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1 Introduction

Overlapping generations (OLG) games are a class of repeated games in which players in the same
generation interact with each other for a sufficiently long time, and are then sequentially replaced
by the successors in the next generation. The folk theorem in general n-player OLG games was
first proved by Kandori [6], which stated that the players in each generation can obtain any payoffs
in V ∗, which is the set of feasible and individually rational one-shot payoffs. Following this study,
Smith [9] proved several versions of the folk theorems with stronger results.

While it has been shown that players can obtain payoffs in V ∗ without discounting, and that
the result is robust to low discounting in OLG games, the characterization of the equilibrium set
of payoffs in the analyses of Kandori [6], Smith [9], and subsequent studies is restrictive. These
results do not imply that players cannot attain payoffs outside V ∗; when they discount the future,
they can transfer each other’s payoffs over time because the young and old generations view current
payoffs differently, which allows their equilibrium payoffs to go outside V ∗. Indeed, in two-player
discounted OLG games, the author’s recent study Morooka [8] has shown that players in each
generation can obtain payoffs in the smallest rectangle which contains V ∗ in subgame perfect
equilibria. There, we do not require players to have different discount factors, without which, as
Sorin [10] showed, equilibrium payoffs never go outside V ∗ in the standard repeated games without
overlapping generations.

We generalize this result to discounted OLG games with any n-player stage game, getting rid of
the assumptions imposed in Morooka [8] that a Public Randomization Device (PRD) is available
and that mixed actions are observable. In order to determine the individual rationality, the notion
of effective minimaxing by Wen [11] is hired. We prove the folk theorem, stating that players in
each generation can obtain payoffs in the cubic hull of V ∗, the smallest n-dimensional cube which
contains V ∗, when they discount the future but are sufficiently patient and participate in the game
for sufficiently long time. We also examine whether players can obtain better payoffs outside this
cube. When players are allowed to observe mixed actions, we can expand this cube to the one
defined by mixed minimax values, but it is also shown that further expansion of the equilibrium
payoff set is impossible.

There are two kinds of difficulty which Morooka [8] did not have to consider but we must to
obtain the present result. The first one is how to punish the deviations from minimaxing actions
in the game with many players. Different from two-player case where the mutual minimaxing is
available, player-specific minimax actions must be played in repeated games with three or more
players, from which the punishers have an incentive to deviate. In order to avoid such deviations,
the punishers must be rewarded sufficiently after the minimax phase, compared to the minimaxed
player.

Another difficulty is how to get rid of a PRD and the observability of mixed actions. First,
when a PRD is not available, players cannot obtain the exact value of target payoff vector by
correlated one-shot actions. Instead, they must periodically play a finite sequence of pure actions
which approximates the target payoff vector. Second, we restrict the players’ minimax values to
those by pure actions in the main theorem, owing to which players can detect the deviation from
minimaxing each other.

The reasons why it is thought to be impossible to obtain the theorem as the version of mixed
minimax values without observable mixed actions are as follows. It is known that Gossner [5]
guaranteed the folk theorems by Kandori [6] and Smith [9] without observable mixed actions,
where the minimax values are defined by mixed actions. Different from the standard repeated
games where players’ lifespan is infinite, we cannot use the strategy formulated by Fudenberg and
Maskin [3, 4] which makes the punishers indifferent between any action by giving them a well-
designed sequence of continuation payoffs lasting over the rest of the repetition after the punishing
sequence. Instead, Gossner [5] developed a mathematical statistic on the history during punishing
period to work out good punishers and bad ones; only the formers receive a reward at the end
of their lives. However, such construction contradicts our requirement. In order to obtain our
result, there is an order in the choice of parameters; we must fix the discount factor first, and
then choose players’ lifespan depending on the discount factor. This is because, as the discount
factor approaches one, we need a longer lifespan in order for players’ continuation payoffs after
they become old to diminish sufficiently.
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The remainder of this paper is organized as follows. In Section 2, we define the model of OLG
games and prove the main theorem to obtain the cubic hull as equilibrium payoffs. In Section
3, we introduce observable mixed actions and show that the equilibrium set cannot be expanded
beyond the corresponding cube. In Section 4, we discuss remaining important issues that cannot
be included in this paper.

2 Main Results

2.1 Stage Games

Let G = (N, A, g) be an n-player stage game defined as follows. N = {1, 2, · · · , n} with n ≥ 2 is
the set of players in G. For i ∈ N , Ai is i’s finite set of pure actions, and △Ai is i’s set of mixed
actions. We denote i’s payoff function as gi : △A→ R, and let V = co

(
g(A)

)
be the set of feasible

payoffs, where A =
∏

i∈N Ai and △A =
∏

i∈N △Ai. We define the set N(i) ⊂ N of players whose
payoff functions are equivalent to i, as follows:

N(i) = {j ∈ N : ∃ϕ > 0, ∃ψ ∈ R, ∀a ∈ A, gj(a) = ϕgi(a) + ψ}.

The pure effective minimax actions for i is defined as follows, where A−i =
∏

j∈N\{i}Aj :

mi ∈ arg max
j∈N(i)

min
a−j∈A−j

max
aj∈Aj

gi(aj , a−j).

The set of feasible and individually rational payoffs by pure minimaxing actions is defined as
V ∗ =

{
v ∈ V : ∀i ∈ N, vi ≥ gi(m

i)
}
. Without loss of generality, i’s minimum payoff in V ∗ is

normalized to zero, as follows:1

min
v∈V ∗

vi = 0.

This value determines the lower bound of players’ equilibrium payoffs. We also denote i’s maximum
payoff in V ∗ as ri, defined as follows:

ri = max
v∈V ∗

vi.

This value determines the upper bound of players’ equilibrium payoffs in our result. We then define
the cubic hull of V ∗, say C(V ∗), as follows:

C(V ∗) =
∏
i∈N

[0, ri].

Note that in many stage games, C(V ∗) \ V ∗ ̸= ∅ holds. Assuming that V ∗ ∩ Rn
++ ̸= ∅, we then

define the “Q-points” of V ∗ as V ∗
Q = {v ∈ V ∗∩Rn

++ : ∃(pa)a∈A ∈ △|A|∩Q|A|, v =
∑

a∈A pag(a)},
where △|A| = {(pa)a∈A ∈ R|A|

+ :
∑

a∈A pa = 1} is the |A|-dimensional basic simplex. Finally, we
define the “Q-points” of C(V ∗), as follows:

CQ(V
∗) = {v ∈ C(V ∗) : ∀i ∈ N, ∃vi−i ∈ Rn−1, (vi, v

i
−i) ∈ V ∗

Q}.

Before proceeding to the next subsection, we observe the following lemma, which is derived directly
by Lemma 2 along with the proof of Theorem 1 of Abreu et al. [1].

Lemma 1. Suppose V ∗ ∩ Rn
++ ̸= ∅. Then V ∗

Q ̸= ∅ and for any payoffs v ∈ V ∗
Q, there exists

K ∈ N and sequences of pure actions (a(t))Kt=1 and (ci(t))Kt=1 for i ∈ N which satisfy the following
equations:

Kv =

K∑
t=1

g(a(t)) (target payoff generation by finite sequence of pure actions),

1This implies that for some ϕ > 0, gj(a) = ϕgi(a) holds for all a ∈ A if j ∈ N(i), because 0 = gj(m
j) = gj(m

i) =
ϕgi(m

i) + ψ = ψ must be satisfied.
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K∑
t=1

g(ci(t)) >> 0 for all i ∈ N (strict individual rationality),

K∑
t=1

gi(c
i(t)) < Kvi for all i ∈ N (target payoff domination),

K∑
t=1

gi(c
i(t)) <

K∑
t=1

gi(c
j(t)) for all i ∈ N and j ∈ N \N(i) (payoff asymmetry).

2.2 OLG Games

Given a stage game G defined above, we construct the OLG game with perfect monitoring,
OLG(G; δ, T ) as follows (also see Table 1):

·The game starts in period 1. In every period, G is played by n finitely-lived players.

·For i ∈ N and d ≥ 1, the player with Ai in generation d joins in the game at the beginning of
period (d− 1)Tn + T i−1 + 1, and lives for the following Tn periods, until he retires at the end of

period dTn + T i−1, where T = (T1, T2, · · · , Tn) ∈ Nn, T 0 = 0 and T i =
∑i

j=1 Tj for i ∈ N . The
only exceptions are the players with Ai for i ∈ N \ {1} in generation 0, who participates in the
game between periods 1 and T i−1.

·Each player’s per-period payoffs are discounted at a common δ ∈ (0, 1].2

Period 1 ∼ T 1 T 1 + 1 ∼ T 2 T 2 + 1 ∼ T 3 T 3 + 1 ∼ T 3 + T 1 T 3 + T 1 + 1 ∼ T 3 + T 2 T 3 + T 2 + 1 ∼ 2T 3 2T 3 + 1 ∼ 2T 3 + T 1 · · ·
A1 Generation 1 Generation 2 Generation 3 · · ·
A2 Generation 0 Generation 1 Generation 2 · · ·
A3 Generation 0 Generation 1 Generation 2 · · ·

Table 1: Structure of OLG game with n = 3

In every period, players can only observe each other’s realized pure actions. When a sequence

of actions
(
α(t)

)Tn

t=1
∈ (△A)Tn is played throughout a player’s life with Ai, his average payoff is as

follows:3

1∑Tn

t=1 δ
t−1

Tn∑
t=1

δt−1gi
(
α(t)

)
.

2.3 The Folk Theorem

We first prove the following result.

Lemma 2. (Approximation of payoffs in CQ(V
∗))

Suppose V ∗ ∩Rn
++ ̸= ∅. For every payoffs v ∈ CQ(V

∗), and for every ϵ > 0, there exists δ ∈ (0, 1)
such that if δ ∈ [δ, 1), then for every sufficiently large T ∈ Nn dependent on δ, there exists a
subgame perfect equilibrium in OLG(G; δ, T ) where the players in each generation d ≥ 1 obtain
average payoffs w that satisfies |wi − vi| < ϵ for i ∈ N .

Proof . See the appendix.

2Although our result does not hold with δ = 1, it is convenient to consider this case in order to construct the
strict punishments under no discount that are still available with δ < 1.

3For the player with Ai for i ∈ N \ {1} in generation 0, replace Tn with T i−1.
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It is then straightforward to get the following theorem.

Theorem 1. (A folk theorem in n-player discounted OLG games with pure minimax values)
Suppose V ∗ ∩ Rn

++ ̸= ∅. For every payoffs v ∈ C(V ∗), and for every ϵ > 0, there exists δ ∈ (0, 1)
such that if δ ∈ [δ, 1), then for every sufficiently large T ∈ Nn dependent on δ, there exists a
subgame perfect equilibrium in OLG(G; δ, T ) where the players in each generation d ≥ 1 obtain
average payoffs w that satisfies |wi − vi| < ϵ for i ∈ N .

Proof . Choose any v ∈ C(V ∗) and ϵ > 0. Because closure(CQ(V
∗)) = C(V ∗), there exists

v′ ∈ CQ(V
∗) satisfying that |v′i−vi| < 0.5ϵ for i ∈ N . Lemma 2 then guarantees that for δ ∈ [δ, 1)

for some δ ∈ (0, 1) and sufficiently large T ∈ Nn, there exists a subgame perfect equilibrium payoff
vector w in OLG(G; δ, T ) with |wi−v′i| < 0.5ϵ. Therefore we get |wi−vi| ≤ |wi−v′i|+ |v′i−vi| < ϵ,
completing the proof.□

3 Observable Mixed Actions and the Impossibility of Fur-
ther Extension

3.1 Mixed Minimax Values

So far, we have seen that players can obtain equilibrium payoffs in C(V ∗) in discounted OLG
games. Here, some readers may wonder whether they can obtain better payoffs outside C(V ∗) in
equilibria. We first show that the set of equilibrium payoffs can be expanded when mixed actions
are observable. Here, the mixed effective minimax actions for i ∈ N is defined as follows, where
△A−i =

∏
j∈N\{i} △Aj :

µi ∈ arg max
j∈N(i)

min
α−j∈△A−j

max
aj∈Aj

gi(aj , α−j).

The mixed version of the set of feasible and individually rational payoffs is defined as V ∗∗ ={
v ∈ V : ∀i ∈ N, vi ≥ gi(µ

i)
}
. Assuming that minv∈V ∗∗ vi = 0 for i ∈ N and V ∗∗ ∩ Rn

++ ̸= ∅,
the cubic hull of V ∗∗ is defined as C(V ∗∗) =

∏
i∈N [0, ρi], where ρi = maxv∈V ∗∗ vi. Note that (a

translation with respect to the origin of) C(V ∗) is included in this set. It is straightforward to
derive the analogue of Theorem 1 for C(V ∗∗).

Lemma 3. (Equilibrium payoffs in n-player discounted OLG games with observable mixed actions)
Suppose V ∗ ∩ Rn

++ ̸= ∅ and that mixed actions are observable in every period. Then, for every
payoffs v ∈ C(V ∗∗), and for every ϵ > 0, there exists δ ∈ (0, 1) such that if δ ∈ [δ, 1), then
for every sufficiently large T ∈ Nn dependent on δ, there exists a subgame perfect equilibrium in
OLG(G; δ, T ) where the players in each generation d ≥ 1 obtain average payoffs w that satisfies
|wi − vi| < ϵ for i ∈ N .

Proof . Replacing V ∗ with V ∗∗ and mi with µi for i ∈ N in the proof of Theorem 1 gives the
exact proof of this lemma. Now Steps 5 and 6 need the observability of mixed actions in order to
detect the deviation from minimaxing, which can be a mixed action.□

3.2 Impossibility of a Further Extension

Finally, we show that the set of equilibrium payoffs cannot be further extended from C(V ∗∗),
independent of δ, T , and the observability of mixed actions. Here, an equilibrium4 in OLG(G; δ, T )

is called periodic if a sequence of actions (α(t))Tn
t=1 ∈ △ATn is played on the path periodically,

between period (d− 1)Tn + 1 and dTn for each d ≥ 1.

Theorem 3. (Impossibility of Further Extension outside C(V ∗∗))
For every δ ∈ (0, 1], for every T ∈ Nn, and for every periodic equilibrium in OLG(G; δ, T ), its

4We do not require that the equilibrium is subgame perfect in this result.
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average payoff vector v of the players in each generation d ≥ 1 satisfies v ∈ C(V ∗∗). Especially
when δ = 1, v ∈ V ∗∗ holds.

Proof . Because the equilibrium is periodic, the total payoff vector obtained throughout the periods
when a player with the action set Ai is the youngest can be written as xi (see also Table 2).5

Duration T1 T2 T3 T1 T2 T3 T1 · · ·
A1 x11 x21 x31 x11 x21 x31 x11 · · ·
A2 x12 x22 x32 x12 x22 x32 x12 · · ·
A3 x13 x23 x33 x13 x23 x33 x13 · · ·

Table 2: Sequence of total payoffs with n = 3

By the optimality of equilibria, the continuation payoffs must satisfy the following individual
rationality for all i ∈ N , where f(0) = 0, f(t) = t for t ≤ n, f(t) = t− n for t ≥ n+ 1 and T0 = 0:

n−1∑
t=0

δ
∑t

s=0 Tf(i+s−1)x
f(i+t)
i ≥ 0,

n−1∑
t=0

δ
∑t

s=0 Tf(i+s−1)x
f(i+t)
i ≥

k−1∑
t=0

δ
∑t

s=0 Tf(i+s−1)x
f(i+t)
i for all k ∈ {1, 2, · · · , n− 1}.

Therefore, for all i ∈ N and j ∈ N \N(i), the following relationship must hold:6

n−1∑
t=0

δ
∑t

s=0 Tf(i+s−1)x
f(i+t)
j ≥ 0.

This implies that during the life of each player with Ai, payoffs of all his opponents (whose payoff
functions are not equivalent to gi) are individually rational, which in turn guarantees that his total

payoff cannot exceed
∑Tn

t=1 δ
t−1ρi in equilibria. Finally, when δ = 1, the average payoff vector

satisfies the following inequality, completing the proof:

0 ≤ 1

Tn

n∑
i=1

xi ∈ V ∗∗.

□

4 Discussion and Conclusion

In this study, we analyzed a model of an n-player discounted OLG game. We observed that players
can obtain payoffs outside V ∗. Some readers may believe that it will be convenient to compute
the exact shape of the equilibrium payoff set of OLG games without a PRD for arbitrarily fixed
δ and T . For standard repeated games, Lehrer and Pauzner [7] provided an algorithm to find the
shape of the frontier using a PRD as players become patient. Dasgupta and Ghosh [2] provide a
condition to identify all payoff profiles that can be obtained as subgame perfect equilibrium payoffs
of some discount factor profile without using a PRD. When we apply these results to OLG games,
however, recursive methods which can be used in the standard repeated games will be no longer
available. We leave these issues to be resolved in future research.

5For example, when n = 2, T1 = 2 and players obtain one-shot payoffs (1, 2) in period 1 and (3, 4) in period 2,
x1 = (1 + 3δ, 2 + 4δ).

6When n = 3, for example, x12 ≥ 0 and x22 + δT2x32 + δT2+T3x12 ≥ 0 must be satisfied, which yields x12 +
δT1x22 + δ

T1+T2x32 = (1− δT1+T2+T3 )x12 + δ
T1 (x22 + δ

T2x32 + δ
T2+T3x12) ≥ 0. Analogously, x13 + δ

T1x23 + δ
T1+T2x33 =

(1− δT1+T2+T3 )(x13 + δT1x23) + δT1+T2 (x33 + δT3δ13 + δT3+T1x23) ≥ 0 must be satisfied. These imply that the total

payoff of players with A1 cannot exceed
∑T1+T2+T3

t=1 δt−1ρ1.
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Appendix: Proof of Lemma 2

Before the formal proof, we use the following Table 3 and briefly see how the players in each
generation can obtain good equilibrium payoffs (v11 , v

2
2 , · · · , vnn) ∈ C(V ∗), which are possibly outside

V ∗. For i ∈ N , let bi ∈ argmaxa∈A gi(a) be the actions yielding the best one-shot payoff to the
player with Ai, and we denote a one-shot Nash profile as e.

Duration ℓ1K S T1 − ℓ1K − S ℓ2K S T2 − ℓ2K − S ℓ3K S T3 − ℓ3K − S ℓ1K S T1 − ℓ1K − S · · ·
A1 v1

1 g1(b
2) g1(e) v21 g1(b

3) g1(e) v31 g1(b
1) g1(e) v1

1 g1(b
2) g1(e) · · ·

A2 v12 g2(b
2) g2(e) v2

2 g2(b
3) g2(e) v32 g2(b

1) g2(e) v12 g2(b
2) g2(e) · · ·

A3 v13 g3(b
2) g3(e) v23 g3(b

3) g3(e) v3
3 g3(b

1) g3(e) v13 g3(b
2) g3(e) · · ·

Table 3: Equilibrium payoff path with n = 3

As you can see in this table, each player with Ai obtains the target payoff vii in his first ℓiK
periods of life. Here, his opponents endure relatively low payoffs vi−i so that players’ payoffs during
these periods are feasible and strictly individually rational, i.e., (vii , v

i
−i) ∈ V ∗ ∩ Rn

++. In the
following S periods, he gives the maximum one-shot payoff gj(b

j) to the oldest opponent, in order
to block the deviation by the opponent who is going to retire. After his opponent is replaced by a
new player, he helps the new youngest opponent to obtain vjj for ℓjK periods. After becoming the

oldest, he receives a terminal bonus gi(b
i) for S periods before the retirement. When he discounts

the future and his lifespan is sufficiently long, his continuation payoff after he becomes old vanishes,
and the average payoff throughout his life becomes almost equal to what he obtains in early ℓiK
periods of his life, vii .

Now we proceed to formally prove Lemma 2.

Proof . Choose any v = (v11 , v
2
2 , · · · , vnn) ∈ CQ(V

∗) and ϵ > 0. By the definition of CQ(V
∗), there

exists vi−i which satisfies vi = (vii , v
i
−i) ∈ V ∗

Q for i ∈ N . By Lemma 1, we can find K ∈ N
and sequences of pure actions (ai(t))Kt=1 and (ci,j(t))Kt=1 for i, j ∈ N which satisfy the following
equations:7

Kvi =

K∑
t=1

g(ai(t)) for i ∈ N,

K∑
t=1

g(ci,j(t)) >> 0 for i, j ∈ N,

K∑
t=1

gj(c
i,j(t)) < Kvij for i, j ∈ N,

K∑
t=1

gj(c
i,j(t)) <

K∑
t=1

gj(c
i,k(t)) for i, j ∈ N and k ∈ N \N(j).

When the player with Aj deviates right before the retirement of his opponent with Ai, players play
the sequence ci,j instead of ai to punish him after the player with Ai is replaced.

The game starts in period 1 with playing a1(1). The natural numbers q1, q2, S, and q3 are
determined later in this order so that the following strategy profile is well-defined and subgame
perfect. Here, we consider the strategy profile for any Ti-period block between (d−1)Tn+T i−1+1
and (d − 1)Tn + T i for i ∈ N and d ≥ 1, and period (d − 1)Tn + T i−1 + t is just called “period
t” for t ∈ {1, 2, · · · , Ti}, during which the player with Ai is the youngest. The profile consists of 7
steps. We assume that the action set of the oldest player in the current block is Aj .

7When we omit i and replace j (resp. k) with i (resp. j), we get exactly the same equations as in Lemma 1.
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First, we define the following main-path strategy with n+1 states λ ∈ {Good}∪{Late(1), Late(2), · · · , Late(n)}.
In Good state, the youngest player obtains the target payoff, whereas Late(k) state is provided to
punish the late deviation of the player with Ak for k ∈ N . The initial state is λ = “Good′′.

·Step 1. In period t ≤ q3K, players play ai(h(t)) in state λ = “Good′′, and play ci,k(h(t)) in state
λ = “Late(k)′′, where h(sK + τ) = τ for τ ∈ {1, 2, · · · ,K} and s ∈ N ∪ {0}. At the end of period
q3K, the state is reset to λ = “Good′′.
·Step 2. In period t ∈ {q3K + 1, · · · , ℓiK}, players play ai(h(t)).
·Step 3. In period t ∈ {ℓiK + 1, · · · , ℓiK + S}, players play bj .
·Step 4. In period t ≥ ℓiK + S + 1, players play e.

After someone unilaterally deviates, players play the following punishments. The punishments are
also applied to the deviations from themselves. After each punishment, players return to main-
path.

·Step 5. When a player with Ak deviates in period t ≤ ℓiK−(q1+q2)K, players play e for K−h(t)
periods, until the end of period τ with h(τ) = K. Players then play mk for the following q1K
periods. After that, during the following q2K periods, they play ci,k(s) in period s.
·Step 6. When the oldest player deviates in period t ∈ {ℓiK − (q1 + q2)K + 1, · · · , ℓiK}, players
play mj until the end of period ℓiK + S.
·Step 7. When a young player with Ak deviates in period t ∈ {ℓiK − (q1 + q2)K +1, · · · , ℓiK +S},
players play e until the oldest player retires, and the state in the next block is set to λ = “Late(k)′′.

According to this profile, the K-period sequence ai is played ℓi times on the equilibrium path
when each player with Ai is the youngest, and his average payoff is almost equal to vii under the
positive rate of discounting δ < 1 and sufficiently large ℓiK relative to S, as you can see in Table
3.

In the remainder of this section, it is proved that the above strategy profile forms a subgame
perfect equilibrium for δ sufficiently close to 1 when we choose q1, q2, S, and q3 appropriately. The
methodology is to provide strictly positive penalties for any unilateral deviation from each step
when δ = 1. Then, by continuity of payoffs, there is some δ ∈ (0, 1) for which all penalties are
still positive and Steps 1 and 2 still approximate the target payoff8 for δ ∈ [δ, 1). In determining
the parameters, we consider the “worst-case scenario,” where the incentive to deviate is greatest.

·Deviations in period t ≤ ℓiK − (q1 + q2)K when nobody is minimaxed:

Let u = mini,j∈N

{
vij ,

∑K
t=1 gj(c

i,j(t))/K
}
> 0 be the worst per-period payoff in Steps 1 and 2.

When a player deviates, he gets at most Kβ immediately and the following K − 1 periods, where
β = maxi∈N

{
gi(b

i)
}
is the maximum payoff for players. However, his payoff during the next q1K

periods is reduced to 0 by Step 5. When he does not deviate, on the other hand, he can get at
least Kω+ q1u during the same periods, where ω = mini∈N,a∈A

{
gi(a)

}
is the minimum payoff for

players. In order to block the deviation, we choose q1 to satisfy the following inequality:

Kω + q1u > Kβ.

·Deviations from minimaxing of Step 5 in period t ≤ ℓiK − (q1 + q2)K:
When a minimaxing player with Ak deviates from mj satisfying k ∈ N \ N(j),9 he gets at most
Kβ immediately and the following K − 1 periods, and gets 0 during the next q1K periods. After
that, he gets q2

∑K
t=1 gk(c

i,k(t)) in the following q2K periods. When he does not deviate, on the

other hand, he can get at least Kω + q1ω + q2
∑K

t=1 gk(c
i,j(t)) during the same periods. In order

to block the deviation, we choose q2 to satisfy the following inequality for i, k ∈ N :

Kω + q1ω + q2

K∑
t=1

gk(c
i,j(t)) > Kβ + q2

K∑
t=1

gk(c
i,k(t)).

8When a PRD is available, we need not concern about this issue of approximation, because the PRD can generate
exactly the same value as the target payoff every period.

9When k ∈ N(j), he has no incentive to deviate because mj
k is the best response to mj

−k.
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·Deviations by the oldest player in period t ≥ ℓiK − (q1 + q2)K + 1:
Suppose that the oldest player deviates in period t = ℓiK − (q1 + q2)K + 1. He gets at most
β immediately, but his continuation payoff until the end of period ℓiK + S is at most 0 because
of Step 6. When he does not deviate, his payoff during these (q1 + q2)K + S periods is at least
(q1 + q2)Kω + Sβ, where β = mini∈N

{
gi(b

i)
}
. We can avoid the deviation when we choose S

satisfying the following inequality:

(q1 + q2)Kω + Sβ > β.

·Deviations by a young player in period t ≥ ℓiK − (q1 + q2)K + 1:
Suppose that a young player with Ak deviates in period t = ℓiK − (q1 + q2)K + 1. He gets at
most ((q1+ q2)K+S)β immediately and the following (q1+ q2)K+S−1 periods. After the oldest

player’s retirement, his payoff in the following q3K periods is reduced to at most q3
∑K

t=1 gk(c
j,k(t))

because of Step 7 and Step 1 with state λ = “Late(k)′′. When he does not deviate, he gets at least
((q1 + q2)K + S)ω until the end of period ℓiK + S, and at least q3Kv

j
k after the oldest player’s

retirement with state λ = “Good′′. We can avoid the deviation when we choose q3 satisfying the
following inequality for j, k ∈ N :

((q1 + q2)K + S)ω + q3Kv
j
k > ((q1 + q2)K + S)β + q3

K∑
t=1

gk(c
j,k(t)).

Therefore, deviations from any steps strictly decrease deviators’ payoffs under no discount. It
means that there exists some δ ∈ (0, 1), the strategy profile described above is still subgame-perfect
and satisfies the following inequalities for all i ∈ N :

1− δK

1− δ
vii −

ϵ

3
<

K∑
t=1

δt−1gi(a
i(t)) <

1− δK

1− δ
vii +

ϵ

3
.

Fix any δ ∈ [δ, 1). Choose any ℓ ∈ N which satisfies the following inequalities:

ℓ > max{q1 + q2, q3},

δℓK

1− δ
max{β, −ω} < ϵ

3
.

We then choose a vector T >> (ℓK + S, ℓK + S, · · · , ℓK + S). Finally, we choose (ℓi)i∈N to
satisfy 0 ≤ Ti − ℓiK − S ≤ K − 1 for each i ∈ N so that Step 4 lasts for at most K − 1 periods.
In OLG(G; δ, T ), the above strategy profile is well-defined and the average payoff of players with
Ai except generation 0 is at least as follows:

1− δ

1− δTn

{ ℓi∑
s=1

δ(s−1)K
K∑
t=1

δt−1gi(a
i(t)) +

δℓiK

1− δ
ω
}

>
1

1− δTn

{
(1− δ)

ℓi∑
s=1

δ(s−1)K(
1− δK

1− δ
vii −

ϵ

3
) + δℓiKω

}

= vii −
δℓiK(1− δTn−ℓiK)

1− δTn

vii −
∑ℓi

t=1 δ
(t−1)K∑Tn

t=1 δ
t−1

ϵ

3
+

δℓiK

1− δTn

ω

> vii −
δℓK

1− δ
β − ϵ

3
+

δℓK

1− δ
ω

> vii −
ϵ

3
− ϵ

3
− ϵ

3
= vii − ϵ.

Analogously, their maximum average payoff is less than vii+ϵ, completing the proof of the lemma.□
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