
 

 
 
 
 
 
 CIRJE Discussion Papers can be downloaded without charge from: 

http://www.cirje.e.u-tokyo.ac.jp/research/03research02dp.html 
 
 
 
 
Discussion Papers are a series of manuscripts in their draft form.  They are not 
intended for circulation or distribution except as indicated by the author.  For that 
reason Discussion Papers may not be reproduced or distributed without the written 
consent of the author. 

CIRJE-F-1150 

 

A Theory of Public Goods under Complementarity 

between Safety and Consumptions 

 
Ikuto Aiba 

Graduate School of Economics, The University of Tokyo 
 
 

Yasuhiro Sato 
The University of Tokyo 

 
 
 

April 2020 



A theory of public goods under complementarity between

safety and consumption

Ikuto Aiba� Yasuhiro Satoy

April 27, 2020

Abstract

We explore the theoretical properties of public good provision under the complementarity

between safety and private/public good consumption. The presence of the mobile worker

generates �scal externality, making the equilibrium ine¢ cient. The direction of ine¢ ciency

is determined by three factors: the characteristics of the utility function, the di¤erence

in income between the immobile and mobile workers, and the immobile worker�s marginal

utility of hosting another mobile worker. We show that the complementarity between safety

and private good consumption plays a crucial role in determining the impacts of the third

factor whereas the complementarity between safety and public good does not.

Keywords: complementarity, public security, tax competition, e¢ ciency
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1 Introduction

It is no doubt that safety crucially determines the value of life. This is partly re�ected by the

e¤ects of crime on property values. In fact, since the seminal work by Thaler (1978), many

studies showed that crimes have a signi�cant negative impact on property prices (see Gibbons,

2004; Delgado and Wences, 2020; and Kim and Lee, 2018, for recent works). This implies

that safety increases the value of housing and land consumption. Put di¤erently, there exists

complementarity between safety and private goods consumption.

Recent studies also show that safety is complement to public good consumption. Bowes

and Ihlanfeldt (2001) found that crime is associated with lower values of rail stations close to

downtown, especially, where the station has parking, in Atlanta. Troy and Grove (2008) found
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crime is associated with lower values of parks in Baltimore. More recently, Albouy et al. (2020),

by using detailed crime and housing data in Chicago, New York, and Philadelphia, showed that

local crime rates decrease the value of park proximity.1

We aim to conduct a baseline analysis on the theoretical properties of public good provision

under the complementarity between safety and private/public good consumption. For this

purpose, we develop a model of public good provision that involves such complementarity.

We then derive the condition of optimal public good provision, i.e., the Samuelson condition

under the complementarity. Given this modi�ed Samulenson condition, we examine how such

complementarity a¤ects the policy decisions by local governments. Here, the reason to focus on

the local government is that the crime risk is highly local: One street di¤erence really matters.

This implies that the right spatial scale to focus on should be municipalities.

Moreover, given high people mobility between municipalities, we should notice the e¤ects of

population concentration on crime risk. In fact, places with high population density are often

associated with high crime rates (Glaeser and Sacerdote, 1999; O�Flaherty and Sethi, 2015).

Thus, we consider the e¤ects of governments�decision on population distributions, which in

turn, a¤ects the safety and values of private and public goods consumption.

As is shown by the literature of tax competition, which dates back at least to Zodrow and

Mieszkowski (1986) and Wilson (1986), local governments� decision can cause vairous exter-

nalities in the presence of factor (labor or capital) mobility (see Wilson, 1999; Zodrow, 2003;

Wilson and Wildasin, 2004; and Cremer and Pestieau, 2004 for surveys). We provide detailed

conditions under which and how the complementarity a¤ects these externalities.

Although our framework is quite simple, it provides the rich and brand-new insights. Our

results predict that the tax rate is ine¢ cient in most cases, and whether it is too high or low

depends on three factors: the characteristics of the utility function, the di¤erence in income

between the immobile and mobile workers, and the immobile worker�s marginal utility of hosting

another mobile worker. Especially, we show that the complementarity between safety and

private good consumption plays a crucial role in determining the impacts of the third factor

whereas the complementarity between safety and public good consumption does not. This result

holds true in a quite general setting, and implies that considering complementarity between

safety and private good is more important than that between security and public good, in the

presence of �scal externality.

We also illustrate the model numerically to grasp the characteristics of the equilibrium and

1On the contrary, Anderson and West (2006) found crime is associated with higher values of open space in

Minneapolis. This suggests the possibility that safety and public good are substitutes. We can slightly modify

our framework to deal with such a possibility.
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optimum. The numerical examples imply that asymmetry in the immobile worker�s income is

more crucial for shaping the gap between the equilibrium and optimum. Asymmetry in the

population of the immobile worker does not a¤ect the equilibrium and optimum tax rates so

much, but the distribution of the mobile worker is highly in�uenced by this asymmetry, because

it directly a¤ects the mobile worker�s utility through public safety and congestion.

The remainder of the paper proceeds as follows. Section 2 provides the baseline framework,

and derive the modi�ed Samuelson condition and the equilibrium conditions. Section 3 charac-

terizes e¢ ciency properties. Section 4 illustrates the model numerically. Section 5 concludes.

2 The Model

We �rst provide the very basic structure of the model and derive the condition of optimal

public good provision, i.e., the Samuelson condition, in our framework. We then examine how

complementarity between public security and private/public good a¤ects the properties of tax

competition between local jurisdictions.

2.1 General Framework

Consider a jurisdiction that consists of two types (Type L and Type M) of workers. The

population sizes of Type L and Type M workers are l and m, respectively. The jurisdiction is

closed so that l and m are positive constants. The income levels of Type L and TypeM workers

are yL and yM , respectively, and they are �xed. The utility function of Type J 2 fL;Mg worker

is given by

UJ = wc(S)u(cJ) + wg(S)v(g);

where u(cJ), v(g), wc(S) and wg(S) are twice continuously di¤erentiable, increasing, and strictly

concave functions with respect to its arguments. g and cJ are the levels of public and private

(the numéraire) goods consumption, respectively. S represents the public security level of the

jurisdiction, and wc(S) and wg(S) are positive for any S. We here employ a partially additively

separable function in order to focus on the e¤ects of complementarity between cJ and S, and

between g and S, one by one. In this expression, wc(S) and wg(S) represent the degree of

complementarity between security and private good and that between security and public good,

respectively. Here, we have in mind that people feel better from their private consumption as

well as public services in a more secure place.

We assume that S depends on the number of two types of workers: S = S(l;m), where

S(l;m) is a twice continuously di¤erentiable function with respect to its arguments. We further
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assume that S is decreasing in its arguments: @S=@l < 0 and @S=@m < 0. This assumption

implies that the public security level decreases as the jurisdiction has a larger population.

This re�ects the empirical evidences that the crime rate is higher in a jurisdiction with larger

population than in the one with smaller population.2

We assume that one unit of the numéraire can be transformed into one unit of the public

good. Then, the resource constraint in this economy is lyL+myM = lcL+mcM +g, from which

we obtain the following proposition:

Proposition 1 In the Pareto-optimal allocation, the following Samuelson condition is satis�ed:

l
wg(S)v

0(g)

wc(S)u0(cL)
+m

wg(S)v
0(g)

wc(S)u0(cM )
= 1: (1)

The left hand side of (1) represents the sum of the marginal bene�t of public good consump-

tion over two types of workers, and its right hand side is the marginal rate of transformation

between the public good and the numéraire. We know that the left-hand side of (1) is increasing

in S if and only if the elasticity of the degree of complementarity is larger for public good than

for private good:
Sw0g(S)

wg(S)
>
Sw0c(S)

wc(S)
:

If this holds true, then because of decreasing marginal utility of public good consumption, a

higher security increases the optimal public good provision. This is because this inequality

implies a stronger complementarity between security and public good than between security

and private good, and it is more bene�cial for workers to increase public good consumption for

a higher security level.

2.2 Multiple Jurisdictions

We next introduce tax competition among multiple jurisdictions. Now suppose that there exist

two jurisdictions, 1 and 2, and only Type M workers are mobile between the jurisdictions.

Hence, li (i = 1; 2) are �xed, whereas mi can vary satisfying that
P2
i=1mi = 2m.

The utility function of Type J worker living in jurisdiction i is given by

UJi = wc(Si)u(cJi) + wg(Si)v(gi)�D(li;mi):

Here, following a large number of theoretical studies in urban economics, we introduce congestion

costs, D(li;mi), where D is a strictly increasing function with respect to its arguments. The

2See for instance O�Flaherty and Sethi (2015) Table 23.10, which shows that the elasticities of crime rates

with respect to the police jurisdiction population are positive in the United States for the year 2012.
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existence of congestion costs is important to the determination of population size of mobile

workers.3 In the absence of congestion costs, all mobile workers are more likely to concentrate on

one jurisdiction because public good provision exhibits the increasing returns to scale. Although

changes in the public security level associated with an increase in mobile workers generate

negative externalities because a large population worsen the public seculity level, introducing

D(li;mi) makes it easier to guarantee the stability of the distribution of mobile worker. Because

the optimal public good provision does not depend on D(li;mi), the Samuelson condition is still

given by (1).

Each local government �nances the cost of public good provision by imposing ad valorem

tax on workers�income. Let � i 2 [0; 1] denote the income tax rate, and then the private good

consumption of Type L and Type M workers are cLi = (1 � � i)yLi and cMi = (1 � � i)yM ,

respectively. Here, yLi is not necessarily identical across jurisdictions, whereas yM is identical,

implying that mobile workers�pre-tax income does not depend on a jurisdiction where they live.

Because one unit of the numéraire can be transformed into one unit of the public good, the level

of public good provision is given by the government�s budget constraint, gi = (lyL +miyM )� i.

Each local government maximizes the utility of immobile workers by choosing income tax

rate, � i. The government of jurisdiction i expects that the number of mobile workers, mi, will

change in response to its policy changes satisfying that

wc(Si)u(cJi)+wg(Si)v(gi)�D(li;mi) = wc(Sk)u(cJk)+wg(Sk)v(gk)�D(lk;mk); (i 6= k): (2)

By plugging gi = (liyLi+miyM )� i and cMi = (1� � i)yM into (2) and di¤erentiating both sides

with respect to � i, we can derive changes in mi caused by a change in � i as

@mi

@� i
=

1

�Mi + �Mk

�
yMwc(Si)u

0(cMi)� (liyLi +miyM )wg(Si)v
0(gi)

�
;

where �Mi is the mobile worker�s marginal utility of hosting another mobile worker and is given

by

�Mi �
@UMi

@mi
= w0c(Si)u(cMi)

@Si
@mi

+ w0g(Si)v(gi)
@Si
@mi

+ � iyMwg(Si)v
0(gi)�

@D(li;mi)

@mi
:

We assume that �Mi < 0 is satis�ed for all i, so that the distribution of mobile worker is

stable. Here, the stability requires that a small perturbation causes utility changes that yield

incentives to restore the original allocation. Hence, an increase in mobile workers in a particular

jurisdiction needs to decrease the mobile worker�s utility there, i.e., �Mi < 0.

An increase in tax rate then results in the following changes in immobile worker�s utility:

3See, for example, Kanemoto (1980) for the role of congestion in determining the size of cities.
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@ULi
@� i

= �yLiwc(Si)u0(cLi) + (liyLi +miyM )wg(Si)v
0(gi) + �Li

@mi

@� i
(3)

= �yLiwc(Si)u0(cLi) + (liyLi +miyM )wg(Si)v
0(gi)

+
�Li

�Mi + �Mk

�
yMwc(Si)u

0(cMi)� (liyLi +miyM )wg(Si)v
0(gi)

�
;

where �Li is the immobile worker�s marginal utility of hosting another mobile worker, de�ned

as

�Li �
@ULi
@mi

= w0c(Si)u(cLi)
@Si
@mi

+ w0g(Si)v(gi)
@Si
@mi

+ � iyMwg(Si)v
0(gi)�

@D(li;mi)

@mi
:

Note that �Li is not necessarily negative, because Type L workers are immobile, and the stability

condition is not required. In the next section, we will use (3) in evaluating the e¢ ciency of the

equilibrium tax rate. The �rst term of (3) represents utility changes associated to private

good consumption decreases caused by income taxation, its second term represents the utility

increases caused by increased public good provision, and its last term represents the e¤ects of

changes in the number of mobile workers caused by income taxation.

The equilibrium tax rate is determined by the �rst-order condition of the local government

maximization, @ULi=@� i = 0 for all i, and we assume interior solutions. 4 Equilibrium is

given by a 3-tupple (mi; � i; gi) that is determined by the mobile worker�s arbitrage (2), the

local government optimization @ULi=@� i = 0, and the local government�s budget constraint

gi = (liyLi +miyM )� i.

3 E¢ ciency Properties

Now we examine whether the complementarity between security and private/public good a¤ects

the e¢ ciency of equilibrium of the tax competition. In order to see whether the equilibrium

tax rate is e¢ cient, we evaluate (3) at the Pareto-optimal tax rate, which satis�es (1). If it is

positive, the equilibrium tax rate is higher than the optimal tax rate, and if it is negative, the

opposite holds true. By plugging (1) into (3) and rearranging the equation, we obtain

@ULi
@� i

����
optimal

= �i�iwg(Si)v
0(gi); (4)

where �i and �i are de�ned as

�i � yMu0(cMi)� yLiu0(cLi) ; �i �
mi

u0(cMi)
+

�Li
�Mi + �Mk

li
u0(cLi)

:

4We assume the second-order conditions are satis�ed.
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The derivation of (4) is provided in Appendix A. Since wg(Si)v0(gi) is positive by de�nition, the

sign of (4) is determined by those of �i and �i. Notice that all endogenous variables included

in (4) are those satisfying the Samuelson condition given by (1).

First, we focus on �i. To investigate the sign of �i, we consider the following derivative:

@

@yJi

�
yJiu

0(cJi)
�
= u0(cJi) + cJiu

00(cJi) = (1� rJi)u0(cJi);

where rJi � �cJiu00(cJi)=u0(cJi) measures the relative risk aversion, or the elasticity of marginal

utility from consumption of private goods. For simplicity, we here assume that rJi is a positive

constant, and we denote it by r.5 Then, we obtain the following lemma.

Lemma 1 The sign of �i is determined by r, yLi and yM as follows:

(a) if r < 1, then yLi Q yM () �i R 0.

(b) if r = 1, then �i = 0 for any yLi and yM ;

(c) if r > 1, then yLi Q yM () �i Q 0;

Lemma 1 implies that, in jurisdiction i, the equilibrium tax rate always equals the optimal

one either when there exists no income di¤erence, i.e., yLi = yM , or when the coe¢ cient of the

relative risk aversion is equal to one, i.e., r = 1, which holds true if we employ a log utility

function.

Next, we focus on �i. Notice that

�Li � �Mi = w
0
c(Si) (u(cLi)� u(cMi))

@Si
@mi

: (5)

Since we assume that w0c(Si) > 0 and @Si=@mi < 0, we obtain

yLi Q yM () �Li R �Mi:

Recall the stability condition �Mi < 0. Then, if yLi � yM , we have �Li � �Mi < 0, implying

that �Li=(�Mi + �Mk) is always positive, and thus �i > 0 holds. However, if yLi < yM , it

is possible that �Li is positive, which means the sign of �i is not necessarily positive. �i is

negative if and only if �Li > e�i holds, where e�i is given by
e�i � miu

0(cLi)

liu0(cMi)
j�Mi + �Mkj:

We summarize these results in the following lemma.

Lemma 2 The sign of � is determined by yLi, yM and the relationship among �Li, �Mi, li,

mi, cLi and cMi as follows:
5This is possible when we employ an isoelastic function for u(cJi).
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(a) if yLi � yM , then �i > 0;

(b) if yLi < yM , then �Li Q e�i () �i R 0.

Combining Lemma 1 and 2, the sign of (4) can be summarized as in Table 1.

[Table 1 around here]

Hence, we obtain the follwing proposition:

Proposition 2

(a) Equilibrium is e¢ cient if the coe¢ cient of relative risk aversion is equal to one (i.e., r = 1)

or if there exists no income di¤erence (i.e., yLi = yM ).

(b) Suppose r < 1. Then, the equilibrium tax rate is ine¢ ciently low if the immobile worker�s

income is higher than the mobile worker�s income (i.e., yLi > yM ). If the opposite holds

true (i.e., yLi < yM ), a large value of immobile worker�s marginal utility of hosting another

mobile worker (i.e., �Li > e�i) yields ine¢ ciently low tax rate whereas a small value of
that (i.e., �Li < e�i) yields ine¢ ciently high tax rate.

(c) Suppose r > 1. Then, the equilibrium tax rate is ine¢ ciently high if the immobile worker�s

income is higher than the mobile worker�s income (i.e., yLi > yM ). If the opposite holds

true (i.e., yLi < yM ), a large value of immobile worker�s marginal utility of hosting another

mobile worker (i.e., �Li > e�i) yields ine¢ ciently high tax rate whereas a small value of
that (i.e., �Li < e�i) yields ine¢ ciently low tax rate.

The equilibrium is optimal only in exceptional cases (i.e., r = 1 or yLi = yM ). In most

cases, equilibrium is ine¢ cient, and the direction of ine¢ ciency depends on income di¤erence,

yLi � yM , the coe¢ cient of relative risk aversion, r, and the immobile worker�s marginal utility

of hosting another mobile worker, �Li.

The relative risk aversion represents the rate at which marginal utility from private good

decreases in response to an increase in the amount of consumption. Thus, the larger r, the

smaller utility obtained at a certain amount of consumption, because the marginal utility de-

creases relatively fast when r is large. Since income taxation a¤ects the amount of consumption,

this coe¢ cient is concerned with the e¢ ciency of the equilibrium.

Hosting another mobile worker a¤ects the immobile worker�s utility through three di¤erent

channels. First, it worsens the security and decreases the immobile worker�s utility. Second, it
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increases the tax revenue and her utility. Third, it worsens the congestion and decreases her

utility.

If the immobile worker�s income is higher than the mobile worker�s income (i.e., yLi > yM ),

the negative e¤ects of hosting another mobile worker dominate its positive e¤ect, implying that

�Li < 0, and r determines the direction of ine¢ ciency.

When r is low (i.e., r < 1), the marginal utility does not decrease so fast, and the utility

derived from consumption of private goods is highly a¤ected by changes in tax rate. Thus, the

govenment tries to enhance the utility of immobile workers through lowering tax rates. However,

this tax cut tends to be excessive because low tax rates decrease the provision of public goods

and have an e¤ect of reducing the in�ow of mobile workers. Then, the government�s behavior

results in an ine¢ ciently low tax.

When r is high (i.e., r < 1), the marginal utility decreases relatively fast, and the utility

derived from consumption of private goods is not so much a¤ected by changes in tax rate.

Thus, the govenment aims to enhance the utility of immobile workers by raising tax rates and

increasing the provision of public goods. However, this tax hike tends to be excessive because

high tax rates also have an e¤ect of reducing the in�ow of mobile workers through decreasing

their consumption levels. As a result, tax rate becomes ine¢ ciently high.

If the immobile worker�s income is lower than the mobile worker�s income (i.e., yLi < yM ),

things become more complicated. In addition to r, �Li now matters. In this case, we face

a possibility that �Li is positive and hosting another mobile worker improves the immobile

worker�s utility. The reason for which the possibility of �Li becoming positive arises is attributed

to the mobile worker�s high income. Since the immobile worker�s income is relatively low, the

mobile worker may be regarded as the source of public good provision to improve the immobile

worker�s utility, as long as the in�ow of mobile workers does not damage the immobile worker�s

utility through an increase in congestion and a deterioration in public security. This is why

things become complex when yLi < yM .

We �rst consider the case in which �Li is su¢ ciently small (i.e., �Li < e�i) and even negative.
In this case, hosting another mobile worker is likely to be undesirable for immobile workers.

When r is low (i.e., r < 1), a low tax rate can cause an increase in the in�ow of mobile

workers, because the utility that the mobile worker derives from consumption of private goods

is highly a¤ected by changes in tax rate. To prevent this unpleasant in�ow, the government

tries to raise the tax rate, resulting in an ine¢ ciently high tax.

When r is high (i.e., r < 1), in contrast, a high tax rate can induce an increase in the in�ow

of mobile workers, because the mobile worker�s utility does not so much a¤ected by changes in
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tax rates, and the amount of public goods becomes a more important factor that determines

the in�ow and out�ow of mobile workers. To prevent the in�ow, the government aims to set a

lower tax. As a result, tax rate becomes ine¢ ciently low.

Considering the case in which �Li is su¢ ciently large (i.e., �Li > e�i), however, oposite
results arise because the in�ow of mobile workers gets to be desirable for immobile workers. To

increase the in�ow of mobile workers, the government tries to reduce (resp. raise) the tax rate,

when r is low (resp. high), which leads to an ine¢ ciently low (resp. high) tax.

3.1 E¤ects of Complementarity

From Proposition 2, we know that equilibrium tax rate is ine¢ cient for most cases. We then

examine how the ine¢ ciency properties depends on the complementarity between security and

private/public good.

No Complementarity between Security and Private Good

We start from the case wherein there is no complementarity between security and private good.

Here, we set w0c(Si) = 0, implying that wc(Si) is a constant.

In this case, by (5), we obtain �Li = �Mi < 0, implying that the sign of �Li=(�Mi + �Mk)

is always positive, and so is the sign of �i. Thus, the sign of (4) is determined only by that of

�i, and Lemma 1 allows us to obtain the properties of ine¢ ciency under no complementarity

between security and private good. The result is summarized in Table 2.

[Table 2 around here]

Lemma 3 Suppose there exists no complementarity between security and private good.

(a) Equilibrium is e¢ cient if the coe¢ cient of relative risk aversion is equal to one (i.e., r = 1)

or if there exists no income di¤erence (i.e., yLi = yM ).

(b) Suppose r < 1. Then, the equilibrium tax rate is ine¢ ciently low if the immobile worker�s

income is higher than the mobile worker�s income (i.e., yLi > yM ). If the opposite holds

true (i.e., yLi < yM ), the equilibrium tax rate is ine¢ ciently high.

(c) Suppose r > 1. Then, the equilibrium tax rate is ine¢ ciently high if the immobile worker�s

income is higher than the mobile worker�s income (i.e., yLi > yM ). If the opposite holds

true (i.e., yLi < yM ), the equilibrium tax rate is ine¢ ciently low.
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No Complementarity between Security and Public Good

We can also investigate the role of complementarity between security and public good. We here

let w0g(Si) = 0, keeping w
0
c(Si) positive.

Since�i in (4) is not a¤ected by this change, the sign of�i is still determined as in Lemma 1.

Moreover, we know that, by (5), �Li 6= �Mi still holds as long as yLi 6= yM is satis�ed, implying

that the sign of �i is determined in the same way as Lemma 2. Therefore, the properties of

ine¢ ciency are also same as those given in Proposition 2, which are summarized in Table 1.

Lemma 4 Suppose there exists no complementarity between security and public good. Then the

e¢ ciency properties are the same as those given in Proposition 2.

No Complementarity between Security and Both Goods

Finally, we suppose there exists no complementarity between security and two goods. We thus

let w0c(Si) = w0g(Si) = 0. In this case, we again obtain �Li = �Mi, implying that the sign of

(4) is determined only by that of �i. Hence, the results become the same as those obtained in

Lemma 3, which are summarized in Table 2.

Lemma 5 Suppose there exists no complementarity between security and two goods. Then the

e¢ ciency properties are the same as those given in Lemma 3.

From Lemmas 3-5, we obtain the following proposition.

Proposition 3 The complementarity between security and public good has no e¤ect on the

(in)e¢ ciency properties of equilibrium of tax competition. In contrast, the complementar-

ity between security and private good might reverse them.

The results of Lemmas 3-5 imply that it is more important to care about complementarity

between security and private good in the presence of �scal externality, because it can lead to a

reversed property of ine¢ ciency.

4 Numerical Illustrations

To illustrate the model, we specify the functional forms and compute the equilibrium and

optimal tax rates numerically.
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The utilities obtained from private and public goods are represented by constant-relative-

risk-aversion functions, given by

u(cJi) =

8><>:
c1��Ji � 1
1� � (� 6= 1)

ln cJi (� = 1)

, and v(gi) =

8><>:
g1��i � 1
1� � (� 6= 1)

ln gi (� = 1)

;

respectively, where � and � are positive constants that measure the relative risk aversion.

The level of public security, Si, is decreasing in li and mi, and assumed to be given by

Si = (li + mi)
�
 . 
 > 0 can be interpreted as the elasticity of the public seculity level with

respect to the total population in jurisdiction i. We also assume that both wc(Si) and wg(Si)

are in the form of power function: wc(Si) = S�i and wg(Si) = S
�
i , where �; � 2 (0; 1).

The congestion costs, D(li;mi), is speci�ed by a linear function: D(li;mi) = f(li + mi),

where f > 0 represents the marginal increase in congestion with respect to the total population

in jurisdiction i.

4.1 Symmetric Jurisdictions

First, we consider the case with symmetric jurisdictions, in which l1 = l2 = l and yL1 = yL2 = yL

hold. Because of symmetry, the number of mobile workers living in each jurisdiction and the

tax rate set by each government are both identical across jurisdictions. That is, m1 = m2 = m

and �1 = �2 = � hold at both the equilibrium and optimum.

[Figure 1 around here]

Figure 1 illustrates the relationship between the risk aversion, �, and the equilibrium and

optimal tax rates.6 The solid line represents the equilibrium tax rate, while the dashed line does

the optimal one. Because we here let yL > yM , the equilibrium tax rate is below the optimal

one when � < 1. The two curves intersect at � = 1, at which the utility from private goods is

given by a log utility function. When � > 1, the equilibrium tax rate exceeds the optimal one.

[Figure 2 around here]

Figure 2 illustrates the relationship between the immobile worker�s income, yL, and the

equilibrium and optimal tax rates.7 Again, The solid and dashed lines represents the equilibrium
6The values of parameters included in the model are given as follows: l = 5, m = 4, yL = 4, yM = 3, � = 1:4,


 = 1, � = 0:6, � = 0:4, and f = 0:8.
7The values of parameters included in the model are given as follows: l = 4:5, m = 2, yM = 2:7, � = 1:2,

� = 0:6, 
 = 1, � = 0:2, � = 0:7, and f = 0:02.
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and optimal tax rates, respectively. There are two intersections in this �gure. Because we let

yM = 2:7, the two curves intersect at yL = 2:7. When yL is higher than this level, the equilibrium

tax rate exceeds the optimal one. When yL is smaller than this level, the equilibrium tax rate

is below the optimal one. However, we have the other intersection around yL = 2. Recall that

Proposition 2 mentions the possibility of a reversed property of ine¢ ciency under yL < yM ,

depending on the immobile worker�s marginal utility of hosting another mobile worker. Thus,

this intersection is the point at which �L = e� is satis�ed. If yL is smaller than this level,
hosting another mobile worker becomes bene�cial enough to reverse the relationship between

the equilibrium and optimal tax rates, and the equilibrium tax rate again exceeds the optimal

one.

4.2 Asymmetric Jurisdictions

Next, we let li and yLi vary across jurisdictions. In this case, of course, the distribution of

mobile wokers is no longer symmetric, and the tax rate in each jurisdiction is also di¤erent.

Asymmetry in the Immobile Worker�s Income

We �rst �x l1 and l2 at the same level, and focus on how asymmetry in the mobile worker�s

income a¤ects the equilibrium and optimum.

[Figure 3 around here]

Figure 3 illustrates how the gap between the equilibrium and optimal tax rates in each juris-

diction is a¤ected by the di¤erence in yL1 and yL2. The vertical axis represents the di¤erence

between the equilibrium and optimal tax rates. Thus, this value is positive (resp. negative) if

the equilibrium tax rate is ine¢ ciently high (resp. low). The gap in jurisdiction 1 is given by

the solid line, while that in jurisdiction 2 is represented by the dashed line. We here �x yL2 = 3,

and set yL1 for the horizontal axis.8

As implied by the theoretical results, the equilibrium tax rate is equal to the optimal one in

jurisdiction 1 at yL1 = yM = 4. Since we now let � < 1, the equilibrium tax rate in jurisdiction

1 is ine¢ ciently low when yL1 > yM . Although the theoretical results predict the possibility

of the equilibrium tax rate being lower than the optimal one even when yL1 < yM holds, this

example does not exhibit such a case and the equilibrium tax rate in jurisdiction 1 is ine¢ ciently

8The other values of parameters included in the model are given as follows: l1 = l2 = 8, m = 5, yM = 4,

� = 0:8, � = 1:2, 
 = 1, � = 0:3, � = 0:4, and f = 2.
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high under yL1 < yM . This example also implies that, even if the immobile worker�s income in

one jurisdiction changes, the gap between the equilibrium and optimum in the other jurisdiction

is not a¤ected so much.

Appendix B provides the values of the equilibrium and optimal tax rates in each jurisdiction

and the share of mobile worker living in jurisdiction 1 at the equilibrium and optimum, for

several pairs of yL1 and yL2. The numerical results imply that the distribution of the mobile

worker is a¤ected little, at both the equilibrium and optimum.

Although we here let � < �, Appendix B also provides the numerical results with � > �.

The result implies that the equilibrium and optimal tax rates becomes higher, the gap between

the equilibrium and optimum is not so di¤erent from that in the case with � > �.

Asymmetry in the Population of the Immobile Worker

we next �x yL1 and yL2 at the same level, and focus on how asymmetry in the population of

the immobile worker a¤ects the equilibrium and optimum.

[Figure 4 around here]

Figure 4 illustrates how the gap between the equilibrium and optimal tax rates in each jurisdic-

tion is a¤ected by the di¤erence in l1 and l2. Again, the vertical axis represents the di¤erence

between the equilibrium and optimal tax rates, and the solid and dashed lines are the gaps in

jurisdiction 1 and 2, respectively. We here �x l2 = 8, and set l1 for the horizontal axis. 9

The equilibrium tax rates are excessive for any l1 in the �gure. Since we here let yL1 =

yL2 < yM , this implies that the immobile worker�s marginal utility of hosting another mobile

worker is su¢ ciently low in both jurisdictions.

The gap tends to be smaller, compared with the case in which we focus on asymmetry in

the mobile worker�s income. This implies that asymmetry in the mobile worker�s income is

more crucial for shaping the gap between the equilibrium and optimum, than asymmetry in the

population of the immobile worker.

Appendix C provides the values of the equilibrium and optimal tax rates in each jurisdiction

and the share of mobile worker living in jurisdiction 1 at the equilibrium and optimum, for several

pairs of l1 and l2. According to the numerical results, the distribution of the mobile worker

is a¤ected so much by changes in the population of the immobile worker, in sharp contrast to

9The other values of parameters included in the model are given as follows: yL1 = yL2 = 3, m = 5, yM = 4,

� = 0:8, � = 1:2, 
 = 1, � = 0:3, � = 0:4, and f = 2.
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the case in which we focus on asymmetry in the mobile worker�s income. The reason for this

di¤erence is that the number of residents directly a¤ects the immobile worker�s utility through

public security and congestion.

Although we now let � < �, Appendix C also includes the case with � > �. The result is

qualitatively the same, but the equilibrium and optimal tax rates tend to be higher, compared

with the case with � < �.

5 Concluding Remarks

We constructed a model of public good provision under the complementarity between safety

and private/public good consumption. In the presence of �scal externality, the equilibrium is

ine¢ cient in most cases, and the direction of ine¢ ciency is determined by three factors: the

characteristics of the utility function, the di¤erence in income between the immobile and mobile

workers, and the immobile worker�s marginal utility of hosting another mobile worker. The third

factor becomes relevant only when complementarity between security and private good is taken

into account, implying that it is more important to consider complementarity between security

and private good in the presence of �scal externality, because a reversed property of ine¢ ciency

can arise due to this type of complementarity.

We also conducted numerical analyses. The results imply that asymmetry in the mobile

worker�s income is more crucial for shaping the gap between the equilibrium and optimum, but

it does not a¤ect so much the distribution of the mobile worker. In contrast, asymmetry in the

population of the immobile worker has a large impact on the distribution of the mobile worker,

although it is less crucial to the equilibrium and optimal tax rates.

Our theoretical and numerical results give an implication for empirical researches. When

we investigate the relationship between safety and public good, it is also important to account

for income di¤erences and complementarity between safety and private good.
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Appendices

Appendix A: Derivation of (4)

(3) can be rewritten as follows:

@ULi
@� i

= �yLiwc(Si)u0(cLi)
�
1� li

wg(Si)v
0(gi)

wc(Si)u0(cLi)

�
+miyMwg(Si)v

0(gi)

+
�Li

�Mi + �Mk

�
yMwc(Si)u

0(cMi)

�
1�mi

wg(Si)v
0(gi)

wc(Si)u0(cMi)

�
� liyLwg(Si)v0(gi)

�
:

Note that (1) gives us

1� li
wg(Si)v

0(gi)

wc(Si)u0(cLi)
= mi

wg(Si)v
0(gi)

wc(Si)u0(cMi)
; and 1�mi

wg(Si)v
0(gi)

wc(Si)u0(cMi)
= li

wg(Si)v
0(gi)

wc(Si)u0(cLi)
:

Plugging these into the above equation and arranging it, we obtain (4).

Appendix B: Asymmetry in the Mobile Worker�s Income and The Numerical

Results

Table 3 provides the numerical values of the equilibrium and optimal tax rates in each juris-

diction and the share of mobile worker living in jurisdiction 1 at the equilibrium and optimum,

for several pairs of yL1 and yL2, where � = 0:3 and � = 0:4. Table 4 considers the case with

� = 0:4 and � = 0:3. The other parameters are given as follows: l1 = l2 = 8, m = 5, yM = 4,

� = 0:8, � = 1:2, 
 = 1, and f = 2.

Each cell in the table contains six things. In the top row, we report the equilibrium tax rates

in jurisdictions 1 ( on the left side) and jurisdiction 2 (on the right side). In the middle row,

we report the optimal tax rates in jurisdictions 1 ( on the left side) and jurisdiction 2 (on the

right side). In the bottom row, we report the share of the mobile worker living in jurisdiction

1 at the equilibrium (on the left side) and the optimum (on the right side).

[Table 3 around here]

[Table 4 around here]
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Appendix C: Asymmetry in the Population of the Mobile Worker and The Numer-

ical Results

Table 5 provides the numerical values of the equilibrium and optimal tax rates in each jurisdic-

tion and the share of mobile worker living in jurisdiction 1 at the equilibrium and optimum, for

several pairs of l1 and l2, where � = 0:3 and � = 0:4. Table 6 considers the case with � = 0:4

and � = 0:3. The other parameters are given as follows: yL1 = yL2 = 3, m = 5, yM = 4,

� = 0:8, � = 1:2, 
 = 1, and f = 2. How to see the table is the same as in Appendix B.

[Table 5 around here]

[Table 6 around here]
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Table 1: Equilibrium vs. optimum.

Sign of (4) yLi = yM yLi > yM yLi < yM

r = 1 0 0 0

� if �Li > e�i
r < 1 0 � 0 if �Li = e�i

+ if �Li < e�i
+ if �Li > e�i

r > 1 0 + 0 if �Li = e�i
� if �Li < ~�i

Table 2: Equilibrium vs. optimum under w0c(S) = 0.

Sign of (4) yLi = yM yLi > yM yLi < yM

r = 1 0 0 0

r < 1 0 � +

r > 1 0 + �

Table 3: The numerical results with asymmetric yLi and � < �.
(0.4343, 0.4343)

1 (0.3092, 0.3092)

(0.5000, 0.5000)

(0.3421, 0.4340) (0.3421, 0.3421)

2 (0.2947, 0.3093) (0.2948, 0.2948)

(0.5022, 0.5015) (0.5000, 0.5000)

(0.2974, 0.4338) (0.2975, 0.3421) (0.2975, 0.2975)

3 (0.2810, 0.3094) (0.2810, 0.2949) (0.2811, 0.2811)

(0.5034, 0.5026) (0.5012, 0.5011) (0.5000, 0.5000)

(0.2690, 0.4336) (0.2691, 0.3420) (0.2691, 0.2975) (0.2692, 0.2692)

yL1 4 (0.2690, 0.3095) (0.2691, 0.2949) (0.2691, 0.2812) (0.2692, 0.2692)

(0.5043, 0.5035) (0.5022, 0.5020) (0.5009, 0.5009) (0.5000, 0.5000)

(0.2486, 0.4335) (0.2487, 0.3420) (0.2488, 0.2976) (0.2488, 0.2692) (0.2489, 0.2489)

5 (0.2587, 0.3096) (0.2588, 0.2950) (0.2588, 0.2812) (0.2588, 0.2692) (0.2589, 0.2589)

(0.5050, 0.5042) (0.5029, 0.5027) (0.5016, 0.5016) (0.5007, 0.5007) (0.5000, 0.5000)

(0.2330, 0.4335) (0.2331, 0.3420) (0.2331, 0.2976) (0.2332, 0.2692) (0.2332, 0.2489) (0.2333, 0.2333)

6 (0.2497, 0.3096) (0.2498, 0.2950) (0.2498, 0.2812) (0.2498, 0.2692) (0.2498, 0.2589) (0.2499, 0.2499)

(0.5056, 0.5048) (0.5035, 0.5034) (0.5022, 0.5023) (0.5013, 0.5014) (0.5006, 0.5006) (0.5000, 0.5000)

(0.2204, 0.4334) (0.2205, 0.3420) (0.2206, 0.2976) (0.2207, 0.2693) (0.2207, 0.2489) (0.2207, 0.2333) (0.2208, 0.2208)

7 (0.2418, 0.3097) (0.2419, 0.2951) (0.2419, 0.2813) (0.2419, 0.2693) (0.2419, 0.2589) (0.2420, 0.2499) (0.2420, 0.2420)

(0.5062, 0.5054) (0.5040, 0.5039) (0.5028, 0.5028) (0.5018, 0.5019) (0.5011, 0.5012) (0.5005, 0.5005) (0.5000, 0.5000)

1 2 3 4 5 6 7

yL2
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Table 4: The numerical results with asymmetric yLi and � > �.
(0.5618, 0.5618)

1 (0.4213, 0.4213)

(0.5000, 0.5000)

(0.4601, 0.5612) (0.4599, 0.4599)

2 (0.4039, 0.4214) (0.4040, 0.4040)

(0.5025, 0.5018) (0.5000, 0.5000)

(0.4074, 0.5609) (0.4074, 0.4598) (0.4073, 0.4073)

3 (0.3873, 0.4215) (0.3874, 0.4041) (0.3874, 0.3874)

(0.5040, 0.5031) (0.5015, 0.5013) (0.5000, 0.5000)

(0.3727, 0.5606) (0.3727, 0.4597) (0.3727, 0.4073) (0.3728, 0.3728)

yL1 4 (0.3727, 0.4216) (0.3727, 0.4041) (0.3727, 0.3875) (0.3728, 0.3728)

(0.5051, 0.5042) (0.5026, 0.5024) (0.5011, 0.5011) (0.5000, 0.5000)

(0.3472, 0.5605) (0.3473, 0.4597) (0.3474, 0.4073) (0.3474, 0.3728) (0.3474, 0.3474)

5 (0.3599, 0.4217) (0.3599, 0.4042) (0.3599, 0.3875) (0.3599, 0.3728) (0.3600, 0.3600)

(0.5060, 0.5051) (0.5035, 0.5033) (0.5020, 0.5020) (0.5009, 0.5009) (0.5000, 0.5000)

(0.3274, 0.5603) (0.3275, 0.4596) (0.3276, 0.4073) (0.3276, 0.3728) (0.3277, 0.3475) (0.3277, 0.3277)

6 (0.3487, 0.4217) (0.3487, 0.4042) (0.3487, 0.3875) (0.3487, 0.3728) (0.3487, 0.3600) (0.3487, 0.3487)

(0.5067, 0.5059) (0.5042, 0.5041) (0.5027, 0.5027) (0.5016, 0.5017) (0.5007, 0.5008) (0.5000, 0.5000)

(0.3113, 0.5602) (0.3114, 0.4596) (0.3115, 0.4073) (0.3116, 0.3728) (0.3116, 0.3475) (0.3116, 0.3277) (0.3117, 0.3117)

7 (0.3388, 0.4218) (0.3388, 0.4043) (0.3388, 0.3875) (0.3387, 0.3728) (0.3387, 0.3600) (0.3387, 0.3487) (0.3387, 0.3387)

(0.5073, 0.5065) (0.5048, 0.5047) (0.5034, 0.5034) (0.5022, 0.5023) (0.5014, 0.5014) (0.5006, 0.5007) (0.5000, 0.5000)

1 2 3 4 5 6 7

yL2
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Table 5: The numerical results with asymmetric li and � < �.
(0.3116, 0.3116)

5 (0.2934, 0.2934)

(0.5000, 0.5000)

(0.3096, 0.3085) (0.3065, 0.3065)

6 (0.2922, 0.2901) (0.2890, 0.2890)

(0.4498, 0.4498) (0.5000, 0.5000)

(0.3076, 0.3055) (0.3046, 0.3036) (0.3018, 0.3018)

7 (0.2910, 0.2870) (0.2879, 0.2859) (0.2849, 0.2849)

(0.3997, 0.3997) (0.4499, 0.4499) (0.5000, 0.5000)

(0.3056, 0.3026) (0.3028, 0.3009) (0.3001, 0.2992) (0.2975, 0.2975)

l1 8 (0.2899, 0.2841) (0.2868, 0.2831) (0.2839, 0.2821) (0.2811, 0.2811)

(0.3496, 0.3496) (0.3997, 0.3997) (0.4499, 0.4499) (0.5000, 0.5000)

(0.3038, 0.2999) (0.3010, 0.2983) (0.2984, 0.2966) (0.2959, 0.2951) (0.2936, 0.2936)

9 (0.2887, 0.2813) (0.2857, 0.2804) (0.2829, 0.2794) (0.2802, 0.2785) (0.2776, 0.2776)

(0.2994, 0.2994) (0.3496, 0.3496) (0.3998, 0.3998) (0.4499, 0.4499) (0.5000, 0.5000)

(0.3020, 0.2974) (0.2993, 0.2958) (0.2968, 0.2942) (0.2944, 0.2927) (0.2921, 0.2913) (0.2899, 0.2899)

10 (0.2876, 0.2787) (0.2847, 0.2778) (0.2819, 0.2769) (0.2792, 0.2760) (0.2767, 0.2752) (0.2743, 0.2743)

(0.2494, 0.2493) (0.2995, 0.2995) (0.3497, 0.3496) (0.3998, 0.3998) (0.4499, 0.4499) (0.5000, 0.5000)

(0.3003, 0.2950) (0.2977, 0.2934) (0.2952, 0.2920) (0.2929, 0.2905) (0.2907, 0.2891) (0.2885, 0.2878) (0.2865, 0.2865)

11 (0.2866, 0.2762) (0.2837, 0.2754) (0.2809, 0.2745) (0.2783, 0.2737) (0.2759, 0.2729) (0.2735, 0.2721) (0.2713, 0.2713)

(0.1993, 0.1993) (0.2494, 0.2494) (0.2996, 0.2996) (0.3497, 0.3497) (0.3998, 0.3998) (0.4499, 0.4499) (0.5000, 0.5000)

5 6 7 8 9 10 11

l2
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Table 6: The numerical results with asymmetric li and � > �.
(0.4119, 0.4119)

5 (0.3903, 0.3903)

(0.5000, 0.5000)

(0.4117, 0.4104) (0.4103, 0.4103)

6 (0.3911, 0.3886) (0.3894, 0.3894)

(0.4498, 0.4498) (0.5000, 0.5000)

(0.4115, 0.4091) (0.4101, 0.4089) (0.4088, 0.4088)

7 (0.3918, 0.3870) (0.3900, 0.3877) (0.3884, 0.3884)

(0.3996, 0.3996) (0.4498, 0.4498) (0.5000, 0.5000)

(0.4113, 0.4078) (0.4099, 0.4076) (0.4086, 0.4075) (0.4073, 0.4073)

l1 8 (0.3925, 0.3855) (0.3907, 0.3862) (0.3890, 0.3868) (0.3874, 0.3874)

(0.3495, 0.3495) (0.3997, 0.3997) (0.4498, 0.4498) (0.5000, 0.5000)

(0.4111, 0.4065) (0.4097, 0.4064) (0.4084, 0.4063) (0.4072, 0.4061) (0.4060, 0.4060)

9 (0.3930, 0.3841) (0.3912, 0.3847) (0.3896, 0.3854) (0.3880, 0.3860) (0.3865, 0.3865)

(0.2993, 0.2993) (0.3495, 0.3495) (0.3997, 0.3997) (0.4499, 0.4499) (0.5000, 0.5000)

(0.4109, 0.4054) (0.4095, 0.4053) (0.4082, 0.4052) (0.4070, 0.4050) (0.4058, 0.4049) (0.4047, 0.4047)

10 (0.3936, 0.3827) (0.3918, 0.3834) (0.3901, 0.3840) (0.3885, 0.3846) (0.3870, 0.3851) (0.3856, 0.3856)

(0.2492, 0.2492) (0.2994, 0.2994) (0.3496, 0.3496) (0.3997, 0.3997) (0.4499, 0.4499) (0.5000, 0.5000)

(0.4106, 0.4043) (0.4093, 0.4042) (0.4080, 0.4041) (0.4068, 0.4039) (0.4057, 0.4038) (0.4046, 0.4037) (0.4035, 0.4035)

11 (0.3941, 0.3815) (0.3922, 0.3821) (0.3905, 0.3827) (0.3890, 0.3832) (0.3875, 0.3838) (0.3860, 0.3842) (0.3847, 0.3847)

(0.1991, 0.1991) (0.2493, 0.2493) (0.2995, 0.2995) (0.3496, 0.3496) (0.3998, 0.3998) (0.4499, 0.4499) (0.5000, 0.5000)

5 6 7 8 9 10 11

l2
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