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Abstract

This paper proposes a new spatial approximation method without the curse of dimensionality
for solving high-dimensional partial differential equations (PDEs) by using an asymptotic expan-
sion method with a deep learning-based algorithm. In particular, the mathematical justification
on the spatial approximation is provided. Numerical examples for high-dimensional Kolmogorov
PDEs show effectiveness of our method.
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1 Introduction

Recently, for solving high-dimensional partial differential equations (PDEs), deep learning-
based algorithms have been actively proposed (see [2][3] for instance). Moreover, a number of
papers for mathematical justification on the deep learning-based spatial approximations have
appeared, where the authors demonstrate that deep neural networks overcome the curse of
dimensionality in approximations of high-dimensional PDEs. For the related literature, see
[4][5][6][11][19] for example. In particular, these works treat some specific forms of PDEs such as
high-dimensional heat equations or Kolmogorov PDEs with constant diffusion and nonlinear drift
coefficient. Also, integral kernels are assumed to have explicit forms for justification of the spatial
approximations for solutions to high-dimensional PDEs.

However, most high-dimensional PDEs may not have explicit integral forms in practice. In
other words, integral forms of solutions themselves should be approximated by a certain method.

In the current paper, we give a new spatial approximation using an asymptotic expansion
method with a deep learning-based algorithm for solving high-dimensional PDEs without the
curse of dimensionality. More precisely, we follow approaches given in [40] and the literature
such as [8][17][18][23][24][26][27][30][32][33][35][38][39][41][43]. Particularly, we provide a uniform
error estimate for the asymptotic expansion for solutions of Kolmogorov PDEs with nonlinear
coefficients, motivated by the works of [2][11][31]. For a solution to a d-dimensional Kolmogorov

PDE with a small parameter λ, namely uλ : [0, T ] × Rd → R given by uλ(t, x) = E[f(Xλ,x
t )] for
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(t, x) ∈ [0, T ]×Rd where {Xλ,x
t }t≥0 is a d-dimensional diffusion process starting from x, we justify

the following spatial approximation on a range [a, b]d:

uλ(t, ·) ≈ “high-dimensional asymptotic expansion” E[f(X̄λ,·
t )Mλ,·

t ] (1.1)

≈ “deep neural network approximation” R(ϕ)(·), (1.2)

by applying an appropriate neural network ϕ. Here, for t > 0 and x ∈ Rd, X̄λ,x
t is a certain

Gaussian random variable and Mλ,x
t is a stochastic weight for the expansion given based on

Malliavin calculus. In order to chose the network ϕ, the analysis of “product of neural networks”
and a dimension analysis of asymptotic expansion with Malliavin calculus are crucial in our
approach. We show a precise error estimate for the approximation (1.1) and prove that the
complexity of the neural network grows at most polynomially in the dimension d and the reciprocal
of the precision ε of the approximation (1.2). Moreover, we give an explicit form of the asymptotic
expansion in (1.1) and show numerical examples to demonstrate effectiveness of the proposed
scheme for high-dimensional Kolmogorov PDEs.

The organization of the paper is as follows. Section 2 is dedicated to notation, definitions and
preliminary results on deep learning and Malliavin calculus. Section 3 provides the main result,
namely, the deep learning-based asymptotic expansion for solving Kolmogorov PDEs. The proof
is shown in Section 4. Section 5 introduces the deep learning implementation. Various numerical
examples are shown in Section 6. The useful lemmas on Malliavin calculus and ReLU calculus
are summarized, and furthermore the sample code is listed in Appendix.

2 Preliminaries

We first prepare notation. For d ∈ N and for a vector x ∈ Rd, we denote by ∥x∥ the Euclidean
norm. Also, for k, ℓ ∈ N and for a matrix A ∈ Rk×ℓ, we denote by ∥A∥ the Frobenius norm. For d ∈
N, let Id be the identity matrix. For m, k, ℓ ∈ N, let C(Rm,Rk×ℓ) (resp., C([0, T ]×Rm,Rk×ℓ)) be
the set of continuous functions f : Rk → Rk×ℓ (resp., f : [0, T ]×Rm → Rk×ℓ) and CLip(Rm,Rk×ℓ)
be the set of Lipschitz continuous functions f : Rm → Rk×ℓ. Also, we define C∞

b (Rm,Rℓ) as the set
of smooth functions f : Rm → Rk×ℓ with bounded derivatives of all orders. For a multi-index α, let
|α| be the length of α. For a bounded function f : Rm → Rk×ℓ, we define ∥f∥∞ = supx∈Rm∥f(x)∥.
For m, k, ℓ ∈ N, for a function f ∈ CLip(Rm,Rk×ℓ), we denote by CLip[f ] the Lipschitz continuous
constant. For d ∈ N and for a smooth function f : Rd → R, we define ∂if = ∂

∂xi
f for i = 1, . . . , d,

moreover we define ∂αf = ∂α1
· · · ∂αk

f for α = (α1, . . . , αk) ∈ {1, . . . , d}k, k ∈ N. For a, b ∈ R,
we may write a ∨ b = max{a, b}.

2.1 Deep neural networks

Let us prepare notation and definitions for deep neural networks. Let N be the set of deep
neural networks (DNNs):

N = ∪L∈N∩[2,∞) ∪(N0,N1,...,NL)∈NL+1 NN0,N1,...,NL

L , (2.1)

where NN0,N1,...,NL

L = ×Lℓ=1(RNℓ×Nℓ−1 × RNℓ).
Let ϱ ∈ C(R,R) be an activation function, and for k ∈ N, define ϱk(x) = (ϱ(x1), . . . , ϱ(xk)),

x ∈ Rk.
We define R : N → ∪m,n∈NC(Rm,Rn), C : N → N, L : N → N, dimin : N → N and

dimout : N → N as follows:
For L ∈ N ∩ [2,∞), N0, . . . , NL ∈ N, ψ = ((W1, B1), . . . , (WL, BL)) ∈ NN0,N1,...,NL

L , let

L(ψ) = L, dimin(ψ) = N0, dimout(ψ) = NL, C(ψ) =
∑L
ℓ=1Nℓ(Nℓ−1 + 1), and

R(ψ)(·) = AWL,BL
◦ ϱNL−1

◦ AWL−1,BL−1
◦ · · · ◦ ϱN1 ◦ AW1,B1(·) ∈ C(RN0 ,RNL), (2.2)

where AWk,Bk
(x) =Wkx+Bk, x ∈ RNk−1 , k = 1, . . . , L.
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2.2 Malliavin calculus

We prepare basic notation and definitions on Malliavin calculus following Bally (2003) [1]
Ikeda and Watanabe (1989) [16], Malliavin (1997) [25], Malliavin and Thalmaier (2006) [26] and
Nualart (2006) [29].

Let Ωd = {ω : [0, T ] → Rd; ω is continuous, ω(0) = 0}, Hd = L2([0, T ],Rd) and let µd be
the Wiener measure on (Ωd,B(Ωd)), where B(Ωd) is the Borel σ-field induced by the topology of
the uniform convergence on [0, T ]. We call (Ωd,Hd, µd) the d-dimensional Wiener space. For a
Hilbert space V with the norm ∥ · ∥V and p ∈ [1,∞), the Lp-space of V -valued Wiener functionals
is denoted by Lp(Ωd, V ), that is, Lp(Ωd, V ) is a real Banach space of all µd-measurable functionals
F : Ωd → V such that ∥F∥p = E[∥F∥pV ]

1/p < ∞ with the identification F = G if and only if
F (ω) = G(ω), a.s. When V = R, we write Lp(Ωd). For a real separable Hilbert space V and
F : Ωd → V , we write ∥F∥p,V = E[∥F∥pV ]

1/p, in particular, ∥F∥p when V = R. Let Bd = {Bdt }t
be a coordinate process defined by Bdt (ω) = ω(t), ω ∈ Ωd, i.e. Bd is a d-dimensional Brownian

motion, and Bd(h) be the Wiener integral Bd(h) =
∑d
j=1

∫ T
0
hj(s)dBd,js for h ∈ Hd.

Let S (Ωd) denote the class of smooth random variables of the form F = f(Bd(h1), . . . , B
d(hn))

where f ∈ C∞
b (Rn,R), h1, . . . , hn ∈ Hd, n ≥ 1. For F ∈ S (Ωd), we define the derivative DF as

the H-valued random variable DF =
∑n
j=1 ∂jf(B

d(h1), . . . , B
d(hn))hj , which is regarded as the

stochastic process:

Di,tF =
∑n
j=1∂jf(B

d(h1), . . . , B
d(hn))h

i
j(t), i = 1, . . . , d, t ∈ [0, T ]. (2.3)

For F ∈ S (Ωd) and j ∈ N, we set DjF as the (Hd)⊗j-valued random variable obtained by
the j-times iteration of the operator D. For a real separable Hilbert space V , consider SV of
V -valued smooth Wiener functionals of the form F =

∑ℓ
i=1 Fivi, vi ∈ V , Fi ∈ S (Ωd), i ≤ ℓ,

ℓ ∈ N. Define DjF =
∑ℓ
i=1D

jFi ⊗ vi, j ∈ N. Then for j ∈ N, Dj is a closable operator
from SV into Lp(Ωd, (Hd)⊗j ⊗ V ) for any p ∈ [1,∞) (see p.31 of Nualart (2006) [29]). For

k ∈ N, p ∈ [1,∞), we define ∥F∥pk,p,V = E[∥F∥pV ] +
∑k
j=1E[∥DjF∥p

(Hd)⊗j⊗V ], F ∈ SV . Then,

the space Dk,p(Ωd, V ) is defined as the completion of SV with respect to the norm ∥ · ∥k,p,V .
Moreover, let D∞(Ωd, V ) be the space of smooth Wiener functionals in the sense of Malliavin
D∞(Ωd, V ) = ∩p≥1 ∩k∈N Dk,p(Ωd, V ). We write Dk,p(Ωd), k ∈ N, p ∈ [1,∞) and D∞(Ωd), when
V = R. Let δ be an unbounded operator from L2(Ωd,Hd) into L2(Ωd) such that the domain of
δ, denoted by Dom(δ), is the set of Hd-valued square integrable random variables u such that
|E[⟨DF, u⟩Hd ]| ≤ c∥F∥1,2 for all F ∈ D1,2(Ωd) where c is some constant depending on u, and if
u ∈ Dom(δ), there exists δ(u) ∈ L2(Ωd) satisfying

E[⟨DF, u⟩Hd ] = E[Fδ(u)] (2.4)

for any F ∈ D1,2(Ωd). For u = (u1, . . . , ud) ∈ Dom(δ), δ(u) =
∑d
i=1δ

i(ui) is called the Skorohod

integral of u, and it holds that E[
∫ T
0
Di,sFu

i
sds] = E[Fδi(ui)], i = 1, . . . , d for all F ∈ D1,2 (see

Proposition 6 of Bally (2003) [1]). For all k ∈ N∪{0} and p > 1, the operator δ is continuous from
Dk+1,p(Ωd,Hd) into Dk,p(Ωd) (see Proposition 1.5.7 of Nualart (2006) [29]). For G ∈ D1,2(Ωd)
and h ∈ Dom(δ) such that Gh ∈ L2(Ωd,Hd), it holds that

δi(Ghi) = Gδi(hi)−
∫ T

0

Di,sGh
i
sds, i = 1, . . . , d, (2.5)

and in particular, if h ∈ Dom(δ) is an adapted process, δi(hi) is given by the Itô integral, i.e.

δi(hi) =
∫ T
0
hisdB

d,i
s for i = 1, . . . , d (e.g. see Section 3.1.1 of Bally (2003) [1], Proposition 1.3.3

and Proposition 1.3.11 of Nualart (2006) [29]).
For F = (F 1, . . . , F d) ∈ (D∞(Ωd))d, define the Malliavin covariance matrix of F , σF =

(σFij)1≤i,j≤d, by σ
F
ij = ⟨DF i, DF j⟩Hd =

∑d
k=1

∫ T
0
Dk,sF

iDk,sF
jds, 1 ≤ i, j ≤ d. We say that F ∈

(D∞(Ωd))d is nondegenerate if the matrix σF is invertible a.s. and satisfies ∥(detσF )−1∥p < ∞,
p > 1. Malliavin’s theorem claims that if F ∈ (D∞(Ωd))d is nondegenerate, then F has the
smooth density pF (·). Malliavin calculus is further refined by Watanabe’s theory. Let S(Rd)
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be the Schwartz space or the space of rapidly decreasing functions and S ′(Rd) be the dual of
S(Rd), i.e. S ′(Rd) is the space of Schwartz tempered distributions. For a tempered distribution
T ∈ S ′(Rd) and a nondegenerate Wiener functional in the sense of Malliavin F ∈ (D∞(Ωd))d,
T (F ) = T ◦ F is well-defined as an element of the space of Watanabe distributions D−∞(Ωd),
that is the dual space of D∞(Ωd) (e.g. see p.379, Corollary of Ikeda and Watanabe (1989) [16],
Theorem of Chapter III 6.2 of Malliavin (1997) [25], Theorem 7.3 of Malliavin and Thalmaier
(2006) [26]). Also, for G ∈ D∞(Ωd), a (generalized) expectation E[T (F )G] is understood as a
pairing of T (F ) ∈ D−∞(Ωd) and G ∈ D∞(Ωd), namely D∞⟨T (F ), G⟩D−∞ , and it holds that

D−∞⟨T (F ), G⟩D∞ = S′⟨T , E[G|F = ·]pF (·)⟩S (2.6)

where S′⟨·, ·⟩S is the bilinear form on S ′(Rd) and S(Rd), E[G|F = ξ] is the conditional expectation
of G conditioned on the set {ω;F (ω) = ξ} (e.g. see Chapter III 6.2.2 of Malliavin (1997) [25], (7.5)
of Theorem 7.3 of Malliavin and Thalmaier (2006) [26]). In particular, we have D−∞⟨δy(F ), 1⟩D∞ =

S′⟨δy, pF (·)⟩S = pF (y) for y ∈ Rd, and thus pF is not only smooth but also in S(Rd), i.e. a rapidly
decreasing function (see Theorem 9.2 of Ikeda and Watanabe (1989) [16]), Proposition 2.1.5 of
Nualart (2006) [29]). For a nondegenerate F ∈ (D∞(Ωd))d, G ∈ D∞(Ωd) and a multi-index
γ = (γ1, . . . , γk), there exists Hγ(F,G) ∈ D∞(Ωd) such that

D−∞⟨∂γT (F ), G⟩D∞ = D−∞⟨T (F ),Hγ(F,G)⟩D∞ (2.7)

for all T ∈ S ′(Rd) (e.g. see Chapter 4.4 and Theorem 7.3 of Malliavin and Thalmaier (2006) [26]),
where Hγ(F,G) is given by Hγ(F,G) = H(γk)(F,H(γ1,...,γk−1)(F,G)) with

H(i)(F,G) = δ(
∑d
j=1(σ

F )−1
ij DF

jG). (2.8)

3 Main result

Let a ∈ R, b ∈ (a,∞) and T > 0. For d ∈ N, consider the solution to the following stochastic
differential equation (SDE) driven by a d-dimensional Brownian motion Bd = (Bd,1, . . . , Bd,d) on
the d-dimensional Wiener space (Ωd,Hd, µd):

dXd,λ,x
t = µλd(X

d,λ,x
t )dt+ σλd (X

d,λ,x
t )dBdt , Xd,λ,x

0 = x ∈ Rd, (3.1)

where µλd : Rd → Rd and σλd : Rd → Rd×d are Lipschitz continuous functions depending on a

parameter λ ∈ (0, 1]. The solution Xd,λ,x
t = (Xd,λ,x,1

t , . . . , Xd,λ,x,d
t ) is equivalently written in the

integral form as:

Xd,λ,x,j
t = xj +

∫ t

0

µλ,jd (Xd,λ,x
s )ds+

d∑
i=1

∫ t

0

σλ,jd,i (X
d,λ,x
s )dBd,is , Xd,λ,x,j

0 = xj ∈ R, (3.2)

for j = 1, . . . , d. Furthermore, for a given appropriate continuous function fd : Rd → R and for
λ ∈ (0, 1], we consider udλ ∈ C([0, T ]× Rd,R) given by

udλ(t, x) = E[fd(X
d,λ,x
t )] (3.3)

for t ∈ [0, T ] and x ∈ Rd, which is a solution of Kolmogorov PDE:

∂tu
d
λ(t, x) = Ld,λudλ(t, x), (3.4)

for all (t, x) ∈ (0, T )×Rd and udλ(0, ·) = fd(·), where Ld,λ is the following second order differential
operator:

Ld,λ =

d∑
j=1

µλ,jd (·) ∂

∂xj
+

1

2

d∑
i,j1,j2=1

σλ,j1d,i (·)σλ,j2d,i (·) ∂2

∂xj1∂xj2
. (3.5)

Our purpose is to show a new spatial approximation scheme of udλ(t, ·) for t > 0 by using
asymptotic expansion and deep neural network approximation. The main theorem (Theorem 1)
is stated at the end of this section.
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3.1 Asymptotic expansion

We first put the following assumptions on {µλd}λ∈(0,1], {σλd}λ∈(0,1] and fd.

Assumption 1 (Assumptions for the family of SDEs and asymptotic expansion). Let C > 0. For
d ∈ N, let {µλd}λ∈(0,1] ⊂ CLip(Rd,Rd) and {σλd}λ∈(0,1] ⊂ CLip(Rd,Rd×d) be families of functions,

and fd ∈ CLip(Rd,R) be a function satisfying

1. there are Vd,0 ∈ C∞
b (Rd,Rd) and Vd = (Vd,1, . . . , Vd,d) ∈ C∞

b (Rd,Rd×d) such that (i) µλd =
λVd,0 and σλd = λVd for all λ ∈ (0, 1], (ii) CLip[Vd,0]∨CLip[Vd] = C and ∥Vd,0(0)∥∨∥Vd(0)∥ ≤
C, (iii) ∥∂αVd,i∥∞ ≤ C for any multi-index α and i = 0, 1, . . . , d;

2.
∑d
i=1σ

λ
d,i(x)⊗ σλd,i(x) ≥ λ2Id for all x ∈ Rd and λ ∈ (0, 1];

3. CLip[fd] = C and ∥fd(0)∥ ≤ C.

Remark 1. Assumption 1 justify an asymptotic expansion under the uniformly elliptic condition
for the solutions of the perturbed systems of PDEs. Assumption 1.3 is also useful for constructing
deep neural network approximations for the family of PDE solutions.

From Assumption 1.2, we may write each SDE (3.1) for d ∈ N as

dXd,λ,x
t = λ

d∑
i=0

Vd,i(X
d,λ,x
t )dBd,it , (3.6)

with Xd,λ,x
0 = x ∈ Rd, where the notation dBd,0t = dt is used. We define

Bd,αt =

∫
0<t1<···<tk<t

dBd,α1

t1 · · · dBd,αk
tk

, t ≥ 0, α ∈ {0, 1, . . . , d}k, k ∈ N, (3.7)

and Ld,0 =
∑d
j=1 V

j
d,0(·)

∂
∂xj

+ 1
2

∑d
i,j1,j2=1 V

j1
d,i(·)V

j2
d,i(·)

∂2

∂xj1
∂xj2

, Ld,i =
∑d
j=1 V

j
d,i(·)

∂
∂xj

, i = 1, . . . , d.

We define

X̄d,λ,x
t = x+ λ

d∑
i=0

Vd,i(x)B
d,i
t . (3.8)

Proposition 1 (Asymptotic expansion and the error bound). For m ∈ N∪{0}, there exists c > 0
such that for all d ∈ N, t > 0, λ ∈ (0, 1],

sup
x∈[a,b]d

∣∣∣E[fd(X
d,λ,x
t )]−

{
E
[
fd(X̄

d,λ,x
t )]

+

m∑
j=1

λjE
[
fd(X̄

d,λ,x
t )

(j)∑
β(k),γ(k)

Hγ(k)

( d∑
i=0

Vd,i(x)B
d,i
t ,

k∏
ℓ=1

∑
|α|=βℓ

V̂ γℓd,α(x)B
d,α
t

)]}∣∣∣
≤ cdcλm+1t(m+1)/2, (3.9)

where V̂ ed,α(x) = Ld,α1
· · ·Ld,αr−1

V ed,αr
(x), e ∈ {1, . . . , d}, α ∈ {1, . . . , d}p, and

(j)∑
β(k),γ(k)

=

j∑
k=1

∑
β(k)=(β1,...,βk) s.t. β1+···+βk=j+k,βi≥2

∑
γ(k)=(γ1,...,γk)∈{1,...,d}k

1

k!
, j ≥ 1. (3.10)

Proof of Proposition 1. See Section 4. □

The weights in the expansion terms in Proposition 1 can be represented by some polynomials
of Brownian motion. We show it through distribution theory on Wiener space. Let d ∈ N, for
t ∈ (0, T ] and α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, k ∈ N ∩ [2,∞), let

Bd,α
t = δαk(B

d,(α1,...,αk−1)
t ) = Bd,αk

t B
d,(α1,...,αk−1)
t −

∫ t

0

Dαk,sB
d,(α1,...,αk−1)
t ds, (3.11)
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with B
d,(α1)
t = Bd,α1

t , which can be obtained by (2.5). For example, we have B
d,(α1,α2)
t =

Bd,α1

t Bd,α2

t − t1α1=α2 ̸=0 for α = (α1, α2) ∈ {0, 1, . . . , d}2. Let σℓ ∈ Rd, ℓ = 0, 1, . . . , d and Σ

be a matrix given by Σi,j =
∑d
ℓ=1σ

i
ℓσ
j
ℓ , 1 ≤ i, j ≤ d and satisfying detΣ > 0. Let T ∈ S ′(Rd). We

show an efficient computation of D−∞⟨T (
∑d
i=0 σiB

d,i
t ),Hγ(

∑d
i=0 σiB

d,i
t ,Bd,αt )⟩D∞ in order to give

a polynomial representation of the Malliavin weights in the expansion terms of the asymptotic
expansion in Proposition 1. Note that we have

D−∞

⟨
T
( d∑
i=0

σiB
d,i
t

)
,Hγ

( d∑
i=0

σiB
d,i
t ,Bd,αt

)⟩
D∞ = D−∞

⟨
∂γT

( d∑
i=0

σiB
d,i
t

)
,Bd,αt

⟩
D∞

= S′⟨∂γT (σ0B
d,0
t + σ ·), E[Bd,αt |Bdt = · ]pB

d
t (·)⟩S , (3.12)

by (2.7) and (2.6), where σ is the matrix σ = (σ1, . . . , σd), and for y ∈ Rd, it holds that

E[Bd,αt |Bdt = y]pB
d
t (y) = S′⟨δy, E[Bd,αt |Bdt = · ]pB

d
t (·)⟩S = D−∞⟨δy(Bdt ),B

d,α
t ⟩D∞ ,

by (2.6). Also, one has

D−∞⟨δy(Bdt )B
d,α
t ⟩D∞ =D−∞⟨∂α

⋆

δy(B
d
t ), 1⟩D∞

1

k!
tk

=D−∞⟨δy(Bdt ),Hα⋆(Bdt , 1)⟩D∞
1

k!
tk = D−∞⟨δy(Bdt ),

1

k!
Bd,α
t ⟩D∞ , (3.13)

by (2.5), (2.7) and (2.8), where α⋆ is a multi-index such that α⋆ = (α⋆1, . . . , α
⋆
ℓ(α)) = (αj1 , . . . , αjℓ(α)

)
satisfying ℓ(α) = #{i;αi ̸= 0} and αji ̸= 0, i = 1, . . . , ℓ(α). Then, we have

D−∞⟨T (

d∑
i=0

σiB
d,i
t ),Hγ(

d∑
i=0

σiB
d,i
t ,Bd,αt )⟩D∞ = S′⟨∂γT (σ0B

d,0
t + σ ·), 1

k!
E[Bd,α

t |Bdt = · ]pB
d
t (·)⟩S

= D−∞⟨∂γT (

d∑
i=0

σiB
d,i
t ),

1

k!
Bd,α
t ⟩D∞ = D−∞⟨T (

d∑
i=0

σiB
d,i
t ),Hγ(

d∑
i=0

σiB
d,i
t ,

1

k!
Bd,α
t )⟩D∞

= D−∞

⟨
T (

d∑
i=0

σiB
d,i
t ),

d∑
j1,...,j|γ|,β1,...,β|γ|=1

1

t|γ|

|γ|∏
q=1

Σ−1
γq,jq

σ
jq
βq

1

k!
B
d,(α1,...,αk,β1,...,β|γ|)
t

⟩
D∞ , (3.14)

where, we iteratively used (2.5), (2.6), (2.7) and (2.8). An explicit polynomial representation
of the asymptotic expansion is derived through (3.14). For instance, the first order expansion
(m = 1) as follows:
(First order asymptotic expansion with Malliavin weight )

E
[
fd(X̄

d,λ,x
t )

{
1 + λ

d∑
ℓ=1

H(ℓ)

( d∑
i=0

Vd,i(x)B
d,i
t ,

d∑
α1,α2=0

Ld,α1
V ℓd,α2

(x)Bd,(α1,α2)
t

)}]

=E
[
fd(X̄

d,λ,x
t )

]
+ λ

d∑
ℓ=1

∫
Rd

fd(x+ λy)

d∑
α1,α2=0

Ld,α1
V ℓd,α2

(x)

D−∞

⟨
δy(

d∑
i=0

Vd,i(x)B
d,i
t ),H(ℓ)

( d∑
i=0

Vd,i(x)B
d,i
t ,Bd,(α1,α2)

t

)⟩
D∞dy

=E
[
fd(X̄

d,λ,x
t )

]
+ λ

d∑
ℓ=1

∫
Rd

fd(x+ λy)

d∑
α1,α2=0

Ld,α1V
ℓ
d,α2

(x)

D−∞

⟨
δy(

d∑
i=0

Vd,i(x)B
d,i
t ),

d∑
α3=1

d∑
j=1

1

2t
[A−1
d ]ℓj(x)V

j
d,α3

(x)B
d,(α1,α2,α3)
t

⟩
D∞dy

=E
[
fd(X̄

d,λ,x
t ){1 + λ

d∑
ℓ,j=1

d∑
α1,α2=0

d∑
α3=1

Ld,α1
V ℓd,α2

(x)
1

2t
[A−1
d ]ℓj(x)V

j
d,α3

(x)B
d,(α1,α2,α3)
t

]
.
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Thus, the first order expansion is expressed with a Malliavin weight given by third order poly-
nomials of Brownian motion. In general, we have the following representation.

Proposition 2. For m ∈ N, d ∈ N, λ ∈ (0, 1], t ∈ (0, T ] and x ∈ Rd, there exists a Malliavin
weight Mm

d,λ(t, x,B
d
t ) such that

E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]

=E
[
fd(X̄

d,λ,x
t )

{
1 +

m∑
j=1

λj
(j)∑

β(k),γ(k)

Hγ(k)

( d∑
i=0

Vd,i(x)B
d,i
t ,

k∏
ℓ=1

∑
|α|=βℓ

V̂ γℓd,α(x)B
d,α
t

)}]
, (3.15)

and

Mm
d,λ(t, x,B

d
t ) = 1 +

∑
e≤n(m)λ

p(e)ge(t)he(x)Polye(B
d
t ) (3.16)

for some integers n(m) ∈ N and p(e) ∈ N, e = 1, . . . , n(m), polynomials Polye : Rd → R,
e = 1, . . . , n(m), continuous functions ge : (0, T ] → R, e = 1, . . . , n(m), and continuous func-
tions he : Rd → R, e = 1, . . . , n(m) constructed by some products of A−1

d , {Vd,i}0≤i≤d and
{∂αVd,i}0≤i≤d,α∈{1,...,d}ℓ,ℓ≤2m given in Assumption 1 of the form:

x 7→ he(x) = ce
∏qe
ℓ=1Ld,αe

ℓ,1
· · ·Ld,αe

ℓ,pe
ℓ
−1
V
γe
ℓ

d,αe
ℓ,pe

ℓ

(x)
∑d
ξ,ι=1[A

−1
d ]γe

ℓ ,ξ
(x)V ξd,ι(x) (3.17)

with some constants ce ∈ (0,∞), qe ∈ N and some multi-indices (γe1 , . . . , γ
e
ℓ ) ∈ {1, . . . , d}ℓ and

(αeℓ,1, . . . , α
e
ℓ,peℓ

) ∈ {0, 1, . . . , d}p
e
ℓ with peℓ ∈ N, ℓ = 1, . . . , e, which satisfies that for p ≥ 1,

sup
(t,x)∈(0,T ]×[a,b]d,λ∈(0,1]

∥Mm
d,λ(t, x,B

d
t )∥p ≤ cdc (3.18)

for some constant c > 0 independent of d.

Proof of Proposition 2. See Section 4. □

Remark 2 (Remark on computation of Malliavin weights). Malliavin weight is initially used
in Fournie et. al [7] in sensitivity analysis in financial mathematics, especially in Monte-Carlo
computation of “Greeks”. Then a discretization scheme for probabilistic automatic differentiation
using Malliavin weights is analyzed in Gobet and Munos [10]. The computation of asymptotic
expansion with Malliavin weights is developed in Takahashi and Yamada [35][37], and is further
extended to weak approximation of SDEs in Takahashi and Yamada [38]. Note that a PDE expan-
sion is shown in Takahashi and Yamada [36] to partially connect it with the stochastic calculus
approach. The computation method of the expansion with Malliavin weights is improved in Ya-
mada [41], Naito and Yamada [27, 28], Iguchi and Yamada [17, 18], and Takahashi et al. [34]
where technique of stochastic calculus is refined. The main advantages of the stochastic calculus
approach are that (i) it provides efficient computation scheme using Watanabe distributions on
Wiener space as in (3.13) and (3.14), (ii) it enables us to give precise bounds for approximations
of expectations or the corresponding solutions of PDEs. Actually, the computational effort of the
expansions is much reduced in the sense that Itô’s iterated integrals are transformed into simple
polynomials of Brownian motion, and also the desired deep neural network approximation will be
obtained in the next subsection through the approach.

3.2 Deep neural network approximation

In order to construct a deep neural network approximation for the function with respect to
the space variable of the asymptotic expansion, i.e. x 7→ E[fd(X̄

d,λ,x
t )Mm

d,λ(t, x,B
d
t )], we consider

the further assumptions.
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Assumption 2 (Assumptions for deep neural network approximation). Suppose that Assumption

1 holds. There exist a constant κ > 0 and sets of networks {ψVd,i

ε,d }ε∈(0,1),d∈N,i∈{0,1,...,d} ⊂ N ,

{ψ∂
αVd,i

ε,d }ε∈(0,1),d∈N,i∈{0,1,...,d},α∈{1,...,d}N ⊂ N , {ψA
−1
d

ε }ε∈(0,1),d∈N ⊂ N and {ψfdε }ε∈(0,1),d∈N ⊂ N
such that

1. for all ε ∈ (0, 1), d ∈ N, C(ψVd,i

ε,d ) ≤ κdκε−κ, i = 0, 1, . . . , d, C(ψ∂
αVd,i

ε,d ) ≤ κdκε−κ, i =

0, 1, . . . , d, α ∈ {1, . . . , d}ℓ, ℓ ∈ N, C(ψA
−1
d

ε ) ≤ κdκε−κ, and C(ψfdε ) ≤ κdκε−κ;

2. for all ε ∈ (0, 1), d ∈ N, x ∈ Rd, ∥Vd,i(x)−V εd,i(x)∥ ≤ εκdκ, i = 0, 1, . . . , d, and ∥∂αVd,i(x)−
V εd,i,α(x)∥ ≤ εκdκ, i = 0, 1, . . . , d, α ∈ {1, . . . , d}ℓ, ℓ ∈ N, where V εd,i = R(ψ

Vd,i
ε ) ∈ C(Rd,Rd)

and V εd,i,α = R(ψ
∂αVd,i
ε ) ∈ C(Rd,Rd);

3. for all ε ∈ (0, 1), d ∈ N, x ∈ Rd, ∥A−1
d (x) − A−1

d,ε(x)∥ ≤ εκdκ, where A−1
d (·) is the inverse

matrix of Ad(·) :=
∑d
i=1Vd,i(·) ⊗ Vd,i(·) and A−1

d,ε = R(ψ
A−1

d
ε ) ∈ C(Rd,Rd×d), and for all

ε ∈ (0, 1), d ∈ N, supx∈[a,b]d∥A−1
d,ε(x)∥ ≤ κdκ;

4. for all ε ∈ (0, 1), d ∈ N, x ∈ Rd, |fd(x)− fεd (x)| ≤ εκdκ, where fεd = R(ψfdε ) ∈ C(Rd,R).

Remark 3. Assumption 2 provides the deep neural network approximation of the asymptotic ex-
pansion with an appropriate complexity. Note that Assumption 1.1, 1.3, 2.2 and 2.4 give that there
exists η > 0 such that |fεd (x)| ≤ ηdη(1 + ∥x∥) for all ε ∈ (0, 1), d ∈ N, and supx∈[a,b]d∥V εd,i(x)∥ ≤
ηdη for all i = 0, 1, . . . , d, supx∈[a,b]d∥V εd,i,α(x)∥ ≤ ηdη for all i = 0, 1, . . . , d, α ∈ {1, . . . , d}ℓ with
ℓ ∈ N. In the following, Assumption 2.2, 2.3 and 2.4 plays an important role for the analysis of
“product of neural networks” in the construction of the approximation with asymptotic expansion.

Remark 4. In particular, Assumption 2.3 is satisfied for the cases Ad(x) = Id and Ad(x) = s(d)Id
with a function s : N → R. For instance, the case Ad(x) = Id corresponds to the d-dimensional

heat equation when Vd,0 ≡ 0. Also, the SDEs with the diffusion matrix Vd = (1/
√
d)Id discussed

in Section 5.1 and Section 5.2 of [9] and Section 5.2 of [13] are examples of (3.1) (or (3.6)). For
those cases, the neural network approximations in Assumption 2 are not necessary, since Vd,i,
i = 1, . . . , d and hence Ad do not depend on the state variable x, whence Vd,i,ε and A−1

d,ε are Vd,i

and A−1
d themselves. Furthermore, in such cases (e.g. the high-dimensional heat equations) the

asymptotic expansion will be simply obtained (usually as the Gaussian approximation), which are
exactly reduced to the methods in Beck et al. [2] and Gonon et al. [11].

The main result of the paper is summarized as follows.

Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimensionality).
Suppose that Assumption 1 and Assumption 2 hold. Let m ∈ N. For d ∈ N, consider the SDE
(3.1) on the d-dimensional Wiener space and let udλ ∈ C([0, T ]×Rd,R) given by (3.3) be a solution
to the Kolmogorov PDE (3.4). Then we have

sup
x∈[a,b]d

|udλ(t, x)− E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]| = O(λm+1t(m+1)/2). (3.19)

Furthermore, for t ∈ (0, T ] and λ ∈ (0, 1], there exist {ϕε,d}ε∈(0,1),d∈N ⊂ N and c > 0 which depend

only on a, b, C,m, κ, t and λ, such that for all ε ∈ (0, 1) and d ∈ N, we have R(ϕε,d) ∈ C(Rd,R),
C(ϕε,d) ≤ cε−cdc and

sup
x∈[a,b]d

|E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]−R(ϕε,d)(x)| ≤ ε. (3.20)

Proof. See Section 4. □

We provide the weight Mm
d,λ(t, x,B

d
t ) with m = 0, 1 in Theorem 1 for our scheme (the expres-

sion for general m will be given in Section 4 below). That is, for d ∈ N, λ ∈ (0, 1], t > 0 and
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x ∈ Rd,

M0
d,λ(t, x,B

d
t ) = 1, (3.21)

M1
d,λ(t, x,B

d
t ) = 1 + λ

d∑
α1,α2=0

d∑
α3=1

d∑
ℓ,j=1

1

2t
Ld,α1

V ℓd,α2
(x)[A−1

d ]ℓj(x)V
j
d,α3

(x)

{Bd,α1

t Bd,α2

t Bd,α3

t − tBd,α1

t 1α2=α3 ̸=0 − tBd,α2

t 1α1=α3 ̸=0 − tBd,α3

t 1α1=α2 ̸=0},
(3.22)

where

Ld,0 =

d∑
j=1

V jd,0(·)
∂

∂xj
+

1

2

d∑
i,j1,j2=1

V j1d,i(·)V
j2
d,i(·)

∂2

∂xj1∂xj2
, (3.23)

Ld,i =

d∑
j=1

V jd,i(·)
∂

∂xj
, i = 1, . . . , d. (3.24)

Hence, the weight for m = 0, i.e. M0
d,λ(t, x,B

d
t ) = 1 provides a simple (but coarse) Gaussian

approximation, and the Malliavin weight for m = 1 will be worked as the correction term for the
Gaussian approximation. The derivation is provided in the next section.

4 Proofs of Proposition 1, 2 and Theorem 1

We give the proofs of Proposition 1, 2 and Theorem 1. Before providing full proofs, we show
their brief outlines below.

• Proposition 1 (Asymptotic expansion)

– take a family of uniformly non-degenerate functionals F d,λ,xt = (Xd,λ,x
t −x)/λ, λ ∈ (0, 1],

as the family Xd,λ,x
t , λ ∈ (0, 1] itself degenerates when λ ↓ 0, and consider the expansion

F d,λ,xt = F d,0,xt + · · · in D∞.

– expand δy(F
d,λ,x
t ) ∼ δy(F

d,0,x
t )+ · · · in D−∞ and take expectation to obtain the expan-

sion of the density pF
d,λ,x
t (y) = E[δy(F

d,λ,x
t )] ∼ E[δy(F

d,0,x
t )] + · · · in R.

– derive precise expression of the right-hand side of E[fd(X
d,λ,x
t )] = cd,λ,t0 + cd,λ,t1 + · · ·+

cd,λ,tm +Residuald,λ,tm by using Malliavin’s integration by parts.

– give a precise estimate for Residuald,λ,tm (x) (w.r.t λ, t and the dimension d) uniformly
in x by using the key inequality on Malliavin weight (Lemma 5 in Appendix A) which
yields a sharp upper bound of Residuald,λ,tm (x).

• Proposition 2 (Representation and property of Malliavin weight)

– use the formula (3.14) to prove that cd,λ,t0 + cd,λ,t1 + · · ·+ cd,λ,tm above can be represented

by an expectation E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )] with a Malliavin weight Mm

d,λ(t, x,B
d
t )

constructed by polynomials of Brownian motion.

– check that the moment of the Malliavin weight Mm
d,λ(t, x,B

d
t ) grows polynomially in d

from the representation.

• Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimensional-
ity)

– (0) for d ∈ N, first check the expansion E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )] obtained in Propo-

sition 1 and 2 gives an approximation for uλd(t, x) on the cube [a, b]d with a sharp
asymptotic error bound.
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– (1) for an error precision ε, construct an approximation E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )] ≈

E[fδd (X̄
d,λ,x,δ
t )Mm

d,λ,δ(t, x,B
d
t )] on the cube [a, b]d by using stochastic calculus, where

fδd , X̄
d,λ,x,δ
t and Mm

d,λ,δ(t, x,B
d
t ) are given by replacing {Vd,i}i, A−1

d , {Vd,i,α}i,α with

their neural network approximations {V δd,i}i, A−1
d,δ, {Vd,i,α,δ}i,α with δ = (εcd−c) for

some c > 0 independent of ε and d.

– (2) for an error precision ε, construct a realization of the Monte-Carlo approximation

E[fδd (X̄
d,λ,x,δ
t )Mm

d,λ,δ(t, x,B
d
t )] ≈ 1

M

∑M
ℓ=1 f

δ
d (X̄

d,λ,x,δ,(ℓ)
t (ωε,d))Mm,δ

d,λ (t, x,B
d,(ℓ)
t (ωε,d))

on the cube [a, b]d with a choice M = O(ε−cdc) for some c > 0 independent of ε and d,
by using stochastic calculus.

– (3) for an error precision ε, construct a realization of the deep neural network approxi-

mation 1
M

∑M
ℓ=1 f

δ
d (X̄

d,λ,x,δ,(ℓ)
t (ωε,d))Mm,δ

d,λ (t, x,B
d,(ℓ)
t (ωε,d)) ≈ R(ϕε,d)(x) on the cube

[a, b]d whose complexity is bounded by C(ϕε,d) ≤ cε−cdc for some c > 0 independent of
ε and d, where ReLU calculus (Lemma 9, 10, 12 in Appendix B) is essentially used.

– apply (0), (1), (2) and (3) to obtain the main result.

In the proof, we frequently use an elementary result: supx∈[a,b]d∥x∥ ≤ d1/2 max{|a|, |b|}, which
is obtained in the proof of Corollary 4.2 of [11].

4.1 Proof of Proposition 1

For x ∈ Rd, t ∈ (0, T ] and λ ∈ (0, 1], let F d,λ,xt = (F d,λ,x,1t , . . . , F d,λ,x,dt ) ∈ (D∞(Ωd))d

be given by F d,λ,x,jt = (Xd,λ,x,j
t − xj)/λ, j = 1, . . . , d. We note that {F d,λ,xt }λ is a family of

uniformly non-degenerate Wiener functionals (see Theorem 3.4 of [40]). Then, for T ∈ S ′(Rd),
the composition T (F d,λ,xt ) is well-defined as an element of D−∞(Ωd), and the density of F d,λ,xt ,

namely pF
d,λ,x
t ∈ S(Rd) has the representation pF

d,λ,x
t (y) = D−∞⟨δy(F d,λ,xt ), 1⟩D−∞ for y ∈ Rd.

Then, for x ∈ Rd, t > 0 and λ ∈ (0, 1], it holds that

E[fd(X
d,λ,x
t )] =

∫
Rd

fd(x+ λy)D−∞⟨δy(F d,λ,xt ), 1⟩D−∞dy. (4.1)

For x ∈ Rd, t ∈ (0, T ], let F d,0,xt =
∑d
i=0Vd,i(x)B

d,i
t . Thus, for S ∈ S ′(Rd), the composition

S(F d,λ,xt ) is well-defined as an element of D−∞(Ωd) and has an expansion:

D−∞⟨δy(F d,λ,xt ), 1⟩D∞ =D−∞⟨δy(F d,0,xt ), 1⟩D∞

+

m∑
j=1

λj

j!

∂j

∂λj D
−∞⟨δy(F d,λ,xt ), 1⟩D∞ |λ=0 + λm+1Ed,λ,x,ym,t , (4.2)

for x ∈ Rd, t > 0 and λ ∈ (0, 1], where

Ed,λ,x,ym,t =

∫ 1

0

(1− u)m

m!

∂m+1

∂ηm+1 D−∞⟨δy(F d,η,xt ), 1⟩D∞ |η=λudu. (4.3)

By the integration by parts (2.7) and Theorem 2.6 of [35] yield that

1

j!

∂j

∂λj D
−∞⟨δy(F d,λ,xt ), 1⟩D∞ |λ=0

=

j∑
i(k),γ(k)

D−∞

⟨
δy(F

d,0,x
t ),Hγ(k)(F

d,0,x
t ,

k∏
ℓ=1

1

iℓ!

∂iℓ

∂λiℓ
F d,λ,x,γℓt |λ=0)

⟩
D∞ . (4.4)

where
∑j
i(k),γ(k) =

∑j
k=1

∑
i(k)=(i1,...,ik) s.t. i1+···+ik=j,ie≥1

∑
γ(k)=(γ1,...,γk)∈{1,··· ,d}k

1
k! With a cal-

culation

1

i!

∂i

∂λi
F d,λ,x,jt |λ=0 =

∑
|α|=i+1

Ld,α1
· · ·Ld,αr−1

V jd,αr
(x)Bd,αt (4.5)
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for j = 1, . . . , d and i ∈ N, it holds that

D−∞⟨δy(F d,λ,xt ), 1⟩D∞ = D−∞⟨δy(F d,0,xt ), 1⟩D∞

+

m∑
j=1

λj
j∑

i(k),γ(k)

D−∞⟨δy(F d,0,xt ),Hγ(k)(F
d,0,x
t ,

k∏
ℓ=1

∑
|α|=iℓ

Ld,α1
· · ·Ld,αr−1

V γℓd,αr
(x)Bd,αt )⟩D∞

+ λm+1Ed,λ,x,ym,t , (4.6)

Again by the integration by parts (2.7), ∂m+1

∂ηm+1 D−∞⟨δy(F d,λ,xt ), 1⟩D∞ |η=λu (with λu ∈ (0, 1]) in

Ed,λ,x,ym,t in (4.3) is given by a linear combination of the expectations of the form

D−∞⟨δy(F d,λu,xt ),Hγ(F
d,λu,x
t ,

∏k
ℓ=1

1
βℓ!
∂βℓ
η F

d,η,x,γℓ
t |η=λu)⟩D∞

with k ≤ m+1, γ ∈ {1, . . . , d}k and β1, . . . , βk ≥ 1 such that
∑k
ℓ=1βℓ = m+1. By the inequality

of Lemma 5 with k = 0 in Appendix A, we have for all p ≥ 1 and multi-index γ, there are c > 0,
p1, p2, p3 > 1 and r ∈ N satisfying

∥Hγ(F
d,λ,x
t , G)∥p ≤ cdc∥ det(σF

d,λ,x
t )−1∥rp1∥DF

d,λ,x
t ∥2dr−|γ|

|γ|,p2,Hd∥G∥|γ|,p3 , (4.7)

for all G ∈ D∞, t ∈ (0, T ], λ ∈ (0, 1] and x ∈ [a, b]d. In order to show the upper bound of the
weight appearing in the residual term of the expansion, we list the following results:

Lemma 1.

1. For all p > 1, there exists κ1 > 0 such that for all d ∈ N, t ∈ (0, T ], x ∈ [a, b]d and λ ∈ (0, 1],

∥ det(σF
d,λ,x
t )−1∥p ≤ κ1d

κ1t−d. (4.8)

2. For all p > 1, r ∈ N, there exists κ2 > 0 such that for all d ∈ N, t ∈ (0, T ], x ∈ [a, b]d and
λ ∈ (0, 1],

∥DF d,λ,xt ∥r,p,H ≤ κ2d
κ
2 t

1/2. (4.9)

3. For all ℓ ∈ N, p > 1 and r ∈ N, there exists η > 0 such that for all d ∈ N, t ∈ (0, T ],
x ∈ [a, b]d and λ ∈ (0, 1],

∥∂ℓλF
d,λ,x
t ∥r,p ≤ ηdηt(ℓ+1)/2. (4.10)

Proof of Lemma 1. For d ∈ N, let Vd : Rd → Rd×d be such that Vd = (Vd,1, . . . , Vd,d) and for
λ ∈ (0, 1], let V λd : Rd → Rd×d be such that V λd = (V λd,1, . . . , V

λ
d,d). Moreover, for d ∈ N, we use

the notation J0→t =
∂
∂xX

d,λ,x
t = ( ∂

∂xi
Xd,λ,x,j
t )1≤i,j≤d for x ∈ Rd, t > 0 and λ ∈ (0, 1].

1. Note that for d ∈ N, t ∈ (0, T ], x ∈ Rd and λ ∈ (0, 1], we have

σF
d,λ,x
t =

∫ t

0

[Ds(X
d,λ,x
t − x)/λ][Ds(X

d,λ,x
t − x)/λ]⊤ds (4.11)

=

∫ t

0

J0→tJ
−1
0→sVd(X

d,λ,x
s )Vd(X

d,λ,x
s )⊤J−1

0→s

⊤
J⊤
0→tds. (4.12)

Under the condition σλd (·)σλd (·)⊤ ≥ λ2Id, (i.e. Vd(·)Vd(·)⊤ ≥ Id) in Assumption 1.3, we have
that there is c > 0 such that

sup
x∈[a,b]d

∥(detσF
d,λ,x
t )−1∥p ≤ cdct−d, (4.13)

for all d ∈ N, t ∈ (0, T ] and λ ∈ (0, 1], by Theorem 3.5 of Kusuoka and Stroock (1984) [22].
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2. We recall that for d ∈ N, λ ∈ (0, 1] and 0 ≤ s < t, Ds(X
d,λ,x
t − x)/λ = J0→tJ

−1
0→sV (Xd,λ,x

s ).
Then, there is c > 0 such that

sup
x∈[a,b]d

∥DF d,λ,xt ∥k,p,Hd ≤ cdct1/2, (4.14)

for all d ∈ N, t ∈ (0, T ] and λ ∈ (0, 1], by Theorem 2.19 of Kusuoka and Stroock (1984) [22].

3. Note that

1

ℓ!

∂ℓ

∂λℓ
Xd,λ,x,r
t =

ℓ−1∑
i(k),γ(k)

∫ t

0

k∏
e=1

1

ie!

∂ie

∂λie
Xd,λ,x,γe
t

d∑
j=0

∂γ
(k)

V rj (X
d,λ,x
s )dBd,js (4.15)

+λ

ℓ∑
i(k),γ(k)

∫ t

0

k∏
e=1

1

ie!

∂ie

∂λie
Xd,λ,x,γe
t

d∑
j=0

∂γ
(k)

V rj (X
d,λ,x
s )dBd,js . (4.16)

Since the above is a linear SDE, it has the explicit form and we have

sup
x∈[a,b]d

∥∥∥ 1

ℓ!

∂ℓ

∂λℓ
Xd,λ,x
t

∥∥∥
k,p

≤ cdctℓ/2, (4.17)

for some c > 0 independent of t and d, due to the result:

sup
x∈[a,b]d

∥∥∥ ℓ−1∑
i(k),γ(k)

∫ t

0

J0→tJ
−1
0→s

k∏
e=1

1

ie!

∂ie

∂λie
Xd,λ,x,γe
t

d∑
j=0

∂γ
(k)

Vj(X
d,λ,x
s )dBd,js

∥∥∥
k,p

≤ cdctℓ/2,

(4.18)

which is obtained by using Lemma 6 and Lemma 7 in Appendix A. Then, the process

1

ℓ!

∂ℓ

∂λℓ
F d,λ,xt =

ℓ∑
i(k),γ(k)

∫ t

0

k∏
e=1

1

ie!

∂ie

∂λie
Xd,λ,x,γe
t

d∑
j=0

∂γ
(k)

Vj(X
d,λ,x
s )dBd,js , t ≥ 0, x ∈ Rd

(4.19)

satisfies

sup
x∈[a,b]d

∥∥∥ 1

ℓ!

∂ℓ

∂λℓ
F d,λ,xt

∥∥∥
k,p

≤ cdct(ℓ+1)/2, (4.20)

for some c > 0 independent of t and d. □

Using above, we have that for all k ≤ m + 1, γ ∈ {1, . . . , d}k and β1, . . . , βk ≥ 1 such that∑k
ℓ=1βℓ = m+ 1, p > 1 and multi-index γ, there exists ν > 0 such that

∥Hγ(F
d,λ,x
t ,

∏k
ℓ=1

1
βℓ!
∂βℓ

λ F
d,λ,x,γℓ
t )∥p ≤ νdνt−k/2t(β1+···+βk+k)/2 = νdνt(m+1)/2, (4.21)

for all t ∈ (0, T ], x ∈ [a, b]d and λ ∈ (0, 1]. Let us define rd,λ,xm,t for t ∈ (0, T ], x ∈ [a, b]d and
λ ∈ (0, 1] from (4.1) and (4.6) as

rd,λ,xm,t = E[fd(X
d,λ,x
t )]

− E
[
fd(X̄

d,λ,x
t )

{
1 +

m∑
j=1

λj
(j)∑

β(k),γ(k)

Hγ(k)

( d∑
i=0

Vd,i(x)B
d,i
t ,

k∏
ℓ=1

∑
|α|=βℓ

Ld,α1
· · ·Ld,αr−1

V γℓd,αr
(x)Bd,αt

)}]
= λm+1

∫ 1

0

(1− u)m

m!
E[fd(X̃

d,λ,u,x
t )Wd,λ,u,x

m+1,t ]du, (4.22)
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where X̃d,λ,u,x
t = x+ λF d,λu,xt , u ∈ [0, 1] and

Wd,λ,u,x
m+1,t =

[m+1]∑
β(k),γ(k)

Hγ(F
d,λu,x
t ,

k∏
ℓ=1

1

βℓ!
∂βℓ
η F

d,η,x,γℓ
t |η=λu), u ∈ [0, 1], (4.23)

with
∑[m+1]

β(k),γ(k) := (m+ 1)!
∑j
k=1

∑
β(k)=(β1,...,βk)s.t.

∑k
ℓ=1 βℓ=j,βi≥1

∑
γ(k)=(γ1,...,γk)∈{1,··· ,d}k

1
k! .

Here, Xd,λ,u,x
t , u ∈ [0, 1] and Wd,λ,u,x

m+1,t , u ∈ [0, 1] satisfy that for p ≥ 1, there exists η > 0 such
that

supx∈[a,b]d,u∈[0,1]∥X
d,λ,u,x
t ∥p ≤ ηdη and supx∈[a,b]d,u∈[0,1]∥W

d,λ,u,x
m+1,t ∥p ≤ ηdηt(m+1)/2

for all λ ∈ (0, 1] and t > 0. Therefore, there exists c > 0 such that

sup
x∈[a,b]d

|rd,λ,xm,t | ≤ cdcλm+1t(m+1)/2, (4.24)

for all λ ∈ (0, 1] and t ∈ (0, T ], and then the assertion of Proposition 1 holds.

4.2 Proof of Proposition 2

For d ∈ N and for m ∈ N, first note that the following representation holds:

E
[
fd(X̄

d,λ,x
t )Hγ

( d∑
i=0

Vd,i(x)B
d,i
t ,

k∏
ℓ=1

∑
|α|=βℓ

Ld,α1
· · ·Ld,αr−1

V γℓd,αr
(x)Bd,αt

)]
(4.25)

=

∫
Rd

fd(x+ λy)D−∞

⟨
δy

( d∑
i=0

Vd,i(x)B
d,i
t

)
(4.26)

Hγ

( d∑
i=0

Vd,i(x)B
d,i
t ,

k∏
ℓ=1

∑
|α|=βℓ

Ld,α1
· · ·Ld,αr−1

V γℓd,αr
(x)Bd,αt

)⟩
D∞dy, (4.27)

for t ∈ (0, T ], x ∈ Rd, λ ∈ (0, 1], k = 1, . . . , j ≤ m, β1, . . . , βk ≥ 2 such that β1 + · · ·+ βk = j + k,
and γ ∈ {1, . . . , d}k. Using the Itô formula for the products of iterated integrals (Proposition
5.2.3 of [21] for example) and the formula from (3.14): for a multi-index γ ∈ {1, . . . , d}p and a
multi-index α ∈ {0, 1, . . . , d}q,

D−∞⟨δy(
d∑
i=0

Vd,i(x)B
d,i
t ),Hγ(

d∑
i=0

Vd,i(x)B
d,i
t ,Bd,αt )⟩D∞

= D−∞

⟨
δy(

d∑
i=0

Vd,i(x)B
d,i
t ),

d∑
j1,...,j|γ|,β1,...,β|γ|=1

1

t|γ|

|γ|∏
q=1

[A−1
d ]γq,jq (x)V

jq
d,βq

(x)
1

k!
B
d,(α1,...,αk,β1,...,β|γ|)
t

⟩
D∞

iteratively, we have (3.15) and the representation (3.16).
We can see that for p ≥ 1 and e = 1, . . . , n(m), ∥ge(t)Polye(Bdt )∥p = O(tνr/2) for some νr ≥ 1,

and by Assumption 1 and 2 and the expression of he, there is η > 0 independent of d such
that |he(x)| ≤ ηdη for all e = 1, . . . , n(m) and x ∈ [a, b]d. Then, for p ≥ 1, there exists c > 0
independent of d such that

∥Mm
d,λ(t, x,B

d
t )∥p ≤ cdc, (4.28)

uniformly in (t, x) ∈ (0, T ]× [a, b]d and λ ∈ (0, 1].
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4.3 Proof of Theorem 1

The first statement is immediately obtained by combining Proposition 1 with 2:

sup
x∈[a,b]d

|udλ(t, x)− E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]| = O(λm+1t(m+1)/2). (4.29)

Hereafter, we fix t ∈ (0, T ] and λ ∈ (0, 1]. For d ∈ N, x ∈ Rd, δ ∈ (0, 1), let

X̄d,λ,x,δ
t = x+ λ

∑d
i=0V

δ
d,i(x)B

d,i
t (4.30)

and Mm,δ
d,λ (t, x,B

d
t ) ∈ D∞(Ωd) be a functional which has the form:

Mm,δ
d,λ (t, x,B

d
t ) = 1 +

∑
e≤n(m)λ

p(e)ge(t)h
δ
e(x)Polye(B

d
t ), (4.31)

where hδe : Rd → R, e = 1, . . . , n(m) are functions constructed by some products of A−1
d,δ,

{V δd,i}0≤i≤d and {V δd,i,α}0≤i≤d,α∈{1,...,d}ℓ,ℓ≤2m in Assumption 2, by replacing with A−1
d , {Vd,i}0≤i≤d

and {Vd,i,α}0≤i≤d,α∈{1,...,d}ℓ,ℓ≤2m in Proposition 2, satisfying

E[fd(X̄
d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]

=E
[
fd(X̄

d,λ,x,δ
t )

{
1 +

m∑
j=1

λj
j∑

k=1

∑
β1+···+βk=j+k,βi≥2

∑
(γ1,··· ,γk)∈{1,··· ,d}k

1

k!

H(γ1,...,γk)

( d∑
i=1

V δd,i(x)B
d,i
t ,

k∏
ℓ=1

∑
|α|=βℓ

Lδd,α1
· · ·Lδd,αr−1

V δ,γℓd,αr
(x)Bd,αt

)}]
. (4.32)

Next, we prepare the following lemmas (Lemma 2, Lemma 3 and Lemma 4) to prove the second
assertion ((3.20)) in Theorem 1.

Lemma 2. There exists c1 > 0 which depends only on a, b, C,m, κ, t and λ such that for all
ε ∈ (0, 1), d ∈ N, δ = O(εc1d−c1),

sup
x∈[a,b]d

|E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]| ≤ ε, (4.33)

where fδd = R(ψfdδ ) ∈ C(Rd,R) is defined in Assumption 2.4.

Proof of Lemma 2. In the proof, we use a generic constant c > 0 which depends only on
a, b, C,m, κ, t and λ. Note that for x ∈ [a, b]d,

|E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]|

≤ |E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]− E[fd(X̄

d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]|

+|E[fd(X̄
d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]|

+|E[fδd (X̄
d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]|. (4.34)

By 2 of Assumption 2 (with Assumption 1), it holds that

|E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]− E[fd(X̄

d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]|

≤ C∥X̄d,λ,x
t − X̄d,λ,x,δ

t ∥2∥Mm
d,λ(t, x,B

d
t )∥2 ≤ δcdc, (4.35)

for all x ∈ [a, b]d. By 4 of Assumption 2 (with Assumption 1), it holds that

|E[fd(X̄
d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]| ≤ δcdc, (4.36)
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for all x ∈ [a, b]d. Here, the estimate ∥Mm
d,λ(t, x,B

d
t )∥2 ≤ cdc in (3.18) is used in (4.35) and (4.36).

By 2, 3, 4 of Assumption 2 (with Assumption 1), (3.16) and (4.31), we have that for p ≥ 1,

∥Mm
d,λ(t, x,B

d
t )−Mm,δ

d,λ (t, x,B
d
t )∥p ≤ δcdc (4.37)

and

|E[fδd (X̄
d,λ,x,δ
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]| ≤ δcdc, (4.38)

for all x ∈ [a, b]d. Then, by taking δ = (1/3)c−1
1 εc1d−c1 with c1 = max{1, c} where c is the

maximum constant appearing in (4.35), (4.36) and (4.38)), we have

sup
x∈[a,b]d

|E[fd(X̄
d,λ,x
t )Mm

d,λ(t, x,B
d
t )]− E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]| ≤ ε. □ (4.39)

Lemma 3. For d ∈ N, t ∈ (0, T ] and M ∈ N, let Bd,(ℓ)t , ℓ = 1, . . . ,M be independent identically

distributed random variables such that B
d,(ℓ)
t

law
= Bdt . There exists c2 > 0 which depends only on

a, b, C,m, κ, t and λ such that for ε ∈ (0, 1), d ∈ N and M = O(ε−c2dc2), there is ωε,d ∈ Ωd

satisfying

sup
x∈[a,b]d

∣∣∣E[fδd (X̄
d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]−

1

M

M∑
ℓ=1

fδd (X̄
d,λ,x,δ,(ℓ)
t (ωε,d))Mm,δ

d,λ (t, x,B
d,(ℓ)
t (ωε,d))

∣∣∣ ≤ ε,

(4.40)

where δ = O(εc1d−c1) with the constant c1 in Lemma 2.

Proof of Lemma 3. There exists a constant c > 0 which depends only on a, b, C,m, κ, t and λ such
that for all x ∈ [a, b]d and M ∈ N,

E
[∣∣∣E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]−

1

M

M∑
ℓ=1

fδd (X̄
d,λ,x,δ,(ℓ)
t )Mm,δ

d,λ (t, x,B
d,(ℓ)
t )

∣∣∣2] (4.41)

≤ 1

M
E[|fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )|2] ≤

cdc

M
. (4.42)

Then, by choosing c2 = max{1, c}, we have that for all ε ∈ (0, 1), d ∈ N and M = c2ε
−c2dc2 ,

E
[∣∣∣E[fδd (X̄

d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]−

1

M

M∑
ℓ=1

fδd (X̄
x,δ,(ℓ)
t )Mm,δ

d (t, x,B
(ℓ)
t )

∣∣∣2]1/2 ≤ ε, (4.43)

for all x ∈ [a, b]d, and therefore, there is ωε,d ∈ Ωd satisfying

sup
x∈[a,b]d

∣∣∣E[fδd (X̄
d,λ,x,δ
t )Mm,δ

d,λ (t, x,B
d
t )]−

1

M

M∑
ℓ=1

fδd (X̄
x,δ,(ℓ)
t (ωε,d))Mm,δ

d (t, x,B
(ℓ)
t (ωε,d))

∣∣∣ ≤ ε. □

(4.44)

Lemma 4. For d ∈ N, t ∈ (0, T ] and M ∈ N, let Bd,(ℓ)t , ℓ = 1, . . . ,M be independent identically

distributed random variables such that B
d,(ℓ)
t

law
= Bdt . There exist {ϕε,d}ε∈(0,1),d∈N ⊂ N and

c > 0 (which depends only on a, b, C,m, κ, t and λ) such that for all ε ∈ (0, 1), d ∈ N, we have
C(ϕε,d) ≤ cε−cdc, and for a realization ωε,d ∈ Ωd given in Lemma 3, it holds that

sup
x∈[a,b]d

∣∣∣ 1
M

M∑
ℓ=1

fδd (X̄
d,λ,x,δ,(ℓ)
t (ωε,d))Mm,δ

d (t, x,B
d,(ℓ)
t (ωε,d))−R(ϕε,d)(x)

∣∣∣ ≤ ε, (4.45)

where δ = O(εc1d−c1) and M = O(ε−c2dc2) with the constants c1 and c2 in Lemma 2 and Lemma
3.
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Proof of Lemma 4. In the proof, we use a generic constant c > 0 which depends only on
a, b, C,m, κ, t and λ. Let ε ∈ (0, 1), d ∈ N, ℓ = 1, . . . ,M , let δ = O(εc1d−c1), M = O(ε−c2dc2)
where c1 and c2 are the constants appearing in Lemma 2 and Lemma 3, let ωε,d be a realiza-

tion given in Lemma 3, and let bd,(ℓ) = B
d,(ℓ)
t (ωε,d). Since there exists η

(ℓ)
δ,d ∈ N such that

R(η
(ℓ)
δ,d)(x) = x + λR(ψV0

δ,d)(x)t + λ
∑d
i=1R(ψVi

δ,d)(x)b
d,(ℓ),i for x ∈ Rd and C(η(ℓ)δ,d) = O(δ−cdc) (by

Lemma 9 in Appendix B), there exists ψδ,d1,(ℓ) ∈ N such that R(ψδ,d1,(ℓ))(x) = R(ψfδ,d)(R(η
(ℓ)
δ,d)(x)) =

fδd (X̄
d,λ,x,δ
t (ωε,d)) for x ∈ Rd and C(ψδ,d1,(ℓ)) = O(δ−cdc) (by Lemma 10 in Appendix B). Next,

we recall that by (4.31), the weight Mm,δ
d,λ (t, x, b

d,(ℓ)), x ∈ Rd has the form Mm,δ
d,λ (t, x, b

d,(ℓ)) =

1 +
∑
e≤n(m)λ

p(e)ge(t)h
δ
e(x)Polye(b

d,(ℓ)) constructed by some products of A−1
d,δ, {V

δ
d,i}0≤i≤d and

{V δd,i,α}0≤i≤d,α∈{1,...,d}ℓ,ℓ≤2m in Assumption 2. Using Lemma 12, Lemma 9 in Appendix B and

Assumption 2, there is a neural network ψε,d2,(ℓ) ∈ N such that supx∈[a,b]d |M
m,δ
d,λ (t, x, b

d,(ℓ)) −
R(ψε,d2,(ℓ))(x)| ≤ ε/2 and C(ψε,d2,(ℓ)) = O(ε−cdc). Hence, we have

sup
x∈[a,b]d

|fδd (X̄
d,λ,x,δ,(ℓ)
t (ωε,d))Mm,δ

d,λ (t, x, b
d,(ℓ))−R(ψδ,d1,(ℓ))(x)R(ψε,d2,(ℓ))(x)| ≤ ε/2. (4.46)

We again use Lemma 12 in Appendix B to see that there exists Ψε,d(ℓ) ∈ N such that

|R(ψδ,d1,(ℓ))(x)R(ψε,d2,(ℓ))(x)−R(Ψε,d(ℓ) )(x)| ≤ ε/2, (4.47)

for all x ∈ [a, b]d, and C(Ψε,d(ℓ) ) = O(ε−cdc). Finally, applying Lemma 9 gives the desired result,

i.e. there exist {ϕε,d}ε∈(0,1),d∈N ⊂ N and c > 0 such that for all ε ∈ (0, 1), d ∈ N, we have

C(ϕε,d) ≤ cε−cdc, and for a realization ωε,d ∈ Ωd given in Lemma 3, it holds that

sup
x∈[a,b]d

∣∣∣ 1
M

M∑
ℓ=1

fδd (X̄
d,λ,x,δ,(ℓ)
t (ωε,d))Mm,δ

d (x,B
d,(ℓ)
t (ωε,d))−R(ϕε,d)(x)

∣∣∣ ≤ ε. □ (4.48)

Proof of Theorem 1. The first assertion (in (3.19)) follows from (4.29). The second assertion (in
(3.20)) is obtained by combining Lemma 2, Lemma 3 and Lemma 4. □

5 Deep learning implementation

We briefly provide the implementation scheme for the approximation in Theorem 1. Let ξ be a
uniformly distributed random variable, i.e. ξ ∈ U([a, b]d), and define Xξt = ξ + λ

∑d
i=0 Vi,d(ξ)B

i,d
t ,

t ≥ 0. For t > 0, the m-th order asymptotic expansion of Theorem 1 can be represented by

um(t, ·) = argminψ∈C([a,b]d)E[|ψ(ξ)− f(Xξt )Mm
d,λ(t, ξ, B

d
t )|2], (5.1)

which is obtained by Theorem 1 of this paper combining with Proposition 2.2 of Beck et al. (2021)
[2]. We construct a deep neural network uNN ,θ∗(t, ·) to approximate the function um(t, ·) given
by for a depth L ∈ N and N0, N1, . . . , NL ∈ N,

uNN ,θ(t, x) = AW θ
L,B

θ
L
◦ ϱNL−1

◦ AW θ
L−1,B

θ
L−1

◦ · · · ◦ ϱN1
◦ AW θ

1 ,B
θ
1
(x), x ∈ Rd, (5.2)

where AW θ
k ,B

θ
k
(x) = W θ

kx + Bθk, x ∈ RNk−1 , k = 1, . . . , L with ((W θ
1 , B

θ
1), . . . , (W

θ
L, B

θ
L)) ∈

NN0,N1,...,NL

L given by

AWθ
k
,Bθ

k
(x) =


θq+1 · · · θq+Nk−1

...
. . .

...

θq+(Nk−1)Nk−1+1 · · · θq+NkNk−1


 x1

...
xNk−1

+

 θq+NkNk−1+1

...

θq+NkNk−1+Nk

 , (5.3)
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and the optimized parameter θ∗ obtained by the following minimization problem:

θ∗ = argmin
θ∈R

∑L
ℓ=1

Nℓ(Nℓ−1+1)E[|uNN ,θ(t, ξ)− f(Xξt )Mm
d,λ(t, ξ, B

d
t )|2]. (5.4)

In the implementation of the deep neural network approximation, we use stochastic gradient
descent method and the Adam optimizer [20] as in Section 3 and 4 of Beck et al. (2021) [2]. In
Appendix C, we list the sample code of the scheme for a high-dimensional PDE with a nonlinear
coefficient in Section 6.2 (which includes linear coefficient case).

6 Numerical examples

In the section, we perform numerical experiments in order to demonstrate the accuracy of
our scheme. We compare the deep learning method of Beck et al. (2021) [2] where the Euler-
Maruyama scheme is used with the stochastic gradient descent method with the Adam optimizer.
All experiments are performed in Google Colaboratory using Tensorflow.

6.1 High-dimensional Black-Scholes model

6.1.1 Uncorrelated case

First, we examine our scheme for a high-dimensional Black-Scholes model (geometric Brownian
motion) whose corresponding PDE is given by

∂tu
d
λ(t, x) = λ

d∑
i=1

µxi
∂

∂xi
udλ(t, x) +

λ2

2

d∑
i=1

c2ix
2
i

∂2

∂x2i
udλ(t, x), udλ(0, x) = fd(x), (6.1)

where fd(x) = max{max{x1 −K}, . . . ,max{xd −K}}. Let d = 100, t = 1.0, a = 99.0, b = 101.0,
K = 100.0, λ = 0.3, µ = 1/30 (or r := λ×µ = 0.01), ci = 1.0 (or σi := λ×ci = 0.3), i = 1, . . . , 100.
We approximate the function udλ(t, ·) (or the maximum option price e−rtudλ(t, ·) in financial math-
ematics) on [a, b]d by constructing a deep neural network (1 input layer with d-neurons, 2 hidden
layers with 2d-neurons each and 1 output layer with 1-neuron) based on Theorem 1 with m = 1
and Section 5. For the experiment, we use the batch sizeM = 1, 024, the number of iteration steps
J = 5, 000 and the learning rate γ(j) = 10−11[0,0.3J](j) + 10−21(0.3J,0.6J](j) + 10−31(0.6J,J](j),

j ≤ J for the stochastic gradient descent method. After we estimate the function udλ(t, ·), we input
x0 = (100.0, . . . , 100.0) ∈ [a, b]d to check the accuracy. We compute the mean of 10 independent

trials and estimate the relative error, i.e. |(udeep,dλ (t, x0) − uref,dλ (t, x0))/u
ref,d
λ (t, x0)| where the

reference value uref,dλ (t, x0) is computed by the Itô formula with Monte-Carlo method with 107-
paths. The same experiment is applied to the method of Beck et al. (2021) [2]. Table 1 provides
the numerical results (the relative errors and the runtimes) for AE m = 1 and the method in Beck
et al. (2021) [2] with the Euler-Maruyama discretization n = 16, 32 (Beck et al. n = 16, Beck et
al. n = 32 in the table).

Table 1: Comparison in deep learning methods for d = 100
AE m = 1 Beck et al. n = 16 Beck et al. n = 32

Relative error 0.0048 0.0056 0.0017
Runtime 75.49s 217.79s 352.79s

6.1.2 Correlated case

We next provide a numerical example for a Black-Scholes model with correlated noise in high-
dimension. Let us consider the following PDE:

∂tu
d
λ(t, x) = λ

d∑
i=1

µxi
∂

∂xi
udλ(t, x) +

λ2

2

d∑
i,j,k=1

σikσ
j
kxixj

∂2

∂xi∂xj
udλ(t, x), udλ(0, x) = fd(x), (6.2)
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where fd(x) = max{K − 1
d

∑d
i=1 xi, 0} and σ = [σjk]k,j ∈ Rd×d satisfies σij = 0 for i < j, σii > 0

for i = 1, . . . , d and

σσ⊤ =


1 ρ · · · ρ
ρ 1 ρ ρ
...

...
. . .

...
ρ ρ ρ 1

 ∈ Rd×d. (6.3)

Let d = 100, t = 1.0, a = 99.0, b = 101.0, K = 90.0, λ = 0.3, µ = 0.0, ρ = 0.5. We approximate
the function udλ(t, ·) (the basket option price in financial mathematics) on [a, b]d by constructing
a deep neural network (1 input layer with d-neurons, 2 hidden layers with 2d-neurons each and
1 output layer with 1-neuron) based on Theorem 1 (m = 1) with the expansion technique of
the basket option price given in Section 3.1 of Takahashi (1999) [32] and Section 5. For the
experiment, we use the batch size M = 1, 024, the number of iteration steps J = 5, 000 and the
learning rate γ(j) = 5.0× 10−21[0,0.3J](j)+5.0× 10−31(0.3J,0.6J](j)+5.0× 10−41(0.6J,J](j), j ≤ J

for the stochastic gradient descent method. After we estimate the function udλ(t, ·), we input
x0 = (100.0, . . . , 100.0) ∈ [a, b]d to check the accuracy. We compute the mean of 10 independent

trials and estimate the relative error, i.e. |(udeep,dλ (t, x0) − uref,dλ (t, x0))/u
ref,d
λ (t, x0)| where the

reference value uref,dλ (t, x0) is computed by the Itô formula with Monte-Carlo method with 107-
paths. The same experiment is applied to the method of Beck et al. (2021) [2]. Table 2 provides
the numerical results (the relative errors and the runtimes) for AE m = 1 and the method in Beck
et al. (2021) [2] with the Euler-Maruyama discretization n = 32, 64 (Beck et al. n = 32, Beck et
al. n = 64 in the table).

Table 2: Comparison in deep learning methods for d = 100
AE m = 1 Beck et al. n = 32 Beck et al. n = 64

Relative error 0.0039 0.0042 0.0035
Runtime 83.56s 470.73s 848.43s

6.2 High-dimensional CEV model (nonlinear volatility case)

We consider a Kolmogorov PDE with nonlinear diffusion coefficients whose corresponding
stochastic process is called the CEV model:

∂tu
d
λ(t, x) = λ

d∑
i=1

µxi
∂

∂xi
udλ(t, x) +

λ2

2

d∑
i=1

γ2i c
2
ix

2βi

i

∂2

∂x2i
udλ(t, x), udλ(0, x) = fd(x), (6.4)

where fd(x) = max{max{x1 −K}, . . . ,max{xd −K}}. Let d = 100, t = 1.0, a = 99.0, b = 101.0,
K = 100.0, λ = 0.3, µ = 1/30 (or r := λ × µ = 0.01), βi = 0.5, γi = K1−βi , ci = 1.0 (or σi :=
λ × ci = 0.3), i = 1, . . . , d. We approximate the function udλ(t, ·) (or the maximum option price
e−rtudλ(t, ·)) on [a, b]d by constructing a deep neural network (1 input layer with d-neurons, 2 hid-
den layers with 2d-neurons each and 1 output layer with 1-neuron,) based on Theorem 1 with m =
1. For the experiment, we use the batch size M = 1, 024, the number of iteration steps J = 5, 000
and the learning rate γ(j) = 5.0×10−11[0,0.3J](j)+5.0×10−21(0.3J,0.6J](j)+5.0×10−31(0.6J,J](j),

j ≤ J for the stochastic gradient descent method. After we estimate the function udλ(t, ·), we input
x0 = (100.0, . . . , 100.0) ∈ [a, b]d to check the accuracy. We compute the mean of 10 independent

trials and estimate the relative error, i.e. |(udeep,dλ (t, x0)−uref,dλ (t, x0))/u
ref,d
λ (t, x0)| where the ref-

erence value uref,dλ (t, x0) is computed by Monte-Carlo method with the Euler-Maruyama scheme
with time-steps 210 and 107-paths. The same experiment is applied to the method of Beck et al.
(2021) [2]. Table 3 provides the numerical results (the relative errors and the runtimes) for AE
m = 1 and the method in Beck et al. (2021) [2] with the Euler-Maruyama discretization n = 32,
64 (Beck et al. n = 32, Beck et al. n = 64 in the table).
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Table 3: Comparison in deep learning methods for d = 100
AE m = 1 Beck et al. n = 64 Beck et al. n = 128

Relative error 0.0006 0.0019 0.0006
Runtime 83.09s 764.76s 1265.26s

6.3 High-dimensional Heston model

We finally show an example for a small time asymptotic expansion for a high-dimensional
Heston model:

∂tu
2d
λ (t, x) = L2d,λu2dλ (t, x), u2dλ (0, x) = f2d(x), (6.5)

where f2d(x) = max{max{x1 −K}, . . . ,max{x2d−1 −K}} and L2d,λ is a generator given by

L2d,λ =λ

d∑
i=1

[κi(θi − x2i)
∂

∂x2i
]

+ λ2
d∑
i=1

[
1

2
x2ix

2
2i−1

∂2

∂x22i−1

+ ρiνix2i−1x2i
∂2

∂x2j−1∂x2i
+

1

2
ν2i x2

∂2

∂x22i
]. (6.6)

Let d = 25 (2d = 50), t = 0.5, a = 99.0, b = 101.0, a′ = 0.035, b′ = 0.045, K = 100.0,
λ = 1.0, κi = 1.0, θi = 0.04, νi = 0.1, ρi = −0.5, i = 1, . . . , d. We approximate the function
udλ(t, ·) on [a, b]d by constructing a deep neural network (1 input layer with 2d-neurons, 2 hidden
layers with 4d-neurons each and 1 output layer with 1-neuron) based on Theorem 1 with m = 1
and Section 5. For the experiment, we use the batch size M = 1, 024, the number of iteration
steps J = 5, 000 and the learning rate γ(j) = 5.0 × 10−21[0,0.3J](j) + 5.0 × 10−31(0.3J,0.6J](j) +

5.0 × 10−41(0.6J,J](j), j ≤ J for the stochastic gradient descent method. After we estimate

the function udλ(t, ·), we input x0 = (100.0, 0.04, . . . , 100.0, 0.04) ∈ ([a, b] × [a′, b′])d to check the
accuracy. We compute the mean of 10 independent trials and estimate the relative error, i.e.
|(udeep,dλ (t, x0)− uref,dλ (t, x0))/u

ref,d
λ (t, x0)| where the reference value uref,dλ (t, x0) is computed by

Monte-Carlo method with the Euler-Maruyama scheme with time-steps 210 and 107-paths. The
same experiment is applied to the method of Beck et al. (2021) [2]. Table 4 provides the numerical
results (the relative errors and the runtimes) for AE m = 1 and the method in Beck et al. (2021)
[2] with the Euler-Maruyama discretization n = 16, 32 (Beck et al. n = 16, Beck et al. n = 32 in
the table).

Table 4: Comparison in deep learning methods for 2d = 50
AE m = 1 Beck et al. n = 16 Beck et al. n = 32

Relative error 0.0006 0.0034 0.0007
Runtime 46.96s 119.37s 201.61s

7 Conclusion

In the paper, we introduced a new spatial approximation for solving high-dimensional PDEs
without the curse of dimensionality, where an asymptotic expansion method with a deep learning-
based algorithm is effectively applied. The mathematical justification for the spatial approxima-
tion was provided using Malliavin calculus and ReLU calculus. We checked the effectiveness of
our method through numerical examples for high-dimensional Kolmogorov PDEs.

More accurate deep learning-based implementations based on the method of the paper should
be studied as a next research topic. We believe that higher order asymptotic expansion or higher
order weak approximation (discretization) will give robust computation schemes without the curse
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of dimensionality, which should be proved mathematically in the future work. Also, applying our
method to nonlinear problems as in [14][15] will be a challenging and important task.

A Malliavin calculus

In the following, we provide precise estimates of Wiener functionals, which are useful for
proving and computing the deep learning-based approximation with our asymptotic expansion.

Lemma 5. Let d ∈ N, F ∈ (D∞(Ωd))d be a non-degenerate Wiener functional, G ∈ D∞(Ωd),
α = (α1, . . . , αℓ) ∈ {1, . . . , d}ℓ with length ℓ ∈ N. For k ∈ N ∪ {0} and p ≥ 1, there exist
c = c(k, p) > 0, q1 = q1(k, p) > 1, q2 = q2(k, p, d) > 1, q3 = q3(k, p) > 1 and r = r(k) ∈ N such
that

∥Hα(F,G)∥k,p ≤ cdc∥ det(σF )−1∥rq1∥DF∥
2dr−|α|
k+|α|,q2,Hd∥G∥k+|α|,q3 . (A.1)

Proof of Lemma 5. For i ∈ {1, . . . , d}, we have

∥H(i)(F,G)∥k,p ≤
d∑
j=1

∥δ([σF ]−1
ij DF

jG)∥k,p ≤ ck,p

d∑
j=1

∥[σF ]−1
ij DF

jG∥k+1,p,Hd , (A.2)

for some universal constant ck,p > 0. Let p1 and p2 be real numbers such that p−1
1 + p−1

2 = p−1.
Hereafter, we use a generic constant C > 0 such that C = cdc for some c > 0 depending on k and
p, whose value varies from line to line. Since it holds that

∥[σF ]−1
ij DF

j∥k+1,p1,Hd ≤ C∥ det(σF )−1∥e2(k+2)p1
∥DF∥2de−1

k+1,2(2d(k+2)−1)p1,Hd , (A.3)

for some e ∈ N depending on k, we have

∥H(i)(F,G)∥k,p ≤ C∥ det(σF )−1∥e2(k+2)p1
∥DF∥2de−1

k+1,2(2d(k+2)−1)p1,Hd∥G∥k+1,p2 . (A.4)

For α = (α1, . . . , αℓ) ∈ {1, . . . , d}ℓ, we have

∥H(α1,...,αℓ)(F,G)∥k,p = ∥H(αℓ)(F,H(α1,...,αℓ−1)(F,G))∥k,p
≤ C∥ det(σF )−1∥e2(k+2)p1

∥DF∥2de−1
k+1,2(2d(k+2)−1)p1,Hd∥H(α1,...,αℓ−1)(F,G)∥k+1,p2 . (A.5)

Then, iterating this procedure, we have that for k ∈ N ∪ {0} and p ≥ 1, there exist q1, q2, q3 > 1
and r ∈ N such that

∥Hα(F,G)∥k,p ≤ C∥det(σF )−1∥rq1∥DF∥
2dr−|α|
k+|α|,q2,Hd∥G∥k+|α|,q3 . □ (A.6)

Lemma 6. For d ∈ N, i = 1, 2, let {Gd,x,it }t∈(0,T ],x∈Rd ⊂ D∞(Ωd) satisfy that for k ≥ 1 and

p ∈ [1,∞), there exist ci, si > 0 independent of d such that supx∈[a,b]d∥G
d,x,i
t ∥k,p ≤ cid

citsi/2 for
all t ∈ (0, T ]. Then, we have that for k ≥ 1 and p ∈ [1,∞), there exists c independent of d such that

for all t ∈ (0, T ], supx∈[a,b]d∥
∏2
i=1G

d,x,i
t ∥k,p ≤ rdrt(s1+s2)/2 and supx∈[a,b]d∥

∑2
i=1G

d,x,i
t ∥k,p ≤

cdctmin{s1,s2}/2.

Proof of Lemma 6. We only prove the former case. By Proposition 1.5.6 of Nualart [29], for

k ≥ 1 and p ∈ [1,∞), ∥
∏2
i=1G

d,x,i
t ∥k,p ≤ ck,p∥Gd,x,1t ∥k,p1∥G

d,x,2
t ∥k,p2 for some constant ck,p > 0

depending only on k and p, where p1, p2 > 1 satisfies 1/p1+1/p2 = 1/p. Then, by the assumptions,

supx∈[a,b]d∥
∏2
i=1G

d,x,i
t ∥k,p ≤ rdrt(s1+s2)/2. □

Lemma 7. For d ∈ N, let {ud,xt }t∈(0,T ],x∈Rd ⊂ D∞(Ωd) satisfy that for t ∈ (0, T ], x ∈ Rd, j =

1, . . . , d,
∫ t
0
ud,xs dBd,js ∈ D∞(Ωd) and that for k ≥ 1 and p ∈ [1,∞), there exist q, ν > 0 independent

of d such that supx∈[a,b]d∥u
d,x
t ∥k,p ≤ qdqtν/2 for all t ∈ (0, T ]. Then, for k ≥ 1 and p ∈ [1,∞), there

exists c > 0 independent of d such that for all t ∈ (0, T ], supx∈[a,b]d∥
∫ t
0
ud,xs dBd,0s ∥k,p ≤ cdct(ν+2)/2

and for j = 1, . . . , d, supx∈[a,b]d∥
∫ t
0
ud,xs dBd,js ∥k,p ≤ cdct(ν+1)/2.
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Proof of Lemma 7. We only prove the latter case. Note that for r = 1, . . . , k, Dr
∫ t
0
ud,xs dBd,js =

Dr−1ud,x· +
∫ t
0
Drud,xs dBd,js . Then, it holds that E[∥Dr

∫ t
0
ud,xs dBd,js ∥p

(Hd)⊗r ] = E[∥Dr−1ud,x· ∥p
(Hd)⊗r ]

+E[∥
∫ t
0
Drud,xs dBd,js ∥p

(Hd)⊗r ]. Here, E[∥Dr−1ud,x· ∥p
(Hd)⊗r ] ≤ ηdηtp−1

∫ t
0
E[∥Dr−1ud,xs ∥p

(Hd)⊗(r−1) ]ds

for some η (independent of d) and E[∥
∫ t
0
Drud,xs dBd,js ∥p

(Hd)⊗r ] ≤ cpt
p/2−1

∫ t
0
E[∥Drud,xs ∥p

(Hd)⊗r ]ds

for some cp > 0 (independent of d) by Hölder inequality and Burkholder-Davis-Gundy inequal-

ity. By the assumptions, supx∈[a,b]d E[∥Dr−1ud,x· ∥p
(Hd)⊗r ] ≤ ηdηtp−1

∫ t
0
qpdpqspν/2ds ≤ cdctp(ν/2+1)

and supx∈[a,b]dE[∥
∫ t
0
Drud,xs dBd,js ∥p

(Hd)⊗r ] ≤ cpt
p/2−1

∫ t
0
qpdpqspν/2ds ≤ cdctp(ν+1)/2. Then, we

have supx∈[a,b]d∥
∫ t
0
ud,xs dBd,js ∥k,p ≤ cdct(ν+1)/2. □

B ReLU calculus

Appendix B gives some results on ReLU calculus which are basic in the analysis of our paper.
We prepare the following result from Lemma A.7 of [5].

Lemma 8. Let n, d, L ∈ N and for i = 1, . . . , n, let di ∈ N and ϕi ∈ N with L(ϕi) = L,
dimin(ϕi) = d and dimout(ϕi) = di. Then, there exists ψ ∈ N such that L(ψ) = L, C(ψ) ≤∑n
i=1C(ϕi), dimin(ψ) = d and dimout(ψ) =

∑n
i=1di and

R(ψ)(x) = (R(ϕ1)(x), . . . ,R(ϕn)(x)), x ∈ Rd. (B.1)

Also, we list Lemma 5.1 in [12] and Lemma 5.3 in [6].

Lemma 9. Let L, n,N0, NL ∈ N, {aℓ}nℓ=1 ⊂ R and {ϕℓ}nℓ=1 ⊂ N be DNNs such that L(ϕℓ) = L,
dimin(ϕℓ) = N0 and dimout(ϕℓ) = NL for ℓ = 1, . . . , n. Then, there exists ψ ∈ N such that
L(ψ) = L, C(ψ) ≤ n2C(ϕ1) and

R(ψ)(x) =

n∑
ℓ=1

aℓR(ϕℓ)(x), x ∈ RN0 . (B.2)

Lemma 10. Let L1, L2, N
1
0 , N

2
0 , N

1
L1
, N2

L2
∈ N and ϕ1, ϕ2 ∈ N be DNNs such that L(ϕ1) = L1,

L(ϕ2) = L2, dimin(ϕ1) = N1
0 , dimout(ϕ1) = N1

L1
, dimin(ϕ2) = N2

0 , dimout(ϕ2) = N2
L2

and

N2
L2

= N1
0 . Then, there exists ψ ∈ N such that L(ψ) = L1 + L2, C(ψ) ≤ 2(C(ϕ1) + C(ϕ2)) and

R(ψ)(x) = R(ϕ1)(R(ϕ2)(x)), x ∈ RN
2
0 . (B.3)

The following result of Theorem 6.3 of [6] is useful.

Lemma 11. Let M ∈ N ∩ [2,∞) and D ∈ [1,∞). There exist DNNs {ψε}ε∈(0,1) ⊂ N and a
constant c > 0 (independent of M and D) such that for all ε ∈ (0, 1), C(ψε) ≤ cM(| log(ε)| +
M log(D) + log(M)) and

sup
x1,...,xM∈[−D,D]

|R(ψε)(x1, . . . , xM )−
M∏
i=1

xi| ≤ ε. (B.4)

In our analysis, the next result will be applied.

Lemma 12. Let a ∈ R, b ∈ (a,∞), c > 0, m ∈ N ∩ [2,∞), d, L ∈ N and {ϕℓ}mℓ=1 ⊂ N be
DNNs such that for i ∈ {1, . . . ,m}, L(ϕi) = L, dimin(ϕi) = d, dimout(ϕi) = 1, C(ϕi) ≤ cdc and
supx∈[a,b]d |R(ϕi)(x)| ≤ cdc. Then, there exist {ψε,d}ε∈(0,1),d∈N ⊂ N and κ > 0 (independent of

d) such that for all ε ∈ (0, 1) and d ∈ N, we have C(ψε,d) ≤ κε−1dκ and

sup
x∈[a,b]d

∣∣∣R(ψε,d)(x)−
m∏
ℓ=1

R(ϕℓ)(x)
∣∣∣ ≤ ε. (B.5)
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Proof of Lemma 12. First we use Lemma 11. Let φ(d) := cdc. Then, there exist a set of DNNs
{Ψφ(d),ε}ε∈(0,1) ⊂ N and a constant c′ > 0 (independent ofm and φ(d)) such that for all ε ∈ (0, 1),

C(Ψφ(d),ε) ≤ c′m2ε−1dc and

|R(Ψφ(d),ε)(R(ϕ1)(x), . . . ,R(ϕm)(x))−
m∏
ℓ=1

R(ϕℓ)(x)| ≤ ε, (B.6)

for any x ∈ [a, b]d. By Lemma 8, there exists Φ ∈ N such that C(Φ) ≤ mcdc and

R(Φ)(x) = (R(ϕ1)(x), . . . ,R(ϕm)(x)), x ∈ Rd. (B.7)

By Lemma 10, there exist {ψε,d}ε∈(0,1),d∈N ⊂ N and κ > 0 such that for all ε ∈ (0, 1) and d ∈ N,
we have C(ψε,d) ≤ κε−1dκ,

R(ψε,d)(x) = R(Ψφ(d),ε)(R(Φ)(x)), x ∈ Rd, (B.8)

and

sup
x∈[a,b]d

∣∣∣R(ψε,d)(x)−
m∏
ℓ=1

R(ϕℓ)(x)
∣∣∣ ≤ ε. □ (B.9)

C Sample code

We show the sample Python code used in the numerical computation in Section 6.2.

Listing 1: model.py

1 import tensorflow as tf
2 from tensorflow. contrib. layers . python . layers import initializers
3 from tensorflow. python . training. moving_averages \
4 import assign_moving_average
5 from tensorflow. contrib. layers . python . layers import utils
6
7 import time
8
9 import numpy as np

10 import math
11 from scipy.stats import multivariate_normal as normal
12 from tensorflow.python.ops import control_flow_ops
13 from tensorflow import random_normal_initializer as norm_init
14 from tensorflow import random_uniform_initializer as unif_init
15 from tensorflow import constant_initializer as con
16
17
18 def neural_net(y, neurons, name, is_training,
19 reuse=tf.AUTO_REUSE, decay =0.9, dtype=tf. float32):
20 def batch_normalization(x):
21 beta = tf. get_variable( ’beta’, [x. get_shape()[ -1]], dtype,
22 tf. zeros_initializer ())
23 gamma = tf. get_variable(
24 ’gamma’, [x. get_shape()[ -1]], dtype,
25 tf. ones_initializer ())
26 mv_mean = tf. get_variable(
27 ’mv_mean’, [x. get_shape()[ -1]], dtype=dtype,
28 initializer=tf. zeros_initializer (), trainable= False)
29 mv_var = tf. get_variable(
30 ’mv_var’, [x. get_shape()[ -1]], dtype =dtype,
31 initializer=tf. ones_initializer(), trainable= False)
32 mean, variance = tf.nn. moments(x, [0], name=’moments’)
33 tf. add_to_collection(
34 tf. GraphKeys. UPDATE_OPS,
35 assign_moving_average(mv_mean, mean, decay,
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36 zero_debias= True ))
37 tf. add_to_collection(
38 tf. GraphKeys. UPDATE_OPS,
39 assign_moving_average(mv_var, variance, decay,
40 zero_debias= False ))
41 mean, variance = utils. smart_cond( is_training,
42 lambda : (mean, variance),
43 lambda : (mv_mean, mv_var ))
44 return tf.nn. batch_normalization(x, mean, variance,
45 beta, gamma, 1e-6)
46 def layer(x, out_size, activation):
47 w = tf. get_variable(
48 ’weights’, [x. get_shape(). as_list()[ -1], out_size],
49 dtype, initializers. xavier_initializer ())
50 return activation( batch_normalization(tf. matmul (x, w )))
51 with tf. variable_scope(name, reuse = reuse ):
52 y = batch_normalization(y)
53 for i in range (len( neurons) - 1):
54 with tf. variable_scope(’layer_%i_’ % (i + 1)):
55 y = layer (y, neurons[i], tf.nn. relu)
56 with tf. variable_scope(’layer_%i_’ % len( neurons)):
57 return layer (y, neurons[ -1], tf. identity)
58
59 def nn_model(XT, Xini, weight, K, f, neurons, dtype=tf. float32):
60
61 nn = neural_net(Xini, neurons, ’v’, True, dtype= dtype )
62 loss = (nn - tf. stop_gradient(f(K,XT)*weight) ) ** 2
63
64 return tf. reduce_mean(loss)
65
66 def simulate(Simtype, T, n, d, X_min, X_max, X_valid, K, SDE, f, neurons,

train_steps, batch_size, lr_boundaries, lr_values, epsilon=1e-8):
67
68 tf. reset_default_graph ()
69
70 Xini = tf.random_uniform((batch_size, d), minval=X_min, maxval=X_max)
71 XT, weight = SDE(Xini, T, d, n, Simtype)
72
73 loss = nn_model(XT, Xini, weight, K, f, neurons)
74
75 global_step = tf. get_variable(
76 ’global_step’, [], tf.int32,
77 tf. zeros_initializer(), trainable= False )
78
79 learning_rate = tf. train . piecewise_constant(
80 global_step, lr_boundaries, lr_values)
81 update_ops = tf. get_collection(
82 tf. GraphKeys. UPDATE_OPS, ’v’)
83 with tf. control_dependencies( update_ops):
84 train_op = tf. train . AdamOptimizer(
85 learning_rate, epsilon= epsilon). minimize(
86 loss, global_step= global_step)
87
88 with tf. Session() as sess:
89
90 sess. run(tf. global_variables_initializer ())
91 var_list_n = tf. get_collection(
92 tf. GraphKeys. GLOBAL_VARIABLES, ’v’)
93
94 for _ in range(train_steps):
95 sess. run(train_op)
96
97 v = sess.run(neural_net(tf.cast(X_valid, tf.float32), neurons, ’v’,

False))
98
99 return np.reshape(v, [-1])
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Listing 2: CEV.py

1 from model import simulate
2 import numpy as np
3 import time
4 import tensorflow as tf
5
6 def f(K, x):
7 return tf.exp(-r*T)* tf.maximum(tf.reduce_max(x, 1, keepdims = True) -K

, 0.0)
8
9 def SDE(Xini, T, d, n, Simtype):

10
11 X = Xini
12 Weight = 1.0
13
14 if Simtype == ’Euler-Maruyama’:
15 for _n in range (n):
16 dW = tf. random_normal(( batch_size , d), stddev =np. sqrt(T/n))
17 X = X + r*X*T/n + sigma *K**(1.0-beta)*X**beta*dW
18 X = tf.maximum(X, 0.0)
19
20 elif Simtype == ’AE’:
21 dW = tf. random_normal(( batch_size, d), stddev =np. sqrt(T))
22 Weight = M_weight(X, T, dW)
23 X = X + r*X*T + sigma *K**(1.0-beta)*X**beta*dW
24 X = tf.maximum(X, 0.0)
25
26 return X, Weight
27
28 def M_weight(x, T, dW):
29
30 inv = 1.0/(sigma *K**(1.0-beta)*x**beta)
31 L0V0 = r**2*x
32 L0Vi = r*beta*sigma*K**(1.0-beta)*x**beta + 1.0/2.0*beta*(beta-1.0)*

sigma**3*K**(3.0*(1.0-beta))*x**(3.0*beta-2.0)
33 LiV0 = r*sigma*K**(1.0-beta)*x**beta
34 LiVi = beta*sigma**2*K**(2.0*(1.0-beta))*x**(2.0*beta-1.0)
35 w11 = dW*dW-T
36 w001 = dW*T**2.0
37 w011 = w11*T
38 w111 = dW**3-3.0*dW*T
39
40 A = 1.0 / (2.0 * T) * tf.reduce_sum(inv * ( L0V0 * w001 + L0Vi * w011 +

LiV0 * w011 + LiVi * w111 ) ,1 ,keepdims=True)
41
42 return 1.0 + A
43
44 T, d, K = 1.0, 100, 100.0
45 r, sigma, beta = 0.01, 0.3, 0.5
46 X_min, X_max = 99.0, 101.0
47
48 grid = 10
49 X_valid = np.ones((1,d))*np.expand_dims(np.linspace(X_min, X_max, grid+1),

axis=1)
50
51 batch_size = 1024
52 train_steps = 5000
53 neurons = [2*d, 2*d, 1]
54 lr_values = [0.5 , 0.05, 0.005]
55 lr_boundaries = [train_steps // 10 * 3 ,train_steps // 10 * 6]
56
57 for Simtype in [’Euler-Maruyama’, ’AE’]:
58 if Simtype == ’Euler-Maruyama’:
59 n_range = [1,2,4,8,16,32,64,128]
60 else:
61 n_range = [1]
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62
63 for n in n_range:
64 print (’batch size, train steps, lr_values 1, lr_values 2,

lr_values 3, d, x, K, T, n, value, time, Simtype’)
65 t_0 = time. time ()
66 vv = simulate(Simtype, T, n, d, X_min, X_max, X_valid, K, SDE, f,

neurons, train_steps, batch_size,lr_boundaries, lr_values)
67 t_1 = time. time ()
68
69 for i in range(grid+1):
70 print (’%i, %i, %.1f, %.2f, %.3f, %i, %.1f, %.1f, %.1f, %i, %.6f

, %.2f, %s’ %(batch_size, train_steps, lr_values[0],
lr_values[1], lr_values[2], d, X_valid[i,0], K, T, n, vv[i],
t_1 - t_0, Simtype))

71 print(’’)
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