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Abstract

Westudy themechanismbehind thedecline in labor shareusinghighlydetailedplant-
level data on the cement industry in Japan. Using information on the production
technology in place at each plant, we find that most of the labor share decline can
be explained by new technology diffusion (introduction of the “new suspension pre-
heater kiln”). The labor share stays constant, or even slightly increases, over time
within plants with the same technology, whereas the aggregate labor share declines
as production shifts to plants with a new andmore capital-intensive technology. We
also find that the information on plant-level technology is key to rejecting other po-
tential hypotheses and thatwewould reach a qualitatively different conclusionwith-
out this information. To show this, we examine, with and without technology infor-
mation, two alternative hypotheses; (i) the decline in labor share is associated with
an increase inmarkups, and (ii) firmsexercisemonopsonypower in the labormarket.
We reject these two hypotheses with technology information butmay not without it.
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1 Introduction

The decline of the labor share has been globally observed, and many economists and
policymakers have paid attention to this phenomenon. An enormous number of studies
have investigated this issue and proposed possible explanations and hypotheses for the
decline of labor share over time, such as factor-biased technical changes (e.g., Karabar-
bounis and Neiman, 2014; Acemoglu and Restrepo, 2020; Autor et al., 2020), increased
exercise of product market power by large firms (e.g., Barkai, 2020; De Loecker et al.,
2020), declining worker power in labor relations (e.g., Stansbury and Summers, 2020;
Drautzburg et al., 2021), globalization and the rise of China (e.g., Abdih and Danninger,
2017; Sun,2020), andchanges in thecompositionof theworkforce (e.g.,GloverandShort,
2020; Acemoglu and Restrepo, 2020).1

Among these hypotheses, technology plays an important role; Needless to say, hy-
potheses related to technical changes capture this as factor-biased productivity changes
of a production function. Moreover, other hypotheses, such as product market power
and monopsony power, also hinge on technology, as markups and marginal products
of labor (MPL) often require production function estimates.2 Despite the importance of
technology,most existing studies need to assume that there is an industry-wide produc-
tion function common to all plants or need to infer the state of technological progress
from auxiliary data indirectly.3 This is because the focus of the literature has been to
quantify economy-wide effects, and the most detailed data that cover the whole econ-
omy are census data. However, evenwith census data, researchers cannot observe tech-
nology directly. The existing approachmay obscure the difference between technologi-
cal changes and other factors.

This paper precisely addresses this issue by taking a distinct and complementary ap-
1See Grossman and Oberfield (2022) for a more detailed summary of the literature.
2There are some recent papers that use an IO approach–demand estimation of differentiated products,

instead of production approach, to estimate markups or monopsony power, e.g., Grieco, Murry and Yu-
rukoglu (2021), Miller, Osborne, Sheu and Sileo (2022), and Azar, Berry andMarinescu (2022).

3For example, Acemoglu and Restrepo (2020) construct an industry-level exposure to robots, and
Aghion, Antonin, Bunel and Jaravel (2020) use the balance sheet values of industrial equipment andplant-
level records of the usage of electromotive force to proxy the degree of automation.
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proach to the existing studies. Our empirical strategy is to focus on a specific industry
and collect exact plant-level technology information, including the timing of new tech-
nologyadoption. Weshowthat “technologydiffusion” is theprimarydriverof labor share
decline by directly controlling for technology in our analysis. We also show theoretically
and empirically that plant-level technology information is key to rejecting othermarket-
power-driven hypotheses. Without the technology information, we may conclude that
themarkups andmonopsony power have increased.

Our analysis focuses on the cement industry and the diffusion of different genera-
tions of kilns, specifically from the suspension preheater (SP) kiln to the new suspension
preheater (NSP) Kiln. This industry provides us with an ideal environment because we
can observe the types of kilns that each plant uses for production. In addition, the quan-
tity and price of physical units of (homogeneous) output are observable so that we can
differentiate the market power variation from production efficiency changes as drivers
of labor share decline. Admittedly, no such detailed dataset is available that covers all
industries, but as documented in Kehrig and Vincent (2021), the macro-level decline of
the labor share is drivenbywithin-industry effects. Therefore, webelieve that unraveling
themechanism of the phenomena in a specific industry would help us drawmacroeco-
nomic implications. To ensure the generalizability of our analysis, we first confirm that
we can replicate the patterns observed in existing studies: the decline of the labor share,
an increase in industry-widemarkups paired with the decline of the labor share, and an
increased gap between labor productivity growth and wage growth.

We find that the industry-level labor share declines over time, but the labor share
slightly increaseswithin theplantswith thesameold technology. Therefore, the industry-
level labor share decline is largely explained by the fact that more andmore plants have
adopted a new andmore capital-intensive production technology.

To confirm that technology diffusion explains this trend, we employ an event study
design using observed variation in the timing of technology adoption. We examine how
labor shareandemployment respond to technologyadoption, andwefind that theyboth
start to fall after the time of adoption, which confirms that the diffusion of new tech-

3



nology drives the phenomena. We also examine the evolution of the plant-level capital-
labor ratio, andwefind that following the installation ofNSP kilns, the capital-labor ratio
discretely increases.

These findings suggest that the introduction of NSP kilns embodies the explicit tech-
nological changewithadifferent shapeofproduction functionsacrossplants rather than
a simple increase in total factor productivity (TFP). We confirm this by estimating the
production function for each technology using the control function approach consoli-
dated by Ackerberg et al. (2015). We find that the new technology is indeedmore capital-
intensive.

We then use our production function estimates to evaluate other hypotheses for la-
bor share decline and illustrate that our conclusion would be qualitatively different if
we lacked data on production technology. We estimate plant-level markups using the
methodology fromDeLoecker andWarzynski (2012) andMPL for eachplant, andwefind
thatwithout considering thedifferences inproduction technology, (i) the labor share de-
cline is paired with an increase in themarkup and (ii) the growth rate of MPL and wages
becomes increasingly disconnected. The former finding has recently attractedmany re-
searchers’ attention and has been documented in existing studies, such asDe Loecker et
al. (2020) andAutor et al. (2020). Weobserve a similar patternwhen the technology infor-
mation is missing. However, we theoretically demonstrate that the decline of the labor
share and the increase in the industry-levelmarkupoccur simultaneouslywhenproduc-
tion shifts fromplantswith relatively labor-intensive technology to plantswith relatively
capital-intensive technology. To confirm this prediction, we control for the plant-level
technology in our analysis and show that a large part of the negative correlation between
labor share andmarkups disappears. The latter pattern is well documented in the litera-
ture (for example, in Stansbury and Summers (2018)), and researchers andpolicymakers
have debated whether it is a technology-driven phenomenon or caused by some other
factors, such as decreased worker power. We find that this seemingly disconnected re-
lationship results from production technology heterogeneity, and the discrepancy van-
ishes once we control for plant-level technology.
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This paper aims to contribute to a large body of literature on labor share decline and
technological change. The decline of the labor share has been observed in many coun-
tries (Karabarbounis and Neiman, 2014) and in many industries (Kehrig and Vincent,
2021), and many researchers ascribe it to technological changes, especially computers
and industrial robots (AcemogluandRestrepo (2020), Autoretal. (2020),Humlum(2021)).
Our focus on the advancement of kilns in the cement industry during the 1970s can ad-
dress the gap between the rise in automation and ICT in the 1990s and the labor share
decline observed since the 1980s.

Furthermore, ourpapercontributes to the recent literatureon the time-series changes
inmarkups. There is a growing literature onmarket power frommacroeconomicswhere
the literature relies on the “production approach” (see Syverson (2019)). Drawing on De
Loecker andWarzynski (2012) andproduction function estimation from the IO literature
(Olley andPakes (1996), LevinsohnandPetrin (2003),Ackerberg et al. (2015)), DeLoecker
et al. (2020) estimatemarkupsduring theperiod1955-2016 for theU.S. economyandfind
that theyhave risen steadily. Similarly, Yehet al. (2022) developanewway to characterize
aggregatemarkdowns from production function estimation and quantify the long-term
trends of monopsony powers in the US manufacturing sector. Our contribution to this
literature is that we document the importance of estimation bias in market power due
to the lack of production technology information. Our findings are consistent with the
findings of Jaumandreu (2022). Given the rise of themacroeconomics approach, several
studies, such as Grieco et al. (2021) andMiller et al. (2022), re-examine findings using an
IO approach by focusing on specific industries as we do in this paper.

Finally, our paper relates to the burgeoning literature on technological change and
production function estimation. A common approach to production function estima-
tion assumes productivity as a Hicks-neutral shifter. Several authors have recently con-
sidereddepartures from this standard assumption (Doraszelski and Jaumandreu (2018),
Raval (2022), Zhang (2019), Demirer (2022)). These recent papers highlighted the im-
portance of labor-augmenting productivity and developed ways to estimate production
functions with factor-augmenting productivity change. By contrast, our paper instead
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assumes that producers have an explicitly different production function according to
their use of old or new types of kilns, aside from any productivity differences. There are
few works with this approach. Examples are van Biesebroeck (2003), who models the
choice between lean or mass production in the car industry, and Rubens (2022), who
features the introduction ofmechanical coal cutters in the 19th-century coal mining in-
dustry.

This paper is organized as follows. Section 2 describes the industry and provides the
historical background of the Japanese cement industry as well as the data used in our
empirical analysis. We propose technology diffusion to explain the decline in the labor
share in Section 3. We further examine other hypotheses proposed in the literature in
Section 4. We discuss the generalizability and robustness of our results in Section 5. Sec-
tion 6 concludes.

2 Industry Backgrounds and Data

Though themajority of the studies in the literature take a “macroeconomics” approach,
which uses census data to quantify economy-wide effects, production technology is still
unobserved in such census data. To overcome the problems associated with the unob-
servability of technology, we take a distinct approach, focusing on one specific industry,
namely the Japanese cement industry. There are three important advantages to study-
ing thecement industry: (i) theobservability ofproduction technology,which is typically
unobserved in the standard census data, (ii) the homogeneity of the product, which en-
ables us to estimate markups accurately; and (iii) a simple production process, which
enables us to estimate productivity easily through production function estimation. Of
course, onemightworry about the generalizability of our results, aswe use only one par-
ticular industry from themanufacturing sector. This concern is discussed in Section 5.

In the following subsections, we first explain the industry backgrounds, elaborate on
the aforementioned features and advantages of the industry, and describe the two data
sources that we use in this paper. We then show some key statistics.
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2.1 Industry Backgrounds: Cement and Its Production Technology

Cement is one of themost important constructionmaterials, as concrete andmortar are
made from cement. There are several types of cement. For example, Portland cement
is the most common type of cement, accounting for about 75% of cement products, ac-
cording to the Japanese Cement Association.4 They are defined by the Japanese Indus-
trial Standards and thus can be treated as homogeneous products. To produce cement,
crushed limestone, clay, and other minerals are mixed and put into a kiln to be heated.
This process yields clinker, which is an intermediate cement product and the focus of
this paper. The final procedure ofmixing ground clinkerwith gypsumproduces cement.
As demonstrated, the production process of cement is simple.

Cementkilnsare theheartof this simpleproductionprocess, and it is important forus
to understand some technical aspects of cement kilns in Japan. Prior to our sample pe-
riod, in the 1960s, the suspension preheater (SP) process was imported from Germany,
and due to its high energy efficiency, SP kilns gained popularity and took a dominant
position. Most of the newly built kilns in the 1960s were SP kilns, and in the 1970s, con-
tinuing improvements weremade by Japanese engineering firms and cement firms, and
new suspension preheater (hereinafter NSP) kilns were developed. 5 The main innova-
tion of NSP kilns is attaching pre-calciner to the SP kilns, which breaks down CaCO3 in
limestone into CaO and CO2 in an efficient way, and this feature enabled further mass
production. In our data, after 1970, almost all newly built kilns were NSP kilns, and this
homogeneity of investment also simplifies our analysis.

2.2 Data Sources

For this study,wecombine twocomplementaryplant-leveldata sources: (i)CementYear-
book (Cement Nenkan), published by the Cement Press Co. Ltd. (Cement Shinbunsha),
and (ii) Census of Manufacture, collected by the Japanese Ministry of Economy, Trade,

4See https://www.jcassoc.or.jp/cement/1jpn/jc.html (Last accessed: November 25, 2022).
5For interested readers, Shimoda (2016)hasadetaileddiscussionandexplanationof thehistoryof tech-

nology evolution in the cement industry.
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and Industry. The yearbook mainly provides plant-level information on monthly pro-
duction capacity (in tons), production output (in tons), number of workers, and owner-
ship and geographical location of the plants. In addition to these basic characteristics of
the plants, the dataset also contains the types and the number of kilns that each plant
owns, which makes this dataset special. Although the technology each plant employs is
typically unobserved in the census data, the Yearbook dataset provides such kiln-level
information. By contrast, the Census of Manufacture provides a similar but slightly dif-
ferent set of information on the plants, i.e., the total shipment value (in JPY), material
inputs (in JPY), number of employees, total wage (in JPY), investment (in JPY), and asset
values (in JPY).

Note that the sample periods for these two data sources are slightly different. We ob-
tain the former data from 1970 to 2010, whereas we obtain the latter data from 1980 to
2010 because the data from 1970 to 1979 are unavailable. We combine these two data
sources via some common variables in both data sources. We impute the plant-level
wage and material inputs before 1980 using the census data and variables that we ob-
serve throughout the entire sample period. See Appendix A for details.

2.3 Summary Statistics and Key Features

Summary statistics of our data are given in Table 1. Panel (a) presents plant-level sum-
mary statistics pooling all years, whereas Panels (b1), (b2), and (b3) present plant-level
statistics for theyears1970, 1990, and2010, respectively. Thereare some important trends
that can be found by comparing Panels (b1), (b2), and (b3).

First, the number of observations in 1970 was 53, whereas it was 30 in 2010, imply-
ing that the number of plants decreased by about 40% over 40 years. By contrast, the
number of firms in 1970 and 2010 was 22 and 18, respectively, implying that most firms
concentrated their production on a single plant or a small number of plants in 2010. Al-
though the number of plants decreased sharply,monthly capacity, defined as howmuch
clinker a plant can producewhen operating for 600 hours permonth, and annual clinker
production per plant have increased over 40 years so that industry-level capacity and
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Table 1: Summary Statistics
Num. of Obs. Mean Std. Dev. Min. Max.

Panel (a): Plant-Level Statistics (All)
Monthly Capacity (tons) 1,748 188,716 124,935 18,180 696,250
Annual Clinker Production (tons) 1,748 1,742,626 1,293,791 0 8,082,269
Average Cement Price (JPY/ton) 1,748 10,375 2,580 5,800 17,075
# of Workers (person) 1,672 193 140 16 1303
AverageWage perWorker (JPY) 1,748 4.34 1.43 .928 13.77
Share of NSP Kilns 1,738 .549 .429 0 1
Panel (b1): Plant-Level Statistics in 1970
Monthly Capacity (tons) 53 128,396 80,840 25,000 350,000
Annual Clinker Production (tons) 53 1,025,507 621,417 48,000 2,684,197
Average Cement Price (JPY/ton) 53 5,965 202.0 5,800 6,900
# of Workers (person) 53 318 175 114 1,205
AverageWage perWorker (JPY) 53 2.32 .527 .928 3.62
Share of NSP Kilns 53 0 0 0 0
Panel (b2): Plant-Level Statistics in 1990
Monthly Capacity (tons) 41 178,472 111,121 30,000 553,417
Annual Clinker Production (tons) 41 1,836,281 1,160,588 255,000 5,428,197
Average Cement Price (JPY/ton) 41 11,550 1,375 9,600 13,200
# of Workers (person) 41 169 94.4 57 560
AverageWage perWorker (JPY) 41 4.47 .571 2.83 5.41
Share of NSP Kilns 41 .750 .379 0 1
Panel (b3): Plant-Level Statistics in 2010
Monthly Capacity (tons) 30 165,567 127,285 36,167 557,083
Annual Clinker Production (tons) 30 1,561,800 1,321,220 276,000 6,169,000
Average Cement Price (JPY/ton) 30 10,076 471.0 9,000 10,900
# of Workers (person) 30 104 65.5 34 371
AverageWage perWorker (JPY) 30 5.98 .842 4.32 7.91
Share of NSP Kilns 30 .861 .300 0 1

Note: Thenumber of observations for thenumber ofworkers is 1,672 inPanel (a), because theCement
Yearbook in 1976 does not provide the number of workers.

production have decreased only slightly.
Second, the fraction of the number of NSP kilns has increased considerably. There

were no NSP kilns in 1970, whereas the old kilns were mostly replaced by NSP kilns over
40 years. To further see the change in cement production technology, Figure 1 graph-
ically shows the absolute number of kilns and share, by technology, i.e., types of kilns,
over time. In 1970, the initial year of our sample period, there were about 220 kilns, the
majority of whichwere kilns of old types. SP kilns accounted for less than 20%, and there
were no NSP kilns. During the 1970s, however, NSP kilns dramatically increased their
popularity, maintaining their dominant position after the 1980s. In our main analysis,
we explore the labor sharewith andwithout controlling for this technology information.
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Figure 1: Diffusion of Technology

Third, the number of workers has decreased sharply; the average number of work-
ers per plant in 1970 was 318, whereas it was 104 in 2010. Figure 2 plots the plant-level
number of employees over time together with linear fitted values. Though we observe
substantial heterogeneity in plant size, the number of workers decreased for all plants
over time. This decrease in the number of workers means that the labor productivity—
measured in output per worker—also increased over 40 years, as we see that the plant-
level clinker production has increased. By contrast, though the average wage also in-
creased over time, the change in the average wage is not as large as the change in labor
productivity. These facts raise a couple of questions: whether this reduction in the num-
ber of workers was driven by the adoption of new technology and whether the gap be-
tween growth in labor productivity and wages was due to increased monopsony power
of firms in the labor market.

3 Decline of Labor Share and Technology Adoption

In this section, we first present the labor share patterns in the data, which exhibit sim-
ilar features as in existing studies. Then we argue that the new technology adoption is
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Figure 2: Number of Workers per Plant Over Time

Note: This figure plots the plant-level number of employees over time
together with a linear fitted value.

the main driver of the decline of labor share and offer evidence by implementing our
event-study design analysis. Finally, we show that new technology adoption comes with
a change in the shapeof production functionby estimating theproduction functionwith
informationonplant technology. More specifically, we show that cementproductionbe-
comesmore capital-intensive when plants adopt new technology.

3.1 The Decline of Labor Share and New Technology Adoption

Wefirst plot the industry-level labor share, defining the labor share as the totalwagepay-
ment divided by themonetary value of total output.6 In Figure 3, each dot represents the
labor share for each year and the gray line represents the smoothed nonparametric fit.

The industry-level labor share falls over our sample period with a sharper decline
when the new technology diffuses between 1973 and the early 1980s, as we see in Figure
1. The presented labor share is very low. This is due to two factors. First, our definition of
labor share is based on the total output value rather than the value added. We perform

6As the Census data are available only after 1980, we compute the labor share using the data in the Ce-
ment Yearbook. More specifically, the total wage payment is computed as the number of employees mul-
tiplied by the average wage and the monetary value of total output is computed as the output multiplied
by the average cement price in that region.
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Figure 3: Industry-level Labor Share

thesameexercisewithvalue-addedas thedenominator, andweconfirmqualitatively the
same results with a higher level of labor share, around 10%.7 Second, the cement indus-
try is a heavy equipment industry, and, by its nature, the labor share is lower compared
with other industries.

At the firm level, output shifts fromhigh labor-share plants to low labor-share plants.
Figure 4 plots the histogramof the share of output on the vertical axis and the plant-level
labor share on the horizontal axis for the years 1975, 1985, 1995, and 2005. From 1975 to
2005, the distribution shifted from the right to the left, which implies that the production
shifted from plants with a high labor share to plants with a low labor share.

The virtue of our approach is thatweobserve the exact technologyused at eachplant.
Toquantifyhowmuchthediffusionofnewtechnologycontributes,we replicate theanal-
ysis in Figure 3 conditional on the plant-level technology. In Figure 5, weplot the average
labor share within plants with new technology (the dotted line), the average labor share
within plants with old technology (the dashed line), and the industry-level labor share
(the solid line). The last line, the industry-level labor share, corresponds to the solid line

7Here, value added is defined as the monetary value of total output minus the material expenditure.
Since thematerial expenditure is only present in the census data, we use the imputed value for the 1970s.
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Figure 4: Plant-level Production Share and Labor Share

1975 1985

1995 2005

in Figure 3. Interestingly, the labor share does not fall within the same technology plants
as thedashedanddotted lines stay relativelyflat. However, the industry-level labor share,
the solid line, falls rapidly as new technology diffuses because thenew technology plants
have a lower labor share. Figure 5 clearly shows that the decline of labor share is associ-
ated with the new technology diffusion.

To assess the argumentmore quantitatively in a descriptivemanner, we estimate the
following equations using the plant-level labor share by ordinary least squares (OLS);

LaborShareit = β0 + β1t+ β21{NSP Kilnsit} + Fi + εit,

where i is a plant index, t denotes year, 1{NSP Kilnsit} is a dummy variable taking one if a
plant owns at least one NSP kiln in year t and zero otherwise, Fi is a plant fixed effects,
βs are the parameters to be estimated, and εit is an independent error term. Here, we
are interested in the estimated coefficient on t, i.e., β1. We expect that β1 would be es-
timated as negative when we do not control for the plant-level technology because the
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Figure 5: Labor Share Conditional on Plant-level Technology

industry-level labor share declines over time. By contrast, we expect that β1 would be
estimated near zero or positive when we control for the plant-level technology. Table
2 summarizes the estimation results and confirms our expectations. The first column
presents the results without control for technology, and the coefficient on year is esti-
mated as negative and statistically significant. In the second column, once we control
for the technology, the significance of β1 disappears. However, we now find that the co-
efficient on an NSP kiln dummy, β2, is estimated as negative and statistically significant,
implying that a plant introducing NSP kilns has a lower labor share. When we further
control for the plant fixed effects, the estimates become positive and statistically signif-
icant. These results are consistent with Figure 5. To quantify the economic significance
of the results in the third column, we replace the left-hand-side variable with the loga-
rithmof labor share, which allows us to quantify the percentage change easily. The result
is presented in the fourth column, suggesting that the labor share increases at the plant
level by 0.6% every year. Themagnitude is not very large but not negligibly small.

Note that the labor share here is computedusing the data from theCement Yearbook.
Evenwhenweuse thevalue-addedvariables in thecensusdata,weobtain the samequal-
itative results.

14



Table 2: Time Trend of Labor Share

(i) (ii) (iii) (iv)
Dependent Var. Labor Share Labor Share Labor Share log(Labor Share)
Year (β1) -1.13×10−3 ∗∗∗ -2.42×10−4 3.71×10−4 ∗∗∗ 0.006∗∗∗

(0.0157×10−3) (0.0176×10−3) (0.0880×10−3) (0.001)

NSP kiln dummy (β2) -0.0474∗∗∗ -0.0244∗∗∗ -0.389∗∗∗
(0.00469) (0.00302) (0.0301)

Constant √ √ √ √

Plant fixed effects √ √

N 1,673 1,673 1,673 1,673
Standard errors in parentheses
Other Controls includes a constant term.
* (p < 0.10), ** (p < 0.05), *** (p < 0.01)

3.2 Evidence from Event Study Design

We further zoom into the plant-level changes in variables to confirm that our findings in
the previous sections are driven by technology diffusion. To this end, we take advantage
of the richness of our data, i.e., we can observe the timing of new technology adoption.
Using the variation in the timing of technology adoption, we employ an event study de-
sign, i.e., difference-in-differences with leads and lags of treatment variable. Formally,
we adopt a method proposed by Callaway and Sant’Anna (2021). Here, the adoption
of NSP kilns is the “treatment,” we estimate the average treatment effect on the treated
(ATT) for each treatment cohort. ATT after τ years from the treatment for the plants that
adopted NSP kilns in year t is identified as:

ATT(t, τ) = E

 Git

E[Git]
−

pt(Xi,t−1)Cit
1−pt(Xi,t−1)

E
[
pt(Xi,t−1)Cit
1−pt(Xi,t−1)

]
 (yi,t+τ − yi,t−1)

 , (1)

whereGit is one if plant i adopts NSP kilns in year t and zero otherwise,Cit is one if firm i

never adopts or has not yet adopted NSP kilns and zero otherwise, pt(Xi,t−1) is the prob-
ability that plant i adopts NSP kilns in year t conditional onGit = 1 or Cit = 1, and yiu is
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the outcome variable of plant i in year u.8 We define ATT τ years from the treatment as
the weighted average of ATT(t, τ) as:

ATT(τ) =
∑
t

wtATT(t, τ),

where wt denotes the weight, which is the number of plants treated in year t divided by
the total number of treated firms.

We estimate ATT(t, τ) by replacing the expectation with the empirical average, and
pt(Xi,t−1), the propensity score, by estimating a probitmodel. ForXi,t−1, we use the loga-
rithmof plant i’s total capacity, production quantity, andmonetary value of total output,
and we estimate a separate probit model for each year.

First, Figure 6 plots the evolution of plant-level labor share relative to the timing of
the new technology adoption. The estimated coefficient for the year before the adop-
tion (t = −1) is normalized to be zero by construction. The x-axis shows the years rela-
tive to the year of NSP adoption and the y-axis shows the estimated ATT. Here, the year
of NSP adoption is identified by the year the plant installed its first NSP kiln.9 The solid
line presents the estimated ATT and the gray dotted lines represent a 90% confidence
interval. The confidence interval is constructed by the bootstrapmethodwith 200 repli-
cations. When we look at the solid line, the labor share starts to decline after the tech-
nology adoption. However, the decline is not immediate. Rather, it takes several years.
After four years of adoption, the labor share remains below the preadoption level with
statistical significance.

To decompose the effects into the changes in the numerator and denominator of la-
bor share calculation, we first look at employment and wages. Panel (a) of Figure 7 plots
the evolution of plant-level (log) employment relative to the timing of new technology

8CallawayandSant’Anna (2021)propose tousenever treated individuals as the control group. However,
it is not feasible in our context because the number of plants that never adopted NSP kilns is too small to
derive any meaningful inference. In addition, they provide computer codes for Stata and R to implement
the estimation and provide the option to use never-treated and not-yet-treated individuals as the control
group.

9A plant typically has multiple kilns, and the adoption of NSP kilns is typically gradual, i.e., each plant
replaces one or two of its kilns first and then replaces the remaining kilns over time.
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Figure 6: The Effects of Adoption of New Technology on Plant-level Labor Share

adoption. In contrast to the labor share, the number of employees decreases evenmore
gradually and the estimated effect becomes statistically significant after 9 years of the
new technology adoption. In the long run, the number of workers decreases by 15% im-
plying that the change in the number of workers is one of the drivers of the decline in the
labor share. By contrast, there is no clear difference between the treated group and the
control group in terms of wage growth as in Panel (b) of Figure 7.

Another driver of the labor share decline is the total output, the denominator of la-
bor share calculation. Panel (c) of Figure 7 plots the evolution of plant-level (log) total
output value relative to the timing of new technology adoption. Unlike the number of
workers, output responds to the adoption relatively quickly and increases substantially.
It also grows gradually over time after the initial jump. The growth of output, together
with the decline in the number of workers implies that labor productivity has increased.
As theNSPkiln adoptionhasno effect onwage growth, such an increase in labor produc-
tivity translates into the labor share decline. Onemayworry that the change is driven by
the change in the cement price. If a new technology produces higher-quality output,
this may be a valid concern. However, in the cement industry, the output quality is ho-
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Figure 7: The Effects of Adoption of New Technology on Plant-Level Outcomes

(a) NumWorkers (b) Wage Growth

(c) Total Output Value (d) Output

(e) Capacity (f) Capital-Labor Ratio

mogeneous, and it is hard to believe the cement price varies based on the technology.
To confirm that the change is attributed to output quantity rather than price, we esti-
mate the same equation with output quantity in Panel (d). The estimates in Panels (c)
and (d) are almost identical, suggesting that the denominator of labor share calculation
increases due to higher real labor productivity.
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Whydoes laborproductivity, definedasoutputperworker, increasewithoutanychange
inwage growth? To answer this question,weplot the evolutionof plant-level (log) capac-
ity relative to the timing of new technology adoption in Panel (e) of Figure 7. Capacity
increases right after the adoption and stays at a higher level compared with the pread-
option period. Similarly, Panel (f) of Figure 7 plots the evolution of plant-level capital-
labor ratio relative to the timing of new technology adoption. As implied by the results in
Panels (b) and (e), the capital-labor ratio increases, which suggests that the production
technology andoptimal capital-labor ratio are different betweennon-NSPkilns andNSP
kilns.

Overall, all the results are consistent with the hypothesis that the adoption of NSP
kilns causes a decline in labor share. They also suggest the mechanism behind the de-
cline. The production technology of NSP kilns is different from the old-type kilns and
ismore capital-intensive. More capital-intensive production technology increases labor
productivitywithout affectingwagegrowth, and, as a result, aplanthasmoreoutputwith
fewer wage bills, which translates into a lower labor share.

3.3 Technology Adoption and the Shape of the Production Function

Our findings in the previous subsection—the decline of labor share in tandem with the
increase in capital-labor ratio after new technology adoption—are very difficult to ra-
tionalize if the new technology simply increases TFP. Then, what are the implications of
thesefindings forproduction function? The recent literatureon factor-augmenting tech-
nical changes, such as Doraszelski and Jaumandreu (2018), Zhang (2019), Raval (2022),
andDemirer (2022), suggests that our findingsmay be explained by incorporating labor-
augmenting technical changes. Although we could employ such an approach, we adopt
amore straightforward one. Taking advantage of the data where we can directly observe
technology for each plant, we estimate production functions separately by technology
because it ismorenatural to assume that the shapeofproduction functionsdiffers across
technologies.
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Here, we assume that the production function takes a Cobb-Douglas form:

Yit = AitK
βτk
it L

βτl
it ,

where Yit is the quantity of the output,Ait is the TFP,Kit is the physical capacity,Lit is the
total wage payment, and (βτk , β

τ
l ) is a set of parameters to be estimated for technology

τ , τ ∈ {old, new}. We estimate the value-added production function that is considered
by De Loecker and Scott (2016), Ackerberg et al. (2015), and Gandhi, Navarro and Rivers
(2020). This usage of the value-added production function can avoid potential identifi-
cation problems regarding intermediate inputs.

The specification is written as

yit = βτkkit + βτl lit + ωit + εit

where each lowercase variable is in the form of a logarithm, ωit is an unobserved pro-
ductivity shock, and εit is the unanticipated shock to output. We control the unobserved
productivity shockwith a control functionwith the value of investment iit as inOlley and
Pakes (1996) and Ackerberg et al. (2015):

ωit = hτ (kit, iit).

The estimation procedure consists of two stages. First, we nonparametrically estimate

yit = φτ (kit, lit, iit) + εit,

whereφτ (kit, lit, iit) = βτkkit+β
τ
l lit+h(kit, iit). Given theproductivityprocessωit = g(ωit−1)+

ξit andωit = φτ (kit, lit, iit)−βτkkit−βτl lit fromthefirst stage,weestimate a set ofparameters
θ including βτk and βτl using the followingmoment condition:

E[ξit(θ)(iit−1, kit, lit−1)
′] = 0.

Table 3 summarizes the estimation results. Column (i) demonstrates the resultswhen
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Table 3: Production Function Estimates With andWithout Technology Information

(i) (ii) (iii)
Pooling Separately Pooling

Both Technologies Old Tech New Tech Both Technologies
βk 0.971 0.778 0.907 0.872

(0.110) (0.110) (0.085) (0.071)
βl 0.184 0.259 0.099 0.237

(0.140) (0.103) (0.096) (0.094)
β0 (TFP Gain) - - 0.106 0.060

- - (0.710) (0.103 )
N 1,408 1,408 1,408

we estimate the labor and capital coefficients by pooling all plants regardless of their
technology:

yit = βkkit + βllit + ωit + εit,

whereasColumn(ii)demonstrates the resultswhenweestimate themseparately foreach
technology via introducing kiln-type dummies and their interaction terms with other
variables to obtain output elasticities by kiln types:

yit = βoldk kit + βoldl lit + 1{NSP Kilnsit}(β0 + βnewk kit + βnewl lit) + ωit + εit. (2)

Standard errors are calculated by the bootstrapmethod with 200 replications.
Whenweestimate themodel bypooling all plants, βk is close to 1, and βl is about 0.18,

implying that technology exhibits economies of scale. By contrast, whenwe estimate the
model separately for each technology, as inColumn (ii), capital and labor coefficients are
0.778 and 0.259 for old technology and 0.907 and 0.099 for new technology, respectively,
implying that both technologies no longer exhibit economies of scale. One of the rea-
sons for technology exhibiting economiesof scalewhenestimating themodel bypooling
both technologies is omitted variable bias. As mentioned in Section 2, NSP kilns tend to
be larger in size and have higher TFP (more efficient) than the older types of kilns. Thus,
if we do not control for the TFP gain of new technology, 1{NSP Kilnsit}β0 in Equation (2), we
would have an upward bias for capital and labor coefficients, as there are positive cor-
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relations between the TFP gain and labor input and between the TFP gain and capital
input.

Coming back to the results in Column (ii), as we expect, the new technology is more
capital intensive, whereas the old technology is more labor intensive. We indeed test
a hypothesis thatH0 : βkold = βknew and reject the null hypothesis at the 10% significance
level. Therefore, profit-maximizingplantswouldneed less labor, which results in a lower
level of labor share. When more plants adopt new technology, the industry-level labor
share falls consequently.

One natural concern is that we may reach the same conclusion by just including the
technology dummy in the production function. To address this concern, we check how
the estimated production function would change by including technology fixed effects,
and the estimated results are presented in Column (iii). First, note that the scale param-
eter, i.e., βk + βl, is about 1.15 in Column (i), whereas the scale parameter is close to 1 in
Column (ii) of Table 3 . Because new technology plants are more efficient (higher TFP)
and have a larger capacity, ignoring the technology information creates an upward bias
in the scaleparameter as theplant size is seemingly correlatedwith efficiency. With tech-
nology fixed effects but with a single input elasticity for capital and labor (Column (iii)),
the scale parameter is in between these, about 1.1, suggesting that the bias is at least
partly mitigated. Interestingly, both the estimated capital coefficient and labor coeffi-
cient also fall between the estimated coefficients for old and new technology reported
in Column (ii), suggesting that it is still different from our specification. These results
indicate that technology fixed effects alone are not enough to capture the difference in
technology.

4 Alternative Hypotheses and the Role of Technology In-
formation

As the decline of the labor share has attracted huge attention from both researchers and
policymakers,manyalternativeexplanationshavebeenproposed in the literature. Gross-
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man and Oberfield (2022) classify the existing hypotheses into five types: factor-biased
technical changes, the increasedexercise of productmarket powerby largefirms, declin-
ing worker power in labor relations, globalization and the rise of China, and changes in
the compositionof theworkforce. In this section,we examine these alternative hypothe-
ses in the presence of technology information.

4.1 The Increase inMarkups

There is a growing interest inhowconcentration affectsmacroeconomic conditions, and
there are a number of studies that show that the increase in markups is paired with the
decline of labor share. The literature follows the methods proposed by De Loecker and
Warzynski (2012) andDeLoecker et al. (2020) and estimatesmarkupsusing aproduction
function approach, assuming the optimality of variable inputs. Recently, a few stud-
ies (e.g., Raval, 2022; Doraszelski and Jaumandreu, 2019) have questioned whether the
markup implied from cost minimization captures the actual product-level markups ac-
curately. In thispaper,wefindanotherpotential factor thatmaybias theestimatedmarkups:
the lack of information on plant- or firm-level technology. We find that, in the absence
of technology information, the adoption of more capital-intensive technology at some
plantswould lead to anoverestimationof their plant-levelmarkups implied by costmin-
imization. Thus, as more andmore plants switch to the new production technology, the
industry-level markupwould be overestimated, as if the labor share decline is caused by
the increasingmarkups.

4.1.1 The Role of Technology Information

Let us first provide an example to highlight themechanismbywhich the lack of informa-
tion on the technology would lead to a bias in the industry-level markup. Consider an
environment where firm i has a production technology characterized by Yi = AiK

βk
i L

βl
i .

In addition, suppose firm i faces a demand curve characterized by Pi(Qi) = ξiQ
−ε
i where

ε < 1. The labor market is competitive with wage level w, and each firm maximizes its
profit by choosing its optimal level of labor input. Firm i solves the followingmaximiza-
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tion problem:
max
Li

Pi(Qi)Qi − wLi subject to Qi ≤ AiK
βk
i L

βl
i .

In this environment, we can analytically solve for the markup firm i charges. The corre-
sponding cost minimization problem to the abovementioned profit maximization is

min
Li

wLi subject to Yi ≥ Q.

Thefirst-order conditionof this problemgivesus ananalytical expressionof themarkup,
which is given by

Markupi = βl
PiYi
wLi

=
1

1− ε
.

Note that this markup is constant and solely depends on the demand elasticity ε. In this
environment, researchers can easily estimate themarkupwhen βl is estimable. As Pi, Yi,
Li, and w are in the data, firm i’s markup can be estimated with an estimate of βl, β̂l, by

Markupi
∧

= β̂l
PiYi
wLi

.

The industry-level markup can be estimated by the weighted average of the firm-level
markups by

Markup
∧

=
∑

ωiMarkupi
∧

,

where ωi is an appropriate weight (such as the share of sales).
Now, furthermore, consider a case where there are two different types of firms. One

type of firm has labor(material) intensive production technology characterized by Yi =
AiK

βNk
i L

βNl
i and the other type of firm has capital intensive technology characterized by

Yi = AiK
βOk
i L

βOl
i , where βNk > βOk and βOl > βNl . Even in this case of heterogeneous

technologies, the markup is constant, 1/(1 − ε), regardless of production technology at
each plant. Suppose the researchers do not have direct information on the production
technology each firm uses and estimate a single production function, a single value for
βk and βl, by pooling all the observations. Let β̃l be an estimate from such a misspeci-
fied model. When β̃l is used to estimate the firm-level markup, the estimated firm-level
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markups would be biased because

Markupti
∼

= β̃l
PiYi
wLi

= β̃l
βtl
βtl

PiYi
wLi

=
β̃l
βtl

1

1− ε
,

where t ∈ {N,O} denotes the type of firms. As βOl > βNl , the estimated markups for
each technology under this misspecification would be different and have the relation-
ship,MarkupOi
∼

<MarkupNi
∼

, even though themarkups in this environmentmust be iden-
tical and only depend on the demand elasticity, ε. In addition, if β̃l ∈ (βNl , β

O
l ), then

themarkup is downward biased for labor-intensive firms and upward biased for capital-
intensive firms.

In an environment with heterogeneous technologies, as firm-level markups are con-
stant across firms, the industry-level markup would also be constant. When production
shifts from plants with labor-intensive technology to plants with capital-intensive tech-
nology, themisspecifiedmodelwould lead to an increase in the estimated industry-level
markup because the estimated industry-level markup is a weighted average of the es-
timated firm-level markups and MarkupOi

∼
< MarkupNi
∼

. If researchers had the firm- or
plant-level technology information, such an issue would not arise, i.e., if the model is
correctly specified and a production function is separately estimated for each technol-
ogy, the estimatedmarkups for both firm-level and industry-level would be constant.

This example matches the data pattern observed in the Japanese cement industry
well; there are labor-intensive (old types of kilns) and capital-intensive (NSP kilns) tech-
nologies, and production has shifted to plants with NSP kilns because more and more
plants adopt NSP kilns. Therefore, a natural concern arises that we would reach a qual-
itatively different conclusion as to whether a rise in markups is the main driver of labor
share decline when we have or do not have plant-level technology information.

4.1.2 The Estimation of Markup

Given the aforementioned potential concern, we examine how the estimated markups
change over time with and without controlling for the plant-level technology. For this
purpose, we first hypothetically assume that we do not observe plant-level technology
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and followDe Loecker et al. (2020) to estimate the industry-levelmarkups. Then, we use
the estimation results in Section 3 and estimate markups taking into account the plant-
level technology. The difference between these two tells us how the estimated markups
are affected by the technology information.

For the casewithout technology information, again, we assume aCobb-Douglas pro-
duction function as

Yit = AitK
βkt
it L

βlt
it , (3)

whereweallowtheshapeof theproduction function tochangeover timeas inDeLoecker
et al. (2020), i.e., βk and βl now depend on time t as well. The corresponding cost mini-
mization problem is written as

min
K,L

rtKit + wtLit subject to Yit ≥ Q,

and the impliedmarkup is
Markupit = βlt

PtYit
WtLit

. (4)

Further following De Loecker et al. (2020), we modify the production function in Equa-
tion (3) and take the material input into the production process as a fixed-proportion
(Leontief) technology. Formally, we consider the following production technology:

Yit = min{βmtMit, AitK
βkt
it L

βlt
it },

where βmtMit captures thematerial contribution to the final output. This specification is
used commonly in the literature and is employed by not onlyDe Loecker et al. (2020) but
also other studies, including Ackerberg et al. (2015) and Gandhi et al. (2020). Under this
specification, themarkup that takes into account thematerial input can be expressed as

MarkupMit =
1

Markup−1it + PMMit

PtYit

, (5)

where Markupit is the markup estimates from Equation (4) and PMMit is total material
spending. For the case with technology information, we follow the same steps and use
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the estimates in Table 3.
Figure 8 plots the industry-level markups with and without controlling for the plant-

level technology. Whenwe do not control for the technology as in the solid line, the esti-
matedmarkup increases by 60 percentage points, from 1.6 in 1973 to 2.2 in 2000, during
the period when the new technology diffuses and production shifts to plants with new
technology. By contrast, the estimatedmarkup after controlling for the plant-level tech-
nology stays around 1.6 for the corresponding period. These contrasting plots, again,
highlight that availability of information on technology could change the result and its
implicationsqualitatively. Note that allowing theproduction function todependon time
does not help control the technology difference. 10

Our results are consistent with the recent findings of Demirer (2022), Raval (2022),
and Jaumandreu (2022); Though they do not directly observe technology information,
theyaccount for technologicaldifferencesacrossfirms indirectly through labor-augmenting
productivity and find relatively stable markups over time. In particular, we have simi-
lar quantitative results as those of Demirer (2022). Using the manufacturing industries
in the US, he finds that the aggregate markup has risen from 1.3 in 1960 to 1.45 in 2012,
though theaggregatemarkuphas increased furtherwithoutcontrolling for labor-augmenting
productivity.

These studies and our study complement each other. Our results give support for
their findings by highlighting the importance of technological changes in production,
and their studies provide ways to reconcile these technological changes whenwe do not
haveaccess to technology information toderive implicationsonmarkups. Analternative
way to take heterogeneity explicitly into account as a latent variable and incorporate it
into a structural model is considered by Kasahara, Schrimpf and Suzuki (2022).

10We may expect that estimating a time-dependent production function captures the “average” tech-
nology in a given moment of time. When we compute the industry-level markups, we weigh each ob-
servation based on output weights. For markup calculation with a single production function, the pro-
duction function needs to capture the “weighted” average technology (weighted by the same weight as in
themarkup calculation). However, with amoment-based estimationmethod, each observation has equal
weightwhencomputing themoment condition. Therefore, the estimatedproduction functionwould cap-
ture the average technologybasedona simple average (basedon thenumberof plantswithold technology
and the number of plants with new technology). This discrepancy results in the discrepancy in the esti-
matedmarkups with and without technology information.
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Figure 8: MarkupsWith andWithout Technology Information
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4.2 Growing Dispersion between Labor Productivity andWage

As documented in Stansbury and Summers (2018), several studies find that wedges be-
tween the growth rate of wages and the growth rate of the MPL have been increasing.
The literature proposes a few explanations, e.g., a technology-driven explanation and
an explanation related to worker power, such as increased monopsony power of firms
and decreased bargaining power of workers. Although our findings so far are consistent
with the technology-driven explanation, this subsection examines whethermonopsony
power exists in the industry.

Wefirstpresentdescriptiveevidence followingKehrigandVincent (2021),whichclaims
that monopsony power is not likely to drive the decline of labor share, by examining the
relationship between labor share, labor productivity, andwages. On the one hand, if our
main hypothesis—technological diffusion drives the changes in the labor share—is true,
then the labor share should be explained by technology. As new technology ismore cap-
ital intensive, labor productivity is higher for the new technology firms, and thus, labor
productivity should be negatively correlated with labor share, whereas the wage and la-
bor share should have no correlation. On the other hand, if monopsony power exists,
firms suppress wages, which results in a negative correlation between the wage and la-
bor share and no correlation between labor productivity and labor share.

Figure 9 provides direct evidence to test these hypotheses. The left panel of Figure
9 plots plant-level labor productivity (defined as total output value divided by the total
wage payment) on the vertical axis and plant-level labor share on the horizontal axis to-
gether with a nonparametric fitted line. There exists a clear and negative relationship
between labor productivity and labor share, suggesting that the low labor-share plants
benefit fromhigher labor productivity. The right panel of Figure 9 plots plant-level aver-
age wage on the vertical axis and plant-level labor share on the horizontal axis together
with a nonparametric fitted line. In contrast to the left panel, the fitted line ismostly flat,
and there is no clear relationship between these two variables. The “no-relationship”
indicates that the low labor-share plants do not suppress the wages of their employees.
Putting both panels together, the data do not support the view that the decline of labor
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share is caused by suppressed wages due tomonopsony power or decreased bargaining
power of employees.

Figure 9: Plant-level Labor Share, Labor Productivity and AverageWage

Labor Productivity Wage

The analysis presented above is largely based on a simple measure of labor produc-
tivity, which is affectedby various factors. Because thewage equalsMPL in a competitive
environment, amoreappropriateandeconomic theory-orientedapproach is toestimate
MPL from an economic model and compare it with the wage. In the following analysis,
we take this approach; we estimate the production function and quantify the evolution
of MPL over time and compare it with the evolution of wage growth.

Here, the technology information is key. Asdiscussed inSection4.1, production func-
tion estimation without technology information may cause bias. With a similar mecha-
nismas in themarkupdiscussion, suchbiasmay further result in a qualitatively different
conclusion on MPL. To address such concerns, it is crucial to examine the relationship
betweenMPL and wages with and without technology information.

Formally, we again consider the following production function;

Yit = AitK
βkt
it L

βlt
it ,

where Yit is the physical unit of the output, Ait is the TFP,Kit is the physical capacity, Lit
is the total number of employees, and βkt and βlt are the parameters to be estimated. The
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profit-maximizing plant solves the following problem;

max
Lit

PtYit −WtLit,

where we assume the labor input is the only variable input. The first-order condition of
the problem induces

Wt = βlt
PtYit
Lit

= MPLit.

Here, researcherscanestimateMPLbysubstitutingβltwithanestimate, β̂lt. The industry-
level MPL is then estimated by the weighted average of the firm-level MPL as

MPLt =
∑
i

ωitMPLit.

In this environment, as long as the labor market is competitive, theMPL, both at the
firm level and the industry level, and the wage should grow at the same rate. However,
as in the example in Section 4.1, the estimated MPL would be biased if different tech-
nologies co-exist and researchers do not have direct information on the firm-level tech-
nology. As production reallocation occurs, the industry-levelMPLwould fluctuate inde-
pendently of the wage growth.

Figure 10 plots the growth of industry-level real wage and MPL. On the one hand, in
Panel (a), we plot them using all the data pooled and not controlling for the technology
at each plant. As is clear from the plot, the growth rate of the real wage andMPL diverge
during the period when the new technology diffuses in the industry. In a typical dataset
where we do not observe technology clearly, we would reach the same observation as in
the literature and find wage andMPL diverging.

On the other hand, Panel (b) plots the same variables, but the production function
is estimated using plants with the same technology. The plots differ from those of Panel
(a). After controlling for plant-level technology, wage growth andMPL growth are more
closely aligned. When production shifts from labor-intensive plants to capital-intensive
plants, if we do not control for the technology of the plants, the growth ofMPL is overes-
timated, which leads to a seemingly disconnected relationship. By contrast, in Panel (b),
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there is still some difference between the two variables, but these two variables grow to-
gether at a similar rate overall. These results highlight the importance of controlling for
the technology todraw implications fromdata and theusefulness of our complementary
approach.

Figure 10: Growth of Real Wage andMPL

(a) With Pooled Data (b) With Technology Controlled

4.3 Labor Share Decomposition

Thus far, we test two main alternative hypotheses on labor share decline proposed in
the literature and show that, in the presence of technology information, these hypothe-
ses can be rejected. To examine our hypothesis—the labor share decline is caused by
technology diffusion— from a different angle, we now quantify the impact of technol-
ogy adoption on the labor share by decomposing the change in the labor share into a
technology-related component and a market-power-related component that includes
market power in theproductmarket andmonopsonypower (market power in labormar-
kets).

The labor share can be expressed as

LS ≡ wL

PQ
=

wL

wL+ rK + π
=

wL
wL+rK

1 + π
wL+rK

=
βl

1 + π
wL+rK

,

where π is the total profit, defined as π = PQ− (wL+ rK), and βl is a labor coefficient of
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production function, Then, the change in labor share is given as

LS ′ − LS =
(wL)′

(wL)′ + (rk)′ + π′
− wL

wL+ rK + π
,

=

(wL)′

(wL)′+(rk)′

1 + π′

(wL)′+(rk)′

−
wL

wL+rK

1 + π
wL+rK

,

=
β′l

1 + π′

(wL)′+(rK)′

− βl
1 + π

wL+rK

,

=

(
β′l

1 + π′

(wL)′+(rK)′

− βl

1 + π′

(wL)′+(rK)′

)
+

(
βl

1 + π′

(wL)′+(rK)′

− βl
1 + π

wL+rK

)
.

The first term corresponds to the change in labor share due to the change in technology
(the change in labor coefficient in production function), whereas the second term cor-
responds to the change in labor share due to the change in market power. Moreover, βl
corresponds to the labor share for old technology in our production function estimation,
whereas β′l corresponds to the labor share for new technology.

Figure 11 demonstrates the result of labor share decomposition. The solid line plots
the actual evolution of the labor share, which coincides with Figure 3. The dashed line
plots thecontributionof the technologyadoption to thechange in the labor share,whereas
the dotted line plots the contribution of the change in profit. First, as discussed in Sec-
tion 2 and demonstrated in Figure 11, the labor share was about 7% in the early 1970s
and about 3% in the 2010s. This decomposition indicates that the labor share could have
beeneven smaller if therewerenoother factors affecting the labor share. Second,wefind
that the other factors, includingmonopsony power ormarket power in the productmar-
ket, contribute to an increase in the labor share.

These observations are also consistent with our descriptive analysis in Table 2 in two
ways. First, the results in Columns (ii) and (iii) of Table 2 indicate that the labor share
decreased by 2-4 percentage points due to technological adoption. This magnitude is
identical to our findings in Figure 11. Second, when controlling for other factors through
plant fixed effects in Table 2, we find a statistically significant time trend of labor share
in Columns (iii) and (iv). Themagnitude is again identical to our findings in Figure 11.
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Figure 11: Labor Share Decomposition

5 Discussion

In the previous sections, we highlight the importance of technology information. We
show technological change as the main driver of labor share decline, and only with the
technology information do we reject two major alternative hypotheses proposed in the
literature, such as increasing market power in the product or labor market. According
to Grossman and Oberfield (2022), there are still two remaining hypotheses in the liter-
ature: (i) globalization and the rise of China, and (ii) changes in the composition of the
workforce. In this section, we first discuss these hypotheses and then discuss the gener-
alizability and robustness of our results.

5.1 Other Hypotheses: Worker Composition and Globalization

Among the hypotheses listed in the introduction to this paper, we have not yet discussed
the change in worker composition and globalization.

For the former point, we test whether the change in worker composition occured in
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the period of our focus, taking advantage of the census data that contain worker com-
position for some years. More specifically, the Japanese census collected the number of
blue-collar and white-collar workers and the total payment bill for these workers for the
years 1981, 1984, 1987, and 1990. We tabulate the employment share and payment share
of blue-collar workers at non-NSP plants and NSP plants over time in Panels (a) and (b)
of Table 4, respectively. These numbers immediately suggest that worker composition
did not change over time, at least for these years, because both employment and pay-
ment shares at non-NSP and NSP plants are not statistically different from each other.
Therefore, the changes inworker share composition cannot be a persuasive explanation
for the labor share decline in our context.

Table 4: Employment and Payment Shares of Blue-collar Workers

Non-NSP Plants NSP Plants
Mean Std. Dev. Mean Std. Dev.

Panel (a): Employment share of blue-collar workers
1981 .714 .103 .681 .140
1984 .717 .100 .656 .128
1987 .697 .093 .683 .113
1990 .647 .107 .649 .121
Panel (b): Payment share of blue-collar workers
1981 .731 .118 .666 .125
1984 .695 .082 .646 .137
1987 .671 .101 .677 .122
1990 .592 .170 .673 .113

In termsof a globalizationhypothesis, webelieve it cannot explain the labor sharede-
cline in this specific industry, as the import and export of cement were not important in
theperiodofour focus. Even though thereare several papers that focuson thecement in-
dustryandemphasize the importanceof international competition, includingMiller and
Osborne (2014) who show that import competition affects prices and Salvo (2010) who
shows that the potential “threat” of import competition restricts market power, Japan is
geographically isolated from other countries. Less than 10%, at maximum, of total ce-
ment production was exported to other Asian countries, and there is almost no import
fromother countries in the period of our focus, according toOkazaki et al. (2022). There-
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fore, globalization cannot be amajor concern in the Japanese cement industry.

5.2 Generalizability

Onemight worry about the generalizability of our analysis and results. There are two as-
pects of generalizability: (1) the general applicability of our analysis and methodology
and (2) the generalizability of our insights to other industries and/or macroeconomic
analysis. For the first aspect, our analysis and methodology can be easily applied and
extended to other industries as long aswe can observe the technology employed by each
plant or firm. Even when such technology information is unavailable, recent method-
ologicaldevelopment, suchasbyRaval (2022)andKasahara, SchrimpfandSuzuki (2022),
would still allow researchers to conduct a similar analysis.

For the second aspect, we believe that our results have generalizable insights outside
the Japanese cement industry. Kehrig and Vincent (2021) note that the macroeconomic
patterns in data largely come from within industry rather than across industries, which
suggests that accumulating industry-level insights helps us derive macroeconomic in-
sights. In fact, such industry-level research has attracted attention from researchers re-
cently, such as Grieco et al. (2021), Miller et al. (2022), and Ganapati (2022). Though the
insights from this paper might be limited, our results add one piece of solid evidence to
this strand of literature, which further helps us understand macroeconomic phenom-
ena.

6 Conclusion

We study the mechanism that causes the decline of labor share by investigating unusu-
ally detailed plant-level data of the cement industry in Japan. Using the information on
plant-level technology, we find that most of the labor share decline can be explained by
the new technology diffusion: the labor share stays constant or even slightly increases
over timewithin the same technology plants, whereas the aggregate labor share declines
because production shifts to plants with new andmore capital intensive technology. We
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alsofind that the informationonplant-level technology is key to rejectingotherpotential
hypotheses, and we would reach a qualitatively different conclusion without that infor-
mation.
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Appendix A ImputingMissing Variables

In our analyses, we combine two plant-level data sources: (i) Cement Yearbook(Cement
Nenkan), published by the Cement Press Co. Ltd. (Cement Shinbunsha), and (ii) Census
ofManufacture, collectedby the JapaneseMinistry of Economy, Trade, and Industry. The
sample periods for these two data sources are slightly different. We obtain the former
data from 1970 to 2010, whereas we obtain the latter data from 1980 to 2010 because the
data from1970 to1979areunavailable. We impute theplant-levelwageand intermediate
inputs before 1980 using the census data and variables that we observe throughout the
entire sample period.

Plant-level wages from 1970 to 1979 are imputed using prefecture-level wages in the
industry, which are available for 1970 to 2010, and plant fixed effects. We regress census
wages on prefecture-level wage and plant fixed effects using the period between 1980
and 2010 and predict census wages from 1970 to 1979. We confirm that the prediction
matches actual values for 1980-2010well. The results of ourmain analysis do not change
when we use prefecture-level wages for the entire sample period.

We imputed intermediate input expenditure between 1970 and 1979 as follows. First,
we calculate the sales share of the expenditure of intermediate materials, including en-
ergy expenses. Then,we take the logit function of this share, log( s

1−s). We regress it on the
set of explanatory variables, plant fixed effects, the indicator function whether a plant
uses NSP kilns, the number of kilns in the plant, the share of NSP kilns in all the kilns a
plant uses, and oil prices. We also control time trends flexibly. After the regression, we
predict log( s

1−s) and recover the predictedmaterial share ŝ for 1970-1979. This procedure
guarantees that the predictedmaterial expenditure does not exceed the value of cement
produced.

Figure A1 shows the fit of the prediction for wages andmaterial shares. The x-axis of
Panel (a) iswage levels in the census and that of Panel (b) ismaterial shares in the census.
The y-axis indicates the predicted value. For both two variables, the dots concentrate on
the 45-degree line, which implies that the performance of imputation is good enough.
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Figure A1: The Prediction of Imputed Variables

(a) Wages (b) Material Share

Appendix B EventStudyDesignwithTwo-WayFixed-Effects
Estimators

We further zoom into the plant-level changes in variables to confirm that our findings in
the previous sections are driven by technology diffusion. To this end, we take advantage
of the richness of our data, i.e., we can observe the timing of new technology adoption.
Using the variation in the timing of technology adoption, we employ an event study de-
sign, i.e., difference-in-differences with leads and lags of treatment variable. Formally,
we estimate the following regression estimation:

yjt =
τmax∑

τ=τmin

1[t = t∗j + τ ]βτ + ξj + ξt + εjt, (6)

where j is an index for plant, t is an index for year, t∗j is the year plant j adopts the new
technology, ξj is a plant fixed effect, ξt is a year fixed effect, and εjt is an independent error
term. Estimating an event study design in this way is often called a Two-Way Fixed Effect
(TWFE) estimator. For the estimator to have meaningful interpretation, the treatment
effectmustbehomogeneous acrossdifferent cohorts basedon the treatment timing. See
Goodman-Bacon (2021) for a more detailed discussion.

Here, our data structure is a typical situation of “staggered treatment timing.” One
difficulty we have in our data structure is that we do not observe the timing of new tech-
nology adoption for plants that already have the new technology at the beginning of our
sample period. To avoid potential bias caused by this missing data issue, we remove
plants that had already adopted the new technology at the beginning of our data period.
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To balance the pretreatment period, we drop observation more than τmin years before
the treatment.

First, Figure B1 plots the evolution of plant-level labor share relative to the timing of
new technology adoption. The estimated coefficient for the year before adoption is nor-
malized to zero. The labor share starts to decline after the technology adoption. How-
ever, the decline is not immediate. Rather, it takes several years.

Figure B1: Evolution of Labor Share

Second, to decompose the effects into the changes in employment and wages, we
now look at the change in employment. To this end, Figure B2 plots the evolution of
plant-level employment relative to the timing of new technology adoption. In contrast
to the labor share, employment decreases immediately in the year of adoption, imply-
ing that the decline in the labor share is mainly driven by the change in the number of
workers.
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Figure B2: Evolution of Number of Workers

Finally, Figure B3 plots the evolution of plant-level capital-labor ratio relative to the
timing of new technology adoption. As we see in the production function estimation
results, the new technology is more capital-intensive. Therefore, we expect the capital-
labor ratio to increaseasplants adoptnewtechnology. Asweexpect, right after the instal-
lation of NSP kilns, the capital-labor ratio jumps up by about 10% and increases slowly
afterward.
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Figure B3: Evolution of Capital-Labor Ratio
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