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1 Introduction

A likelihood ratio testing approach proposed by Johansen (1988, 1996) has been widely

used in selecting the cointegrating rank in vector autoregressive (VAR) systems. In the

recent literature of a unit root test in univariate time series, unknown smooth nonlinear

deterministic trends are often approximated with a trigonometric function used as the

base of a Fourier expansion. Examples include Pascalau (2010), Harvey, Leybourne

and Xiao (2010), Enders and Holt (2012), Enders and Lee (2012a,b), Rodrigues and

Taylor (2012), Astill, Harvey, Leybourne and Taylor (2015) and Perron, Shintani and

Yabu (2017, 2021), among others. While a unit root testing with such a nonlinear trend

modeling strategy has become very popular in practice, to the best of our knowledge,

there are no systematic analyses of incorporating trigonometric trends into cointegrat-

ing relations in the VAR framework.1 We aim to �ll the gap between the two strands

of literature.

The objective of this paper is to develop a methodology for testing the cointegrating

rank in VAR models allowing for trigonometric trends included in cointegrating rela-

tions. We derive the limiting distributions of the proposed test statistics and provide

statistical tables of their approximate limit quantiles, which have not been available.

The tables include empirically relevant cases with various choices of frequency of the

trigonometric trend function. The usefulness of our method has been con�rmed through

a simulation experiment as well as an empirical application to economic data.

To illustrate our modeling approach, let us consider the simple example of a term

structure of interest rates. Suppose that both a long-term interest rate, x1t, and a

short-term interest rate, x2t, are nonstationary. The theory of term structure implies

that their linear combination x1t � 
 � �x2t becomes stationary so that two series

are cointegrated. Such a theoretical restriction can be described by a bivariate error

1A recent paper by Pascalau, Lee, Nazlioglu, and Lu (2022) also consider the presence of trigono-
metric trends in a cointegrated VAR system. However, unlike our analysis, they do not allow trigono-
metric trends in cointegrating relations.
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correction system with its cointegrating rank set at one, given by

�x1t = �1ECt�1 +
k�1X
i=1


11i�x1t�i +

k�1X
i=1


12i�x2t�i + "1t;

�x2t = �2ECt�1 +

k�1X
i=1


21i�x1t�i +

k�1X
i=1


22i�x2t�i + "2t

where

ECt�1 = x1t�1 � 
 � �x2t�1

is an error correction term; k is the lag length of the VAR model in term of level

variables; and "1t and "2t are zero-mean disturbance terms. By generalizing the model

to include eleven yields on a US Treasury bill with di¤erent maturities, Hall, Anderson,

and Granger (1992, Table 1) employed a Johansen�s cointegrating rank test and found

ten cointegrating relations consistent with the theory. Their analysis of term structure

relies on the assumption that the equilibrium term premium, 
, is constant so that

term spreads are stationary. However, if the equilibrium term premium is time-varying

and nonstationary, a long-run relationship may not be appropriately detected, even if

the term structure of interest rate holds. For example, if there is an abrupt shift in the

equilibrium term premium, 
, the cointegrating rank test may be modi�ed to allow for

a break in the level of cointegrating relations along the line of Johansen, Mosconi and

Nielsen (2000) and others.2 In this paper, we take a more �exible approach and utilize

trigonometric trends to describe time-varying equilibrium term premium with a new

error correction term given by

ECt�1 = x1t�1 � 
 � �x2t�1 �
nX
j=1

�
�1j sin

�
2�jt

T

�
+ �2j cos

�
2�jt

T

��
;

where n denotes the total number of frequencies and f�1j; �2jgnj=1 is a set of trend co-

e¢ cients. To approximate the underlying nonlinear trends in cointegrating relations,

we employ a Fourier expansion with an arbitrary number of frequencies, as in Gallant

2Other studies that allow for discrete changes and shifts in a linear trend and constant deterministic
non-linearity in cointegrated VAR systems include Inoue (1999), Hendry (2000, 2006), Lütkepohl,
Saikkonen and Trenkler (2004), Hungnes (2010), Kurita, Nielsen and Rahbek (2011), Guo and Shintani
(2013) and Kurita and Nielsen (2019).
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(1981) and Gallant and Souza (1991), among others. This approach allows for a very

general class of nonlinear functions, including a case of the smooth transition of the

regimes sometimes referred to as smooth breaks rather than abrupt breaks. We use, as

an empirical example of our procedure, monthly time series data for Japanese govern-

ment bond (JGB) yields of �ve maturities, along with the overnight call rate. Under

the assumption of the constant equilibrium term premium, the original test of Johansen

suggests that cointegrating rank is one. In contrast, our procedure, which allows for a

�exible time-varying equilibrium term premium, suggests that the cointegrating rank

is �ve, which is consistent with the theory of term structure.

It should be noted that previous works by Saikkonen (2001a, b) and Rippati and

Saikkonen (2001), who incorporate smooth nonlinear deterministic trends in cointe-

grated VAR systems, are very close to ours in terms of motivation. In particular,

Saikkonen (2001a) considers a general smooth nonlinear trend function in cointegrat-

ing relations and derives a version of Granger�s representation theorem. While Saikko-

nen�s (2001a) framework is similar to ours, his results cannot be directly applied to

our model. For this reason, we develop another version of Granger�s representation

theorem suitably modi�ed to our model.

This study is composed of seven sections. In Section 2, a class of cointegrated VAR

models, with trigonometric deterministic trends included in cointegrating relations, are

introduced. In Section 3, the moving-average representations of the models are pre-

sented. In Section 4, the limit distributions of log-likelihood ratio test statistics for

the cointegrating rank in models with trigonometric trends are derived, and approx-

imate limit quantiles of the test statistics are tabulated. The procedures to test the

null hypothesis of no cointegration in the presence of nonlinear trends are discussed in

Section 5. A Monte Carlo simulation experiment to evaluate the sequential procedure

to select the cointegrating rank in �nite sample is conducted in Section 6. An empiri-

cal application to the term structure of interest rates is provided in Section 7. Lastly,
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concluding remarks are made in Section 8.3

Before proceeding to the next section, we present a set of notational conventions

used throughout the paper. Suppose that  is a certain matrix with full column rank

so that ( 0 )�1 exists and � =  ( 0 )�1. Let  ? be the orthogonal complement of

 , such that the equality  0? = 0 holds with the matrix ( ;  ?) being of full rank.

The outer product of two identical vectors is represented by 
2 in superscript when

treating large-dimensional vectors. Let I(d) be a stochastic process integrated of order

d. The symbols [b] and ) represent the integer part of a real number b and weak

convergence, respectively. For any two vector time series Ht and Jt for t = 1; :::; T , a

residual series from regression of Ht on Jt is denoted by

(HtjJt) = Ht �
TX
i=1

H iJ
0
i

 
TX
i=1

J iJ
0
i

!�1
Jt:

Similarly, for any two vector processes Hu and Ju on u 2 [0; 1], a process derived from

regression of Hu on Ju is expressed as

(HujJu) = Hu �
Z 1

0

HvJ
0
vdv

�Z 1

0

JvJ
0
vdv

��1
Ju:

2 Cointegrated VAR systems with smooth nonlin-
ear trends

The cointegrated VAR analysis was pioneered by Johansen (1988, 1996) and has since

been one of the most important econometric methods for the study of nonstation-

ary time series data.4 Let us �rst present the unrestricted VAR(k) model for a p-

dimensional I(1) time series Xt given by

�Xt = �Xt�1 +

k�1X
i=1

�i�Xt�i + �Dt + "t for t = 1; :::; T; (1)

where "t is a p� 1 vector of mean-zero i.i.d. Gaussian sequence with a p� p positive-

de�nite variance matrix 
; Dt is a s � 1 vector of deterministic variables; �; �i for
3All computational analyses were carried out using Ox (Doornik, 2013) and PcGive (Doornik and

Hendry, 2013).
4See Hunter, Burke and Canepa (2017), for example, for details of recent developments in the

cointegrated VAR methodology.
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i = 1; : : : ; k� 1 and � are p� p, p� p, and p� s coe¢ cient matrices, respectively; and

fX�k+1; :::; X0g is a set of starting values. The cointegrating rank of the system (1) is

r(< p) with a reduced rank condition � = ��0 where � and � are p � r full column

rank matrices.

In practice, the cointegrated VAR(k) model is often reformulated by incorporating

either a restricted constant or a restricted linear trend (see Johansen, 1994). When a

constant term is placed inside the cointegrating relations, we have a constant restricted

model de�ned as

�Xt = � (�0Xt�1 + 
0) +

k�1X
i=1

�i�Xt�i + "t: (2)

The model (2) imposes restrictions �Dt = �
0 with � = �
0 and Dt = 1 on (1) where


 is an 1 � r vector. Alternatively, when a linear trend term is placed inside the

cointegrating relations (but a constant term is placed outside them), we have a linear

trend restricted model de�ned as

�Xt = � (�0Xt�1 + 
0t) +
k�1X
i=1

�i�Xt�i + �+ "t: (3)

The model (3) imposes restrictions �Dt = �
0t+ � with � = (�
0; �) and Dt = (t; 1)
0

on (1) where 
 and � are an 1� r vector and a p� 1 vector �, respectively.

In an important study, Johansen, Mosconi and Nielsen (2000) extended the models

(2) and (3) to allow for shifts in the level and in the slope of the linear trend. For

example, a model with a break in the restricted constant at t = T1(< T ) can be

de�ned as

�Xt = �
�
�0Xt�1 + 
011(0<t�T1) + 
021(T1<t�T )

�
+

k�1X
i=1

�i�Xt�i+

kX
j=1

	j1(t=T1+j)+"t; (4)

where 1(�) denotes an indicator function that is assigned 1 if a condition in the paren-

theses is met and 0, otherwise, and 	i 2 Rp for j = 1; : : : ; k. Here, the model (2) has

been reformulated into (4), such that (i) the restricted constant is now subject to a

discrete break dividing the total sample period into two sub-samples, and (ii) the pe-

riod over XT1+1; : : : ; XT1+k is treated as a transition from the �rst sub-sample and the

5



second sub-sample. This type of model is certainly useful in modeling and analyzing

time series data in�uenced by an abrupt regime change. In contrast, we will extend the

models (2) and (3) in a di¤erent direction from Johansen, Mosconi and Nielsen (2000),

such that the smooth nonlinear trending features can be incorporated. In particular,

we propose a class of two cointegrated VAR models containing trigonometric functions

as additional deterministic components.

Let n denote the total number of frequencies used in the trigonometric function.

We introduce a 2n � 1 vector of nonlinear deterministic terms, denoted by eDt, along

with its parameter � 2 Rp�2n. Adding � eDt to (1) under � = ��0 yields

�Xt = ��0Xt�1 +
k�1X
i=1

�i�Xt�i + �Dt +� eDt + "t: (5)

The �rst model extends the model (2) and is de�ned by

�Xt = � (�0Xt�1 + �0Ft;T + 
0) +
k�1X
i=1

�i�Xt�i + "t; (6)

where

�0Ft;T =
nX
j=1

�
�s;j sin

�
2�jt

T

�
+ �c;j cos

�
2�jt

T

��
with �0 = (�s;1; �c;1; � � � ; �s;n; �c;n) 2 Rr�2n and

Ft;T =

�
sin

�
2�t

T

�
; cos

�
2�t

T

�
; � � � ; sin

�
2�nt

T

�
; cos

�
2�nt

T

��0
:

The model (6), which we refer to a constant and nonlinear trend restricted (CNR)

model, imposes restrictions on (5), such that �Dt is the same as that in (2) and

� eDt = ��0Ft;T . The CNR model excludes a linear trend but includes the smooth

nonlinear components and the intercept inside the cointegrating space. It should be

noted that this type of nonlinear trend function has long been considered in time series

literature (see e.g., Anderson, 1971).

The second model extends the model (3) and is de�ned by

�Xt = � (�0Xt�1 + �0Ft;T + 
0t) +

k�1X
i=1

�i�Xt�i + �+ "t (7)
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The model (7), which we refer to as a linear and nonlinear trend restricted (LNR)

model, imposes restrictions on (5), such that �Dt is the same as that in model (3) and

� eDt is the same as that in model (6). The LNR model has all the linear and nonlinear

deterministic trends restricted within the cointegrating space; only the constant is

placed in the model in an unrestricted manner.

3 Granger-Johansen representations

In order to examine the asymptotic properties of Xt, we derive a class of moving-

average representations, often called Granger-Johansen representations, according to

the speci�cations of deterministic terms in the CNR and LNR models.

Assumption 3.1 De�ne a characteristic equation based on (1) as

det

(
(1� z) Ip � �z �

k�1X
i=1

�j (1� z) zi

)
= 0;

and the roots of this equation are either z = 1 or jzj > 1 in the complex plane. De�ne

the decomposition � = ��0 for �; � 2 Rp�r, and both � and � are of full column rank

r < p. De�ne � = Ip �
Pk�1

i=1 �i, and the square matrix �
0
?��? is of full rank p� r.

Under Assumption 3.1, we follow Hansen (2005) and introduce a set of new com-

posite parameters

C = �?(�
0
?��?)

�1�0?; � = (Ip � C�) ��; �0 = ��0 (Ip � �C) ;

	 =
Pk�1

i=1 i�i; � c = ��
0 and � l = C�� �
0:

As shown in Lemma 4.1 in Johansen (1996), the expansion of the polynomial C(z) =P1
i=0Ciz

i around z = 1 leads to

C(z) = C(1) + (1� z)C�(z);

where C�(z) is also a polynomial, such that C�(1) = �dC(z)
dz

jz=1 (see also Phillips and

Solo, 1992). In this section, Xt is denoted by Xt;T to stress the fact that the process
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contains Ft;T as its constituent, which is a function of t as well as the sample size T .

The next proposition provides the representation of the CNR model, which is seen as

a reformulation of the representation given in Theorem 2.1 in Saikkonen (2001a).

Proposition 3.2 Suppose Assumption 3.1 is satis�ed in the CNR model (6). The

Granger-Johansen representation of the CNR model for t = 1; :::; T is

Xt;T = C
tX
i=1

"i + C(L)"t � ��0Ft;T + (1� L)C�(L)��0Ft;T + � c + A; (8)

where A = C (X0 � �1X�1 � � � � � �k�1X�k+1) :

The term consisting of the initial values was given in Saikkonen (2001a, Theorem

2.1) as A0 = �?(�
0
?�?)

�1�0?X0, which has been replaced with A as shown above and

in Hansen (2005, Theorem 1), although the di¤erence can be asymptotically marginal

due to �0A0 = �0A = 0. In other words, A is expressed as A = A0 + �?Z0, in which

Z0 is composed of the initial values of the underlying stationary components; see the

proof of Lemma 2 in Hansen (2005) for further details.

Proof. See Appendix A.

Next, we provide the representation of the LNR model, which is proven in a man-

ner similar to Proposition 3.2, although we have to treat the linear trend with care. It

should be noted that Saikkonen (2001a, Theorem 2.1) did not address the representa-

tion including the linear trend.

Proposition 3.3 Suppose Assumption 3.1 is satis�ed in the LNR model (6). The

Granger-Johansen representation of the LNR model for t = 1; :::; T is

Xt;T = C
tX
i=1

"i + C(L)"t � ��0Ft;T + (1� L)C�(L)��0Ft;T + � lt

� (��0 + C	C)�� (� + ��0�� � C	�) 
0 + A;
(9)

where A = C (X0 � �1X�1 � � � � � �k�1X�k+1) :
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Proof. See Appendix A.

Note that Ft;T does not accumulate in both representations, in contrast to "t, as a

result of the restriction that Ft;T is placed within the cointegrating space. It should

also be emphasized that the representation of the CNR model is free of the linear trend,

which is one of the critical di¤erences from that of the LNR model.

Both of the representations contain (1� L)C�(L)��0Ft;T , which is O(T�1) because

of a set of trigonometric identities given by

�sin

�
2�jt

T

�
= 2 sin

�
�j

T

�
cos

�
2�jt+ �j

T

�
= O(T�1);

�cos

�
2�jt

T

�
= �2 sin

�
�j

T

�
sin

�
2�jt+ �j

T

�
= O(T�1);

for j = 1; : : : ; n. Thus, we can argue that (1� L)C�(L)��0Ft;T plays no role in the

asymptotic theory developed in the next section.

4 Asymptotic distributions of test statistics

A log-likelihood ratio test statistic for the choice of cointegrating rank r against p,

denoted by �2 logLR (rjp;n), can be obtained from the reduced rank regression of

two models for a given number of frequencies n. See Johansen (1996, Chs. 6, 10

and 11) for further details about reduced rank regression and related limit theorems.

Reduced rank regression leads to a class of squared sample canonical correlations,

1 � �̂1 � � � � � �̂p � 0, which are the solutions to the generalized eigenvalue problem

given by

det(�S11 � S10S
�1
00 S01) = 0;

where S01, S10 and S11 represent the sample product moment matrices de�ned below.

The test statistic can then be written as

�2 logLR (rjp;n) = �T
pX

i=r+1

log(1� �̂i)

= T tr
n
P�?S01NT (N

0
TS11NT )

�1
N 0
TS10

o
+ oP(1); (10)
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where P�? = �? (�
0
?
�?)

�1 �0? andNT denotes a transformation matrix de�ned below.

Since the CNR model is nested in the LNR model, we �rst examine the LNR model.

For the LNR model, after running auxiliary regressions, the sample product moment

matrices are given by

S01 =
1

T

TX
t�1

�
�Xt

���� 1
�Xt�1

� Xt�1
Ft;T
t

����� 1
�Xt�1

!0
;

S00 =
1

T

TX
t�1

�
�Xt

���� 1
�Xt�1

�
2
; and S11 =

1

T

TX
t=1

 
Xt�1
Ft;T
t

����� 1
�Xt�1

!
2
;

where �Xt�1 =
�
�X 0

t�1; � � � ;�X 0
t�k+1

�0
. By using the transformation

NT =

0@ �0�? 0 0
��0�0�? T 1=2I2n 0
�� 0l�0�? 0 T�1=2

1A ;

which is based on the Granger-Johansen representation (9) and �0?�C = �0?, both

Ft;T and t can be removed from Xt�1 as

N 0
T

 
Xt�1
Ft;T
t

����� 1
�Xt�1

!
=

0@ �0?� �0?���
0 ��0?�� l

0 T 1=2I2n 0
0 0 T�1=2

1A Xt�1
Ft;T
t

����� 1
�Xt�1

!

=

0@ �0?
Pt

i=1 "i
T 1=2Ft;T
T�1=2t

������ 1
�Xt�1

1A+OP(1): (11)

As a consequence of this transformation, the random-walk component remains in Xt�1

as the dominant term. The statistic �2 logLR (rjp;n) can then be seen as asymptoti-

cally similar with respect to the parameters of the deterministic components; see Cox

and Hinkley (1974, Ch.5) as well as Nielsen and Rahbek (2000) for further details of

similarity. Normalizing the �rst p � r coordinates of (11) then leads to the following

weak convergence:

T�1=2

 
�0?

tX
i=1

"i

����� 1
�Xt�1

!
) (�0?Wuj 1) on u 2 [0; 1], (12)

where Wu = (W1;u; : : : ;Wp�r;u)
0 is a (p� r)� 1 vector Brownian motion with variance


.
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Let us get back to (10) and note the following identity:

T tr
n
P�?S01NT (N

0
TS11NT )

�1
N 0
TS10

o
= tr

n
P ��?S01NT�

�
T�1�0N 0

TS11NT�
��1

�0N 0
TS10P

�0
�?

o
; (13)

where P ��? = (�
0
?
�?)

�1=2 �0? and � is an invertible matrix de�ned as

� =

�
(�0?
�?)

�1=2 0
0 I2n+1

�
:

Utilizing a class of limit theorems in Johansen (1996, Chs. 10 and 11), we can derive

the limit distribution of each product moment in (13):

P ��?S01NT�)
Z 1

0

dBuG
0
u and T�1�0N 0

TS11NT�)
Z 1

0

GuG
0
udu; (14)

where Bu = (B1;u; : : : ; Bp�r;u)
0 on u 2 [0; 1] is a (p� r)� 1 standard Brownian motion,

and Gu on u 2 [0; 1] is given as

Gu = (B
0
u;F 0

u; uj 1)
0
; (15)

where Fu is 2n� 1 vector function de�ned by

Fu = [sin (2�u) ; cos (2�u) ; : : : ; sin (2�nu) ; cos (2�nu)]0 :

For the CNRmodel, after running auxiliary regressions, the sample product moment

matrices are given by

S01 =
1

T

TX
t�1
(�Xt j�Xt�1 )

 
Xt�1
Ft;T
1

������Xt�1
!0
;

S00 =
1

T

TX
t�1
(�Xt j�Xt�1 )
2 ; and S11 =

1

T

TX
t=1

 
Xt�1
Ft;T
1

������Xt�1
!
2

:

By using the transformation

NT =

0@ �0�? 0 0
��0�0�? T 1=2I2n 0
�� 0c�0�? 0 T 1=2

1A ;

which is based on (8), the vector Ft;T is removed as

11



N 0
T

 
Xt�1
Ft;T
1

������Xt�1
!

=

0@ �0?� �0?���
0 ��0?�� c

0 T 1=2I2n 0
0 0 T 1=2

1A Xt�1
Ft;T
1

������Xt�1
!

=

0@ �0?
Pt

i=1 "i
T 1=2Ft;T
T 1=2

�������Xt�1
1A+OP(1):

Again, �2 logLR (rjp;n) can be viewed as asymptotically similar with respect to the

parameters of the deterministic components. With the use of �, we arrive at a set of

limit expressions of product moments in (14), both of which are now composed of

Gu = (B
0
u;F 0

u; 1)
0
;

in place of (15).

Proposition 4.1 Suppose Assumption 3.1 is satis�ed in the CNR model (6) and the

LNR model (7). The asymptotic distribution of the log-likelihood ratio test statistic for

the null of cointegrating rank r is

�2 logLR (rjp;n)) tr

(Z 1

0

dBuG
0
u

�Z 1

0

GuG
0
udu

��1 Z 1

0

GudB
0
u

)
;

where Gu on u 2 [0; 1] is de�ned as

Gu = (B
0
u;F 0

u; 1)
0

for the CNR model, and

Gu = (B
0
u;F 0

u; uj 1)
0

for the LNR model.

Since both the limit distributions in Proposition 4.1 are free from nuisance para-

meters, the distributions can be approximated by simulation, given a set of values for

p� r and n. We follow Nielsen (1997) and Doornik (1998) in approximating the limit

distributions. Let us introduce a (p � r) � 1 pseudo normalized standard Gaussian

process �t and its partial sum process Zt�1 =
Pt�1

i=1 �i with Z0 = 0. We construct

Q = �T
p�rX
i=1

log(1� ~�i);
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Figure 1: Simulated limit distributions: CNR and standard (constant restricted) mod-
els

where ~�1; :::; ~�p�r represent the eigenvalues of T�1G�1 (G11)
�1 G1�, which consists of

G�1 =
TX
t=1

�tR
0
1t; G1� = G

0
�1 and G11 =

TX
t=1

R1tR
0
1t;

with R1t = (Z 0t�1; F
0
t;T ; 1)

0 for the CNR model and with R1t =
�
Z 0t�1; F

0
t;T ; t

�� 1�0 for the
LNR model. See Appendix B for a set of tables that present the approximate limit

quantiles, the �rst and second moments of the rank test statistics for the CNR and

LNR models, for various combinations of p� r and n.

Figure 1 compares simulated (approximate) limit distributions for CNR model (6)

and standard constant restricted model (2), given p � r = 4; 3; 2; 1 and n = 4; 3; 2; 1.

Similarly, Figure 2 makes a comparison of those distributions for LNR model (7) and

standard linear trend restricted model (3), given the same settings for p�r and n as in

Figure 1. The numbers of observations and Monte Carlo replications are the same as

those adopted in the simulation for Appendix B. As n increases, the distributions shift

to the right and their shapes become less skewed to the right. These comparisons allow

13
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Figure 2: Simulated limit distributions: LNR and standard (linear trend restricted)
models

us to predict that the use of standard models, when studying those data which are

subject to Fourier-type trends, will lead to a misleading inference about the underlying

cointegrating rank. The next section demonstrates this issue, along with other aspects,

through Monte Carlo simulations.

It is known that a class of gamma distributions can be used to approximate limit

distributions of log-likelihood ratio tests for the cointegrating rank under various cir-

cumstances; see Nielsen (1997), Doornik (1998), Johansen, Mosconi and Nielsen (2000)

and Kurita and Nielsen (2019) for further details. We apply this method to the CNR

and LNR models, resulting in success in approximating the underlying limit distrib-

utions. It is therefore feasible, by running a class of response surface regressions, to

calculate p-values of observed test statistics according to the corresponding gamma

distributions. An Ox code for the purpose of calculating p-values is available in the

supplementary material for this paper. The empirical illustration given in Section 7

below utilizes this code in the determination of the cointegrating rank.
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5 Nonlinear trend in the absence of cointegration

We have thus far considered a class of models in which Fourier-type nonlinear determin-

istic trends are contained in a cointegrating relation. These models are advantageous

in that we can explicitly allow for various smooth nonlinearities, approximated by a

set of smooth trigonometric functions, embedded in the underlying long-run economic

relationships. In our speci�cation, however, nonlinear trends disappear from the model

under the null hypothesis of no cointegration. In the literature of the unit root test

with structural breaks, some studies including Kim and Perron (2009) and Carrion-i-

Silvestre, Kim and Perron (2009) allow a break under both the null and alternative

hypotheses. Along this line, Enders and Lee (2012a) and Enders and Lee (2012b) re-

spectively propose a Lagrange Multiplier (LM) type and Dickey-Fuller type unit root

tests allowing for a �exible nonlinear trend using a Fourier approximation under both

the null and alternative hypotheses. Rodrigues and Taylor (2012) also consider the

same nonlinear trend in their local GLS detrended test for a unit root. In particular,

for a scalar time series yt, the null hypothesis of � = 0 is tested in the model given by

�yt = �yt�1 +
nX
j=1

�
�1j sin

�
2�jt

T

�
+ �2j cos

�
2�jt

T

��
+ "t

where "t is a mean-zero i.i.d. random sequence with a �nite variance. Therefore,

nonlinear trends are present in the model, both under the null of � = 0 and the

alternative of � < 0. We can also generalize this speci�cation to the cointegrated VAR

system so that the coe¢ cients on the nonlinear trend terms are identi�ed under the null

hypothesis of no cointegration. In this section, we brie�y address testing procedures

under such speci�cations that complement the main models considered in the previous

sections.5

In order to permit the presence of Fourier functions in a model with no cointegration,

5A similar framework is also considered in a recent work of Pascalau, Lee, Nazlioglu, and Lu (2022).
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the model (5) in Section 2 is now replaced by

�Xt = ��0Xt�1 +
k�1X
i=1

�i�Xt�i + �Dt +�Ft;T + "t: (16)

In this speci�cation, � can be estimated under the null hypothesis of no cointegration

because the Fourier function does not disappear, even if r = 0; that is,

�Xt =
k�1X
i=1

�i�Xt�i + �Dt +�Ft;T + "t:

At the same time, however, the model (16) rules out the possibility of long-run eco-

nomic relationships described by smooth nonlinear trends. In the reduced rank regres-

sion framework, the e¤ects of nonlinear terms are considered only through auxiliary

regressions. In contrast, in the CNR model (6) and LNR model (7), the method of

reduced rank regression explicitly yields the maximum likelihood estimator of �, the pa-

rameters for the Fourier-type nonlinear terms embedded in the cointegrating relations.

Therefore, the CNR and LNR models are more suitable for the analysis of long-run

economic relationships subject to smooth nonlinear trends, which is infeasible when

employing the speci�cation (16).

With regard to an intercept and linear trend term in (16), it is convenient to follow

the standard speci�cations as we did for the CNR and LNR models in Section 2. We

thus introduce the following class of models

�Xt = � (�0Xt�1 + 
0) +

k�1X
i=1

�i�Xt�i +�Ft;T + "t;

�Xt = � (�0Xt�1 + 
0t) +
k�1X
i=1

�i�Xt�i +�Ft;T + �+ "t:

The former model is referred to as a constant restricted and nonlinear trend unrestricted

(CNU) model with � = �
0 and Dt = 1, while the latter is called a linear trend

restricted and nonlinear trend unrestricted (LNU) model with � = (�
0; �) and Dt =

(t; 1)0. Let us refer back to the last section for a set of of notational conventions; by

running auxiliary regressions, the sample product moment matrices for the CNU model

16



are then speci�ed as follows:

S01 =
1

T

TX
t�1

�
�Xt

���� Ft;T
�Xt�1

��
Xt�1
1

���� Ft;T
�Xt�1

�0
; S00 =

1

T

TX
t�1

�
�Xt

���� Ft;T
�Xt�1

�
2
;

S11 =
1

T

TX
t=1

�
Xt�1
1

���� Ft;T
�Xt�1

�
2
and NT =

�
�0�? 0
0 T 1=2

�
:

Similarly, for the LNU model, those matrices are

S01 =
1

T

TX
t�1

 
�Xt

����� 1
Ft;T
�Xt�1

! 
Xt�1
t

���� 1
Ft;T
�Xt�1

!0
; S00 =

1

T

TX
t�1

 
�Xt

����� 1
Ft;T
�Xt�1

!
2
;

S11 =
1

T

TX
t=1

 
Xt�1
t

���� 1
Ft;T
�Xt�1

!
2
and NT =

�
�0�? 0
0 T�1

�
:

Suppose Assumption 3.1 is satis�ed with respect to both models. The limit distri-

bution of the log-likelihood ratio test statistic for the null of cointegrating rank r is

expressed as

�2 logLR (rjp;n)) tr

(Z 1

0

dBuG
0
u

�Z 1

0

GuG
0
udu

��1 Z 1

0

GudB
0
u

)
;

where Gu on u 2 [0; 1] is de�ned as

Gu = (B
0
uj F 0

u)
0

for the CNU model, and

Gu = (B
0
u; uj 1;F 0

u)
0

for the LNU model.

The Ox code available in the supplementary material simulates a class of approxi-

mates to the above limit distributions, along with those based on the proposed models

that were studied in the previous section. A series of response surface regressions incor-

porated in the code also allows us to calculate the p-values of observed test statistics,

according to the corresponding gamma distributions.
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6 Monte Carlo simulation

6.1 Non-Fourier DGPs and CNR model

Let us introduce a nonlinear bivariate DGP for Xt = (X1;t; X2;t)
0 with r = 1 and k = 1

by

�Xt = � (�0Xt�1 +Ht;T + 
) + "t; (17)

where

� =

�
�0:2
0:1

�
; � =

�
1:0

�0:5

�
; 
 = �2:3;

and Ht;T represents a deterministic nonlinear term that does not fall in a class of

Fourier-type smooth nonlinear trends. The starting values are set at log(100) and the

innovation sequence "t is a pseudo mean-zero N(0; s
) sequence with each diagonal

element of 
 being unity and each o¤-diagonal element of 
 being 0:25, along with a

scaling factor s = 0:01.

Following Doornik, Hendry and Nielsen (1998), we use a class of approximate 95%

quantiles tabulated in the previous section and calculate a set of recursive rejection

probabilities of the test statistic �2 logLR (rjp;n). The numbers of observations (T )

range from 50 to 400, increasing by 25 steps each, with the �rst 20 observations dis-

carded to allow for the in�uences of the initial values. The number of Monte Carlo

replications is 10,000. The standard (constant restricted) model (2) and the CNR

model (6) are estimated. A set of 5% critical values (95% asymptotic quantiles) for

the former model is taken from Doornik (2003), while 5% critical values for the latter

are those tabulated in the previous section. The thick lines in the �gures presented

below correspond to recursive rejection frequencies when using the proposed models,

whereas dotted lines denote rejection rates with the use of the standard (constant re-

stricted) linear model. These rejection rates are sorted according to the null hypotheses

of r = 0 and r � 1 and displayed in the upper two panels of each �gure, along with a

set of sample paths of Xt and �
0Xt for T = 400 in the lower panels.
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Figure 3: Recursive rejection frequencies and sample paths: NF-DGP-1

We �rst check the performance of the procedure using a simple DGP with no

cointegration.

1. NF-DGP-1: DGP (17), in which � is replaced with (0; 0)0, that is,

�Xt = "t:

Models: CNR model (n = 1) and standard (constant restricted) model

The results shown in Figure 3 allow us to argue that the �nite sample performance

of the CNR model is not inferior to that of the standard model, in the analysis of the

data from which cointegration and nonlinear components are absent. Next, we move

on to a comparative analysis of CNR and standard constant restricted models in the

presence of non Fourier-type components in the DGPs.

2. NF-DGP-2: DGP (17), where

Ht;T = �0:05E (0:4T � t) ;
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Figure 4: Recursive rejection frequencies and sample paths: NF-DGP-2

and E (�) denotes an indicator function.

Models: CNR model (n = 1) and standard (constant restricted) model

See Figure 4 for the simulation results from the use of NF-DGP-2. Although the

CNR model does not contain a level-shift term that is included in the underlying DGP,

its performance is judged to be better than that of the standard model in terms of the

rejection of the false hypothesis r = 0.

3. NF-DGP-3: DGP (17), where

Ht;T = �0:1
(
1� exp

"
�10

�
t

T
� 0:4

�2#)
:

Models: CNR model (n = 2) and standard (constant restricted) model

4. NF-DGP-4: DGP (17), where

Ht;T = �0:2
(
1� exp

"
�30

�
t

T
� 0:8

�2#)
:

Models: CNR model (n = 2) and standard (constant restricted) model
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Figure 5: Recursive rejection frequencies and sample paths: NF-DGP-3
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Figure 6: Recursive rejection frequencies and sample paths: NF-DGP-4

21



See Figures 5 and 6, for which the dynamics of the underlying DGPs (NF-DGP-3

and NF-DGP-4) are driven by exponential smooth transition functions. According to

these �gures, the CNR models have performed much better than the standard model

from the standpoints of the selection of the correct rank, despite the fact that both

DGPs are distinctively di¤erent from Fourier-type processes.

Simulation results from the use of various other Non-Fourier DGPs are reported

in the supplementary material of this paper. Overall, we are justi�ed in concluding

that, in comparison with the standard model, the proposed models can be useful in

addressing various other nonlinear trends than the Fourier-type trends.

6.2 Fourier DGPs and the CNR model

We proceed to the study of a class of DGPs that explicitly include Fourier-type

nonlinear components. Let us introduce a 4-dimensional vector of time series Xt =

(X1;t; X2;t; X3;t; X4;t)
0, which is driven by a system in the form

�Xt = � (�0Xt�1 + �0Ft;T + 
0) + "t;

where the starting values are set at log(100) and "t is a pseudo mean-zeroN(0; s
) sequence

with each diagonal element of 
 being unity and each o¤-diagonal element of 
 being

0:25, along with a scaling factor s = 0:01. We �rst study a class of two DGPs according

to the speci�cation of the parameters and periodic frequencies in the system.

The �rst Fourier-type DGP (denoted as F-DGP-1) based on this system is speci�ed

as

Ft;T =

�
sin

�
2�t

T

�
; cos

�
2�t

T

��0
;

� =

0B@ �0:2
0:1
0:0
0:0

1CA ; � =

0B@ 1:0
�1:0
�1:0
0:5

1CA ;

�0 = ( 0:1 �0:1 ) ; 
0 = 2:3:

22



while the second DGP, called F-DGP-2, is given as

Ft;T =

�
sin

�
2�t

T

�
; cos

�
2�t

T

�
; sin

�
4�t

T

�
; cos

�
4�t

T

��0
;

� =

0B@ �0:4 0:0
0:0 �0:3

�0:2 �0:1
0:0 0:0

1CA ; � =

0B@ 1:0 0:0
0:0 1:0
0:5 0:5

�0:5 0:5

1CA ;

�0 =

�
0:08 0:06 �0:03 �0:06
0:00 �0:08 0:04 0:04

�
; 
0 =

�
�4:6
�9:2

�
:

We will explore below various characteristics of cointegrating rank tests that are applied

to nonstationary time series data generated from these DGPs.

We adopt the same Monte Carlo setting to conduct a comparative analysis as that

in Section 6.1, except for one critical di¤erence: the CNR model employed here nests

the DGP used in each experiment in such a way that the model is correctly speci�ed

in terms of the structure of lag length and trigonometric frequency. Before discussing

the results, we present a set of sample paths of arti�cial data (T = 400), generated

from F-DGP-1 and F-DGP-2, in Figure 7 (a) and (b), respectively. These �gures show

that the generated data resemble economic time series data in practice.

X1t
X2t
X3t
X4t

0 50 100 150 200 250 300 350 400

4.50

4.75

5.00

5.25 (a)
X1t
X2t
X3t
X4t

X1t
X2t
X3t
X4t

0 50 100 150 200 250 300 350 400

4.5

4.6

4.7

4.8 (b)X1t
X2t
X3t
X4t

Figure 7: Sample paths of arti�cial data generated from F-DGP-1 and F-DGP-2
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Figure 8: Recursive rejection frequencies: F-DGP-1

We are in a position to study the results of the comparative simulation analysis.

First, F-DGP-1 is used as a device to generate a series of arti�cial data. Recursive

rejection rates of the rank test statistics are sorted according to the null hypotheses of

r � 0; 1; 2 and 3; they are displayed in Panels (a), (b), (c) and (d) in Figure 8. Panel

(a) shows the advantage of the proposed nonlinear model over the standard model in

terms of selecting the correct cointegrating rank (r = 1). The log-likelihood ratio test

based on the CNR model rejects almost completely the null hypothesis of r = 0 in

Panel (a), and the test tends to approach the nominal 5% level as T increases in Panel

(b). In contrast, the test fails in many times to detect a cointegrating relation in the

standard (constant restricted) model, and the rates of rejecting r = 0 in Panel (a)

remain around 40 to 50%. The rejection rates for the hypothesis r � 2, with the use of

the standard (constant restricted) model, have gone below the nominal 5% level with

an increase in the sample size; see Panel (b).

Next, we proceed to the analysis of F-DGP-2. In line with Figure 8 for F-DGP-1,

Panels (a), (b) and (c) in Figure 9 are in favor of the CNR model over the standard
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Figure 9: Recursive rejection frequencies: F-DGP-2

(constant restricted) model in the selection of correct cointegrating rank (r = 2). The

overall performance of the standard (constant restricted) model is much worse than

that of the CNR model, re�ecting the fact that the DGP is not nested in the former

model.

By utilizing the results of this experiment, Table 1 summarizes how frequent we

arrive at each of all �ve conceivable choices r = 0; 1; 2; 3 and 4 at each of the following

�ve observation points: T = 50; 100; 200; 300 and 400 in the analysis of data generated

from F-DGP-1. The use of the CNR model indicates that the selection rates for r = 1

approach the level of 95% with an increase in the sample size (see Panel (1)), whereas

the use of the standard (constant restricted) model leads to a misleading conclusion,

even when the sample size is 400 (see Panel (2)).

Similarly, the analysis of data generated from F-DGP-2 has led to a set of results

in support of the CNR model; see Table 2. An approximate 95% selection rate has

been attained when T � 200, while the standard (constant restricted) linear model has

failed to reach the same level, even at T = 400.
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Panel (1) CNR model

r = 0 r = 1 r = 2 r = 3 r = 4 (%)
T = 50 4:83 85:90 8:36 0:85 0:06
T = 100 4:56 88:51 6:22 0:67 0:04
T = 200 0:11 94:23 5:19 0:46 0:01
T = 300 0 94:41 5:20 0:35 0:04
T = 400 0 95:05 4:52 0:42 0:01

Panel (2) Linear model

r = 0 r = 1 r = 2 r = 3 r = 4 (%)
T = 50 35:35 55:15 8:20 1:06 0:24
T = 100 51:54 42:22 5:25 0:78 0:21
T = 200 62:78 33:38 3:46 0:33 0:05
T = 300 60:25 36:36 2:99 0:27 0:13
T = 400 54:54 42:31 2:88 0:23 0:04

Table 1: Cointegrating rank selection frequencies: F-DGP-1

The overall phenomena recorded in the above �gures and tables are attributable

to the underlying non-negligible model misspeci�cations. The �ndings also indicate

the problem of spurious stochastic trends, which should be contrasted with spurious

cointegration, as discussed by Leybourne and Newbold (2003).

Lastly, Figure 10 displays a class of rejection frequencies of the rank tests based on

over-speci�ed, correctly-specifed and under-speci�ed models in terms of the frequency

n. Recall n = 1 for F-DGP-1(r = 1), so that the models for Panels (a) and (c) are

either over-speci�ed (n = 5; 4; 3 and 2) or correctly-specifed (n = 1). It should be

noted that the power properties of the tests, as shown in Panel (a), are improved as

the model�s frequency approaches to the true frequency n = 1. Recalling n = 2 for

F-DGP-2(r = 2), we �nd that the models for Panels (b) and (d) are classi�ed as over-

speci�ed (n = 5; 4 and 3), correctly-speci�ed (n = 2) and under-speci�ed (n = 1).

What is distinguishing in Panel (b) is the inferiority of the model with n = 1 to all the

other models, a result clearly attributed to the under-speci�cation of the frequency. It

is thus safer to proceed from a VAR model with a relatively large n when conducting

a series of tests for the selection of the cointegrating rank. This procedure is also

justi�able in terms of the principle of general-to-speci�c econometric modeling (see
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Panel (1) CNR model

r = 0 r = 1 r = 2 r = 3 r = 4 (%)
T = 50 0 55:85 38:85 5:09 0:21
T = 100 0 26:53 67:01 6:12 0:34
T = 200 0 0:11 94:08 5:49 0:32
T = 300 0 0 94:54 5:20 0:26
T = 400 0 0 94:86 4:86 0:28

Panel (2) Linear model

r = 0 r = 1 r = 2 r = 3 r = 4 (%)
T = 50 58:48 39:62 1:83 0:06 0:01
T = 100 50:99 45:83 3:04 0:12 0:02
T = 200 36:10 56:63 7:02 0:24 0:01
T = 300 19:95 69:66 10:04 0:33 0:02
T = 400 9:83 78:65 11:09 0:39 0:04

Table 2: Cointegrating rank selection frequencies: F-DGP-2

Hendry and Doornik, 2014, inter alia).

7 Empirical illustration

In this section, we present the results of an empirical application of our proposed

procedure to interest rate data. We consider a system of 6 variables given by Xt =

(i20yr;t; i10yr;t; i5yr;t; i3yr;t; i1yr;t; icall;t)
0, in which imyr;t form = 20; 10; 5; 3 and 1 represents

JGB yield to maturity of m years, while icall;t is Japan�s overnight call rate. All data

were downloaded from the website of Japan�s Ministry of Finance (https://www.mof.go.jp).

Because the data are available on a daily basis, they were converted into respective

monthly averages. The term structure of interest rates implies that the yield to the

shortest maturity in Xt should drive all the other yields to longer maturities, so that

the number of cointegrating relations in the VAR system for Xt is expected to be �ve

(r = 5), or a single common stochastic trend (p� r = 1).

An overview of the data spanning the period of 1986.12 - 1995.11 is provided in

Figure 11. The terminal point, 1995.11, was selected on the basis of the observation

that the call rate had nearly reached the e¤ective lower bound of 0.5% around the

end of 1995. All the interest series in Figure 11 appear to behave in a fairly similar
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Figure 10: Recursive rejection rates based on a range of models

manner, indicating the possibility that they share a single stochastic trend over the

sample period.

In order to test the hypothesis of r = 5, we �rst need to determine which model

we should choose among a class of various models conceivable for the analysis of the

interest rate data. We opt for the CNR model (6), instead of the LNR model and

standard models, on the grounds that interest rate series are in general considered to

be free of a linear trend but can be in�uenced by domestic and international business

cycles.6 Next, given the choice of a CNRmodel, we need to determine the frequencies of

trigonometric function, since the theory implies the critical values of the test depend on

the frequencies. To this end, we adapt a sequential procedure to select the frequencies

of trigonometric function proposed by Perron, Shintani and Yabu (2021). Since their

method is valid for both I(0) and I(1) cases, it is appropriate not only as the preliminary

6Johansen (Ch.12, 1996) applied an idea of Pantula (1989) to a set of procedures for selection
between unrestricted and restricted deterministic terms in standard CVAR models. Since both CNR
and LNR models have Fourier-type trends restricted in the cointegrating space, we assign importance
here to economic grounds and choose a CNR model over a LNR model; see Doornik, Hendry and
Nielsen (1998) for a detailed discussion on this type of issue.
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Figure 11: An overview of monthly data for Japan�s bond yields

analysis for the unit root tests with Fourier-type nonlinear deterministic trends but also

for our cointegrating rank test.

Their procedure is based on what they call sup-W (`+ 1) test and Mean-W (`+ 1)

test for the coe¢ cients on trigonometric functions. Let nmax be the maximum frequency

allowed. Their sequential method of estimating the number of the frequencies proceeds

as follows. First, starting with ` = 0, use the sup-W (` + 1) or Mean-W (` + 1) test.

If the null hypothesis of zero coe¢ cient is not rejected, conclude for a model with `

frequencies estimated as (bm1; : : : ; bm`) = argminSSR where SSR is sum of the squared

residuals and bmj�s are estimated frequencies with total of ` frequencies. Second, if the

null is rejected, update ` to `+1 and repeat until a non-rejection occurs or the maximal

allowed value ` = nmax� 1 is attained. This speci�c-to-general procedure will result in

a consistent model selection if the size of the test converges to 0 slowly enough for the

tests to be consistent. We apply this proposed procedure to each of JGB yield series

and call rate. The signi�cant level is set at 10 percent, nmax is set at 5, and the lag
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Figure 12: Diagnostic tests of the residuals from the non-linear model
First column: Scaled residuals for i20yr;t; :::; icall;t; Second column: Residual autocorre-
lation functions for i20yr;t; :::; icall;t; Third column: Residual quantile-quantile plots for
i20yr;t; :::; icall;t.

length is selected by AIC. As a result, the largest estimated frequency was 5 with the

call rate, and thus we employ n = 5 in subsequent analysis.

Given the selection of n = 5, we are in a position to study the details of an empirical

CNR model. An initial unrestricted VAR(k) model, which provides a basis for the

CNR model, should be formulated as a general model with su¢ ciently large orders for

lag length k, so that the model can be subject to subsequent model reduction. The

starting model should also be able to represent the data su¢ ciently well to justify

subsequent likelihood-based inference for the cointegrating rank. See Johansen (1996,

Ch.2) for further details of several checkpoints for the initial model in cointegrated

VAR analysis. We selected k = 3 for the starting model in our study. The F test

statistic for the hypothesis of model reduction from k = 3 to k = 2 is 2:48, which
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rejects the hypothesis at the 5% level, based on standard inference. Furthermore, a

diagnostic analysis of residuals from the VAR model was performed and the results

are displayed in Figure 12. The �rst column in the �gure records scalded residuals,

while the second column and the third column provide residual autocorrelation plots

and residual quantile-quantile plots (against normal distributions), respectively. We

are able to argue that there is no strong evidence indicating outliers, serial correlation

and non-normality in the residual series. This graphic diagnostic analysis indicates

that the initial VAR(3) model has succeeded in representing the data over the e¤ective

sample period 1987.3 - 1995.11. The validity of this model allows us to proceed to the

likelihood-based inference for the underlying cointegrating rank.

Panel (1) CNR model

r = 0 r � 1 r � 2 r � 3 r � 4 r � 5
�2 logLR (rjp = 6;n = 5) 431:10 318:74 232:10 149:81 91:17 36:91

[0:00]�� [0:00]�� [0:00]�� [0:01]�� [0:04]� [0:23]

Panel (2) Linear model

r = 0 r � 1 r � 2 r � 3 r � 4 r � 5
�2 logLR (r) 131:80 75:58 45:46 23:70 9:41 2:07

[0:00]�� [0:06] [0:24] [0:49] [0:70] [0:76]

Note: Figures in square brackets in Panel (1) are p-values calculated from response
surface regressions using the gamma-approximation method, while those in
Panel (2) are p-values taken from PcGive outputs (see Doornik, 1998).

Table 3: Log likelihood ratio tests for the cointegrating rank

Panel (1) in Table 3 presents a sequence of log-likelihood ratio test statistics for

the choice of cointegrating rank in the CNR model. Judging from p-values derived

from the gamma-approximation method (with 10,000 Monte Carlo replications) by

using the Ox code in the supplementary material, we argue that the null hypotheses

of r = 0; r � 1; :::; r � 4 are rejected at the 5% level while the hypothesis of r � 5 is

not rejected, so that r = 5 or p � r = 1 is supported by the Japanese data. For

comarison, we calculated test statistics from a standard (constant restricted) model

(2) for k = 3, the parameters of which were estimated from the same data by using

31



reduced rank regression. The results are reported in Panel (2) in Table 3 and in favor

of the selection of r = 1, that is, p � r = 5, which is not compatible with the term

structure of interest rates. This result also appears to be puzzling in terms of the

observation that all the interest rate series exhibit fairly similar behavior in Figure 11,

presumably driven by the underlying single common stochastic trend. Furthermore,

the di¤erence in the test results in Table 3 is viewed as evidence consistent with the

conceivable problem of �nding spurious stochastic trends, as discussed at the end of

Section 6, when applying the standard models to nonstationary data that are subject

to smooth nonlinear deterministic trends.
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Figure 13: Implied risk premium terms

In addition, if we consider that the combination of nonlinear deterministic trends

and stationary components in the cointegrating relations represents the underlying risk

premium, it is possible to calculate a vector sequence of risk premiums �̂t implied in
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the bond yields as

�̂t = �̂
0
Ft;T + �̂t

= ��̂0Xt�1 � 
̂0;

for �̂t = ��̂0Xt�1 � �̂
0
Ft;T � 
̂0, in which �̂, �̂ and 
̂ denote the maximum likelihood

estimators of �, � and 
, respectively. Figure 13 shows a set of the implied risk premium

terms (thick lines)

�̂t =
�
�̂20yr;t; �̂10yr;t; �̂5yr;t; �̂3yr;t; �̂1yr;t

�0
; (18)

along with each of their nonlinear components (dotted lines), that is, each of �̂
0
Ft;T cor-

responding to a constituent of �̂t given in (18). Note that these values were calculated

from the CNR model estimated under the restriction of r = 5, with �̂ normalized with

respect to each of the �ve treasury bill yields. According to Figure 13, most of the

implied premium terms (thick lines) appear to exhibit cyclical movements, re�ecting

the underlying deterministic trends (dotted lines) attributable to domestic and inter-

national business cycles. Overall, the results obtained in this section could justify us

in arguing the advantage of the proposed nonlinear model over the standard model,

in that the nonlinear model has selected multiple cointegrating relationships rather

than a single cointegrating combination, a �nding in line with the theory of the term

structure of interest rates.

8 Summary and conclusion

Both nonlinear and nonstationary trending features observed in real-life time series

data need to be re�ected in a detailed econometric study providing a basis for economic

policy analysis and forecasting. In view of this objective, this study has developed a

methodology for testing the cointegrating rank in the VAR systems in the presence

of smooth nonlinear deterministic trends, which are represented by a set of trigono-

metric functions. The asymptotic distributions of the proposed rank test statistics

have been approximated by using simulation, and the statistics�limit quantiles have
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been tabulated as a set of statistical tables for inference purposes. The Ox for the

purpose of calculating approximate p-values of observed rank test statistics is available

for use in empirical applications. Lastly, both the Monte Carlo and empirical studies

have demonstrated the usefulness of the suggested methodology in a practical context.

This paper has paved the way for various empirical studies aimed at simultaneously

exploring the nonlinear and nonstationary characteristics of multivariate time series

data.
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A Proofs

A.1 Proof of Proposition 3.2
We follow the proof of Theorem 1 in Hansen (2005) in order to prove Proposition 3.2.
First, de�ne X�

t =
�
X 0
t; X

0
t�1; : : : ; X

0
t�k+1

�0
so that we can transform (6) into

�X�
t = ����0X�
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Given the parameters �� and ��, it is also found that
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so that the inverse of the full rank matrix (��; ��?)
0 is, with the notational convention
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Next, premultiplying (19) with ��0 and ��0? leads to
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�
��0

��0?

��1� P1
i=0 (I + ��0��) ��0 ("�t + �

�
t )

��0?X
�
0 +

Pt
i=1 �

�0
? ("

�
i + �

�
i )

�
=

�
�;�C�s1; � � � ;�C�sk�1; C��?

�� P1
i=0 (I + ��0��) ��0

�
"�t�i + �

�
t�i
�

��0?X
�
0 +

Pt
i=1 �

�0
? ("

�
i + �

�
i )

�
:

It then follows that
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Xt = C

tX
i=1

"i + C(L)"t + C(L)��0Ft;T + C(L)�
0 + A; (20)

where the coe¢ cients of C(z) =
P1

i=0Ciz
i are

Ci =
�
�;�C�s1; � � � ;�C�sk�1

�
(I + ��0��)

i
��0 (I; 0; � � � ; 0)0 ; (21)

and A consists of the initial values such that

A = C��?�
�0
?X

�
0 = C (X0 � �1X�1 � � � � � �k�1X�k+1) : (22)

Lastly, recall Lemma 4.1 in Johansen (1996), which says the expansion of the poly-
nomial C(z) around z = 1 leads to

C(z) = C(1) + (1� z)C�(z); (23)

where C�(z) is also a polynomial, such that C�(1) = �dC(z)
dz

jz=1 . In addition, Lemma
A.6 in Hansen (2005) shows C(1) = ���0�C	C, which is substituted into (23) to �nd

C(z) = ���0 � C	C + (1� z)C�(z): (24)

This expression is then applied to C(L)��0Ft;T and C(L)�
0 in (20), and noting

C� = �?(�
0
?��?)

�1�0?� = 0 and �0� = (�0�)
�1
�0 (Ip � �C)� = Ir; (25)

and recalling that Xt is denoted by Xt;T in Section 3, we have obtained the desired
representation.

A.2 Proof of Proposition 3.3
Follow the �rst and second steps of the proof of Proposition 3.2 above by noting that
��t is rede�ned here as

��t = ((��
0Ft;T + �
0t+ �)0; 0; : : : ; 0)

0
;

so that we arrive at

Xt = C
tX
i=1

("i + �) + C(L)��0Ft;T + C(L)"i + C(L)�+ C(L)�
0t+ A; (26)

in which C(L) and A are speci�ed by (21) and (22), respectively. Apply the expansion
(24) to C(L)��0Ft;T and C(L)� in (26) to �nd

Xt = C

tX
i=1

"i + C(L)"t � ��0Ft;T + (1� L)C�(L)��0Ft;T

� (��0 + C	C)�+ C�t+ C(L)�
0t+ A: (27)

Use Lemma 4.1 in Johansen (1996) twice to derive the expansion of the polynomial
C(z)

C(z) = C(1) + (1� z)C�(1) + (1� z)2C��(z); (28)

where C��(z) is also a polynomial, such that C��(1) = 1
2
d2C(z)
dz2

jz=1 . According to Lemma
A.6 in Hansen (2005), we have C(1) = ���0 � C	C and

C�(1) = ���0�C	C���0���0+��0	C+C	��0+C	C	C+C
�Pk�1

i=1

(i+ 1)i

2
�i

�
C;

both of which are plugged in (28). The resultant expansion is then applied to C(L)�
0t
in (27) to �nd the stated representation as a consequence of (25).
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B Tables for approximate limit quantiles

p­r n 90% 95% 97.5% 99% Mean Var
8 1 215.32 222.28 228.39 235.77 192.90 295.22

8 2 268.05 275.96 282.82 290.72 242.91 375.90

8 3 321.21 329.61 337.26 345.96 293.33 460.70

8 4 374.39 383.76 391.68 401.24 344.06 546.96

8 5 427.82 437.64 446.32 456.55 395.07 637.83

7 1 174.61 180.95 186.53 193.44 154.54 239.04

7 2 220.83 227.88 234.03 241.92 197.95 310.73

7 3 267.49 275.45 282.33 290.44 241.83 387.45

7 4 313.83 322.43 329.86 338.80 285.85 463.97

7 5 360.16 369.35 377.52 387.06 330.09 540.59

6 1 137.94 143.58 148.89 154.96 120.12 187.99

6 2 177.63 183.99 189.77 196.59 157.05 249.99

6 3 217.37 224.55 230.76 238.17 194.29 314.19

6 4 257.08 264.82 271.64 279.67 231.62 380.54

6 5 296.54 304.89 312.21 320.98 269.15 445.16

5 1 105.52 110.64 115.08 120.46 89.84 143.00

5 2 138.56 144.37 149.51 155.31 120.20 196.05

5 3 171.38 177.87 183.62 190.44 150.75 250.61

5 4 204.31 211.44 217.89 225.56 181.45 308.67

5 5 237.12 244.96 251.88 259.95 212.28 364.95

4 1 76.78 81.19 85.07 89.90 63.50 102.27

4 2 103.09 108.22 112.83 118.40 87.33 145.31

4 3 129.38 135.03 140.10 145.75 111.28 189.19

4 4 155.48 161.64 167.20 174.07 135.44 234.74

4 5 181.56 188.25 194.36 201.30 159.55 282.14

3 1 52.28 56.06 59.38 63.39 41.25 69.30

3 2 71.88 76.30 80.22 84.92 58.64 101.30

3 3 91.49 96.46 100.83 106.24 76.15 136.47

3 4 111.01 116.55 121.57 127.57 93.72 173.72

3 5 130.39 136.70 141.97 148.50 111.27 211.64

2 1 31.63 34.52 37.34 40.84 23.10 40.81

2 2 44.99 48.68 52.02 55.89 34.23 65.36

2 3 58.11 62.44 66.39 71.07 45.40 92.53

2 4 71.25 76.14 80.42 85.54 56.61 122.21

2 5 84.36 89.75 94.61 100.53 67.88 155.42

1 1 15.12 17.37 19.52 22.19 9.25 19.00

1 2 22.31 25.17 27.79 30.85 14.48 34.20

1 3 29.49 32.71 35.69 39.16 19.71 53.05

1 4 36.42 40.03 43.40 47.48 24.94 74.89

1 5 43.52 47.51 51.20 55.57 30.19 100.66

Table B1: Approximate limit quantiles for the CNR model

Notes: (1) The number of observations is 2,000 and the number of Monte Carlo
replications is 100,000.

(2) An Ox code calculating p-values by using response surface regressions
is available in the supplementary material.
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p­r n 90% 95% 97.5% 99% Mean Var
8 1 236.63 243.78 249.96 257.15 213.36 317.30

8 2 293.43 301.34 308.09 316.69 267.26 403.42

8 3 350.54 359.03 366.68 375.66 321.64 493.66

8 4 407.84 417.25 425.50 434.99 376.45 585.37

8 5 465.40 475.57 484.10 495.01 431.56 682.38

7 1 194.03 200.65 206.47 213.04 172.88 260.91

7 2 244.00 251.37 257.85 265.43 220.13 336.12

7 3 294.55 302.73 310.09 318.35 267.96 417.41

7 4 345.14 353.89 361.65 371.02 316.00 500.60

7 5 395.73 405.14 413.42 423.13 364.28 583.02

6 1 155.08 161.03 166.49 172.88 136.42 207.36

6 2 198.77 205.37 211.30 218.63 177.05 275.02

6 3 242.40 249.80 256.23 263.71 218.15 344.27

6 4 285.96 294.03 301.15 309.54 259.40 415.36

6 5 329.35 338.30 345.93 355.12 300.86 484.17

5 1 120.45 125.85 130.73 136.41 104.03 159.87

5 2 157.22 163.35 168.69 175.15 138.00 216.99

5 3 193.76 200.58 206.68 213.84 172.25 276.28

5 4 230.51 237.83 244.62 252.55 206.69 337.42

5 5 267.14 275.19 282.38 290.42 241.30 396.44

4 1 89.62 94.25 98.41 103.50 75.45 117.00

4 2 119.42 124.78 129.61 135.18 102.68 163.87

4 3 149.09 154.96 160.14 166.05 130.14 209.93

4 4 178.83 185.38 191.10 197.79 157.84 258.31

4 5 208.31 215.19 221.47 228.63 185.50 304.67

3 1 62.66 66.66 70.26 74.67 50.78 81.48

3 2 85.45 89.99 94.06 99.09 71.28 115.65

3 3 108.06 113.23 117.83 123.29 91.94 151.22

3 4 130.56 136.19 141.39 147.19 112.67 187.58

3 5 152.97 159.01 164.42 170.70 133.41 222.20

2 1 39.34 42.63 45.47 49.22 30.06 49.23

2 2 55.00 58.75 62.10 66.17 43.73 72.93

2 3 70.54 74.75 78.81 83.47 57.53 97.44

2 4 85.88 90.57 94.84 100.01 71.36 121.64

2 5 101.20 106.35 110.87 116.09 85.28 145.76

1 1 19.46 21.92 24.13 26.99 13.11 22.59

1 2 27.85 30.62 33.24 36.45 19.99 34.46

1 3 35.93 39.09 41.91 45.51 26.90 46.35

1 4 43.91 47.39 50.60 54.59 33.79 58.71

1 5 51.81 55.59 59.11 63.26 40.75 70.67

Table B2: Approximate limit quantiles for the LNR model

Note: (1) The number of observations is 2,000 and the number of Monte Carlo
replications is 100,000.

(2) An Ox code calculating p-values by using response surface regressions
is available in the supplementary material.
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