The basic relation

linking the tube method and the Euler characteristic method is given in the following
proposition.

Proposition A.2
VaM) = [ x(Az,r) de, (A5)

where dz denotes the Lebesgue measure and x(A(z,r)) denotes the Euler characteristic

of A(z,r).

As stated in Remark 3.2, (A.5) is a version of the kinematic fundamental formula for
the case of Euclidean space (cf. 111.15.4 of Santalé (1976)).

The following is a Gauss-Bonnet theorem for a positive-reach manifold with boundary.
This is given by the coefficient of " in the signed tube formula (A.4). The notation is
the same as in (A.4).
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Proposition A.3 The Euler characteristic of M is given by

1 m
M) = — d d . .
(M) = o3 /M y /Ny(M)nsn_, v det H(y,v) (A6)

" d=0

Remark A.1 Suppose that M is a subset of S™™'. Then v € N, (M) N S* ! is uniquely
written as

v=ycosf+wsind, weN,(KM)NnS*~' 0<6<m.
Correspondingly, the second fundamental form in (A.6) is written as
H(y,v) = cos8I;+ sin0H (y,w).

Also fory fized
dv = sin""*"? 0df dw,

where dw is the volume element of Ny,(K(M)) N S™~1. Therefore we have
1

=3 "o |

dy / dw det(cos 01, + sin O H (y, w)) sin" %720,
n iz My (K (M))nsn—1

which is equivalent to (3.4).

A.3 Morse theorem for manifold with piecewise smooth bound-
ary

Here we generalize Theorem 10.2 of Morse and Cairns (1969) for M with piecewise smooth
boundary of class C?. For a real valued function f defined on X, fix+ denote its restriction
to X' C X.

Let f be a real-valued C?-function defined on some relatively open neighborhood M
of M. As in Morse and Cairns (1969) we assume the following conditions:

i) There is no critical point of f on the relative boundary OM of M.
ii) For each 0 < d < m, fian, is non-degenerate at its critical points.

We call f satisfying these conditions Morse function on M.

Note that f needs to be defined only on M. Therefore we can discuss Morse functions
on M intrinsically without reference to R". However for our purposes it is convenient to
consider M and its Morse function in R™. Let f be a C?-function defined on the whole
R™. As a Morse function on M we require that [z satisfies the above conditions i) and
ii}. Note that the gradient of fir at € € M coincides with the orthogonal projection of

the gradient of f to the tangent space T,.(M) and condition i) requires that the gradient
of f has non-zero Tx(]\;[) component for each z € IM.
Let f a Morse function on M. In the case of M with smooth m — 1-dimensional

boundary, the critical point 2 € OM of fisp is counted in Theorem 10.2 of Morse and
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Cairns (1969) if and only if the gradient of f, which is normal to the tangent space T,,( M),
is directed into the interior M of M. Noting that the normal cone N,(M) at z is the
one-dimensional cone generated by the outward normal vector at z this condition can be

expressed as —grad f € N,(M). We use this condition as a criterion for counting critical
points on OM.

Definition A.2 Let 0 < d < m and let x € OM, be a critical point of flam,- = is extended
inward critical point if

—grad f € N.(M).

Let vy, k= 0,...,m—1, denote the number of extended inward critical points of index
k on OM and let py,k = 0,...,m, denote the number of critical points on M° of index
k. The augmented type numbers p),, k =0,...,m, of f are

,u'0+l/07,ul +l/17"'7#m—1 +Vm—1>y’m'

Worsley (1995a) shows how the boundary critical points are counted in the Euler
characteristic for the case of R?> and R3. Definition A.2 clarifies which critical points are
counted in general dimension.

We are ready to state a generalization of Theorem 10.2 of Morse and Cairns (1969).

Proposition A.4 Let M be a compact m-dimensional manifold with piecewise smooth
boundary. The Euler characteristic x(M) of M is given by

X(M) = po—py+ -+ (=1)"py,.

Proof. We follow the line of argument given in Section 11 of Morse and Cairns (1969).
We omit their discussion on “critical arc”, because it is basically the same for the case of M
with piecewise smooth boundary. The essential point of their argument is to modify f by
some function ¢ such that the gradient field of f = [+ is directed outwards everywhere
on the boundary on M. By doing this they shift all inward critical points into the interior
of M. This operation reduces their Boundary Condition B to their Boundary Condition
A. For our present setup we need to smoothly approximate M in addition to shifting all
extended inward critical points. For doing this we find it easier to shift extended inward
critical points outward to the exterior of M (rather than shifting inward).

For our proof it is convenient to use a particular relative open neighborhood of M.
Let C(r) = 2+ (N,(M)NrB°) be the open r cross section at € M. For r < r.(M) let

M= ] Co(r)nT.(M).
zeM
This M has the advantage that it is flat in the direction of No(M) at z € M. Without

loss of generality we can assume that f is defined on this M. In addition choose sufficiently
small ' and let

M, = |J C.(r')NTo(M).

rzeM

23



Although the boundary of M, is only of class C'!, it can be arbitrarily closely approximated
by a manifold with boundary of class C*. Note that M, is homotopic to M and hence
X(M,) = x(M). We use the coordinate system as in (A.2) and (A.3). Our modifying
function ( is an increasing convex function of r? = ||z — z||?> with ¢(0) = 0. Hence

¢(z) > 0 only for x ¢ M. For 2y € OM,

C(2) = ((wiyy + -+ wh).
On the cross section C9(r) the gradient field of f = f 4+ ( is given by

gradf = gradf + 2C/(rr‘))(wd%—l]Vd+1 +- 4+ mem)7 (wd+17 s >wm) € I(*’

in the notation of (A.3). Note that by making (’(r?), r?* > 0, sufficiently large, we add
strong outward vector field to the gradient field of f. Therefore by appropriate choice of
¢ the gradient field of f is directed outwards at every z € dM,, thus reducing our case
to Boundary Condition A of Morse and Cairns (1969). More explicit choice of ¢ may be
described as on page 78 of Morse and Cairns (1969).

Now suppose that r € OM; is an extended inward critical point of fiaar,. Then
—grad f(z) € N,(M) and in terms of the basis {Nyy1,..., Nm} we can write

—grad f(z) = ag41Nay1 +- - + an Ny,

for some constants (az4q,...,a,) € K*. By setting
2C(r?)(Wagrs - -y Wm) = (Cdg1se vy ), (A7)

we see that the extended inward critical point is shifted outwards and becomes a critical
point in the interior of M,..

We need to check that the index of the Hessian matrix is not changed by above shifting.
-We follow the argument on page 81 of Morse and Cairns (1969). Since { depends only on
r? = wl,; + - -+w?, the Hessian matrix of f differs from that of f only in the lower-right
(m — d) x (m — d) submatrix as follows:

o*f \ [ of 0 0
Ow;0w; | \ dw;0w, + 0 M)’

Wd+1
M = 20" (r*) L_q + 4" (r?) : (Wag1s- ey Wi).

Wm

where

Note that the second term on the right hand side is non-negative definite, whereas the first
term is positive definite being a positive multiple of the identity matrix I,,_4. It follows
that by letting (’(r?) sufficiently large we can make the index of the Hessian matrix of f
equal to the index of the Hessian matrix of f.
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It is easy to see that by modification f — f, no critical point appears in the interior
of M, other than those given in (A.7). Hence f satisfies Boundary Condition A of
Morse and Cairns (1969) and has type numbers equal to the augmented type numbers of
Definition A.2. This completes the proof of Theorem A .4. 1
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