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A TWO-STAGE MODEL OF ASSIGNMENT AND MARKET

AKIHIKO MATSUI AND MEGUMI MURAKAMI

Abstract. Centralized matching mechanisms and decentralized markets have been widely studied
to allocate indivisible objects. However, they have been analyzed separately. The present paper
proposes a new framework, by explicitly formulating a two-stage model where objects are allocated
through a matching mechanism in the first stage and traded in the second stage market. In addition,
one divisible good called money may or may not be available in the market. Every player demands
at most one unit of object besides money. The players may face different priorities at each object
type in the first stage. Each object type has a limited amount of capacity, called quota. Each player
has a quasi-linear utility function. The present analysis sets forth the equivalence conditions under
which stability and efficiency are attained in equilibrium.

Keywords: two-stage economy, deferred acceptance algorithm (DA), market, indivisible object,
perfect market equilibrium (PME), priority, stability, cyclical priority, unreversed priority, minimal
demand
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1. Introduction

Centralized matching mechanisms and decentralized markets have been widely studied to as-
sign indivisible objects. On the one hand, matching mechanisms have been studied since the sem-
inal paper of Gale and Shapley (1962). A class of problems investigated therein include college
admission problems, housing allocations and office assignments. In these problems, a centralized
mechanism assigns objects to participants based on their preferences over objects and priorities
over individuals.

On the other hand, the markets of indivisible objects have been analyzed since Shapley and
Shubik (1971). Housing and labor markets are typical problems analyzed in this literature. Given
the ownership of the objects, demand and supply meet by way of price.

Although a matching mechanism and a market have been analyzed separately, the former is
often followed by the latter in reality, and choices in the matching mechanism are affected by the
subsequent market. Take college admission as an example. Students do not necessarily choose
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a college based on its own characteristics such as campus and curriculum. Rather, they take the
future job prospects upon graduation into consideration. In other words, the students solve a two-
stage problem, the college admission problem followed by that of the job market.

Airport coordination is another example of the two-stage model. This is a mechanism to al-
locate airport slots, permissions to use the full range of airport infrastructure to arrive or depart
at some airports on a specific date and time. International Air Transport Association (IATA) sets
Worldwide Slot Guidelines to allocate the limited number of slots efficiently. According to the
guideline, the first stage is a centralized assignment. Each airline submits its preferences over the
slots. Coordinators and facilitators decide the slot assignments based on the priorities determined
by the guideline. In the second stage after the initial allocation, the Slot Conference is held to
adjust or exchange the assigned slots. According to IATA, this conference is “attracting over 1200
delegates, from over 230 airlines and representatives of over 85 schedules-facilitated or fully co-
ordinated airports1” to discuss the arrangement of flight schedules. At the conference, adjustments
are proceeded mainly through the bilateral meeting between a coordinator and an airline delegate.
After the conference, final schedules are determined.

The existing single-stage models can be viewed as the reduced forms of the two-stage problems.
It is not obvious, however, that the properties of the reduced single-stage models correspond to
those of the full-fledged two-stage models. The present analysis shows that they do not coincide
with each other in general.

The present paper proposes a new framework, by explicitly formulating a two-stage model
where indivisible objects are allocated through the first stage matching mechanism and traded in
the second stage market. In this model, there are finitely many players and finitely many types
of indivisible objects. In addition, one divisible good called money may or may not be available
in the market. Every player demands at most one unit of object besides money. The players may
face different priorities at each object type in the first stage. Each object type has a limited amount
of capacity, called quota. Each player has a quasi-linear utility function. There is an object type
called the null object, which induces zero value for all the players and has a sufficient amount of
quota. An object type other than the null object is called a tangible object type.

The first stage is governed by a non-monetary assignment mechanism. The present paper uses
the deferred acceptance algorithm (DA) of Gale and Shapley (1962). The participants simultane-
ously submit the lists of their preferences, and objects are allocated through DA.

The second stage is governed by the market. The objects assigned in the first stage become the
endowments of the second stage. The priority no longer matters in the second stage since every
available object is owned by some player. The players trade objects in the market. The present
paper considers both non-monetary and monetary markets. In the airport coordination problem,
the Slot Conference implements non-monetary exchanges, while the job market after college ad-
mission involves monetary contracts. Each player’s payoff is determined by the indivisible object
and money, if any, held at the end of the second stage. In particular, what they obtain in the first
stage matter only to the extent that these objects affect the final allocation of the second stage.

The set of the participants in DA may be strictly contained in the entire set of the players. In
the college admissions problem with the subsequent labor market, for example, the entire players
are divided into two, students and firms, and only the students participate in the college admission
stage.

1URL: https://www.iata.org/events/sc144/Pages/index.aspx, retrieved on Jan. 24, 2019.
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As an equilibrium concept, perfect market equilibrium (PME) is defined. PME requires that
a market equilibrium should be realized in each market of the second stage both on and off the
paths, and that each player should select an optimal strategy in the first stage mechanism, taking
the second stage outcome into consideration. To be precise, we define an induced game, where
the payoff of each strategy profile is defined by the corresponding market equilibrium outcome. A
PME is a Nash equilibrium of this induced game.

First of all, the existence of PME is shown. In the economies with no money, a PME exists if the
values of tangible objects are positive for all the players, and if the quota of each tangible object
is one2. These conditions are assumed to hold in the economies with no money. In the economies
with money, a PME always exists in the present framework.

Next, other properties are studied. In the economies with no money, the main question is when
Pareto optimality and the stability of PME allocations are attained. First, an allocation is Pareto
optimal if no player cannot be better off without reducing the other players’ payoffs. Second, an
allocation is stable if every player prefers an object to her own object only if the object is assigned
to the player who has higher priority than her at the object.

On the one hand, Gale and Shapley (1962) shows that the allocation induced by the truth-telling
strategy profile in the single-stage DA mechanism, called the DA allocation hereafter, is always
stable, while Ergin (2002) shows that the DA allocation is Pareto optimal if and only if the priority
profile is acyclical.

On the other hand, the present paper shows that any pure PME allocation is always Pareto
optimal, while the PME allocation with the truth-telling strategy profile is stable if and only if the
priority profile is acyclical. Moreover, the PME allocation coincides with the DA allocation. This
relationship is summarized in Table 1.1.

Allocation Pareto Optimality Stability
DA iff ≻ is acyclical (Ergin) always (Gale and Shapley)

PME with TT always iff ≻ is acyclical
TT: the truth-telling strategy profile

Table 1.1

However, even if the priority profile is acyclical, there may exist a PME of which allocation
is not stable. This leads to the next condition. To begin with, two distinct players are said to
be top-two players if the priority of each of these two players is higher than any other player at
every object type. We then say that priority profile is unreversed if all the players except for these
top-two players, if any, have the same priority order across the object types. It is shown that the
Pareto optimal DA allocation is the unique pure PME allocation if and only if the priority profile
is unreversed.

In the economies with money, the question is when PME allocations attain efficiency. An
efficient allocation maximizes the sum of the players’ utility values among all the feasible object
allocations. Two cases are considered. In the first case, the players may become buyers and sellers
at the same time. The present analysis sets forth the equivalence conditions under which efficiency
is attained in a PME. It is shown that the efficient object allocation is uniquely achieved in a PME

2It is shown, by counterexample, that a PME does not necessarily exist if one of these conditions is violated.
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if and only if the minimal demand, the number of players that put positive values to each object,
exceeds a certain threshold.

In the second case, players are divided into two groups, sellers and buyers. This analysis may
be interpreted as a college admission problem followed by a labor market: the objects are college
degrees, the sellers are students, and the buyers are firms. The first stage is a many-to-one matching
between students and colleges. In the second stage, a job market opens, and each firm hires at most
one student based on his/her college degree3. It is shown that the efficient allocation is uniquely
achieved in a PME if and only if both the number of the firms with positive values and the number
of the students exceed certain thresholds.

The first stage of the present model is based upon the literature on DA. The college admission
problem is adopted from Gale and Shapley (1962) and Roth and Sotomayor (1989). The model of
the present paper formulates the first stage as a game. This formulation is taken from Sotomayor
(2008). We use the result of the strategy-proofness of DA by Dubins and Freedman (1981) and
Roth (1982). Ergin (2002) shows the equivalence between the efficiency of the allocation induced
by DA and the acyclicity of the priority profile, which is key to proving one of the main results of
the present paper.

The second stage of the present model is based upon the literature on markets with indivisible
objects. Shapley and Scarf (1974) shows non-emptiness of core and existence of competitive
equilibrium when there is no money. The present analysis uses their result directly in proving the
existence of market equilibrium in the case of no money. Kaneko and Yamamoto (1986) proves
the existence of competitive equilibrium in an economy with indivisible objects and money4. The
present paper uses this result directly in showing the existence of market equilibrium in the case
with money.

If we view the first stage as the assignment stage of property rights, then the analysis of the
present paper is related to the literature on property rights’ assignment with resale and mechanism
design with renegotiation, which is abundant. First of all, it is related to Coase’s theorem (see
Coase (1960)). In the present context, the theorem implies that irrespective of the assignment of
property right, the market leads to an efficient allocation. Jehiel and Moldovanu (1999) consid-
ers assignment with resale and shows that the assignment of property right is irrelevant if there
are resale processes. Their result corresponds to the result of the present paper in the case with
money when there is a sufficient amount of demand for the objects. If the demand is insufficient,
however, some objects may remain unassigned, and therefore, inefficiency is induced. Hafalir
and Krishna (2008) considers a two-stage model where auction is held in the first stage, and the
players who obtain the objects through the auction trade them in the second stage. The present
model is different from Hafalir and Krishna (2008) in that the first stage mechanism is DA, while
theirs is auction. Maskin and Moore (1999) considers a two-stage model where a mechanism is
implemented in the first stage, but the players cannot commit to its outcome in the second stage
and may renegotiate to move to a Pareto-improving outcome. The present paper studies a specific
environment to obtain equivalence results.

3Crawford and Knoer (1981) considers a model in which matching between firms and workers are adjusted by a
centralized mechanism that is an extension of DA by Gale and Shapley (1962). In contrast, the present model assumes
that workers and firms participate in the discentralized market.

4Kaneko (1982) proves non-emptiness of core under non-transferable utility. Wako (1984) shows that strong core is
inside the set of competitive equilibrium and demonstrates the conditions under which strong core exists.
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The rest of the paper is organized as follows. Section 2 presents a model and a solution concept
as well as some preliminary results. Section 3 studies economies without money. Section 4 studies
economies with money where sellers and buyers are not necessarily separated. Section 5 studies an
economy where the population is divided into two groups, sellers and buyers. Section 6 concludes
the paper. Some proofs and examples are relegated to appendices.

2. Model

A two-stage economy is considered. In the first stage, players participate in an assignment
game to obtain objects, while in the second stage, a market opens to allocate objects and money,
if any. The assignment of the objects in the first stage is governed by the deferred acceptance
algorithm (DA). The second stage is a pure exchange economy with the initial endowments being
the outcome of the first stage.

2.1. Preliminaries. N is a finite set of players. O is a finite set of object types. Assume |N | ≥ 2
and |O| ≥ 2. There is a null object type, denoted ϕ. We may call ϕ an object and any a in
O a tangible object whenever convenient. Let Ō = O ∪ {ϕ}. For any a ∈ O, a has a quota
qa ∈ {1, 2, . . .}. Also, let qϕ be a pseudo quota for ϕ. We assume qϕ = |N |. A quota profile is
denoted by q = (qa)a∈O. Let Q =

∑
a∈O qa. The objects are indivisible, and each player demands

at most one unit of object. Given a vector µ = (µi)i∈N ∈ ŌN and a ∈ Ō, let µa = {i ∈ N |µi = a} be
the set of the players who hold a.

Two classes of economies, one with no money and the other with money, are considered. The
latter allows the players to use divisible money for the second stage transaction in addition to the
objects, while the former does not.

An object allocation is µ ∈ ŌN that satisfies |µa| ≤ qa for all a ∈ O. If no money is available,
an allocation is given by µ. If money is available, the initial money holding is zero for every
player, while the eventual money holding of each player can be positive or negative. A monetary
allocation is m ∈ RN with

∑
i∈N mi = 0. An allocation is given by (µ,m) in the case of the economy

with money. In the sequel, an allocation with no money is sometimes written as (µ,m) with the
understanding that m = (0, . . . , 0) holds.

Utility functions are assumed to be quasi-linear, i.e., for every i ∈ N, the utility function ui :
Ō × R→ R of agent i is given by

ui(ai,mi) = vi(ai) + mi.

In the case of no money, we interchangeably write ui(ai) = ui(ai, 0) = vi(ai). We assume vi(ϕ) = 0
for every i ∈ N. The values of the tangible objects are assumed to be generic5 6. Let V be the set
of all the generic value profiles with vi(ϕ) = 0 (i ∈ N).

5Although the subsequent examples do not satisfy genericity, their results do not essentially depend upon non-
genericity.

6In particular, for all subsets M,M′ of N and all allocations µ, µ′, we have
∑

i∈M vi(µi) ,
∑

j∈M′ v j(µ′j) if (at least) one
of the following conditions holds: (i) µi , ϕ for some i ∈ M \M′; (ii) µ′j , ϕ for some j ∈ M′ \M; (iii) µi , µ′i for some
i ∈ M ∩ M′.
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2.2. The first stage: assignment. In the first stage, the players obtain objects based on priority
through the deferred acceptance algorithm (DA). Let P ⊂ N be the set of participants of DA;
players in N \ P are not allowed to participate in DA. It is assumed that |P| > qa holds for all
a ∈ O. Each participant’s strategy is a list of objects ordered from the top to the bottom, i.e., for
each i ∈ P, player i’s list is given by

(
a1

i , . . . , a
|Ō|
i

)
. The non-participants are dummy players: their

unique strategy is ϕ. Let Σi (i ∈ N) be the set of i’s strategies. Let Σ = (Σi)i∈N be the set of strategy
profiles and λ : Σ → ŌN be an outcome function, where λi(σ) is given by DA for each i ∈ P, and
λi(σ) = ϕ holds for each i ∈ N \ P.

For every a ∈ O, ≻a is a strict total order at a ∈ O over N, i.e., it satisfies transitivity and
asymmetry, and has no non-comparable pairs7. It defines the order of players’ priority at object a,
i.e., i ≻a j means that i has higher priority than j at a. Let ≻= (≻a)a∈O be a priority profile. Note
that priority is defined not only over participants but also over non-participants since we change
the set of participants for a fixed priority profile.

The rest is determined by the algorithm.
Step 1: Start with (a1

i )i∈P, the first objects of the players’ respective lists.
⋆ For each a ∈ Ō, if the number of the players choosing a does not exceed qa, then they
are temporarily assigned to a.
⋆ If the number of the players choosing a exceeds qa, then the top qa players in terms
of priority are temporarily assigned to a, and the rest go to the next step with the second
objects in their respective lists.

Step t (t > 1): Those assigned to a before and those who choose a in this step compete for
a, and repeat ⋆’s in Step 1 where we replace the second objects with the (t + 1)th objects.

Terminate the process when all the participants are assigned to an object in Ō.

Let A be the set of outcomes of the first stage. Note that each ω in A satisfies ωi = ϕ for i ∈ N \ P.

2.3. The second stage: market. All the players enter the market in the second stage. Their
endowment profile ω ∈ A is the outcome of the first stage. Tangible objects that are not assigned
to any player in the first stage cannot be allocated in the second stage.

Given ω ∈ A and a ∈ O, let |ωa| be the total endowment of object a in the second stage. We
denote a total endowment profile, or simply a total endowment, by |ω| = (|ωa|)a∈O. Given an initial
object allocation ω ∈ A of the second stage, an allocation (µ,m) is feasible under ω if for all a ∈ O,
|µa| ≤ |ωa| holds. Aω denotes the set of feasible allocations under ω. Also, Oω =

{
a ∈ O

∣∣∣ |ωa| > 0
}

is the set of feasible object types, and Ōω = Oω ∪ {ϕ}. Note that the quantity restriction is only on
the objects in O, i.e., not on ϕ.

The solution concept used for the second stage is market equilibrium.

Definition 2.1. Given ω ∈ A, (p, (µ,m)) ∈ RŌω
+ × Aω × RN is a market equilibrium under ω if

pϕ = 0 holds, and
• (µi,mi) ∈ arg max(µ′i ,m

′
i ) ui(µ′i ,m

′
i) s.t. pµ′i + m′i ≤ pωi ,

• ∀a ∈ Oω
[
|µa| ≤ |ωa|

]
∧
[
|µa| < |ωa| ⇒ pa = 0

]
.

Note that money holdings are always zero in the case of no money. Note also that Definition
2.1 together with feasibility under ω implies that the objects in O are free disposal.

7A binary relation ≻a over N is said to have no non-comparable pairs if i , j implies either i ≻a j or j ≻a i.
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2.4. The two-stage economy and perfect market equilbirium. The two stages are combined.
First, an induced game is introduced. For each ω ∈ A, let

(
p(ω), (µ(ω),m(ω))

)
be a pair of a price

vector and an allocation underω. Given a strategy profileσ ∈ Σ and a profile
(
p(ω), (µ(ω),m(ω))

)
ω∈A,

player i’s induced payoff is given by

ũi(σ) = ui
(
µi(λ(σ)),mi(λ(σ))

)
.

An induced game Γ is a profile ⟨N,Σ, (ũi)i∈N⟩. The payoff function ũi is extended to the mixed
strategy space where the expected utility is used. We denote by ρi ∈ ∆(Σi) a mixed strategy of
player i where ∆(Σi) is a set of probability distributions over Σi.

Now, we present an equilibrium concept that reflects the idea of perfection.

Definition 2.2. A profile
(
ρ,
(
p(ω), (µ(ω),m(ω))

)
ω∈A
)

is a perfect market equilibrium (PME) if

• for all ω ∈ A,
(
p(ω), (µ(ω),m(ω))

)
is a market equilibrium under ω;

• ρ ∈ ×i∈N∆(Σi) is a Nash equilibrium of the induced game ⟨N,Σ, (ũi)i∈N⟩.

Given a PME, we sometimes call its on-path (object) allocation a PME (object) allocation.

2.5. Pareto optimality and social welfare. A feasible object allocation is limited by the number
of the participants of the first stage. Also, in the second stage, tangible objects may be traded to
non-participants. Incorporating these points, we let

A = ∪ω∈AAω

be the set of all the feasible object allocations in the second stage. Then, we let

X = A ×
m ∈ RN

∣∣∣∣∣∣∑
i∈N

mi = 0


be the set of all the feasible allocations in the second stage. Note again that the money holdings
are zero in the case of no money.

Two criteria are used to evaluate allocations in terms of utility. One is Pareto criterion and the
other is social welfare. Consider two allocations (µ,m) and (µ′,m′) in X. The allocation (µ,m) is
said to Pareto dominate (µ′,m′) if for all i ∈ N, ui(µi,mi) ≥ ui(µ′i ,mi) holds, and for some j ∈ N,
u j(µ j,m j) > u j(µ′j,m j) holds. The allocation (µ,m) ∈ X is Pareto optimal if there is no allocation
in X that Pareto dominates (µ,m).

The second criterion is social welfare. For each allocation (µ,m), a social welfare is given by
W(µ) =

∑
i∈N vi(µi). We say that (µ,m) is efficient if µ ∈ arg maxµ′∈A W(µ′) holds.

Given an initial object allocation ω ∈ A of the second stage, an allocation (µ,m) is Pareto
optimal under ω if there does not exist a feasible allocation (µ′,m′) under ω that Pareto dominates
(µ,m). Also, an allocation (µ,m), or simply µ, is efficient under ω if there does not exist a feasible
allocation (µ′,m′) under ω such that W(µ′) > W(µ) holds.

Note that if |ω| = q holds, then A = Aω holds, and therefore, a Pareto optimal (resp. efficient)
allocation under ω is also Pareto optimal (resp. efficient).

3. The Economy with NoMoney

This section considers the economy with no money, i.e., money holdings are always zero. It is
assumed that all the tangible objects are valuable for all the players. It is also assumed that the
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quota of each tangible object in O is one. These assumptions are expressed in the following.

(+Value): for all i ∈ N and for all a ∈ O, vi(a) > 0,
(Quota1): for all a ∈ O, |qa| = 1.

Under (+Value), all tangible objects have positive intrinsic values for all the players. The set of
positive value profiles is given by

V+ =
{
v ∈ V

∣∣∣∣∀i ∈ N∀a ∈ O vi(a) > 0
}
.

3.1. Existence. The condition for the existence of market equilibrium in the second stage is non-
trivial in the case of no money. Shapley and Scarf (1974) essentially shows that for any initial
endowment profile, a market equilibrium exists if (+Value) and (Quota1) hold.

Lemma 3.1. Assume (+Value), and (Quota1). For all ω ∈ A, a market equilibrium exists under
ω.

The proof of this lemma is the same as that of Shapley and Scarf (1974). The existence of ME
is not guaranteed if either (+Value) or (Quota1) is violated. See counter-examples in Appendix
A.1.

Given the initial endowment profile ω ∈ A of the second stage, transactions occur in the form
of trading cycles. A trading cycle is a cycle of pairs of the form:

((i1, ωi1), (i2, ωi2), . . . , (iK , ωiK ))

with (i1, ωi1) = (iK , ωiK ) such that ik−1 trades ωik−1 for ωik (k = 2, . . . ,K) in the second stage.
Using Lemma 3.1 and the existence result of subgame perfect equilibrium for a finite game, we

have the existence result for PME, which is stated without proof.

Theorem 3.2. Assume (+Value) and (Quota1). Then, there exists at least one PME in mixed
strategy.

3.2. Pareto optimality. A pure PME allocation is Pareto optimal whenever it exists. This result
is not trivial since an ME allocation under some ω ∈ A may not be Pareto optimal, even though it
is Pareto optimal under ω. Formally, we have the following Pareto optimality result.

Theorem 3.3. Assume (+Value) and (Quota1). Then, any pure PME object allocation is Pareto
optimal.

Proof. Let ω and µ be the PME outcome of the first and second stages, respectively. Let p be the
price such that (p, µ) is an ME under ω. Note first that no player in N \ P can obtain any object
due to (+Value) and the no-money assumption. So, we ignore N \ P. Suppose that η ∈ A Pareto
dominates µ.

It must be the case that |η| , |µ| holds; otherwise, µ cannot be a market equilibrium allocation.
Then due to (+Value) and (Quota1), there exists a ∈ O such that ηi = a holds for some i ∈ P, and
µ j , a holds for all j ∈ P. Take such a tangible object a and player i. Due to the genericity of the
value profile, Pareto dominance implies that

vi(ηi) > vi(µi)

holds. Note that nobody obtains a on the equilibrium path of the PME. Thus, player i could have
profitably deviated from the PME by obtaining a in the first stage. This is a contradiction.

□



A TWO-STAGE MODEL OF ASSIGNMENT AND MARKET 9

3.3. PME and DA allocations. This subsection presents two equivalence results about PME and
DA allocations. Note first that the DA allocation is the unique stable allocation that Pareto dom-
inates all the other stable allocations (see Lemma A.2 as well as Gale and Shapley (1962)). In
other words, an allocation is stable and Pareto optimal if and only if it is the DA allocation that
is Pareto optimal (the Pareto optimal DA allocation for short). Note also that in the single-stage
model, the DA allocation becomes Pareto optimal for any value profile if and only if the priority
profile is acyclical (Ergin (2002)). The first equivalence result states that the PME allocation with
the truth-telling strategy profile is the Pareto optimal DA allocation for any value profile if and
only if the priority profile is acyclical.

Even if the priority profile is acyclical, there may exist a pure PME of which allocation does
not coincide with the DA allocation. This leads to the second equivalence result. It states that the
Pareto optimal DA allocation is the unique pure PME allocation for any value profile if and only
if the priority profile is unreversed.

First of all, the stability of object allocations is defined in the standard manner8.

Definition 3.1. An object allocation µ ∈ A is stable if

• ∀i ∈ P, ∀ j ∈ P [µ j ∈ O ∧ i ≻µ j j⇒ vi(µi) ≥ vi(µ j)],
• ∀a ∈ O ∀i ∈ P [|µa| < qa ⇒ vi(µi) ≥ vi(a)],
• ∀i ∈ P [vi(µi) ≥ 0].

3.3.1. Acyclicity. We introduce the concept of priority cycle as stated in Ergin (2002)9.

Definition 3.2. A priority cycle consists of distinct a, b ∈ O and i, j, k ∈ N such that the following
is satisfied:

i ≻a j ≻a k ≻b i.
If the priority profile is not cyclical, it is called acyclical.

A generalized cycle of priority consists of distinct a1, a2, . . . , an ∈ O and i, k1, . . . , kn ∈ N such
that the following are satisfied:

k1 ≻a1 i ≻a1 kn ≻an kn−1 ≻an−1 kn−2 . . . k2 ≻a2 k1.

It is essentially shown that if ≻ has a generalized cycle, then it also has a cycle (Ergin (2002)).
We say that ζ∗ ∈ Σ is a truth-telling strategy profile if for all i ∈ P and for all a, a′ ∈ Ō,

vi(a) > vi(a′) implies that a is ranked higher than a′ in the list of player i. We call λ(ζ∗) ∈ A the
DA allocation.

We then have the following equivalence result.

Theorem 3.4. Assume |O| ≥ 3, |N| ≥ 3, and (Quota1). Then, the following two statements are
equivalent:

(1) For any P with |P| ≥ 3 and for all v ∈ V+, the Pareto optimal DA allocation exists, and it
is the PME allocation with the truth-telling strategy profile;

(2) ≻ is acyclical.

8Note that stability is defined for A rather than A. This suffices for our purpose since no allocation in A\A is realized
on the path of any pure PME due to (+Value).

9The definition of the cycle and acyclicity are different from that of Ergin (2002) in that Ergin (2002) includes the
condition on scarcity in the definition as well.
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Proof. See Appendix A.3. □

Theorem 3.4 states that the truth-telling strategy profile achieves the Pareto optimal DA alloca-
tion as a PME for any value profile if and only if the priority profile is acyclical. In the proof of
(1) implying (2), assuming that the priority profile is cyclical, we construct v and P under which a
player can profitably deviate from the truth-telling strategy.

Roughly speaking, the proof of (2) implying (1) goes as follows. We assume that there is no
cycle in the priority profile, and that the truth-telling strategy profile does not constitute a PME
allocation. Suppose that ω ∈ A is the first stage allocation under the truth-telling strategy profile.
Then, there exists a player, denoted i, who can profitably deviate from the truth-telling strategy.
From the property of DA and the strategy proofness of the truth-telling strategy profile, if player i
obtains a tangible object a by deviation, player i prefers ωi to a. Therefore, player i must trade in
the second stage to be better off. Such a transaction is made possible only through a trading cycle.
Note here that there is another player, player j, who is pushed out by player i at ω j = a due to i’s
deviation, i.e., player i has higher priority than player j. Note also that there is yet another player,
player ℓ, who buys this object from player i in the trading cycle. Player ℓ has lower priority than
player j if these players are distinct. Using the priority order of i, j, ℓ and the trading cycle, we
construct a generalized cycle, which leads to a contradiction. The actual proof is lengthy since j
and ℓ may be the identical player, and in such a case, we have to construct a generalized cycle with
distinct players in a recursive manner.

Some pure PME allocation may not coincide with the DA allocation even if the priority profile
is acyclical. In the next subsection, we will discuss the equivalence condition under which the
Pareto optimal DA allocation is the unique PME allocation.

3.3.2. Unreversedness. We are now in the position to present an equivalent condition under which
the Pareto optimal DA allocation is the unique pure PME allocation. We call this condition the
unreversed condition as defined in the following.

Top-two players, if any, are the two players who have higher priority than all the others at every
object, i.e., i and j in N such that for all k ∈ N \ {i, j} and all a ∈ O, both i ≻a k and j ≻a k hold.

Definition 3.3. ≻ is reversed if either one of the following holds:
(1) there exist no top-two players;
(2) there exist top-two players, i, j ∈ N, and other players, h, ℓ ∈ N \ {i, j} such that h ≻a ℓ

and ℓ ≻b h hold for some a, b ∈ O.
If ≻ is not reversed, it is said to be unreversed.

If the priority profile is unreversed, all the players except for the top-two players have the same
priority order across the objects. Note that the unreversed priority profile is acyclical.

We then have the following result.

Theorem 3.5. Assume |O| ≥ 3, |N | ≥ 3, and (Quota1). Then the following two statements are
equivalent:

(1) For any P with |P| ≥ 3 and for all v ∈ V+, the Pareto optimal DA allocation exists, and it
is the unique pure PME allocation;

(2) The priority profile ≻ is unreversed.

Theorem 3.5 states that there exists the unique pure PME allocation, and it is the Pareto optimal
DA allocation for any value profile if and only if the priority profile is unreversed. In the proof
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of (1) implying (2), assuming that the priority profile is reversed, we construct v and P under
which an unstable pure PME allocation is induced. An interesting case is that the priority profile
is acyclical but reversed. Suppose that there are three participants in the mechanism, 1, 2, 3, and
three objects, x, y, z. 1 has the highest priority at all objects. 2 has higher priority at x than 3, but
3 has higher priority than 2 at z. Consider a value profile such that 1 likes x most, and both 2 and
3 like z most. In this case, 1 is indifferent between two different objects, x and z, to obtain in the
first stage. If 1 goes to x in the first stage, 3 obtains z, and the final allocation becomes (x, y, z),
which is stable. However, if 1 obtains z in the first stage, then 2 obtains x. In the second stage, 1
trades z for x with 2, who could have not obtained z otherwise. This leads to (x, z, y), an unstable
PME allocation.

We show that (2) implies (1) by contradiction. Roughly speaking, the proof goes as follows. It
is assumed that the priority profile is unreversed, but that there is an unstable PME allocation, µ.
It suffices to show that this induces a profitable deviation. Since µ is not stable, there exist players
i and j in P such that i prefers a = µ j ∈ O to µi, but j has lower priority than i at a. This happens
on the equilibrium path of the PME when j obtains another object, ω j , a in the first stage and
trades it with a in the second stage market. The owner k of a in the first stage must have higher
priority than i at a; otherwise, i could have obtained it. Therefore, there exists a trading cycle that
contains both j and k on the equilibrium path of this PME.

Note that if the priority profile is unreversed, all the players except top-two players are aligned
from the higher priority to lower priority at all the objects. Therefore, no first stage deviation by i
changes the ownership of any player who has higher priority than i. This implies that k still owns
the same object a after i’s deviation. Also, since j is in the same trading cycle as k, there exists at
least one player whose priority is lower than i in the trading cycle. It is verified that this enables
player i to obtain the object in the first stage from such a player and to trade it for a with k. Hence,
i can profitably deviate from the PME. This leads to a contradiction. The actual proof is lengthy
since it needs an inductive argument.

Proof.

[(1)⇒ (2)]

i 1 2 3
vi(x) 30 20 10
vi(y) 20 10 20
vi(z) 10 30 30

Table 3.1. Values

Take any priority profile ≻ that is reversed. First, consider the case where ≻ is cyclical. In
this case, there exist distinct three players, say, 1, 2, 3, and distinct two objects x, z such that
1 ≻z 3 ≻z 2 ≻x 1. There are three possible cases with respect to the priority order at x, (i)
2 ≻x 3 ≻x 1, (ii) 3 ≻x 2 ≻x 1, and (iii) 2 ≻x 1 ≻x 3. We will see that for each of these three cases,
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the value profile v given by Table 3.1 is a counter-example to the statement that the Pareto optimal
DA allocation exists, and it is the unique pure PME allocation for P = {1, 2, 3}.

Case (i): 2 ≻x 3 ≻x 1. In this case, (y, x, z) is the Pareto optimal DA allocation regardless of the
priority order at y. There is a PME such that (z, x, y) is the first stage outcome, and (x, z, y) is the
final allocation in the PME.

Case (ii): 3 ≻x 2 ≻x 1. In this case, (y, x, z) is the Pareto optimal DA allocation regardless of
the priority order at y. There is a PME such that (z, y, x) is the first stage outcome, and (x, y, z) is
the final allocation.

Case (iii): 2 ≻x 1 ≻x 3. In this case, (y, x, z) is the Pareto optimal DA allocation regardless of
the priority order at y. There is a PME such that (z, x, y) is the first stage outcome, and (x, z, y) is
the final allocation.

Now, consider the case where the priority profile ≻ is acyclical but reversed. Again, assume
without loss of generality that 1 ≻z 3 ≻z 2 holds. Since ≻ is acyclical, 1 ≻a 2 holds for all a ∈ O.
Also, since ≻ is reversed, there must exist x ∈ O such that 1 ≻x 2 ≻x 3. Assume P = {1, 2, 3}.
Then once again, the value profile v given by Table 3.1 is a counter-example to the statement that
the Pareto optimal DA allocation exists, and it is the unique pure PME allocation for P = {1, 2, 3}.
Indeed, (x, y, z) is the Pareto optimal DA allocation, while there is a PME such that (z, x, y) is the
first stage outcome, and (x, z, y) is the final allocation.

[(2)⇒ (1)]

Assume the priority profile is unreversed. Then, there are top-two players, denoted by 1 and
2. Now, write N \ {1, 2} = {3, 4, . . . , |N |}. Assume without loss of generality that for n, n′ ∈
{3, 4, . . . , |N|} with n < n′, n ≻a n′ holds for all a ∈ O.

Since ≻ is unreversed, it is acyclical. Theorem 3.4 implies that the Pareto optimal DA allocation
exists, and it is a PME allocation. Thus, the set of PME allocations is nonempty.

Next, it is shown that any PME allocation is stable. Suppose γ is an arbitrary PME allocation.
Fix this γ and the PME strategy that generates γ in the sequel. Then, there exist a price vector p
and ω on the equilibrium path such that (p, γ) is an ME under ω.

Align (pa)a∈Oω from the highest to the lowest: p1 > p2 > · · · > ps̄. Let Os ⊂ O (s = 1, 2, . . . , s̄)
be the set of objects such that pa = ps holds for a ∈ Os. Also, given i ∈ N, define a set of objects
T i ⊂ O to be the one of which elements are traded in the trading cycle that contains γi on the
equilibrium path of the PME. It is verified that T i’s form an equivalence class, i.e., in particular, if
γ j ∈ T i holds for j ∈ N, then we have T i = T j. It is also verified that T i ∩Os , ∅ implies T i ⊂ Os.

To show the stability of γ, we consider the following claim (κ = 1, 2, . . . , s̄):

(Claim κ) for all i, j in N, if γi ∈ Oκ, i ≻ω j j, and ω j in Os with s ≤ κ − 1, then i
prefers γi to any object in T j ⊂ Os.

If (Claim κ) holds for all κ = 1, 2, . . . , s̄, the PME allocation γ is stable. For if not, there exist
distinct i and j such that i prefers j’s object γ j while i has higher priority than j at γ j. This
happens only when the price of γ j is higher than that of i’s endowment, ωi, and j obtains γ j in
the second stage market by exchanging it with his endowment ω j , γ j. Otherwise, i could have
bought γ j or deprived j of γ j on the path. Therefore, if a PME allocation γ is not stable, the claim
to be shown does not hold. This is a contraposition of what we will prove.
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We will prove (Claim κ) (κ = 1, 2, . . . , s̄) by induction. First of all, (Claim 1) trivially holds.
Suppose next that (Claim k′) holds for all k′ = 1, . . . , k (k < s̄). We would like to prove (Claim
k + 1).

Now, suppose the contrary, i.e., that there exist i and j in N such that γi ∈ Ok+1, i ≻ω j j, and ω j

in Os with s ≤ k, but there exists a ∈ T j such that vi(a) > vi(γi). Let ℓ ∈ N be the player who holds
such an a, i.e., ωℓ = a. Since γ is a PME allocation, ℓ ≻ωℓ i holds; otherwise, i would deprive ℓ of
ωℓ in the first stage.

We order the players who trade objects in T j in the following manner. First, let ℓ1 = ℓ. Next,
let ℓ2 be the player who obtains γℓ1 in the first stage, i.e., ωℓ2 = γℓ1 . This way, we order the players
(ℓ1, ℓ2, . . . , ℓ|T j |) with ωℓ1 = γℓ|T j |

. Thus, the trading cycle is given by(
(ℓ1, ωℓ1), (ℓ2, ωℓ2), . . . , (ℓ|T j |, ωℓ|T j |

), (ℓ1, ωℓ1)
)
.

Note that j holds an object in T j. Therefore, there exists at least one player whose priority is
lower than i. Thus, if i ∈ Nk \ {1, 2}, let ℓh be the first player in (ℓ1, ℓ2, . . . , ℓ|T j |) with ℓ∗ > i. If
i = 1, then we have ℓ = 2 since ℓ ≻ωℓ i holds. Let ℓh = ℓ2. Similarly, if i = 2, let ℓh = ℓ2.

In the first stage, i can obtain ℓh’s object, and i’s deviation changes the endowments of some
players including ℓh. Note that players ℓ1, . . . , ℓh−1 have higher priority than i at their respective
endowments.

It is verified that these players obtain the same objects even after i’s deviation. To see this, first
consider the case of i ∈ N \ {1, 2}. In this case, the rejection chain aligns the players from the
one with high priority to the one with low priority. Since the priority profile is unreversed, this
rejection chain cannot put i before ℓh′ who has higher priority at every object than anyone who in
turn has lower priority at some object than i.

Next, consider the case of i ∈ {1, 2}. Without loss of generality, suppose i = 1. Note that any
player in N\{1, 2} cannot change 2’s endowment as we have just shown above. Then, it is sufficient
to verify that 1’s deviation does not directly affect 2. Note that 2 ≻ω2 1 holds. This implies that 1
cannot change 2’s endowment once 2 reaches ω2 in DA. Since 1 may have higher priority than 2
at other objects, it is possible that 2 is rejected by 1 and comes to ω2 on the equilibrium path. This
is the only possible path where 2’s endowment changes by 1’s deviation. However, since 1 prefers
ω2 to ω1, this could not happen on the equilibrium path toward γ. Indeed, if this is the case, 1 can
strictly better off by taking ω2 without moving 2. Therefore, any 1’s deviation does not change 2’s
endowment, i.e., 2 gets the same ω2. The same argument holds when i = 2.

Thus, players ℓ1, . . . , ℓh−1 end up with the same endowments after i’s deviation. Remember that
these players do not want to obtain an object in Os (s ≤ k) that are held by a player with lower
priority than them. Then, even if i’s deviation changes the owners of objects in Os for some s ≤ k,
they do not want to obtain elements in such Os. In other words, if one of players ℓ1, . . . , ℓh−1, say,
ℓh′ prefers another object with a higher price than ps, then the player who obtains this object has
higher priority than ℓh′ .

Next, such player ℓh′ wants to buy the same object as in the case that i does not deviate. As we
have assumed, ℓh′ does not want to buy objects in Ot with t > k. Indeed, if ℓh′ wishes to buy it,
he/she would have bought it on the equilibrium path.

Combining the above arguments, even after i’s deviation, the object obtained in the first stage by
player ℓh′ with h′ < h has the same price with ωℓh that i obtains through deviation. Therefore, by
obtaining ℓh’s endowment, i can create another trading cycle starting from (ℓ, ωℓ), reaches (i, ωℓh),
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and comes back to (ℓ, ωℓ). This means that i can exchange the depriving object with an object
that is more preferable than γi. If i can create another trading cycle and buy another object that is
more preferable object than the one held by ℓ, then this also becomes an ME. This means that i
can profitably deviate in either case. Therefore, γ is not a PME allocation.

Thus, (Claim κ) holds for all κ = 1, 2, . . . , s̄. Together with Theorem 3.3, this implies that γ is a
stable and Pareto optimal allocation. Hence, γ is the Pareto optimal DA allocation. This completes
the proof. □

3.4. Relationship between single-stage models and the present two-stage model. The rela-
tionship between the present two-stage model and the standard single-stage DA may be summa-
rized as follows.

First of all, acyclicity plays a key role in both models. On the one hand, a PME allocation is
always Pareto optimal (Theorem 3.3) but may not necessarily be stable. The stability of the PME
allocation with the truth-telling strategy profile is shown to be equivalent to the acycilicity of the
priority profile (Theorem 3.4). Note that a stable allocation Pareto dominated by the DA allocation
cannot be a pure PME allocation since every pure PME allocation is Pareto optimal.

On the other hand, the single-stage DA mechanism always induces a stable allocation by the
truth-telling strategy profile (Gale and Shapley (1962)), but the allocation is Pareto optimal for
any value profile if and only if the priority profile is acyclical (Ergin (2002))10. This relationship
is summarized in Table 1.1.

Next, Theorem 3.5 states that there exists the unique pure PME allocation, and it is the Pareto
optimal DA allocation for any value profile if and only if the priority profile is unreversed. The
DA allocation is the unique allocation achieved in the pure PME allocation.

There is a remark about Nash equilibrium in DA. In general, the single-stage DA has a Nash
equilibrium that does not use the truth-telling strategy profile (see Table 3.2). In this economy,
the single-stage DA has two classes of Nash equilibria in terms of allocation. The first class of
equilibria is the one in which Player 1 (resp. 2) places x (resp. y) on the top of the list. The
equlibrium with the truth-telling strategy profile is contained in this class. The allocation is (x, y).
The second class of equilibria is the one in which Player 1 (resp. 2) places y (resp. x) on the top
of the list. The allocation of this type of equlibrium is (y, x). Neither player has an incentive to
deviate due to the priority profile. Note that (y, x) cannot be a PME allocation (of the second stage)
since the players would trade their goods with each other when their endowment profile is (y, x).

10Ergin (2002) shows that the Pareto optimality of DA is equivalent not only to the acycilicity of the priority profile
but also to the group strategyproofness. According to Takamiya (2001), the group strategyproofness is also equivalent
to Maskin monotonicity. Kojima and Manea (2010) also shows more equivalence conditions in which Pareto optimality
of allocations are achieved in DA.
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i 1 2
vi(x) 20 10 2 ≻x 1
vi(y) 10 20 1 ≻y 2

Table 3.2. Values and priority

One may wonder if the top trading cycle mechanism (TTC) as defined by Abdulkadiroğlu and
Sönmez (2003) induces the same allocation as a PME allocation in the present two-stage economy.
The answer is in the negative as Example 3.1 shows.

Example 3.1.
Let the pair of values and priority be given as follows.

i 1 2 3 4
vi(x) 40 20 40 10 4 ≻x 2 ≻x 3 ≻x 1
vi(y) 20 40 30 20 1 ≻y 3 ≻y 2 ≻y 4
vi(z) 30 30 20 30 4 ≻z 3 ≻z 2 ≻z 1
vi(w) 10 10 10 40 1 ≻w 4 ≻w 2 ≻w 3

Table 3.3. Values and priority

In this example, a single-stage TTC results in (x, z, y,w)11. On the other hand, the PME alloca-
tion of the two-stage economy under truth-telling strategy profile is (z, y, x,w).

4. The Economy withMoney

This section studies the economy with money. Efficiency is the main property that this section
examines instead of Pareto optimality and stability studied in the previous section. If money is
available, we have a very different economy from the one without money. Under the assumption
of the quasi-linearity of utility functions, the definition of Pareto optimality is reduced to that of
efficiency. Also, each player can be a buyer in the second stage even if he/she does not obtain
an object in the first stage, and the market attains efficiency under the endowment profile at the
beginning of the second stage. Then under the genericity assumption, the object allocation is
uniquely determined no matter what the first stage assignment may be, provided that the total
endowment of the second stage is unchanged. Thus, the priority profile of the first stage does not
matter in terms of object allocation although it affects each player’s eventual utility through money
transfer. Hence, the stability notion plays little role in terms of the final allocation of the objects.

11TTC in this example is different from the one defined by Shapley and Scarf (1974) in that both players and objects
point their favorite objects/players.
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4.1. Existence. First, we have the existence result of market equilibrium in the second stage due
to Kaneko and Yamamoto (1986)12.

Lemma 4.1. For all ω ∈ A, there exists at least one market equilibrium under ω.

If there exists a market equilibrium under every ω, then by assigning a market equilibrium allo-
cation under each ω, we can construct a game for the first stage. Then a PME exists in the mixed
strategy profile space since the existence of PME is reduced to the existence of Nash equilibrium.
Thus, the following result is stated without proof.

Theorem 4.2. There exists at least one PME in mixed strategy.

4.2. Efficiency. We turn to the efficiency of PME. Note that even though the market attains ef-
ficiency under the endowment profile at the beginning of the second stage, efficiency may not be
guaranteed when there are some leftovers that are not available in the second stage. Indeed, if there
are not a sufficient number of players, we may not have efficiency. Let us consider the following
example.

Example 4.1.

i 1 2
vi(x) 10 50
vi(y) 20 5

Table 4.1. An inefficient PME

Suppose that the values together with N and O are given by Table 4.1, that qx = qy = 1 holds,
and that 1 ≻a 2 holds for a = x, y. Then, there is a PME where only x is consumed. We show it by
construction. On the equilibriumm path of this PME, we let

ω = (x, ϕ), p = (px, py) = (20,−), µ = (ϕ, x),

and the utility gains of Players 1 and 2 are 20 and 30, respectively. Off the equilibrium path when
2 deviates to obtain the leftover y in the first stage, we let

ω = (x, y), p = (px, py) = (40, 10), µ = (y, x).

If this is the case, then the utility gain of Player 1 is 50, while that of Player 2 is 20. Therefore, 2
has no incentive to deviate. The lack of incentives to deviate in other off-paths is straightforward.

If we add another player, 3, the situation changes even if this person is the lowest both in terms
of priority and values. See Table 4.2. Also, suppose that 1 ≻a 2 ≻a 3 holds for a = x, y. In

12The same proof due to Kaneko and Yamamoto (1986) can be applied to show this claim except for two modifica-
tions. First, Kaneko and Yamamoto (1986) assumes that the excess demand for a particular good is nonnegative if its
price is zero, while the present analysis does not necessarily assume it. Instead, the present equilibrium notion allows
the excess demand to be negative at the price of zero. Second, Kaneko and Yamamoto (1986) shows the existence
of integral solution by using the unimodularity of the system of equations due to Hoffman and Kruskal (2010). The
same proof is applicable to the present analysis by verifying the unimodularity of the system of equations of the present
model, which is straightforward.



A TWO-STAGE MODEL OF ASSIGNMENT AND MARKET 17

i 1 2 3
vi(x) 10 50 3
vi(y) 20 5 3

Table 4.2. An inefficient PME disappears

this case, an inefficient equilibrium similar to the one that existed before in the two player case
disappears. To see this, consider the corresponding allocation, i.e.,

ω = (x, ϕ, ϕ), p = (px, py) = (20,−), µ = (ϕ, x, ϕ).

This time, Player 3 obtains an object in neither stage. Thus, Player 3’s surplus is zero even though
3 has a positive value for the objects. Thus, 3 has an incentive to take the leftover. The above
allocation cannot be an equilibrium outcome.

We generalize the argument of the above example to find a necessary and sufficient condition
for efficiency. Note that N and ≻ on N are taken as given.

To begin with, given θ = 1, 2, . . ., let

Vθ =
{
v ∈ V

∣∣∣∣∣ min
a∈O

∣∣∣{i ∈ P|vi(a) > 0}
∣∣∣ = θ} .

Given v ∈ Vθ, mina∈O
∣∣∣{i ∈ P|vi(a) > 0}

∣∣∣ may be interpreted as the minimal demand. Roughly
speaking, the following theorem states that a PME allocation is efficient for any value profile if
and only if the minimal demand is sufficiently larger than Q, the sum of the quotas.

Theorem 4.3. Given θ = 1, 2, . . . , |P|, the following two statements are equivalent:
(1) for all v ∈ Vθ, a pure PME exists, and every pure PME allocation is efficient;
(2) θ ≥ 2Q −mina∈O qa.

Roughly speaking, the proof of the theorem goes as follows. First, we prove that (1) implies
(2). Suppose that the minimal demand is not sufficient so that (2) is violated. Given the priority
profile, we would like to construct a value profile v for which a pure PME allocation is not efficient.
Inefficiency arises if there is a leftover in the first stage. First of all, we divide the players into two,
sellers and buyers, in such a way that the sellers have higher priority than the buyers. Note that if
the minimal demand is not so large, then all the players with positive values can become either a
seller or a buyer. Next, v is constructed in such a way that the sellers do not value the objects very
much compared to the buyers. As a result, the sellers obtain some objects in the first stage and sell
them in the second. In particular, they do not buy other objects in the second stage. The buyers
obtain no object in the first stage and buy some in the second. This implies that there are two
players, a seller and a buyer, for each tangible object. Since the minimal demand is not sufficiently
large, if we attach the players to the objects in this manner, there must be some leftovers that are
not available in the second stage. From these leftovers, some sellers would have gained some
positive payoffs if they were obtained in the first stage by some “buyers.” The buyers, however,
would not do so; for if they do, they expect the price profile to change in an unfavorable manner.
The existence of these leftovers is the source of inefficiency.

Next, we prove the opposite direction, i.e., (2) implies (1). Suppose that (2) holds. Suppose
also that there is some leftover on the equilibrium path. Even if one tries to divide the players into
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sellers and buyers, there will be a player with a positive value who can be neither a seller nor a
buyer. This is due to the fact that θ exceeds the threshold 2Q −mina∈O qa. Then this player has an
incentive to deviate and obtain a leftover. Therefore, no leftover would remain in the first stage.
The rest is straightforward since a market equilibrium is efficient once all the objects are carried
over to the second stage.

Proof. [(1)⇒ (2)]
We prove this direction by contraposition. Take θ = 1, 2, . . . , |P| as given. Assume θ < 2Q −

mina∈O qa. It suffices to show that there exist v ∈ Vθ and a pure inefficient PME. We prove this
statement for the case of θ = |P|. If θ < |P|, we simply set the values of extra players to be negative
at every tangible object and follow the same proof. Also, let all the values of the players in N \ P
be negative at every tangible object.

Write O = {a1, . . . , aL} in such a way that qa1 ≥ qa2 ≥ . . . ≥ qaL holds. Note |O| ≥ 2 and
qaL = mina∈O qa. Note also that qa1 < |P| < 2Q − qaL holds where the first inequality comes from
the assumption in Subsection 2.2. Therefore, |P| satisfies

(4.1)
L−1∑
ℓ=1

2qaℓ ≤ |P| <
L∑
ℓ=1

2qaℓ

for some L = 1, . . . , L where the left hand side is zero if L = 1. Fix L. Let OL = {a1, . . . , aL}.
In constructing a pure inefficient PME, we first divide the players into sellers and buyers. To do

this, we identify the players who have higher priority for the objects in OL than others. Let S 1 be
the set of the top qa1 players in terms of priority at a1 among P, i.e., S 1 = {i1, . . . , iqa1 } such that
i ≻a1 j holds for all i ∈ S 1 and all j ∈ P \ S 1. Then sequentially define S ℓ (ℓ = 2, . . . , L − 1) as
the set of the top qaℓ players in terms of priority at aℓ among P \ [∪ℓ−1

ℓ′=1S ℓ′]. As for S L, define it as
the set of top min{qaL , |P| −∑L−1

ℓ=1 2qaℓ } players in terms of priority at aL among P \ [∪L−1
ℓ′=1S ℓ′]. Let

S = ∪L
ℓ=1S ℓ. Partition P \S into B1, . . . , BL in such a way that |Bℓ| = qaℓ holds for ℓ = 1, . . . , L−1,

and BL = P \ [S ∪L−1
ℓ=1 Bℓ]. Note that |BL| ≤ |S L| holds, that S L may be empty, that |S L| < qaL

implies BL = ∅, and that |BL| < qaL holds.
Next, we construct v as follows:

for i ∈ S ℓ (ℓ = 1, . . . , L − 1), let vi(a) be any number in (0, 1) for all a ∈ O;
for i ∈ Bℓ (ℓ = 1, . . . , L − 1), let vi(a) be any number satisfying the following:

vi(a) ∈
(14, 15) if a = aℓ,

(0, 1) otherwise.

As for the players in S L and BL, we define v separately as follows. Partition S L
into S ′L and S ′′L with |S ′L| = |BL|, and
for i ∈ S ′L, let vi(a) be any number in (0, 1) for all a ∈ O,
for i ∈ S ′′L ∪ BL,

vi(a) ∈
(2, 3) if a = aL,

(0, 1) otherwise.

Note that S ′L is empty if BL is empty. Note also that the above values are chosen in such a way
that genericity is guaranteed.
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Then, let the first stage outcome be given by

ω∗i =

aℓ if i ∈ S ℓ, (ℓ = 1, . . . , L),
ϕ if i ∈ Bℓ, (ℓ = 1, . . . , L).

To attain this profile, player i ∈ S ℓ (ℓ = 1, . . . , L) submits aℓ on top of the list. As for player i ∈ Bℓ
(ℓ = 1, . . . , L), he/she submits aℓ on top and ϕ on the second of the list.

In the second stage, let p∗aℓ = 10 − ℓ/L for all ℓ = 1, . . . , L − 1 and p∗aL
= 1 under ω∗. Let

the price vector be unchanged even if i ∈ S unilaterally deviates. This is possible since the total
endowment of the second stage does not change by such a deviation. Let paℓ (ℓ = 1, . . . , L) change
from p∗aℓ to p∗aℓ + 1 if i ∈ Bℓ unilaterally deviates. Let other prices remain unchanged even after
such a deviation.

Note that the price of the object other than a1, . . . , aL is at most one due to the construction of v.
Assign any ME to other endowment profiles, i.e., nodes that are reached only when two or more
players deviate. A typical behavior pattern and prices on the path are given in Table 4.3.

a1 · · · aL−1 aL leftovers

Buyers
B1︷   ︸︸   ︷

♠ ♠ · · · ♠ · · ·
BL−1︷    ︸︸    ︷

r r · · ·r
BL︷︸︸︷
♣ ♣

Sellers ♠ ♠ · · · ♠︸   ︷︷   ︸
S 1

· · · r r · · ·r︸    ︷︷    ︸
S L−1

♣ ♣︸︷︷︸
S ′L

♣ · · · ♣︸ ︷︷ ︸
S ′′L

□ □ · · ·

price p∗ 10 − 1
L · · · 10 − L−1

L 1

Table 4.3. A typical behavior pattern and prices on the path

We then show that the profile described above constitutes a PME. Observe first what the players
do on the path:

• player i ∈ S ℓ (ℓ = 1, . . . , L − 1) obtains object aℓ in the first stage, sells it to a player in Bℓ
at p∗aℓ in the second stage, and gains p∗aℓ = 10 − ℓ/L through the two-stage activity;
• player i ∈ Bℓ (ℓ = 1, . . . , L − 1) obtains ϕ, the null object, in the first stage, buys aℓ in the

second stage, and gains vi(aℓ) − p∗aℓ ∈ (4, 6);
• player i ∈ S ′L obtains object aL in the first stage, sells it to a player in BL at p∗aL

= 1, and
gains 1;
• player i ∈ S ′′L obtains object aL in the first stage, consumes it, and gains vi(aL) ∈ (2, 3);
• player i ∈ BL obtains ϕ in the first stage, buys aL at p∗aL

= 1, and gains vi(aL) − 1 ∈ (1, 2).
Next, we check what they obtain if they make a unilateral deviation:

• player i ∈ S ℓ (ℓ = 1, . . . , L − 1) may obtain aℓ′ for some ℓ′ > ℓ to gain p∗aℓ′ , vi(a) ∈ (0, 1)
for some a ∈ Ō; all of them are less than p∗aℓ ;
• player i ∈ Bℓ (ℓ = 1, . . . , L − 1) may obtain a leftover, say, a in the first stage and sell

it and buy aℓ at the same time in the second stage. By doing so, he/she gains at most
vi(aℓ)+ pa − (p∗aℓ + 1) due to a price increase of object aℓ. Since pa is at most one, the gain
is less than or equal to vi(aℓ) − p∗aℓ ;
• since the prices of objects aL, . . . , aL are at most one, player i ∈ S ′L gains at most one;
• player i ∈ S ′′L gains either one or vi(aL) − 1;
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• player i ∈ BL may obtain a leftover, say, a in the first stage and sell it and buy aL at the
same time in the second stage. By doing so, he/she gains at most vi(aL) + pa − (p∗aL

+ 1)
due to a price increase of object aL. Since pa is at most one, the gain is less than or equal
to vi(aL) − p∗aL

.

Hence, none of them has an incentive to make a unilateral deviation. Since there is a leftover
that would have induced a positive utility gain, the PME is not efficient.

[(1)⇐ (2)]
Assume θ ≥ 2Q −mina∈O qa.

Existence:
Let ω be an allocation with no leftover, i.e., |ω| = q. Suppose (p∗, µ∗,m∗) is an ME under ω

(such an ME exists). We may assume p∗a > 0 for a ∈ O since there is a sufficient amount of
demand for each a ∈ O. For any ω′ with no leftover, i.e., |ω′| = q, let p(ω′) = p∗. Adjusting m′

appropriately, we obtain an ME (p∗, µ∗,m′) under ω′ since |ω| = |ω′| together with quasi-linearity
implies that ME’s under ω and ω′ are both efficient, allocation of which is uniquely determined
by way of genericity (see, e.g., Shapley and Shubik (1971)).

Align the objects O = {a1, a2, . . . , aL} in such a way that pa1 ≥ pa2 ≥ . . . ,≥ paL holds. Then,
as in the proof of the other direction, let S 1 be the set of the top qa1 players in terms of priority
at a1 among P, i.e., S 1 = {i1, . . . , iqa1 } such that i ≻a1 j holds for all i ∈ S 1 and all j ∈ P \ S 1.
Then sequentially define S ℓ (ℓ = 2, . . . , L) as the set of the top qaℓ players in terms of priority at
aℓ among P \ [∪ℓ−1

ℓ′=1S ℓ′]. Let S = ∪L
ℓ=1S ℓ.

Next, in the first stage, let

ω∗i =

aℓ if i ∈ S ℓ, (ℓ = 1, . . . , L),
ϕ if i ∈ N \ S .

To attain this profile, the players in S put what they are supposed to obtain at the top of the list to
submit. The players in P \ S submit the truth-telling strategies. Along the path, each player i ∈ P
obtains ω∗i in the first stage. Moreover, even if one, say, player i, makes a unilateral deviation,
there would be no leftover since there are players in P \ S waiting for any leftover.

This strategy profile constitutes a pure PME along with the ME’s mentioned above (and appro-
priately chosen ME’s for other ω’s).

Efficiency:
Note that we have assumed θ ≥ 2Q − mina∈O qa. Take any v ∈ Vθ. Suppose a ∈ O has some

leftover, i.e., |ωa| < qa. Observe that at least qa players who cannot obtain b ∈ O \ {a} in neither
stage and have a positive value for a. Let W be the set of such agents. Note |W | ≥ qa > |ωa|.
Then pa ≥ mini∈W vi(a) > 0 holds; for if not, there would be excess demand for a. Then there
exists ℓ ∈ W who obtains nothing in the first stage, i.e., ωℓ = ϕ. This agent ℓ has an incentive to
obtain the leftover in the first stage to gain vℓ(a) instead of max{vℓ(a) − pa, 0}. Thus, there is no
leftover. Once this is established, we resort to the efficiency property of the second stage market
equilibrium to assure efficiency.

□
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5. College Admission and LaborMarket

This section studies the economy where players are divided into two groups, sellers and buy-
ers13. This analysis may be interpreted as a college admission problem followed by a labor market:
the objects are college degrees, the sellers are students, and the buyers are firms. The first stage is
a many-to-one matching between students and colleges. In the second stage, a job market opens,
and each firm hires at most one student based on his/her college degree.

Let P be the set of students and N \P be the set of firms. College degrees are objects. A firm can
demand a degree only if it is owned by some student14. Every student selects a college (including
not going to college, corresponding to ϕ), taking into account the future job prospect.

We assume the following.

(NP): vi(a) ≤ 0 holds for all i ∈ P and all a ∈ Ō,
Assumption (NP) implies that only the firms, not the students, intrinsically demand the college
degrees.

5.1. Existence. The following existence result is proven by Kaneko and Yamamoto (1986).

Lemma 5.1. (Kaneko and Yamamoto (1986)) Assume (NP). Given ω ∈ A, there exists at least one
market equilibrium under ω.

Then a PME exists in mixed strategy since the existence of PME is reduced to the existence of
Nash equilibrium. The following result is stated without proof.

Theorem 5.2. Assume (NP). Then there exists at least one PME.

5.2. Efficiency. As in the previous section, efficiency is the main property examined here. First
of all, under the assumption of the quasi-linearity of utility functions, the definition of Pareto
optimality is reduced to that of efficiency. Next, the priority profile of the first stage no longer
matters in terms of object allocation, and therefore, the stability notion plays little role in terms of
the final allocation of the objects.

In order to state the subsequent result, we need to modify the definition of minimal demand
from what we have in the previous section. Given θ = 1, 2, . . ., let

Vθ =
{
v ∈ V

∣∣∣∣∣ min
a∈O

∣∣∣ {i ∈ N \ P | vi(a) > 0}
∣∣∣ = θ} .

The next theorem corresponds to Theorem 4.3.

Theorem 5.3. Assume (NP). Given |P| ≥ Q and θ = 1, . . . , |N \ P|, the following two statements
are equivalent:

(1) for all v ∈ Vθ, a pure PME exists, and every pure PME allocation is efficient;
(2) θ > Q.

Note that Condition (2) of this theorem is different from Condition (2) of Theorem 4.3. This
difference is due to the fact that the sellers and the buyers have already been separated as the
students and the firms in the present section.

13Note that in the proof of Theorem 4.3, the players are divided into the sellers and the buyers in the construction
of PME. But, the division is endogenous. While the separation between sellers and buyers is exogenously determined
in the present section.

14We do not consider signaling effects here.
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A rough idea of the proof is similar to that of Theorem 4.3. Indeed, in proving that (1) implies
(2), we suppose that the minimal demand is not sufficient, i.e., (2) is violated. The construction
of the value profile is easier in the present proof than in the previous one since there is no need
to worry about the buyers trying to obtain the objects in the first stage, which is prohibited as an
outset.

Note also that the sellers do not value tangible objects. A seller has a strict incentive to obtain
an object only if its price is expected to be positive. We construct an ME where the price of some
tangible object is zero even if it induces a positive payoff for some buyer. The sellers may not
obtain such an object, which leads to the existence of a leftover, and therefore, inefficiency.

As for the proof of (2) implying (1), we first show the existence. Under Condition (2), the mini-
mal demand is sufficiently large so that every price of tangible object is positive on the equilibrium
path of any pure PME. Whenever all the tangible objects may have positive prices, efficiency will
be attained since there is no leftover.

In the following proof of Theorem 5.3, we skip some details when they are similar to what we
have stated in the proof of Theorem 4.3.

Proof. [(1)⇒ (2)]
Assume θ ≤ Q. We construct v ∈ Vθ as follows. Align the objects in an arbitrary manner,

O = {a1, . . . , aL}. There exists a unique L = 1, . . . , L such that qa1 + · · ·+qaL−1 < θ ≤ qa1 + · · ·+qaL

holds. Fix L. Let N f ⊂ N \ P satisfy |N f | = θ, and let vi(a) < 0 for all a ∈ O and all i < N f ∪ P.
Then assign a number to each vi(a) (i ∈ N f , a ∈ O) in such a way that for each ℓ = 1, . . . , L − 1,
and for all i, j ∈ N f , vi(aℓ) > v j(aℓ+1) > 0 holds.

Let µ∗ be the efficient object allocation given v. It must be the case that |µ∗a| = qa for a =
a1, . . . , aL−1 and that 0 < |µ∗aL | ≤ qaL . Consider ω with |ω| = |µ∗|. Then (p, µ∗,m) becomes an ME
under ω for some p and m. It is verified, due to the way we construct v, that pa1 ≥ pa2 ≥ . . . ≥ paL .
Then there is another ME, denoted (p∗, µ∗,m∗), such that p∗aℓ = paℓ − paL holds for all ℓ = 1, . . . , L.
Note that p∗aL

= 0 holds.
Assign the objects to the players in P in the first stage from a1 to aL−1 to fill their respective

quotas, using ≻, i.e., those who have higher priority at a1 obtain a1, and so on. As for aL, assign
the objects to the remaining students so that the total number of the students assigned to some
tangible objects becomes θ. Assign the other students to ϕ. Denote this assignment profile ω∗. Let
(p∗, µ∗,m′) be the ME under any ω′ with |ω′| = |ω∗|. The existence of such an ME is proven in the
same manner as in Shapley and Shubik (1971).

Take one player, say, i ∈ P, who obtains aL under ω∗. Change ω∗i to ϕ and obtain ω∗∗, i.e.,
for all j , i, ω∗∗j = ω

∗
j holds. We would like to have this ω∗∗ as a PME allocation of the first

stage. To attain this profile, the players in P put what they are supposed to obtain at the top of
the list to submit. Let us check if there is no incentive to deviate. Under ω∗∗, there is one firm
in N f that cannot buy a tangible object in the second stage, and there is at least one student who
does not obtain a leftover in the first stage. If such a student obtains aL, then the first stage object
allocation becomes ω′ with |ω′| = |ω∗|, and therefore, the price of aL is zero. Note that the price of
object ℓ > L that this student obtains by deviation can be zero in equilibrium since he/she obtains
an object of which value is less than aL. Thus, the student has no incentive to deviate in the first
stage. An inefficient outcome arises as a PME allocation.

[(1)⇐ (2)]
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Suppose θ > Q. Take v ∈ Vθ as given.
We show existence first. Construct ω∗ as follows. Take some ω with |ω| = q. Let (p∗, µ∗,m) be

an ME under ω. Align O = {a1, . . . , aL} in such a way that p∗a1
≥ p∗a2

≥ . . . ≥ p∗aL
holds. Since

θ > Q holds, there exists j ∈ N \ P such that µ∗j = ϕ and v j(aL) > 0 hold. Therefore, we have
p∗aL
≥ v j(aL) > 0. Assign objects a1, . . . , aL to the players in P in the first stage, using ≻, i.e., assign

a1 to the top qa1 students in terms of priority and continue this process up to object aL. Assign the
other students, if any, to ϕ. Denote this assignment profile ω∗. Under ω∗, (p∗, µ∗,m∗) becomes an
ME for some m∗. Let ω∗ be the outcome of the first stage. Then together with appropriate off-path
ME’s, we have a PME as nobody has an incentive to deviate.

We next prove efficiency. Suppose that (σ, (p(ω), µ(ω),m(ω))) is a PME. Take any ω. Since
θ > Q holds, for all a ∈ O, there exists j ∈ N \ P such that µ j(ω) = ϕ and v j(a) > 0 hold.
Therefore, pa(ω) ≥ v j(a) > 0 for all a ∈ O; otherwise, j would buy a in an ME. Let ω∗ = λ(σ).
Suppose that a ∈ O has some leftover, i.e., |ω∗a| < qa. Since |P| ≥ Q, there exists at least one
student who does not obtain any tangible object in the first stage under ω∗. This player has an
incentive to obtain the leftover a since under any ω, pa(ω) > 0 as we have shown.

□

6. Conclusion

The present paper has proposed a new framework, by explicitly formulating a two-stage model
where indivisible objects are allocated through the first stage matching mechanism and traded
in the second stage market. As the first stage matching mechanism, we have used the deferred
acceptance algorithm (DA). This framework is applicable to both non-monetary and monetary
markets in the second stage. The notion of perfect market equilibrium (PME) has been defined
according to which market equilibrium prevails in the second stage both on and off the path, and
Nash equilibrium is played in the first stage game induced by these second stage outcomes.

We have set forth the equivalence conditions where stability and efficiency are attained in equi-
librium. In the case of non-monetary market, it has been shown that any pure PME allocation is
always Pareto optimal, while the PME allocation with the truth-telling strategy profile is stable if
and only if the priority profile is acyclical. Also, it has been shown that the Pareto optimal DA
allocation is the unique pure PME allocation if and only if the priority profile is unreversed.

In the case of monetary market, the question is whether the PME allocations always attain
efficiency or not. We have considered two cases. First, we have considered the economy in which
the players may become buyers and sellers at the same time. The minimal demand is key to
the equivalence condition. If it is greater than a certain threshold, all the PME allocations are
efficient. Next, we have considered the economy in which players are divided into two groups,
sellers and buyers. Again, if the minimal demand is greater than another certain threshold, all the
PME allocations are efficient.

The present analysis is limited in various respects. To begin with, while DA is used as the
first stage mechanism, it may be modified to incorporate general matching mechanisms. Second,
the present paper uses a market as the second stage decentralized mechanism. The players may
negotiate in a decentralized manner. Shapley value and noncooperative bargaining procedures
may be adopted as the second stage decentralized mechanism. Third, it is assumed that each
player obtains only one unit of tangible objects. The analysis may be extended to the case in
which multiple objects can be traded in the second stage. Fourth, quasi-linearity is often a strong



24 AKIHIKO MATSUI AND MEGUMI MURAKAMI

assumption. This assumption may be weakened to see what happens. Fifth, sometimes, payoffs
may be induced by holding the object in the first stage. An example would be the economy in
which students directly obtain utility from their degree. All of these variations remain for the
future research.
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Appendix A. NoMoney

A.1. Examples: Quotas and values.
Existence of ME is not guaranteed if the quota exceeds one for some object type as the next
example shows.

Example A.1.

i 1 2 3
vi(x) 10 20 20
vi(y) 20 10 10

Table A.1. Values

Let the values of this economy be given in Table A.1. Suppose

ω = (x, y, y).

Then we have no market equilibrium in the second stage under ω. To begin with, we have px ≤ 20
and py ≤ 10. For if not, there would be excess supply with a positive price. Consider two cases.
First, suppose px ≤ py ≤ 10. Then both Players 2 and 3 can afford x, and therefore, the demand
for x is at least two, which leads to excess demand as there is only one unit of object x. Second,
suppose px > py. Then no player demands x, which leads to excess supply for x with a positive
price. Thus, no market equilibrium exists.

Also, existence is not guaranteed if (+Value) is violated.

Example A.2.

i 1 2 3
vi(x) 20 −10 20
vi(y) 10 −20 10

Table A.2. Values

Let the values of this economy be given in Table A.2. Suppose

ω = (ϕ, x, y).

Then we have no market equilibrium in the second stage under ω. Suppose the contrary, i.e., that p
is a market equilibrium price. First, we have pϕ = 0. Next, we would like to show px = 0. Suppose
not, i.e., px > 0. Then there must be a positive demand for x, which occurs only if py ≥ px > 0
since Player 3 must demand x. This implies that there is no demand for y since Player 1 has
neither money nor object with a positive price. This is a contradiction. Thus, px = 0 holds. But,
this would induce the excess demand for x. Hence, no market equilibrium exists.
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A.2. Lemmata and proofs: PME and DA allocations.

Lemma A.1. Assume (+Value), and (Quota1). There exists a stable and Pareto optimal allocation
if the priority profile is acyclical. Moreover, if µ is stable and Pareto optimal, there exists a price
vector p such that (p, µ) is an ME given µ itself as an endowment profile.

Proof. Assume (+Value), and (Quota1). In the sequel, we disregard the players in N \ P because
they cannot buy any object even in the second stage. Thus, without loss of generality, consider the
case of P = N. Also, suppose that the priority profile is acyclical. Then, Ergin (2002) shows that
the DA allocation µ becomes a stable and Pareto optimal allocation.

First, we assign a price to each object a using the trading cycle mechanism with an initial object
profile µ (see Shapley and Scarf (1974) for the definition of the trading cycle mechanism). Let
(pa)a∈O be such a constructed price profile. Then, no player has an incentive to trade in the second
stage under µ. Therefore, (p, µ) is a market equilibrium under µ itself.

□

Lemma A.2. (Gale and Shapley (1962),Theorem 2) Assume (+Value) and (Quota1). Let η ∈ A be
the allocation attained by the truth-telling strategy profile in the single-stage model. Suppose also
that µ ∈ A with µ , η is stable. Then, µ is Pareto dominated by η.

The following corollary is a direct consequence of the above lemma, which is stated without
proof.

Corollary A.3. Assume (+Value) and (Quota1). If there exists a stable and Pareto optimal allo-
cation, it is unique and coincides with the Pareto optimal DA allocation.

A.3. Proof of Theorem 3.4.
Now we are in the position to state the proof of Theorem 3.4.

Proof.
[(1)⇒ (2)]

This is a proof by contraposition. Suppose that the priority has a cycle, i.e., for distinct objects
x, y ∈ O and distinct players 1, 2, 3 ∈ N, 1 ≻x 2 ≻x 3 ≻y 1 holds.

Now consider the case of P = {1, 2, 3}. Also, consider the following v ∈ V+15.

i 1 2 3
vi(x) 10 30 30
vi(y) 30 10 20
vi(z) 20 20 10

Table A.3. Values

15Although genericity is violated in this v, the argument does not depend upon non-genericity.
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Given these P and v, the Pareto optimal DA allocation is (z, x, y). However, Player 1 has an
incentive to deviate from the truth-telling strategy and obtain x in the first stage. By deviation, 1
can always trade x with y in the second stage. There is no PME where 1 does not obtain y after
the market exchange. Thus, this Pareto optimal DA allocation cannot be achieved as a PME object
allocation.

[(1)⇐ (2)]
Assume (Quota1). Assume that there is no cycle in the priority. Lemma A.1 implies that for

each P ⊂ N and v ∈ V+, there exists a stable and Pareto efficient allocation. Suppose the contrary,
i.e., there exist P ⊂ N and v ∈ V+ such that a stable and Pareto optimal object allocation µ is
not a PME allocation.What we would like to show is the existence of a priority cycle under this
contrapositive assumption.

First, we disregard the players in N \ P because they cannot buy any object even in the second
stage. Thus, without loss of generality, consider the case of P = N. Next, we construct a profile
of ME’s. Since µ is Pareto optimal, there exists a price vector p such that (p, µ) is an ME under µ
as an endowment profile. Also, by Lemma 3.1, for any endowment profile ω, there exists an ME.
Let (p(ω), µ(ω))ω∈A be a profile of market equilibrium that satisfies (p(µ), µ(µ)) = (p, µ).

Let ζ∗ = (ζ∗j ) j∈N be the truth-telling strategy profile. Then, the outcome of the first stage is µ
under ζ∗. Since (ζ∗, (p(ω), µ(ω))ω∈A) is not a PME, there exist i ∈ N and ζi such that

(A.1) E
[
ui(·)|(ζi, ζ∗−i)

]
> E
[
ui(·)|ζ∗

]
holds. Fix this player i throughout the proof.

Let ω∗ = λ(ζ∗) and ω̂ = λ(ζi, ζ∗−i). We have ω∗ , ω̂; otherwise i cannot be better off. DA
and strategy proofness of ζ∗ imply vi(ω∗i ) ≥ vi(ω̂i) and i must trade through a trading cycle in the
second stage to be better off. Let

(
(k0, ω̂0), (k1, ω̂k1), . . . , (kn̄, ω̂kn̄)

)
with k0 = kn̄ = i and ω̂0 = ω̂kn̄

be the corresponding trading cycle:

vkn(ω̂kn+1) > vkn(ω̂kn);(A.2)
kn+1 ≻ω̂kn+1

kn, n = 0, 1, . . . , n̄ − 1(A.3)

Also, note that k1, . . . , kn̄ are all distinct players; otherwise these players do not constitute a trading
cycle.

Now, we consider an auxiliary situation by running DA without i at first, and after this algorithm
is tentatively terminated, we put player i in the algorithm and continue the process until it stops.
Note that DA object allocation is not affected by the order of moves as discussed in Dubins and
Freedman (1981)16. Player i obtains ω̂i by rejecting another player, say, ℓ1; otherwise, i.e., if ω̂i
had not been occupied by some player, then player kn̄−1 would have gotten it instead of object
ωkn̄−1 due to (A.2). Also, there is a chain of rejection ℓ1, ℓ2, . . . , ℓR where ℓr+1 is rejected by ℓr (r =
1, . . . ,R − 1), and ℓR ends up with either a leftover or ϕ. Note that all the objects ω̂ℓ0 , ω̂ℓ1 , . . . , ω̂ℓR
are distinct; otherwise, there is a priority cycle.

If ℓ1 is distinct from kn for all n = 1, . . . , n̄, then recalling k0 = kn̄ = i, we have

i ≻ω̂i ℓ1 ≻ω̂i kn̄−1 ≻ω̂kn̄−1
kn̄−2 ≻ω̂kn̄−2

· · · ≻ω̂k2
k1 ≻ω̂k1

k0 = i,

which is a generalized cycle. A contradiction. Thus, ℓ1 = kn1 for some n1 = 1, . . . , n̄.

16DA discussed in this auxiliary situation is essentially the same as the one defined in Dubins and Freedman (1981).
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Using exactly the same argument, i.e., using ℓ1 and ℓ2 in place of i and kn1 , we conclude that if
ℓ2 is distinct from kn for all n = 1, . . . , n1, then there exists a generalized cycle:

i ≻ω̂i ℓ1 ≻ω̂kn1
ℓ2 ≻ω̂kn1

kn1 ≻ω̂kn1−1
· · · ≻ω̂k2

k1 ≻ω̂k1
k0 = i.

This process ends in at most n̄ steps.
By induction, the rejection chain reaches k1. Then, for some r, ℓr = k1. Note that there is ℓr+1

who is rejected by ℓr at ωk1 . Then, there is a generalized cycle:

ℓr ≻ωk1
ℓr+1 ≻ωk1

i ≻ωk0
ℓ1 ≻ωkn1

· · · ≻ωk2
ℓr.

Finally, the rejection chain does not reach k0 because the objects are distinct. This leads to a
contradiction.

□
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Abdulkadiroğlu, A., and T. Sönmez (2003): “School choice: A mechanism design approach,” American economic
review, 93(3), 729–747.

Coase, R. (1960): “The Problem of Social Cost,” JL & Econ., 3, 1.
Crawford, V. P., and E. M. Knoer (1981): “Job matching with heterogeneous firms and workers,” Econometrica:

Journal of the Econometric Society, pp. 437–450.
Demsetz, H. (1964): “The exchange and enforcement of property rights,” The Journal of Law and Economics, 7, 11–26.
Dubins, L. E., andD. A. Freedman (1981): “Machiavelli and the Gale-Shapley algorithm,” The American Mathematical

Monthly, 88(7), 485–494.
Ergin, H. I. (2002): “Efficient resource allocation on the basis of priorities,” Econometrica, 70(6), 2489–2497.
Gale, D., and L. S. Shapley (1962): “College admissions and the stability of marriage,” The American Mathematical

Monthly, 69(1), 9–15.
Hafalir, I., and V. Krishna (2008): “Asymmetric auctions with resale,” American Economic Review, 98(1), 87–112.
Hoffman, A. J., and J. B. Kruskal (2010): “Integral boundary points of convex polyhedra,” in 50 Years of Integer

Programming 1958-2008, pp. 49–76. Springer.
Jehiel, P., and B. Moldovanu (1999): “Resale markets and the assignment of property rights,” The Review of Economic

Studies, 66(4), 971–991.
Kaneko, M. (1982): “The central assignment game and the assignment markets,” Journal of Mathematical Economics,

10(2-3), 205–232.
Kaneko, M., and Y. Yamamoto (1986): “The existence and computation of competitive equilibria in markets with an

indivisible commodity,” Journal of Economic Theory, 38(1), 118–136.
Kojima, F., andM. Manea (2010): “Axioms for deferred acceptance,” Econometrica, 78(2), 633–653.
Maskin, E., and J. Moore (1999): “Implementation and renegotiation,” Review of Economic studies, pp. 39–56.
Roth, A. E. (1982): “The economics of matching: Stability and incentives,” Mathematics of operations research, 7(4),

617–628.
Roth, A. E., and M. Sotomayor (1989): “The college admissions problem revisited,” Econometrica: Journal of the

Econometric Society, pp. 559–570.
Shapley, L., and H. Scarf (1974): “On cores and indivisibility,” Journal of mathematical economics, 1(1), 23–37.
Shapley, L. S., andM. Shubik (1971): “The assignment game I: The core,” International Journal of game theory, 1(1),

111–130.
Sotomayor, M. (2008): “The stability of the equilibrium outcomes in the admission games induced by stable matching

rules,” International Journal of Game Theory, 36(3), 621–640.
Takamiya, K. (2001): “Coalition strategy-proofness and monotonicity in Shapley–Scarf housing markets,” Mathemati-

cal Social Sciences, 41(2), 201–213.
Wako, J. (1984): “A note on the strong core of a market with indivisible goods,” Journal of Mathematical Economics,

13(2), 189–194.

Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
E-mail address: amatsui@e.u-tokyo.ac.jp
URL: http://www.e.u-tokyo.ac.jp/˜amatsui

Department of Economics, Northwestern University, 2211 Campus Drive, Evanston, IL 60208, U.S.A.


