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1 INTRODUCTION

The success of game theory in the 1980's has revolutionized
economics. In addition to optimization and competitive market
equilibrium, the concept of Nash equilibrium became a basic
analYtical tool and a common language of economists in almost all
fields. In his text book, Paul Samuelson once quoted an epigram,

"You can make even a parrot into a learned economist; all it must

learn are the two words, 'supply' and 'demand’.", but now the parrot
needs two more words, 'Nash equilibrium', to be academically
correct.

As the game theoretic approach penetrated into many fields,
however, some basic problems became apparent. First, it is not
clear how players come to play a Nash equilibrium. Although Nash
equilibrium was once perceived as the outcome of perfectly rational
reasoning, active research in the past decade revealed that common
knowledge of rationality only implies rationalizability, which is
much weaker than Nash equilibrium. Second, game theoretic models
quite often possess multiple equilibria which have markedly
different properties. This is in contrast to the general
equilibrium model where all equilibria are efficient. Hence in
applications of game theory it 1is vital to pin down which
equilibrium is selected. A host of refinements literature tried to
solve this problem by defining a stronger notion of rationality
than Nash equilibrium assumes, but it was not entirely successful.
We are left with a number of new solution concepts, and there seems
to be no clear consensus among economists as to which one is right.

Partly due to these difficulties in the rationality approach,
the study of boundedly rational adjustment process towards Nash
equilibrium became an active field of research in the past few
years. The literature is (vaguely) classified into two categories,
learning and evolution. The learning literature typically assumes
that players can calculate the best response and examines how
players update their beliefs about their opponents' strategies 1in

a fixed match. In contrast, the evolutionary approach does not
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necessarily assume the ability to optimize and analyzes the
evolution of sophisticated behavior through trial and error and
natural selection in a_pqpulation.of players.

The basic idea of the evolutionary approach is in line with the
oral tradition in economics about the justification of rationality.
This basic premise of neoclassical economics has often been
justified in the following way: Economic agents may not
consciously optimize but behave as if they were rational, because
economic competition selects optimizing agents. This was
articulated in particular by Alchian (1950) and Friedman (1953)%.

A big impetus for the formal study of such a process came from
biology. Following the pioneering work on sex ratio by Fisher
(1930) and Hamilton (1967), Maynard Smith and Price (1973)
introduced the notion of evolutionary stable strategy (ESS), and
asserted that the observed traits of animals and plants can be
explained by Nash equilibria of suitably defined games. The idea
is that the combination of natural selection and mutation lead the
population to a stable Nash equilibrium (ESS) in the long run.
Since then, this view has been verified in a number of field
studies. Here, the 'as if' explanation is not just a plausible
parable but rather a quite accurate description of reality.
Animals and plants have 1little or no ability for rational
reasoning, yet their behavior can be explained by Nash equilibrium!

Encouraged by the success in biology, a number of economic
theorists recently became involved in active research in
evolutionary game theory. For economists, this has a feeling of
déjd vu, because the study of adjustment dynamics has a long history
before evolutionary game theory. The tdtonnement stability of
general equilibrium was extensively studied in the late 1950's, and
the adjustment dynamics in oligopoly models goes back to the

original work of Cournot in 1838. After extensive research,

! Nelson and Winter (1982) also elaborate on natural selection

in market competition.



however, those theories have been criticized as being ad hoc and
dismissed by some economists. Given this experience, why should we
be interested in such an approach again? What differentiates
evolutionary game theory from the previous literature on adjustment
dynamics?

The answer may be found in the aforementioned two basic
problems of game theory. Firstly, unlike previous literature,
evolutionary game theory in economics clearly acknowledges that
something ad hoc is necessary. Only after the extensive study of
game theory, which clarifies what rationality means in strategic
situations and what it implies, the necessity became apparent.
Rationality alone fails to justify Nash equilibrium, and the theory
must search for some elements other than rationality (i.e.
something which is necessarily ad hoc) to explain equilibrium
behavior.

Secondly, the necessity of equilibrium selection, which became
a pressing issue in the course of extensive applications of game
theory to a variety of concrete economic problems, is something
which the previous literature on adjustment dynamics did not
encounter. In the Arrow-Debreu model which equilibrium is selected
is rarely discussed, and the traditional oligopoly theory did not
enjoy a wide range of applications because it was plagued by a host
of alternative 'solution' concepts and deemed as unreliable.

The study of evolutionary game theory in economics has just
started and it is rather early to judge how successful it is to
achieve its goals. The present paper tries to review the present

state of research?, and is organized as follows. Section 2 presents

2 A survey of evolutionary game theory can also be found in
Banerjee and Weibull (1992), Bomze and Potschner (1988), Fudenberg
and Levine (1995), Hammerstein and Selten (1994), Hines (1987),
Hofbauer and Sigmund (1988), Mailath (1992,93,95), Matsui (1995),
Maynard Smith (1982), Samuelson (1993), Selten (1991), van Damme

(1987, 93), Vega-Redondo (1995), Weibull (1995) and Young (1995).
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the basic concepts developed in biology, and its extensions are
discussed in the next section. Section 4 reviews what evolutionary
game theory has to say about the 'as if' justification of
rationality, and the emergence of efficiency is addressed in
Section 5. The next section examines the long run implications of
repeated random mutations, and concluding remarks are given in
Section 6. For convenience, major results are somewhat roughly

summarized in the form of Claims.

2 BIOLOGICAL GAMES — ESS AND REPLICATOR DYNAMICS

In this section we review the basic concepts of evolutionary
game theory developed in biology, namely, evolutionarily stable
strategy and replicator dynamics. Evolutionarily stable strategy
(ESS) was introduced by Maynard Smith and Price in their seminal
paper (1973). This solution concept is meant to capture the stable
outcome of evolutionary process, which is driven by natural
selection and mutation. Consider a large population of a single
species. Individuals are randomly matched in pairs and play a two-
person symmetric game g:AxA-R. A={1,...,K} is a finite set of pure
strategies, and g(a,a’') is a payoff of a player when he plays a and
his opponent chooses a’'. Let S be the set of mixed strategies, and
the expected payoff from a mixed strategy profile (s,s’) is denoted
g(s,s') with an abuse of notation®. A strategy may represent a mode
of behavior (how aggressive one fights, for example), or a
characteristic (such as sex or body size), and each individual is
genetically;nogrammed1x>chooseziparticularstrategy. The payoff
g is interpreted as the number of offspring, and called fitness.
Reproduction is assumed to be asexual and offspring inherit the
parent's strategy, unless mutations occur. The strategy

distribution in the population can be represented by sé€S, and this

3 Also we do not distinguish pure strategy k and the mixed

strategy which plays it with probability one.
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admits alternative interpretations. When each individual is
programmed to play a pure strategy, s represents the population
frequencies of pure strategies. Alternatively, all players may be
choosing exactly the same mixed strategy s. In general, when
different (possibly mixed) strategies coexist, we say that the
population is polymorphic: otherwise, we have a monomorphic

population.

Definition 2.1 A strategy s of a symmetric two-person game is an
evolutionarily stable strategy (ESS) if there is e’ such that for

any s'=#s and any e€(0,e’]
g(s,(1-e)s+es’) > g(s', (1-e)s+tes’) (2.1)

An ESS represents a stable state of population which is resistant
to mutant invasion. When the incumbent strategy s is invaded by a
small fraction (e%) of mutants playing s’, equation (2.1) says that
the incumbents do strictly better than the mutants. As the payoffs
represent the number of offspring, this means that the population
share of the mutants eventually vanishes.

Given g(x, (1-e)y+ez)=(1l-e)g(x,y)+teg(x, z), the above condition

can be simplified: strategy s is an ESS if and only if
(E1) s constitutes a Nash equilibrium (g(s,s)2g(s',s) Vs'), and
(E2) if s'#s satisfies g(s’,s)=g(s,s), then g(s,s")>g(s',s").

Condition (E2) highlights how an ESS refines Nash equilibrium. The
unique feature of an ESS is to consider the possibility that a
mutant encounters its copy (another mutant).

As an example, consider the infinitely repeated prisoner's
dilemma game with no discounting, whose stage game is given in

Figure 2.1.

x*x*xFigure 2.1 here***



Axelrod and Hamilton (1981) showed that the population of "always
defect(D)" can be invaded by "tit-for-tat(TFT)"‘. When TFT meets D,
it is cheated in the first stage but then reverts to defection.
Since the loss in the first stage is negligible under no
discounting, TFT fares as good as D against the incumbent strategy
D (both yielding an average payoff of 2). However, when matched
with TFT, TFT achieves cooperation (yielding a payoff of 4) and
hence does strictly better than D, which yields a payoff of 2
against TFT. Hence, when the population of D is invaded by a small
number of TFT, the TFT population grows faster than that of D and
eventually takes over the whole population. The upshot is that D
is not an ESS.

ESS has been quite successfully applied.in:biology, especially
for a mixed strategy equilibrium. In typical applications, the
actual population frequencies of strategies, such as body size,
sex, or timing of emergence, are measured and compared with the
evolutionarily stable mixed strategy equilibrium. In this regard,
it should be stressed that one of the merits of ESS is its ability
to differentiate stable versus unstable mixed strategy equilibria.
Figure 2.2 may be helpful to understand this point. One can see, by
checking (E2), that s=(1/2,1/2) is an ESS in Figure 2.2 (a) but not
in (b).

x*xxFijgure 2.2 here***

Note that the traditional refinements fail to capture the
stability of completely mixed equilibria: the non-ESS s=(1/2,1/2)
in Figure 2.2 (b) passes all the tests of the traditional
refinements in economics that are based on trembles (such as
perfection, properness or stability). The reason is that the
mathematical definition of trembles fails to perturb completely

mixed strategies.

4 PFT starts with ¢ and then mimics the action taken by the

opponent in the last period.



While the definition of ESS does not formalize an explicit
dynamic, it is meant to capture a locally stable point of a dynamic
process of evolution. In biology, the following process, called
the replicator dynamic, is widely used. First, we consider the case
where each player plays a pure strategy. In this case, the

replicator dynamic is given by
ds,/dt = s,[g(k,s)-g(s,s)]. (2.2)

This 1is derived as follows. Consider a large (continuum)?®
polymorphic population with pure strategies and suppose that ¢A% of
players with each strategy breed according to the fitness function
g within a small time interval A. Let M and k be the total
population and the population of strategy k at time t, and let M'
and k' denote those variables at t+4. Similarly, we denote s=s(t)

s'=s(t+A) and let g,=g(k,s), g=g(s,s). Then we have

-5,
A

=T
A

(XM X - a(g9) . (2.3)
As A-0, we get ds,/dt=as,(g,~g), and aside from the speed of
adjustment « this is the replicator equation (2.2).

According to the replicator dynamic, the population share of a
strategy is increased (decreased) if it does better (worse) than
the population average. If this is a reasonable description of an
actual population dynamic, it is desirable that its asymptotically
stable® rest points exactly correspond to the ESS's. This issue was

studied by Taylor and Jonker (1978) under a certain restriction,

® Boylan (1992, 95) examines the relationship between the

continuum, countable and finite population cases.

¢ We say s* is asymptotically stable if for any €>0 there is 5>0
such that | s(0)-s*|<§ implies (i) |s(t)-s"|<e for all t>0 and (1i)

lim, ,s(t)=s".



followed by generalizations by Hofbauer, Schuster and Sigmund
(1979) and Zeeman (1981):

Claim 2.1 ESS is always an asymptotically stable point of the pure

strategy replicator dynamic (2.2), but the converse is not true.

An example of an asymptotically stable point of (2.2) which fails
to be an ESS is a mixed strategy equilibrium which works as follows
(see van Damme (1987) for the details). Since it is not an ESS, an
invading group of mutants can do better than the average
incumbents. However, as the incumbent population is polymorphic,
there can be a particular incumbent pure strategy which does
strictly better than the mutants. Then it is possible that the
mutants will die out.

The above explanation shows that the definition of ESS (2.2) 1is
motivated by a dimorphic situation where a monomorphic population
s is invaded by a small monomorphic group of mutants s'. In such a
situation, selection pressure operates only among the two existing
strategies, s and s’, and clearly the system returns to s if and
only if (2.1) holds. 1In particular, contrary to the polymorphic
situation, s cannot be stable unless it is an ESS. Hence, we can
expect that the converse in Claim 2.1 is true when players can play
mixed strategies. The replicator dynamics where each player chooses
a mixed strategy are examined by Hines (1980), Zeeman (1981),
Cressman (1990), Weissing (1990) and Bomze and van Damme (1992) and

basically their works show:

Claim 2.2 Under the mixed strateqgy replicator dynamics asymptotic

stability and ESS exactly coincide’.

" There can potentially be infinitely many mixed strategies and
there is a question of how to reformulate (2.2) if a continuum of
mixed strategies coexists (see Hines (1980) and Zeeman (1981)).
Also, there are a variety of individual strategy distributions

whose population average equals s, so the 'stability of s' must be
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3 EXTENSIONS OF THE BASIC CONCEPTS

Some modifications are necessary when one tries to apply the
basic biological concepts to various economic problems. First, the
original definition of an ESS applies only to symmetric two-person
games. Clearly, extension to more general classes is necessary
both in economics and in biology. Such modifications are possible
but involve some subtle issues, as we will see. Secondly, the basic
premises in biology, that strategy is genetically programmed and a
payoff represents the number of offspring, do not literally apply
in economics. Reinterpretations and alternative formulations are
in order in economic applications.

Let us examine the second issue first. In economics, successful
strategies may proliferate by means of imitation rather than
reproduction. Consider a continuum of players each of whom 1is
randomly matched with another player in each period. Suppose that
in each period with probability « each player randomly and
independently samples one player from the population and observes
the sampled player's payoff with observation error e. The
observation error for each player is i.i.d. with uniform
distribution on [-c,c], where c is sufficiently large®. Assume that
a player switches to the sampled strategy if and only if the
observed payoff is better than her own payoff. When the current
strategy distribution is s, the following fraction will use
strategy k in the next round (within the 2% of the population who

can potentially adjust):

defined carefully. The cited works basically show that s is an ESS
if and only if it is an asymptotically stable population average for
all underlying individual strategy distributions.

8 More precisely, ¢ > max; ; ., ,[g(i,j)-g(k,h)].
9



Z, = S"-Zh [Pr(g(k, h) +e>g (i, )) +Prig(i,j)+e<g(k,h))]15;5;Sy.
1,7,

The first term is the fraction of players who sample k and find the
observed payoffs better, and the second term represents the
original k-users whose observed payoffs are worse than their own.

A simple calculation shows zk=sk[g(k,s)—g(s,s)]/c+sk, and we have

the replicator equation
s,(t+1)-s,(t) = (a/c)sk(t)[g(k,s(»t))—g(S(t),S(t))]-

With a similar calculation one can derive the replicator dynamic if
(1) there is no observation error,‘(2) a player switches to the
sampled strategy only when the latter is better, and (3) the
switching probability is proportional to the payoff difference
(Cabrales (1994) and Schlag (1994)). Point (3) can be justified by
a positive switching cost which is uniformly distributed. Schlag
provides an axiomatic foundation for imitation behavior (2) and
(3). Thus we conclude that the replicator dynamic can be justified
by imitation, provided that imitation is done in plausible but
rather specific ways®. '
In economic application we may assume that players are more
rational than are supposed in the above discussion. In particular,
players may be aware of the payoff function and can optimize, while
revising their expectations in an adaptive way. Gilboa and Matsuil

(1991) analyze such a case and propose best response dynamicCs:
d's(t)/dt = a(h(t)-s(t)),

h(t) € BR(s(t)). (3.1)

® Borgers and Sarin (1993) provides a learning model of fixed
match (N players playing an N—-person game) based on the satisfycing
model of Bush and Mosteller (1955), and show that the players' mixed

strategies follow the replicator dynamics.
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Here, d’s/dt denotes the right-derivative lim,,,(s( t+A)-s(t))/A and
BR(s)=II,BR,(s), where BR;(s)is the set of player i's mixed strategy
best responses against s. The best response dynamics assume that
«A% of players with each pure strategy switch to a best response
against the current state within a small time interval A. Note that
under the replicator dynamics a suboptimal strategy can grow if it
does better than the average, while only the best response can grow
under the best response dynamics. Gilboa and Matsui propose a
cyclically stable set(CSS) as the stable outcome of their process.
We say that s' is reachable from s, if s' is an accumulation point
of a trajectory of (3.1) with s(0)=s. If s" is reachable from s',
which in turn is reachable from s, we also say that s” is reachable
from s. A CSS is a set such that (i) its elements are mutually
reachable and (ii) no point outside is reachable from it!e.
Intuitively a CSS includes stable equilibria and limit cycles (and
more complicated objects), and its relationship to evolutionary
stability will be discussed later.

Now let us turn to the question of how to extend the notion of
an ESS beyond symmetric two-person games. Let us introduce a
general n-person game g:A-R", where A=A,x- x4, is the finite set of
pure strategy profiles. As before, the payoff function g is
extended to the set of mixed strategy profiles §=5;x---x5,. First
note that extension to symmetric n-person games is
straightforward, if we reinterpret g(x,(l-e)s+es') in (2.1) as
player 1's payoff when she plays x and each of her opponents plays
pure strategy k with probability (1-e)s(k)+es "(k).

For a general n-person game, which is not necessarily

symmetric, Selten (1980) considers the case where groups of n

10 Phis is the definition employed by Matsui (1991) and (1992).
The original definition by Gilboa and Matsui has a weaker notion of
reachability. They say that z' is reachable from z if z' is
reachable from all neighborhoods of z. This is the stability

condition against small perturbation.
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players are randomly chosen from a single population, and then each
player in a group is randomly assigned to one of the n players'
roles in the stage game. Note that a strategy in this setting is a
contingent action plan, specifying one action for each role. Then
we can apply condition (2.1) for this symmetrized version to define
an ESS in any game. However, this approach does not provide a new

concept of equilibrium refinement, as Selten (op.cit.) showed:

Claim 3.1 ESS is equivalent to strict equilibrium under random role

assignment!''.

To see this, take a stage game played by a buyer and a seller,
and consider a non-strict equilibrium where the buyer has an
alternative best reply. If some players' actions for the buyer's
role mutate to the alternative best reply, while their actions in
the seller's position remain unchanged, the mutants clearly fare
equally well as the incumbents, and the condition (2.1) is violated
(it is satisfied with equality). The essential feature underlying
the definition of an ESS in a symmetric contest is that new actions
‘are matched together, but under random role assignment this is not
necessarily true.

A similar problem arises in extensive form games, where there
is no selection pressure upon the actions off the path of play. For
example, consider the repeated prisoner's dilemma discussed 1n
Section 2. While D can be invaded by TFT, TFT itself is not an ESS
because it can be invaded by strategy C, which always cooperates
(both sides of condition (2.1) are equal). In general, an ESS in an
extensive form game fails to exist if there are off-the-equilibrium
actions, because mutants whose actions differ only off the path of
play fare equally well as the incumbents.

Let us say that mutants are neutral if they fare equally well as

the incumbents do, and let us call invasion by neutral mutants

I A strict equilibrium is a Nash equilibrium with the unique

best reply for each player.
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evolbutionary drift. As we have seen, when we go beyond symmetric
two-person normal form games, quite often the possibility of
evolutionary drifts causes the non-existence of an ESS. Hence how
to treat evolutionary drifts is a crucial point in the extension of
ESS to general games.

An easy way to deal with this problem is to simply allow for
neutral mutations. Strategy s in a symmetric game is called a weak
ESS or neutrally stable strategy (NSS) if (2.1) is satisfied with
weak inequality'?’. The population share of neutral mutants remains
unchanged until additional mutations happen, so NSS captures the
stability in the short or medium run. However, this may not capture
the stability in the long run, where the system can drift away from
a NSS with enough accumulation of neutral mutations, leading to an

unstable point as Figure 3.1 (a) shows.
***Figure 3.1 here**x*

This observation motivates the following set-valued concept,
introduced by Thomas (1985). First, when we have g(x,x)=g(y,x) and
g(x,y)=g(y,y), we write x D y. This is similar to condition (E2),
and it shows that y is a neutral mutant which can remain in the
incumbent population of x. Note that the system can drift from x to
¥y in the long run by the accumulation of such neutral mutations.

Then we define the following.

Definition 3.1 A closed set X c S is evolutionary stable (ES) in a
symmetric two-person game if (i) each element of X is NSS and (ii)

X € Xand x D y implies y € X.

The state can drift within an ES set but cannot go outside; if a
small fraction of mutants move the state outside the set, the

mutants do strictly worse than the incumbents and the state moves

2 Accordingly, the strict inequality in condition (E2) should

be replaced with weak inequality to define NSS.
13



back to the set, as Figure 3.1 (b) shows. In fact, Thomas (1985)

proves:

Claim 3.2 An ES set is asymptotically stable under the replicator
dynamic (2.2).

We can see that tit-for-tat (TFT) in the repeated prisoner's
dilemma is a NSS but it does not belong to an ES set, as TFT D C but
C, which always cooperates, is not Nash (hence not a NSS).

The last point suggests that ES may be modified in economic
applications to preclude such fragile mutations as C. Although the
drift to C is possible in biological evolution, rational economic
agents may hesitate to invade the population of TFT with such a
fragile plan. Swinkels (1992a) proposed the following concept:

Definition 3.2 A set X ¢ § is equilibrium evolutionarily stable
(EES) in a n-person game if it is a minimal closed non-empty set
such that (i) each element of X is a Nash equilibrium and (ii) Je'>0
such that Vee(0,e'), VxeX and VyeS, y € BR((1l-e)x+ey) implies (1-
€)x+tey € X.

A motivation for this concept is to endow a certain amount of
rationality for the mutants. If we have y € BR((1l-e)x+ey), €% of
the incumbent population x can be invaded by y, because such a plan
is self-enforcing among the mutants. An EES set is robust to such
equilibrium entrants; the population can never leave an EES set by
a series of small equilibrium entries. Swinkels goes on to show
that for any extensive form all points in an ESS set generically
differ only in off-the-equilibrium behavior and possess the same
equilibrium path'®.

Matsui (1992) provided another motivation for EES based on the

13 This is based on the Kohlberg and Mertens' result (1986)
that a connected set of Nash equilibria has a single realized

outcome for generic extensive form games.
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best response dynamics (3.1). First let us modify Definition
3.2(ii) to allow €' to depend on x and y.'* Also let us allow only
piecewise linear trajectories of the best respohse dynamics in the
definition of CSS. Under these modified definitions, Matsui

showed:

Claim 3.3 A set of Nash equilibria is EES if and only if it is a
CSS.

In other words, an EES is a set of Nash equilibria which cannot be
upset by the best response dynamics. The basic reason for this
result is the following. It can be shown that for any given xe€X and
y, if y € BR((1-e)x+ey) holds for a small enough e=¢', it also holds
for all Vee(0,e'). Then, clearly there is a best response path from
X to (1-e')x+e'y.

Selten (1983) proposes a different line of approach to deal with
the evolutionary drifts in extensive form games. We may expect that
the information sets off the path of play are reached with small but
strictly positive probabilities in reality by various reasons which
are ignored in the formal model. If there are such 'trembles',
selection pressure is at work off the equilibrium path, and such
effects provide a sharper prediction. Selten defines the notion of
limit ESS to formulate this idea for a symmetric two-person

extensive form game!®. Let I' be a symmetric two person extensive

4 Formally, VxeX and VyeS, Je'>0 such that for any e€(0,e'),
y € BR((l-e)x+ey) implies (l-e)xtey € X. Swinkels (1992a)
conjectures that this is equivalent to the original definition

3.2(1i1).

15 As we have seen, an asymmetric extensive form game can always
be symmetrized by means of random role assignment. On the other
hand, a given extensive form sometimes admits different ways to
define symmetry. For the latter problem, see Selten (1983) or van

Damme (1987) for details. The argument below presumes that a
15



form game, and let b, h, and C(h) denote a behavioral strategy for
player 1, an information set for either player and the set of
available actions at h. We will consider symmetric 'trembles',
which they can be represented by a function 6§ from u,C(h) to R that
satisfies (i) 8(c)20 Ve and (ii) Z,4,0(c)<l Vh, and (iii)
d(c)=58(c') whenever player 1's action c corresponds to player 2's
action ¢’ under the given symmetry. A perturbed game (I',d) is a
game where each action ¢ must be taken with a probability greater
than or equal to &(c). Suppose b, and its symmetric counterpart for
player 2 constitute an ESS (defined with respect to behavioral
strategies) of (I',$,) for each k, where §,~0 and b,~b" as k~». Then
we say that b" is a limit ESS. Note that an ESS is always a limit ESS
because §,=0 Vk is allowed.

Finally, we comment on the existence of various solution

concepts:

Claim 3.4 ESS, NSS, ES set, EES set, and limit ESS do not always

exist, while CSS always exists.

The reason is that those concepts try to capture the stable outcome
of the evolutionary process but there is no guarantee that the
process converges to a Nash equilibrium. In some cases, a limit
cycle can be a global attractor. Therefore, all those concepts
which require the solution to be Nash equilibrium fail to have the
existence property. To get existence, we must allow for other
behavior patterns such as limit cycle, as CSS does. In this respect
it is interesting to note that limit cycles can provide a certain
justification for Nash equilibria. Schuster, Sigmund, Hofbauer and
Wolff (1981) show that if all strategies appear on the limit cycle
of the replicator dynamic (2.2), the time average on the limit cycle

corresponds to a completely mixed strategy equilibrium.

symmetry has already been defined for the game under consideration.
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4 EVOLUTION AND RATIONALITY

In this section we examine if the evolutionary models developed
above actually support Alchian-Friedman's thesis of 'as if'
rationality. In a strategic situation, various degrees of
rationality can be defined, ranging from the use of undominated
strategy, rationalizability, Nash equilibrium, sequential
rationality and forward induction. We examine how they are
justified by evolutionary processes, and also show that evolution

can explain certain types of irrational behavior.
4.1 Optimization

Absent strategic interaction (i.e. for a single person decision
problem), combination of selection pressure and mutation should
lead to the optimal choice. This rather straightforward intuition
can fail when we have uncertainty. Suppose that a choice s induces
a probability distribution g(s)=(qg,(s),...,q;(s)) over the set of
realized payoffs {R,,...,R,}. The underlying shocks are global, such
as weather, so that in each period the players with the same
strategy receive the same realization of R, but the shocks are
independent over time. After T periods, the number of offspring of
a player is W=R(1)x-:--xR(T), where R(t) is the realized payoff at
time t. Since E[W]=I,E[R(t)], the strategy that maximizes the
number of offspring in the long run is equal to the expected payoff
maximizer. However, it does not maximize the long-run population
share. Suppose a player and its offspring adopt a strategy which
induces distribution g. By the law of large numbers, if T 1is
sufficiently long, R, realizes approximately in g,T periods. Then,
with a large probability the number of offspring after T is

approximately

(R ---RIHT=LT,

Hence if a strategy (uniquely) maximizes L, its expected population
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share is almost 1 for a large enough T. As maximizing L is

equivalent to maximizing logL=%,q;logR,=E[logR], we have:

Claim 4.1 If payoff R is subject to common random Shocks across
players, the strateqgy which maximizes E[logR] dominates the

population share with probability one.

As R=e'®*, the log of payoff (fitness) is interpreted as the growth
rate. Hence, biologists use expected growth rate, rather than
expected fitness under the kind of uncertainty described above. In
economics, a strategy may be interpreted as an investment
opportunity and R as the return for an asset. The above analysis
shows that the market selects the optimal choice for Neumann-
Morgenstern utility u(R)=1logR. Hence, when the investors are risk
neutral, economic natural selection leads to a suboptimal, rather
cautious behavior in the long run, and Alchian-Friedman's thesis
fails for this important class of situations. See Blume and Easley

(1992, 93, 95) for a systematic treatment.
4.2 Domination and Rationalizability

If a game is played by rational players, and if this fact is
common knowledge, the outcome should be rationalizable as defined
by Bernheim (1984) and Pearce (1984). Let us say that a player is
first order rational if she can calculate the best responses. A
player is n'" order rational if she takes a best response given that
the other players are (n-1)'" order rational. A rationalizable

strategy is defined to be an o-order rational choicel!®. Suppose

6  In a two-player game, iterative elimination of strictly
dominated strategies, when performed in the space of mixed
strategies, results in the set of all rationalizable strategies.
In general, a best response is undominated but not vice versa, so
that rationalizable strategies are included in the set of

iteratively strictly undominated strategies.
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players are first order rational and update their beliefs in an
adaptive fashion, in the sense that a strategy which is never
played after a finite period will asymptotically receive zero
probability. Fictitious play in the learning literature and the
best response dynamics satisfy this property. Then, a player's
rationality evolves towards a higher order over time, and in the
long run players will end up choosing rationalizable strategies.
See Milgrom and Roberts (1991) for a comprehensive treatment of

this issue:

Claim 4.2 If players take best response against expectations which
are revised adaptively, only iteratively strictly undominated

Strategies survive.

The above arqument needs to be modified when the players are not
even first order rational. Under natural selection or imitation
where players switch to better strategies, a strategy doing
sufficiently well may survive even if it is never a best response.
The following example, due to Dekel and Scotchmer (1992) serves as
such an example. Figure 4.1 is the column player's payoff matrix
of a symmetric 2-person game, which is basically a Rock-Paper-
Scissors game with an additional strategy D. Assume that D is
strictly dominated by the mixture of the first three strategies
(i.e. (a+btc)/3 > a+e). Absent D, the population share under a
variety of better response dynamics, including the discrete time
replicator dynamic (2.3) with simultaneous reproduction (a=A=1),
can approach the cycle of Rock~Paper-Scissors----, as depicted in

Figure 4.2.
***Figure 4.1 and Figure 4.2 here**x*

Because €>0, D can proliferate when a majority of the population
play a single strategy, and therefore it can survive near this
cycle. Hence we conclude that the strictly dominated strategy can

survive under some better response dynamics.
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This example has the property that D is strictly dominated by

a mixed strategy. In contrast, Samuelson and Zhang (1991) show:

Claim 4.3 If a pure strategy is strictly dominated by another pure
strategy (or, iteratively strictly dominated in pure strategies),
it cannot survive under any monotonic dynamic, provided that all

strategies exist initially.

Monotone dynamic'’” is a class of selection process over pure

strategies
ds,/dt = s,F,(g(1,s),...,q(K,s),s) (4.1)
whose 'growth rate function' F; satisfies
g(i,s)>g(j,s) = F, > F,. (4.2)

Claim 4.3. holds because the relative share s,/s; under such a
dynamic tends to zero, if j is strictly dominated by 1i.

A strenghtnening of (4.2),
g(x,s)>g(j,s) = 2,Fx; > F; (4.3)

is called convex monotonicity. Hofbauer and Weibull (1995) showed

a sweeping result:

Claim 4.4 Convex monotonicity is necessary’’ and sufficient for a
selectiondynamic (4.1) toeliminate iteratively strictly dominated

strategies, when all strategies are present initially.

17 Monotone dynamics are also examined by Friedman (1991) and

Nachbar (1990).

'8 When selection dynamic (4.1) is not convex monotone, it
cannot eliminate the dominated strategy D, when applied to the game

in Figure 4.1 for some parameter values.
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Convex monotonicity admits a wide class of selection dynamics,
including the replicator dynamic. Hence we conclude that players
act as if rationality were common knowledge under a wide class of

selection processes.
4.3 Refinements
Van Damme (1987) showed:
Claim 4.5 An ESS is a proper equilibrium.

Therefore ESS is also trembling-hand perfect. Van Damme also
showed (1984) that a proper equilibrium in the normal form of an
extensive form game induces a sequential equilibrium. Those two
facts, taken together, have a remarkable implication that such a
sophisticated behavior as sequentiality can evolve from a minimal
amount of rationality. However, this observation is in a sense
vacuous, because an extensive form most often possesses no ESS
because of the evolutionary drifts off the path of play. Swinkels
(1992b) handles this problem by his set theoretic notion of EES.
With this concept, he provides an evolutionary justification not
only for backwards induction (sequentiality), but also for forward
induction (the 'never a weak best response' property of Kohlberg
and Mertens (1986)). He first modifies the definition (ii) of EES
as; (ii)" 3 a neighborhood of X, denoted U, such that Vee(0,1), VxeX
and VyeS, z=(l-e)x+eyeU and y € BR(z) imply z € X.'® Then he shows
the following.

Claim 4.6 In a generic extensive form, if an EES set (defined with

19 The difference between (ii) and (ii)" is that the latter
measures perturbations by the distance the strategy distribution
is moved, rather than the fraction of entrants. For generic two
person extensive form games, the difference is inconsequential

(Swinkels (1992a)).
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(ii)") is convex?’, then the set possesses a single outcome, and it
satisfies both backwards induction (sequentiality) and forward

induction (the never a weak best response property).

This comes from the fact that, under the stated assumptions, the EES
set contains a set that is both fully stable (implying
sequentiality) and stable (implying forward induction)?'. Swinkels
demonstrates that in the beer-quiche example (Cho and Kreps (1987))
only the 'right' (beer drinking) equilibria correspond to an EES

set.
4.4 Irrationality

Evolutionary game theory also has a potential to explain
particular irrational behavior that we observe in reality. One
prominent reason why irrational behavior may survive is that
commitment to a suboptimal strategy pays in strategic situations.
Rational people may give way to a crazy driver, and a stubborn
player with a short temper may obtain better terms in negotiation
than a sensible person does. Frank (1897, 88), Baner jee and Weibull
(1995), Biasis and Shadur (1995), and Carmichael and MacLeod (1995)
elaborate on this point. This idea is built on the assumption that
there is a credible way to signal that a player is committed to a
certain type of behavior. Frank argues that physical symptoms of
emotional arousal, such as posture or facial expression, can serve

as such signals. A weakness of this theory is to ignore the

20 swinkels (1992b) employs a weaker topological condition,
which admits the case where the EES set is homomorphic to a convex
set. He goes on to show that an EES set is always convex in a

generic two-person extensive form game.

2l Also see Ritzerburger and Weibull (1994) and Swinkels (1993)
for the relationship between dynamic stability and strategic

stability.
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possibility that mutants who are not committed but only mimic the
signals can proliferate.

Casual observation suggests that people tend to put more
emphasis on relative performance than is justified by rationality.
("peer pressure" or "jealousy"). 1In a small population where a
player's action has a great impact on others, a suboptimal behavior
which harms one's opponents more than oneself may prosper.
Evolution of such spiteful behavior has been studied by Hamilton
(1970), Schaffer (1988), Crawford (1991), Rhode and Stegeman
(1995), and Vega-Redondo (1995). There is also a large body of
literature on evolution of altruism in biology. See, for example,
Hamilton (1972). Given those observations, one may take a
fundamentalist view that evolution is the first principle and

rationality is only one of its many consequences.

5 EVOLUTION AND EFFICIENCY — SECRET HANDSHAKE

One of the most notable implications of evolutionary game
theory is that efficient outcomes emerge in some important classes
of games in economics. This idea dates back to Axelrod and
Hamilton's paper (1981) on the evolution of cooperation (see also
Axelrod (1984)) in the repeated prisoners' dilemma, which has
attracted much attention. As we have seen, '"tit-for-tat" 1is
evolutionarily stable (a NSS), while "always defect" is unstable.
However, it turns out that some inefficient equilibria are also
evolutionarily stable. For example, it is easy to check that the
following strategy is a NSS: (i) it cooperates every other period
and (ii) reverts to defection ever after the opponent deviates from
the behavior pattern (i). Hence one cannot readily conclude that
evolution always leads to cooperation. This problem was resolved
by Fudenberg and Maskin (1990) and Binmore and Samuelson (1992),
who found reasonable sets of assumptions under which the unique
evolutionary outcome of the repeated prisoners' dilemma is

efficient.
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On the other hand, Matsui (1991), Warneryd (1991), and Kim and
Sobel (1995) discovered that evolutionary process derives
meaningful pre-play communication and leads to an efficient outcome
in a class of games. These two sets of results, evolution of
cooperation in repeated games and evolution of meaningful pre-play
communication, share the same basic logic, which Robson (1990)
calls 'secret handshake'. As we already have an excellent survey
of the former issue (Fudenberg (1992)), we will focus on the latter.
Sobel (1993) provides a general survey of those issues.

Consider the game in Figure 5.1.
x*xFigure 5.1 here*x*

If players can discuss before playing this game, our intuition
strongly suggests that they agree to play the efficient equilibrium
(a,a). However, explaining such 'meaningful pre-play
communication' had long been a notoriously difficult open problem
before evolutionary game theory.

To see this, let us formally incorporate pre-play communication
into the above game. In the first stage, each player simultaneously
sends a costless message ('cheap talk') from a set M. After seeing
the messages they choose actions in the above game. A strategy in
this augmented game is a pair s=(m,0), where meM and o is a function
from M to {a,b}. Once this setup is made, it is easy to see that
not all equilibria have meaningful pre-play communication. For
example, strategy s’ which sends a fixed message m’ and always plays
the inefficient action b constitutes a Nash equilibrium. Hence
traditional equilibrium analysis fails to derive meaningful
communication.

In contrast, evolution can explain how meaningful communication
emerges. First we show that the population of s’ can be invaded by
s’, which sends a different message m’ and plays the efficient
outcome a if and only if the exchanged message profile is (m’,m’).
The mutant strategy takes the efficient action if and only if the

opponent is another mutant, and otherwise it takes the same action
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as the incumbent does. Clearly, the mutant fares strictly better
than the incumbent after invasion, and therefore s’ is not an ESS
(nor a NSS). In contrast, any strategy which plays the efficient
action cannot be outperformed by mutants and therefore is a NSS??.

Note that the following, which Robson (1990) calls 'secret

handshake', are the key to upset the inefficient equilibrium s’.

(SH1) Mutants send a new message to identify themselves and
achieve cooperation among themselves.

(SH2) Incumbents do not react to the new message.

To kill more complicated inefficient equilibria we need to
apply the logic of the secret handshake in a more sophisticated
manner. First, if the incumbent chooses all messages with positive
probabilities and always plays b, mutants cannot identify
themselves ((SH1) fails). Such a strategy is called the babbling
equilibrium. Secondly, if the game is given by Figure 5.2, the

incumbent can react to the mutant and (SH2) fails.
***Figure 5.2 here**x*

For example, consider strategy s?, which sends m’, and plays b if the
opponent sends m’, but otherwise plays c. Against this strategy,
anyone sending a new message 1is punished, so mutants cannot
directly invade.

One way to deal with these problems is to invoke evolutionary
drifts. Since the choice of message is inconsequential in the
babbling equilibrium, the probability distribution over messages
can drift. When a particular message becomes sufficiently rare,
mutants can invade by using that message. As for strategy s’, the
punishment is off the path of play in the incumbent population, so

it can drift. When sufficiently many incumbents cease to choose ¢

22 We cannot have an ESS because the actions off the path of

play can drift, as we have seen in Section 2
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against unsent messages, mutants can invade. In either case, for
any inefficient equilibrium s' there is a non-NSS s’ such that s’
D s". Hence the inefficient strategies do not belong to ES sets?’.
This observation can be generalized. Consider a two—-person game,
which has a unique weakly Pareto efficient strategy profile. Such

a game is called a common interest game.

Claim 5.1 Assume that a common interest game is played with pre-
play communication. Then there is an unique ES set, and each of its

elements supports the efficient outcome.

The above argument is based on substantial accumulation of
evolutionary drifts and it may take a long time to kill inefficient
equilibria. The availability of a new message may not be a
fundamental problem because in reality there should always be some
unsent messages. As for the drifts to derive (SH2), Bhaskar (1994)
has shown that fast evolution is possible if there is a possibility
of misperception of messages. If the receiver's perception is not
known to the sender, it is not a Nash equilibrium to react to unsent
messages, so without any drifts inefficient equilibria can be
killed.

Finally, we briefly explain the evolution of efficiency in the
repeated prisoners' dilemma. When we assume no discounting,
actions in early stages of a repeated game, which do not affect the
total payoff, can serve as costless messages to derive (SH1). For
(SH2) to hold, players should not react harshly to such deviations,
and Fudenberg and Maskin (1990) introduce trembling hands and
Binmore and Samuelson (1992) employ cost of complexity to suppress

harsh punishment.

6 STOCHASTIC EVOLUTION

23 The same conclusion holds if one replaces an ES set with an

EES set or a CSS.
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The theories reviewed above rely on mutation, and most models
treat mutation as a small one-shot perturbation of the underlying
dynamical system. There are also some results relying on a
substantial accumulation of neutral mutations, or evolutionary
drift. In either case, random mutation is not explicitly
incorporated in the formal models. In this section we will see that
explicitly modeled dynamics with random mutations can provide
sharper predictions in a specific sense. Such an approach was

initiated by the seminal paper by Foster and Young (1990).
6.1 A motivating story

Let us begin with a simple story (taken form Kandori, Mailath
and Rob (1993), abbreviated KMR hereafter) to understand the basic
logic and scope of potential applications. Imagine that there is
a dormitory with ten graduate students. Each student is either
using a Mac or IBM personal computer and the situation can be

modelled as a random matching coordination game (Figure 6.1).
**x*Figure 6.1 here*x*

The stage game has two pure strategy equilibria, (Mac, Mac) and
(IBM, IBM). The mixed strategy equilibrium assigns probability 1/3
to Mac, and this means that Mac is the best response if more than
one third of the fellow students are Mac users. The students buy
new computers every once in a while, and when they do, they switch
to the current best response. We also assume that, with a small
probability e, the students 'mutate' to a suboptimal choice. This
may be caused by temporal shocks to the payoffs or mistakes. Or,
each student sometimes exits from the dormitory and is replaced by
a new comer, who brings his/her own computer.

Although the two pure strategy equilibria are locally stable
(ESS's), each equilibrium can be upset in the long run where a large
number of repeated mutations can happen. As the mutation rate e

tends to zero, it becomes harder to upset either equilibrium, but
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upsetting the IBM equilibrium becomes much harder. This is because
upsetting the IBM equilibrium requires seven mutations, while
upsetting the Mac equilibrium needs only four mutations. When the
mutation rate is small, the former is much less likely to happen®.

Hence, if we look at the relative proportion of time spent on
the Mac equilibrium in an infinite time horizon, it converges to one
as € tends to zero. In this sense in the (very) long run the Mac
equilibrium is much more likely to appear under a small mutation
rate?s.

The above story is informal and will be made precise shortly.
However, it illustrates both the strength and limitations of such
an approach. First, note that stochastic evolution can select
among strict equilibria, while this is impossible for virtually all
existing equilibrium refinements, including ESS, based on the local
stability of equilibria.

On the other hand, such a strong prediction is valid only under
a specific class of situations. Whereas the crisp equilibrium
selection requires a vanishing mutation rate, the same condition
makes the waiting time to see the long run effects indefinitely
long. For example, assuming fast (instantaneous) adjustment, KMR
report that the expected time to upset each equilibrium is about 78
periods for IBM and 100,000 for Mac, when the mutation rate is .1.
When the analyst's time horizon is less than 100, the initial
condition (or the 'path dependence') is clearly more relevant than
the long run prediction. On the other hand, if the relevant horizon

is more than 1,000, for example, the long run effects cannot be

24 This assumes that a mutation always happens with the same
probability e. Bergin and Lipman (1994) point out that if the
mutation rate is state dependent, almost anything can happen in the

long run.

25 A similar logic is utilized by a stochastic algorithm to
find the global maximum ( 'simulated annealing' introduced by

Kirkpatrick et al.(1983)).
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ignored.

A similar caveat applies to the population size. If the
dormitory in the above story had 1,000 students, upsetting the IBM
equilibrium would require more than 333 mutations to Mac, and this
is clearly very unlikely in any reasonable time horizon. Therefore

stochastic evolution is most relevant for a small population.
6.2. The discrete model

Now we present formal models to capture the long run effects of
repeated random mutation. As the present approach is most relevant
for a small population, we first consider the discrete model, which
has a finite population and discrete time. Such a model was first
introduced by KMR (1993), and generalized by Young (1993a) and
Kandori and Rob (1995). Consider a general n-person game g:A-R".
We consider the situation where a finite number of players play this
game by random matching?®. State z represents the current strategy
distribution. We assume that each player chooses a pure strategy,
so the state space is a finite set and denoted Zz={1,...,J}. In each
period, a certain set of players are selected (possibly randomly)
and they adjust to myopic best responses. In addition, we assume
that at the end of each period, each player 'mutates' with
probability e. When a player mutates, she randomizes with a fixed
probability distribution, which assigns a strictly positive
probability for each action.

This defines a time-homogeneous Markov chain. The transition
probability is denoted by p, =Pr(z(t+1)=j|z(t)=1i), and let P be the

matrix whose ij element is p;;. With this notation the law of motion

?* The present formulation incorporates various matching
schemes, such as the n-population case, random role assignment with
a single population, random matching with a single population for
symmetric games, or non-uniform random matching (local

interaction).
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is given by g(t+1)=q(t)P, where g(t) is the row vector representing
the probability distribution over the state space Z at time t. The
stationary point of this process p (p=pP) is called a stationary
distribution.

When the mutation rate € is zero, the long run outcome generally
depends on the initial condition. A possible long run outcome in
the absence of mutation can be captured by a set XcZ satisfying: (1)
Vi,jex3ts.t. Pr(z(t)=j|z(0)=1)>0, and (ii) Pr(z(1)ex|z(0)ex)=1.
Such a set is called a recurrent communication class or limit set,
and it is similar to a CSS in the continuous framework. It may
represent a Nash equilibrium or a cyclical behavior, and the system
is eventually absorbed in one of such sets if mutations are absent.

In contrast, with a positive mutation rate the system
fluctuates all over the state space, and the dependence on the
initial condition vaniéhes in the long run?’. More specifically,
when e€>0, there is a unique stationary distribution p(e), and it
satisfies the following two properties for any initial condition
g(0): (i) lim, .g(t)=p(e), and (ii) p(e) represents the relative
proportion of time spent on each state (within infinite horizon).
Such a system is called ergodic®®.

When € is small, the long run behavior can be captured by the
limit distribution p'=lim_p(e). It can be shown that the limit

distribution always exists and its support is a collection of limit

?” canning has a series of works emphasizing this point (see

(1992)).

?® The stated properties are known to hold for any irreducible
and aperiodic finite Markov Chain. A Markov chain is irreducible
when all states are mutually reachable within finite periods. When
the greatest common divisor of {t=1,2,...|Pr(z(t)=i|2z(0)=1)>0} is
1 for any state i, the Markov chain is called aperiodic. It is easy

to check that these two conditions are satisfied when €>0.
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sets?® A limit set in the support of p* is called a long run
equilibrium, and its element is called a stochastically stable
state or long run state. The Mac equilibrium in the above example
is such a state, and it is most often observed in the long run when
the mutation rate is small.

Long run equilibria can be found by the following graph
theoretic technique. First, given a finite path f=(z(0),...,2(T)),
the associated cost c(f) is defined to be the minimum number of
mutations to realize f with a positive probability. For a pair of
1imit sets X and Y, the cost of transition from X to Y is defined by
C(X,Y)=Min,c(f), where the minimum is taken over the set of all
paths from X to Y. Consider a tree whose set of nodes consists of
all limit sets, and assume that it is directed into the root. Let
us call such a graph a transition tree, and technically it is a
collection of directed branches (X,Y) where X and Y are limit sets.
We define the cost of a transition tree h by

C(X,Y).
(X,Y)€h

Then, we have the following 'mutation counting’ technique,
originally due to Freidlin and Wentzell (1984). Their method was
modified by KMR (1993) to analyze small population (discrete)
models, followed by Young (1993a)'s simplification to give the

present form.

Claim 6.1 A limit set is a long run equilibrium if and only if it

is the root of a minimum cost transition tree.

This procedure provides a selection among the limit sets, and
some remarks are in order. First, in all existing results, the
selection turns out to be unigque for generic normal form games.

Although the generic uniqueness of a long run equilibrium is still

29 The latter comes from the fact that the limit distribution

is a stationary distribution for e€=0.
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a conjecture, it has been proved for a special class of games (see
KMR (1993) for 2x2 games and Kandori and Rob (1992) for games with
bandwagon effects). Second, for a class of games where the dynamic
without mutation always converges to one of the Nash equilibria
(Young (1993a) calls such a dynamic acyclic), stochastic evolution
can provide a unique selection even among strict equilibria. Pure
coordination games, supermodular games, and games with bandwagon
effects fall in this category of games (Kandori and Rob (1992,
1995)).

6.2 Applications of the discrete model

The above technique has been applied to various games. KMR

(1993) show:

Claim 6.2 In a symmetric Zx2 game with two strict equilibria, the

risk dominance equilibrium is the unique long run equilibrium.

xx*Figure 6.2 herex**

According to Harsanyi and Selten (1988), equilibrium X=(x,x) 1in
Figure 6.2 risk-dominates Y=(y,y) 1if and only if a-c > d-b.
Ccalculation shows that x is the best response if and only if the

opponent plays x with a probability'more than
p=(d-b)/(a-c+d-b). (6.1)

Since p<1/2 if and only if a-c > d-b, the risk dominant equilibrium
is the one with the larger basin of attraction. The game has two
limit sets, corresponding to the two strict equilibria, and
(ignoring the integer problem) the cost of transition is pM for the
transition from Y to X and (1-p)M for the converse. Therefore, the
root of the minimum cost tree is the risk dominant equilibrium.

A mxm symmetric game satisfies the marginal bandwagon property

if for any a and b, g(a,c)-g(b,c) 1is maximized when c=a. Kandori
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and Rob (1992) and Maruta (1995) show that if an equilibrium
pairwise risk dominates other equilibria in a game with marginal
bandwagon property, it becomes a unique long run equilibrium®*. In
a pure coordination game, which is a symmetric two-person game with
g(a,a)>0 and g(a,b)=0 for a#b, the Pareto efficient equilibrium is
the unique long run equilibrium (Kandori and Rob (1995) ). Ellison
(1994) synthesizes these results by showing that a 1/2-dominant
equilibrium is the unique long run equilibrium. In a symmetric
game, strategy x constitutes a 1/2-dominant equilibrium if x is the
unique best reply when more than 1/2 of the population is playing
X.

Young (1993b) analyzes the Nash demand game and shows a striking

result:

Claim 6.3 For the Nash demand game (simultaneous offer bargaining
game), the unique long run equilibrium is the Nash bargaining

solution.

Consider two populations of players, such as buyers and sellers,
who are going to bargain over a $1 surplus. A seller and a buyer
simultaneously announce their shares, « and p. If oa+pf<l, they get
the announced shares, and enjoy payoffs u(a) and v(f). Otherwise
they get zero payoffs. Note that any exhaustive division a+f=1 is
a Nash equilibrium, and moreover, it is a strict equilibrium if both
« and p are strictly positive. Young discretizes the strategy space
by s={0,1/H,2/H,...,1}, and shows that for a sufficiently large
integer H, the long run equilibrium is the one that approximates the
Nash bargaining solution Argmaxu+mu(a)v(ﬂ) .

N6ldeke and Samuelson (1993) provide a useful characterization
of the long run equilibria and analyze extensive form games. Their
result formalizes the idea that the set of long run equilibria

should be locally stable under dynamics without mutations. We say

3 young (1993) provides an example, which shows that the

assertion is not true without the marginal bandwagon condition.
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that a limit set X' is weakly reachable from a limit set X if
c(X,X'")=1. 1If X" is weakly reachable from X', which is in turn
weakly reachable from X, we say that X" is weakly reachable from X.
A collection of limit sets constitutes a locally stable component
if they are mutually weakly reachable and no other limit set is
weakly reachable form them. This corresponds to a version of CSS
(see footnote 10) and is similar in spirit to an ES set and an EES
set. As we have seen, such a set-valued concept captures the
effects of evolutionary drifts and is useful in analyzing extensive

forms. Noldeke and Samuelson show:

Claim 6.4 The set of long run equilibria corresponds to a

collection of locally stable components.

Using this, they show that a subgame perfect equilibrium emerges in
the long run as a unique outcome only under a strong set of
assumptions (1993). In the following paper (1995), they examine

signaling games and show:

Claim 6.5 In Spence's job market signaling game with two types, if
the long run equilibria possess a unique outcome, it must be an

undefeated equilibrium®.

Ellison (1993) shows that fast convergence to the stationary
distribution holds true even in a large population, when the
players interact locally. Suppose each player interacts with a
small number of neighbors. If the neighborhoods have meager
overlaps, the model is essentially a collection of isolated small
populations and trivially fast convergence OCCUrS. Ellison's
contribution lies in the opposite, non-trivial case, where the

overlap is substantial. Take the Mac versus IBM game (Figure 6.1),

31 pndefeated equilibrium is introduced by Mailath, Okuno-
Fujiwara and Postlewaite (1993), and gives somewhat different

predictions than strategic stability.
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and consider a large population covered by a number of small
overlapping neighborhoods. Suppose more than 1/3 of each
neighborhood overlaps with an adjacent one. (Recall that 1/3 is the
critical mass of Mac users to make it a best response). Even if all
players are initially using IBM, if one neighborhood mutates into
Mac, the adjacent neighborhoods may switch to Mac, thanks to the
substantial overlap. Then, this 'domino effect' continues until
all players use Mac. Note that the opposite transition, from Mac
to IBM, requires a substantial number of mutations in each
neighborhood and therefore is very unlikely. Ellison also reports
an example where different matching structures produce different
long run equilibria. Other models of local interaction include
Blume (1993), An and Kiefer (1992), Goyal and Janssen (1993), and
Anderlini and Ianni (1994). Durlauf (1991) and Aoki (1994) apply

related techniques to macroeconomic problems.
6.4 The Continuous Model

The effects of perpetual randomness can be examined in a large
(continuum) population in continuous time, using Brownian motion,
and such a formulation provides somewhat different results. Foster
and Young (1990) presented a continuous model, followed by
Fudenberg and Harris (1993) and Vaughan (1993). Here we present
Vaughan's approach, which provides a simple closed form solution.

Consider the game in figure 6.2 and let z € [0,1] represent the
population of players adopting strategy x. The law of motion is

given by the stochastic differential equation

dz=G(z)dt +o (z)dw, (6.2)

where dW represents the standard Brownian motion. The drift term
G(z) reflects selection pressure, and its graph is depicted in
Figure 6.3, where p corresponds to the mixed strategy equilibrium

and is given by (6.1).

***Figure 6.3 herex**
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Let g(z,t) denote the probability density of state z at time t. It
is known that the evolution of the system is described by the
Fokker-Planck equation (or Kolmogorov's forward equation)

9
ot

d 1 & 2
—é—Z—[G<Z)Q(Z:t)]+—2“—a—‘Z2—[C (z)gl(z, t)]. (6.3)

Q'(Z/ t) = -
Clearly this is satisfied if 9Pr(z(t)sz)/dt =§qg(z,t), where the
operator ¥ is defined by

1 0
Fg=-Gq+ =———02%q.
q Gg > aZU q
We assume that (6.2) has reflecting boundaries, and this 1s
formulated as the boundary conditions g(0, t)=%qg(1,t)=0. Once the
system reaches the stationary distribution p(z), for any state z
the probability mass below z does not change (3Pr(z(t)<z)/dt=0), so

we must have
Fu(z)=0, (6.4)

not only at the boundaries z=0,1 but everywhere. For simplicity,
let us consider a special case where o°(z)=0’. Solving the
differential equation (6.4) with [;u(z)=1 yields

et (2 /a2

plz) = .
fle"’(")/"de (6.5)
0

where §/c? is called the potential and given by

y(z) = 2fsz(x) dx.

As ¢%’-~0, both the denominator and numerator of (6.5) diverge, so the
stationary distribution places probability 1 at the state which

maximizes y. Hence we have:

claim 6.6 Under the continuous dynamic (6.2) for a symmetric 2x2

game, the long run equilibrium is the state with the maximum
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potential.

Hence equilibrium (x,x) (corresponding to state z=1) is the long
run equilibrium if area B is larger than area A in Figure 6.3.

A couple of remarks are in order about the above result. First,
the above model provides a simple closed form for all mutation rates
(here measured by o), whereas the discrete model in the previous
section is intractable unless the mutation rate is vanishingly
small. Second, the clean result depends on the assumption that the
state space is one-dimensional (i.e. the underlying game is a 2x2
symmetric game). For a higher dimensional case, a closed form
solution can only be obtained under some restrictions on the drift
terms.

Third, the nature of equilibrium selection is somewhat
different between the discrete and continuous models. In the
discrete model, the relative size of the basin of attraction
determines the long run equilibrium. In the continuous model, not
only the size but also the strength of flow in each basin 1is
important. For example, in Figure 6.2, equilibrium (x,x) is risk-
dominated and has the smaller basin of attraction (p<1/2), but the
flow of adjustment is much stronger there. As a result, area B is
larger than area A, and the long run equilibrium is the risk
dominted equilibrium (x,Xx).

Binmore, Samuelson and Vaughan (1993) clarify the reason for
the difference between the discrete and continuous models. If we
examine the finite population case in continuous time with Poisson
adjustment, the stationary distribution has a clean closed form
when the state space is one dimensional. Such a model is known as
the birth and death process, and is employed by Amir and Berninghaus
(1994) and Binmore and Samuelson (1993). Starting with the birth
and death process, there are two ways to eliminate aggregate
randomness. One method is to reduce the mutation rate for a fixed
population size, which yields the prediction of the discrete model.
The other way is to increase the population size with a fixed

mutation rate. Binmore, Samuelson and Vaughan show that increas ing
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the population size for a fixed mutation rate and then reducing the

mutation rate yields the prediction of the continuous model.

7 CONCLUDING REMARKS

How should we evaluate evolutionary game theory in economics?
Mainstream economics, which only admits rational behavior, may
criticize such an approach on the following grounds. First,
allowing various behavioral assumptions provides too much degree
of freedom and loses the prediction power of the theory. Second,
the particular behavioral assumptions utilized so far in
evolutionary game theory are too naive and implausible in economic
applications. Third, the literature thus far 1is strictly
theoretical and lacks convincing applications to concrete economic
problems.

Evolutionary game theorists may admit these shortcomings but
point to the necessity of a good theory of bounded rationality.
Rationality itself is unable to explain how players come to play a
Nash equilibrium or which equilibrium is selected. The long
history of the rationality approach, which culminated in extensive
research in noncooperative game theory in the 1980's, finally
revealed the necessity of another principle, and evolutionary game
theory, although it is rather preliminary in its current form,

hopefully provides a first step in this general direction.
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